introduction to nanoheat; aspel group

36
Introduction to Nanoheat; Aspel group 20030910

Upload: harsha

Post on 15-Jan-2016

27 views

Category:

Documents


0 download

DESCRIPTION

Introduction to Nanoheat; Aspel group. 20030910. TCAD. Collision-dominated  quasi-ballistic. Double gate device/ quantum confinement. Conduction subband vs. position. Electron distribution function vs. position under high gate bias (top of the barrier). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Introduction to Nanoheat; Aspel group

Introduction toNanoheat; Aspel group

20030910

Page 2: Introduction to Nanoheat; Aspel group

TCAD

Collision-dominated quasi-ballistic

Page 3: Introduction to Nanoheat; Aspel group

Double gate device/ quantum confinement

Page 4: Introduction to Nanoheat; Aspel group

Conduction subband vs. position

Page 5: Introduction to Nanoheat; Aspel group

Electron distribution function vs. position under high gate bias (top of the barrier)

Page 6: Introduction to Nanoheat; Aspel group

Average electron velocity (high gate bias)

Page 7: Introduction to Nanoheat; Aspel group

Key concepts to develop a ballistic theory

Page 8: Introduction to Nanoheat; Aspel group

E-k relation (top of the barrier) under high gate bias: Vds=0/ small/ large

Page 9: Introduction to Nanoheat; Aspel group

I-V characteristic for ballistic MOSFET (T>0, nondegenerate)

Page 10: Introduction to Nanoheat; Aspel group
Page 11: Introduction to Nanoheat; Aspel group
Page 12: Introduction to Nanoheat; Aspel group

Ballistic limit characteristic vs. measured I-V

Page 13: Introduction to Nanoheat; Aspel group

Backscattering at the top of the barrier

Page 14: Introduction to Nanoheat; Aspel group

Average carrier velocity & inversion layer density (ballistic/ with scattering)

Page 15: Introduction to Nanoheat; Aspel group

Effect of scattering within channel

Page 16: Introduction to Nanoheat; Aspel group

Key concepts to develop a scattering theory

Page 17: Introduction to Nanoheat; Aspel group

The scattering model

Page 18: Introduction to Nanoheat; Aspel group
Page 19: Introduction to Nanoheat; Aspel group

Transmission coefficient under low drain bias

Page 20: Introduction to Nanoheat; Aspel group
Page 21: Introduction to Nanoheat; Aspel group

Relating mean-free-path to a macroscopic quantity

Page 22: Introduction to Nanoheat; Aspel group

Transmission coefficient under high drain bias

Page 23: Introduction to Nanoheat; Aspel group

Electron injected into the channel undergoing its first scattering event

Page 24: Introduction to Nanoheat; Aspel group

Scattering event in momentum space

Page 25: Introduction to Nanoheat; Aspel group

Probability of it returning to the source

Page 26: Introduction to Nanoheat; Aspel group

Classical ballistic/ quantum ballistic/ drift-diffusion

Page 27: Introduction to Nanoheat; Aspel group

Essential physical picture of steady-state carrier transport in the nanoscale MOSFET

bottleneck

Page 28: Introduction to Nanoheat; Aspel group

Monet

Continuum classical heat diffusion equation

Boltzmann transport equation (phonon)

Q’’’: electron-phonon interactions

Page 29: Introduction to Nanoheat; Aspel group

Energy transfer process

Page 30: Introduction to Nanoheat; Aspel group

Monte Carlo simulation Semi-classical approach

(1) Scattering rate (2) Free flight (F=ma) Fermi-Golden Rule

Page 31: Introduction to Nanoheat; Aspel group

Heat generation profile (10nm DGSOI)

Page 32: Introduction to Nanoheat; Aspel group

Cornell Aspel group

Primary research area- develop high speed interconnect system for chip-to-chip communication including receivers, transmitters, link architectures in CMOS, and stochastic encoding

Page 33: Introduction to Nanoheat; Aspel group

Optical properties of sapphire substrate

300nm~ (6um)

Page 34: Introduction to Nanoheat; Aspel group

Commercial 850nm GaAs/AlGaAs-quantum-well vertical-cavity surface emitting lasers (VCSELs) and 980nm InGaAs/AlGaAs VCSELs were used as front and back emitting structures, respectively.

Page 35: Introduction to Nanoheat; Aspel group

“A high performance SiGe/Si MQW heterojunction phototransistor,” IEEE Trans. Electron Device (under revision), 2003

Page 36: Introduction to Nanoheat; Aspel group

“A 7mW 1Gbps CMOS Optical Receiver For Through Wafer Communication”, accepted Proceedings of the International Symposium on Circuits and Systems, 2003