introduction to discrete time signals & system

Upload: mahesh-abnave

Post on 07-Jul-2018

237 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 Introduction to Discrete Time Signals & System

    1/119

    apter 1

    roduction to Discrete Time Signals & System:

    Discrete–Time Signals representation and Manipulation,

    Discrete–Time IIR and FIR Systems, Impulse Response,

    (Infinite Impulse Response and Finite Impulse Response)

    Transer Function,

    Dierence !"uation,

    Fre"uency Domain and Time Domain #nalysis o IIR ilter and FIR ilter,

    Correlation,

    $inear and Circular and Con%olution #lgorithm,

  • 8/19/2019 Introduction to Discrete Time Signals & System

    2/119

    pter 1 'uestions

    ec( )1

    i%e any i%e classiications o Discrete time systems +ith eamples

     .t/ 0 sin.2π

    t/ 3 4 sin .5)π

    t/  is sampled +ith Fs 0 6 times per sec.

    1/ 7hat are the re"uencies in radians in the resulting DT signal .n/8

    )/ I .n/ is passed through an ideal interpolator,

    +hat is the reconstructed signal8

    une )11

    .n/ 0 ), ;1, 4, , < o=tain ollo+ing:

    .i/ .;n/ .ii/ .n;1/ .iii/ .n31/ .i%/ .;n3)/.%/ .)n/

    or a discrete time system +hose impulse response h .n/ 0 1, ;), 1<

      ↑ 

    ind the output or input .n/ 0 1, ), 4, <

    lassiy ollo+ing DT System on linearity> causality and time %ariance:;

    i/ y .n/ 0 ).n/ 3 .n;1/ .ii/ y .n/ 0 .)n/ 3)

  • 8/19/2019 Introduction to Discrete Time Signals & System

    3/119

    1( .n/0 ?1, ), 1, ), 4, @ ind y .n/ 0 .1;n/ 3 .4;n/ 3 . –n/

    )( !plain +hether the ollo+ing signals are po+er signal or energy signal(

    a( (A n u .n/ =( # cos .ω

    n/

    4( Determine +hether the ollo+ing signals are periodic or non;periodic(

      B.π

     >/ n

    a( .n/ 0 e =( .n/ 0 cos.A πt/ 3 cos.1 πt/

    ( Decompose the ollo+ing signals into e%en and odd parts

    a( ?n@ 0 ? 1 ) 4 A 6 5 2 @

    =( y ?n@ 0 ?2 2 2 2 @

  • 8/19/2019 Introduction to Discrete Time Signals & System

    4/119

    Signal

    # signal is deined as any physical "uantity that %aries +ith:

    1( Time,

    )( Space or

    4( #ny other independent %aria=le or %aria=les

      ; !amples o Signals

    ; Speech

    ; Music

    ; ictures; ideo

    ; !C*

    ; Mathematically, +e descri=e a signal as a

    unction o one or more independent %aria=les 

    s1.t / 0 A t

    s). t/ 0 ) t)  Ene independent %aria=le t .time/

    ., y/ 0 4 3 ) y 3 1 y)

      t+o independent %aria=les , and y

  • 8/19/2019 Introduction to Discrete Time Signals & System

    5/119

    !ample o speech signal

    Signals can =e generated =y a system:

    Speech ; ocal Cords

    !C* ; !lectrocardiogram: olariation> depolariation o %entricles

    !!* ; !lectroencephalogram

  • 8/19/2019 Introduction to Discrete Time Signals & System

    6/119

    ; Speech, !C* and !!* signals are unction o a single %aria=le:

    t, Time

    ; #n image signal is unction o t+o %aria=les:

    , y .Coordinates o an image/

    ; These signals are generated =y some means:

    ; Speech signal =y %ocal cord and air lo+(

    ; Image signals =y eposing light; sensiti%e sensors to light 

    ; The signals are generated =y a system

  • 8/19/2019 Introduction to Discrete Time Signals & System

    7/119

    Signal processing system

    # signal processing system is deined as a de%ice 

    that perorm an operation on the signal

    ; #mpliier  is a system that ampliies a signal

    ; Filter is a system that suppresses or allo+s

    some re"uencies rom the signal

    ; Thus a system is an interconnection o components thatperorms an operation on

    input signal and produces an output signal(

    ; The deinition o a system can =e =roadened to include not only

    physical de%ices =ut also,

    sot+are realiation o operations

  • 8/19/2019 Introduction to Discrete Time Signals & System

    8/119

    Digital signal processing system

    ; There are t+o  types o signals:

    ; #nalog signals and

    ; Digital signals

    #nalog signals:

    ; Most o the signals that occur in nature are analog signals(

    ; The analog signals are a unction o a continuous %aria=le 

    such as time or space,

    taGes on %alues in continuous range

    ; #nalog signals can =e processed directly, in continuous orm =y analog systems .circuits/ such as:

    #mpliiers, Filters, Fre"uency multipliers,

    ; #nalog processing:

    Direct processing o signals in continuous orm .#nalog orm/

  • 8/19/2019 Introduction to Discrete Time Signals & System

    9/119

    !ample o analog processing o signals

    oice ampliier:

    ; #mpliier is made up o resistors, capacitors, transistors etc(

    ; #mpliier taGes the analog signal .continuous/ rom microphone,

    ampliies it , and produces analog output signal or speaGer 

    #nalog processing system:

    ; TaGes analog input, process it in analog orm and

    produces analog output

  • 8/19/2019 Introduction to Discrete Time Signals & System

    10/119

    Digital Signal rocessing:

    - Digital signal processing pro%ides an alternati%e method or

    processing the analog signals

    ; First analog signals are con%ert to digital signals :

      – #DC .#nalog to Digital con%erter/

    #DC pro%ides the interace =et+een

    the analog signal and the digital processor 

    ; rocess the digital signals, using digital processor 

    ; Digital processor can =e

    - rogramma=le computer ,

    ; Small microcomputer , or

    ; DS chip(

    ; The digital output o the DS is con%erted =acG to analog

     ( DAC, Digital to Analog converter)

  • 8/19/2019 Introduction to Discrete Time Signals & System

    11/119

    !ample o digital processing o signals

    - First, input analog signal rom microphone is con%erted to digital signal

    =y #nalog to Digital Con%erter .#DC/

    - Then, the digital signal is processed =y Digital Signal rocessor .DS/

    - Finally, the digital output produced =y DS, is con%erted to #nalog signal,

    =y Digital to #nalog con%erter .D#C/, or eeding it to speaGer 

    Digital

    Output signal

    Digital

    Input signal

    n is num=er(sample)

     Analog

    Output signal Analog

    Input signal

    t is time

    (t) (n) ! (t)! (n)

  • 8/19/2019 Introduction to Discrete Time Signals & System

    12/119

    tages o Digital Signal rocessing o%er #nalog Signal processing:

    S is more  lei=le: !asily reconigura=le( .Sot+are/

    (Reconfiguration of analog s!stem re"uires redesigning

    #ard$are)eplication is easy, digital systems can =e easily replicated

    ccuracy o design in digital systems is high

    ( %etting #ig# accurac! in analog s!stems is ver! difficult 

    &ecause of tolerances of #ard$are components)

    torage o digital signals is %ery easy on magnetic media, memory, CD, DD

    pen dri%e(

    S allo+s implementation o more sophisticated signal processing algorithms(

    .Comple mathematical algorithms can =e easily implemented/

    he cost o implementation digital systems is lo+ 

    due to the lo+er cost o the digital hard+are

  • 8/19/2019 Introduction to Discrete Time Signals & System

    13/119

    pplications o Digital Signal rocessing:

    ; Speech processing

    ; Signal transmission and reception in telephone> mo=ile systems

    ; Image processing

    ; Seismology . Study o seismic signals/

    ; Eil eploration .#nalysis o signals tra%eling through the layers o eart

    imitations o DS:

    1( The use o #DC and D#C may maGe the processing comparati%ely, slo+er (Analog s!stems are faster)

    )( The po+er consumption o digital signal processors  may =e higher 

    4( Hot suita=le or signals +ith huge =and+idth .#DC, Sampling rate has to =e t+o times the =and+idth/

  • 8/19/2019 Introduction to Discrete Time Signals & System

    14/119

    Sound signals

    #udi=le range: 4 ert to 12 ert

    For telephone "uality sound signals:

    Range o re"uencies 0 J

    thus sampling re"uency re"uired is 2 J

    For CD "uality:Sampling re"uency is (1 J > channel

    Range o re"uencies 0 )) J

    #udi=le range o human =eings ) to ),

    Hy"uist sampling theorem:

    I a unction x .t / contains no re"uencies higher than B hert,

    it is completely determined =y gi%ing its ordinates at a series 

    o points, spaced 1> .)B/ seconds apart(

      .Er the signal +ith the maimum re"uency o K ert, can =e

    completely represented =y sampling at a re"uency o ) K ert/

  • 8/19/2019 Introduction to Discrete Time Signals & System

    15/119

    Classiication o signals

    ; Signal rocessing techni"ue or any signal depends upon the

    characteristics o the signal(

    Multi;channel and Multidimensional Signals: 'C-'ultiple components  of same signal

      'D- 'ultiple inputs

    Real %alued signal

    s1.t/ 0 # sin 4 πt

    Comple %alued signals) .t / 0 # e B4 π t  0 # cos4 πt 3 B # sin 4πt

    ector representation

    The signal generated =y:

     multiple sources or

    multiple sensors

    can =e represented =y components o a %ector 

    s1.t/

    s4.t / 0 s).t/

    Three component

    signal

    !

  • 8/19/2019 Introduction to Discrete Time Signals & System

    16/119

    Three components o ground acceleration measured a e+ Gilometers

    rom the epicenter  o an earth"uaGe

  • 8/19/2019 Introduction to Discrete Time Signals & System

    17/119

    * + * + ***

  • 8/19/2019 Introduction to Discrete Time Signals & System

    18/119

    Ene dimensional> multidimensional signal

    ; one;dimensional signal

    ; I a signal is a unction o one independent %aria=le

    It is one;dimensional signal

    ; Ether+ise it is multidimensional signal

    ; I it is dependent upon more than

      one independent %aria=les

    ; #n still image can =e t+o dimensional signal

    since I ., y/, intensity o light at any location

     depends upon , y coordinates o the point in the picture

  • 8/19/2019 Introduction to Discrete Time Signals & System

    19/119

    ; #n tele%ision picture can =e three dimensional

    as I ., y, t/, intensity at any , y coordinates also

     depends upon time t .rame time/

    #n colour T image can ha%e three components:

    Thus a colour T image is a three channel .red, green and =lue/,

    three dimensional ., y and t/ signal

    Ir ., y, t/

    I ., y( t/ 0 Ig ., y, t/

    I= ., y, t/

  • 8/19/2019 Introduction to Discrete Time Signals & System

    20/119

    lassiication o signals

    ( Continuous time and discrete time signals

    ( Continuous %alued and discrete %alued signals

    ( Deterministic and random signals

  • 8/19/2019 Introduction to Discrete Time Signals & System

    21/119

    Continuous;Time and Discrete Time Signals

    1a( Continuous;time signals .#nalog signal/:

    ; # signal that eists all the time in a gi%en inter%al

    ; These signals are deined or e%ery %alue o time in the inter%al

    ; Most o the naturally occurring signals are continuous in nature

    ; These signal taGe on %alues in the continuous inter%al .a, =/

    +here a can =e ; ∞  and = can =e 3 ∞

    ; Mathematically, these signal can =e descri=ed =y unctions o

    a continuous %aria=le

    1.t/ 0 cos π t

    ).t/ 0 e; L t L  +here ;

      t ∞

      (t)

     t

    (t)

     t

  • 8/19/2019 Introduction to Discrete Time Signals & System

    22/119

    =( Discrete;time signals

    The signals are deined only at speciic %alues o  time

    ; The %alue o signal =et+een  and 1, say at (A  is not Gno+n

    ; Thus, discrete time signals eists only

    at speciic %alues o time

    ; These time;instants usually are e"uidistant at e"ually

    spaced inter%als((&ut need not &e e"uidistant)

    ; The discrete time signal is o=tained rom a continuous time signal 

    using the sampling at speciic %alues o time

    * / + 0 1 2 n

    (n)

  • 8/19/2019 Introduction to Discrete Time Signals & System

    23/119

    ; # discrete time signal is an approimation o the continuous signal

    ; To impro%e the accuracy o the approimation

     

    the sampling period .Ts / is reduced or 

    the re"uency o the sampling Fs is increased

  • 8/19/2019 Introduction to Discrete Time Signals & System

    24/119

    ; # typical discrete time signal can =e represented =y:

    .n/ 0 # cos ω(n (ω 3 * π f)

    !ample o discrete;time signal:

      ; LtnL

    .tn/ 0 e , n 0 , ± 1, ± ), ( ( ( 4 ((t), ((t), . . ((tn), 5

    ;I inde n o discrete;time instants is used as the independent

    %aria=le .i(e(, a se"uence o num=ers/,

    the signal %alue =ecomes a unction o an integer %aria=le

    ;Thus a discrete;time signal can =e represented mathematically

    =y a se"uence o real or  comple num=ers

  • 8/19/2019 Introduction to Discrete Time Signals & System

    25/119

      # discrete time signal is represented as .n/  ( instead of (t) )

    ; I the time instants tn are e"ually spaced, tn 0 nT .T 0 Time period/

    ; Signal can =e .nT/ 0 ? .T/, .1T/, ( ( .nT/ @

    ; There are some discrete time signals +hich are inherently discrete and

    do not re"uire the sampling o continuous signal

    i(e( #ccumulating a %aria=le o%er a period o time

     .i(e( num=er o cars> hour/

  • 8/19/2019 Introduction to Discrete Time Signals & System

    26/119

    .n/ 0 (2n  or n N and

    .n/ 0 or n   (negative values of n)

    .n/

     n

    *raphical representation o the discrete time signal

  • 8/19/2019 Introduction to Discrete Time Signals & System

    27/119

    ( Continuous;%alued and Discrete;alued signals

    ; The %alues o continuous time or discrete time signals

    can =e:

    continuous (ta6ing all possi&le values) or 

    discrete  ( ta6ing onl! a finite set of values)

    )a( Continuous;alued signal:

    Signal taGes on all possi=le %alues ina range . +hich can =e inite or an ininite/ 

    .y;ais can =e di%ided into ininite num=er o le%els/

    . (A, (A), (A4, (6 ( ( (/

  • 8/19/2019 Introduction to Discrete Time Signals & System

    28/119

    )=( Discrete;alued signal:

    Signal taGes on %alues only rom a inite set o possi=le %alues

    (!-ais can &e divided into finite num&er of levels)

    ; Osually, these %alues are e"uidistant,

    hence can =e epressed as an integer multiple o

    distance =et+een t+o successi%e %alues(

    .), 4, , A or 6, not )(4)), 4(1, (4A, 6(1)/

    Digital signal:

  • 8/19/2019 Introduction to Discrete Time Signals & System

    29/119

    Digital signal:

      # discrete;time signal ha%ing a set o discrete %alues(

    For digital processing o a signal:

    ; It must =e discrete in time

    ; Its %alues also must =e discrete

    ; Digital signal is o=tained =y:

    First - E=taining a discrete time signal =y

    sampling an analog signal at discrete instants in time

    Then – 'uantiing the %alues o discrete time toa set o discrete %alues 

    'uantiation:

    It is the process o con%erting continuous;%alued signal into 

    discrete %alued signal =y simple rounding > truncation process 

    or =y mapping to a set o inite %alues

  • 8/19/2019 Introduction to Discrete Time Signals & System

    30/119

    Digital signal +ith dierent amplitude %alues: .1, ), 4 and /

      1, 1, 1, ), 1, 4, ), , ), 1<

    -* - * / + 0 1 n

    7(n)

  • 8/19/2019 Introduction to Discrete Time Signals & System

    31/119

    Discrete time signal

    It is deined or e%ery integer  %alue o n or ;∞

      n  3∞

    .n/ is nth sample o the signal 

    i .n/ is o=tained =y sampling then . n/ ≡  .nT/

    4 (8, (8), . . ,(n8)

    +here T is sample period

      i(e( the time =et+een t+o successi%e samples

    #lternati%e representation o DT signals:to graphical representation

    1( Functional representation,

      1, or n 0 1, 4

    .n/ 0 , or n0)

      , other+ise

    )( Ta=ular  representation:

    n ( ( ( ;) ;1 1 ) 4 A 6 ( ( (

    ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

    .n/ 1 1

  • 8/19/2019 Introduction to Discrete Time Signals & System

    32/119

    ( Se"uential representation:

    #n ininite duration signal or

    se"uential +ith the time origin .n 0 /

    indicated =y sym=ol↑

     .n/ 0 ( ( ( , , 1, , 1, , , ( ( ( <

    # se"uence +hich is or n0 .n/ 0 , 1, , 1, , , ( ( ( <

     ↑

     The time origin or a se"uence +hich is ero or n

    ; First letmost point is considered to =e the origin

    inite duration se"uence

    .n/ 0 4, ;1, ;), A, , , ;1< .se%en point se"uence/  ↑

    # se"uence .n/ 0 or n .n/ 0 ,1, , 1< .;point se"uence

      ↑

     

  • 8/19/2019 Introduction to Discrete Time Signals & System

    33/119

    Some elementary Discrete;time Signals

    1( The unit impulse se"uence

      1, or n 0

     Denoted as .n/  , or n

     

    ; It is ero e%ery+here ecept n0,

    +here it has a unit height

    ; #lso reerred as a unit impulse

    . ero e%ery+here, ecept time t 0 /

    ; It has unit area 

    .n/ ≡ 

    -* - * / +

    )( The unit step signal 

      Denoted as u .n/ 1, or n ≥ 

    , or n

    ; It is 1 at positi%e n  . including at n0 / and

    at negati%e n

    u .n/≡

     

    -* - * / +

    %rap#ical representation

    of unit impulse

    %rap#ical representation

    of step signal

  • 8/19/2019 Introduction to Discrete Time Signals & System

    34/119

      4( The unit ramp signal 

    denoted as u r  .n / n, or n ≥ 

      , or n  u .n/ ≡ 

    -* - * / +

    ( The eponential signal

    ; a se"uence o the orm .n/ 0 an

      or all n 9 a 9

    a

  • 8/19/2019 Introduction to Discrete Time Signals & System

    35/119

    ;nit step signal

    ;nit ramp signal

  • 8/19/2019 Introduction to Discrete Time Signals & System

    36/119

    .n/ 0 a n

    . /

  • 8/19/2019 Introduction to Discrete Time Signals & System

    37/119

    .n/ 0 a n

  • 8/19/2019 Introduction to Discrete Time Signals & System

    38/119

    I the parameter PaQ is real .n/ is a real signal

    ; i the parameter PaQ is comple %alued,

    a≡

      r e  Bθ  +here r andθ

     are the parameters

    .n / 0 r n e  B θn 

    0 r  n . cos θn 3 B sin θn/

    Real part g .n/ 0 rn

     cosθ

    n

    Imaginary part  B .n/ 0 rn sin θn

    I r 0 ( and θ 0 π >1

      g .n/ 0 rn cos θn 0 .(/n cos π >1 ( H

    i .n/ 0 rn sin θn 0 .(/n sin π >1 ( H

    g .n/ and  B .n/ are a damped, decaying . eponential/ cosine unctionand dam ed  sine unction

    .n/ 0 a n

    .n/ 0 a n :

    Real part

  • 8/19/2019 Introduction to Discrete Time Signals & System

    39/119

    Real part g

    Imaginary part

  • 8/19/2019 Introduction to Discrete Time Signals & System

    40/119

    Imaginary part i

  • 8/19/2019 Introduction to Discrete Time Signals & System

    41/119

    .n / 0 r n e  B θn  can =e represented as amplitude and phase unction:

    #mplitude unction L .n/L 0 # .n/ ≡ r n 

    hase unction∠

      .n/ 0φ

     .n / ≡

     θ

     n (π n

  • 8/19/2019 Introduction to Discrete Time Signals & System

    42/119

    Classiication o Discrete;time signals:

    1( !%en and odd signals .Symmetric and asymmetric signals/ 

    )( eriodic signals and aperiodic signals

    4( !nergy signal and po+er signal

  • 8/19/2019 Introduction to Discrete Time Signals & System

    43/119

    1( !%en and odd signals .Symmetric and asymmetric signals/ 

    # signal is e%en  > or symmetric i .n/ 0 .;n/

    # signal is odd  > or asymmetric i .;n/ 0 ; .n/ or

    .n/ 0 ; .;n/

    For an e%en signal .1/ 0 .;1/, .)/ 0 .;)/ ( ( (

    For an odd signal .1/ 0 ; .;1/, .)/ 0 ; .;)/ ( ( (

    ; I .n/ is odd then . / 0

    !amples:

    # sine +a%e is odd,

    +hile a cosine  +a%e is e%en signal

    sin .A/ 0 ; sin.;A/

    cos .A/ 0 cos . ;A/

  • 8/19/2019 Introduction to Discrete Time Signals & System

    44/119

     -+ -/ -* - * / + n e%en signal 

    * / +   n odd signal

    -+ -/ -* -

    (n)

    (n)

    .n/ 0 .;n/

    .n/ 0 ; .;n/

    . / 0

      (n)

  • 8/19/2019 Introduction to Discrete Time Signals & System

    45/119

    #ny ar=itrary signal can =e epressed as the sum o the t+o components:

    ; Ene e%en and the

    ; Ether odd

    ; The e%en signal component can =e ound out =y:

    e.n/ 0 ?.n / 3 .;n/@

    odd signal component

    o .n/ 0 ? .n/ – .;n/@

    #dding =oth:

    .n/ 0 e.n/ 3 o.n/

    Fi d d dd t th i di t i l

  • 8/19/2019 Introduction to Discrete Time Signals & System

    46/119

    Find e%en and odd components o the gi%en discrete signal:

    .n/ 0 1, ), 4,  , 1, ), )<

     ↑

      .;n/ 0 ), ), 1, , 4 ), 1< mirror image o .n/

      a=out origin ./

      .n/e 0 1(A, ), ), , ), ), 1(A< 0 ? .n/ 3  .;n/@ > )

     

    .n/o 0 ;(A, , 1, , ;1, , (A< 0 ? .n/ ;  .;n/@ > )

  • 8/19/2019 Introduction to Discrete Time Signals & System

    47/119

    )( eriodic signals and aperiodic signals

    ; # signal .n/  is periodic +ith period H .HN /

    Enly i .n 3H / 0 .n/  or all %alues o n

    Smallest %alue o  H or +hich the a=o%e e"uation hold good

    is called the undamental period

    ;The signal is non;periodic i there is no %alue o H 

    that satisies the a=o%e e"uation

  • 8/19/2019 Introduction to Discrete Time Signals & System

    48/119

    ChecG i .n/ 0 # cos .ωn 3 θ / is periodic

    ereω

     0 )π

    .n/ 0 # cos .)π n 3 θ /

    .n 3H/ 0 # cos .)π

    .n 3H/ 3θ

     /0 # cos .)π n 3 )π  H 3 θ /

    For periodicity:

    .n 3 H/ 0 .n/

    # cos .)π

    n 3 )π

      H 3θ

     / 0 # cos .)π

    n 3θ

     /

    For this to =e true:

    )π  H 0 0 or 0 )πG  +here G is an integer  (, , *, / . . )

    or 0 G > H  +here =oth G and H are integers 

     Thus or periodicity, 0 G >H, +here =oth G and H should =e integers 

  • 8/19/2019 Introduction to Discrete Time Signals & System

    49/119

    1( ChecG i cos.(1 πn/ is periodic8

    (1π

    0 )π

       0 (1> ) 0 1>) cycles per sample,

    0 G> H ratio o t+o integers

    #s G 01 and H is ), =oth are integers, so cos .(1 πn/ is periodic

    )( ChecG i .n/ 0 sin 4nere 4 0 )π   or 0 4> ) π 

    since   cannot =e epressed as raction o t+o integers ,

    the signal .n/ 0 sin4n is not periodic

    nergy and po+er signal

  • 8/19/2019 Introduction to Discrete Time Signals & System

    50/119

    nergy and po+er signal

    !nergy o a signal or discrete time signal .n/

     ∞

    is deined as  ! ≡  L .n/ L ) 

    n 0 ;∞ #s the magnitude s"uare is used or .n/, 

    The deinition is applies to real as +ell as comple;%alued signals

     The energy o a signal can =e inite or ininite

    !nergy signal

    ; I !nergy ! is inite then .n / is called an energy signal

    ; The inite !nergy can =e called !  o signal .n/ 

    Many signals possess ininite energy,=ut ha%e a inite a%erage po+er 

      1 H

    %erage o+er 0 lim ∑  L .n/L ) 

    H → ∞  H 3 1 n 0 ; H

  • 8/19/2019 Introduction to Discrete Time Signals & System

    51/119

    ! d it t i l . /

  • 8/19/2019 Introduction to Discrete Time Signals & System

    52/119

    !nergy and po+er o a unit step signal u.n/

     P1Q or n 0 ≥ 

    ; Step signal u.n/ 0

    PQ other+ise

    ∞  ∞

    !nergy ! ≡  L .n/ L )  0 Lu .n/ L )  3 = = . . . 3 ∞

      n 0 ; ∞ 

    Since the ! is ininite, the unit step signal is not an energy signal

     1 H

    The a%erage o+er 0 lim ;;;;;;;;;;; ∑  u ) .n/

    H → ∞  )H 31 n 0

    ( summation of u* (n) is > =)

    1 .H31/ 1 3 1> H 1

      0 lim ;;;;;;;;;;; 0 lim ;;;;;;;;;;;  0 ;;;;;;;

    H → ∞  )H 31 H → ∞  ) 3 1>H )

    Conse"uently, the unit step se"uence is po+er signal 

    and its energy is ininite

    * / . .

    Find !nergy or the signal .n/ 0 an u .n/ aL 1 ?u (n) step signal5

  • 8/19/2019 Introduction to Discrete Time Signals & System

    53/119

    Find !nergy  or the signal .n/ 0 an u .n/ aL 1 ?u (n) step signal5

      ∝

    ; #s energy o D( T( Signal is: ! H ≡  ∑  L .n/L) 

    n 0 ;∝

    0 ∑  Lan u .n/L)  for n 0 to ∝  u (n) is a init step

    Since u .n/ is 1, or to ∞  0 ∑  Lan ( 1L)  or n 0 to ∝

      0?a)@ 3 ?a)@1 3  ?a)@) 3  . .

    .*eometric series ∑ #n 0 1 3 # 3 #) 3 #4 ( ( ( 0 1> 1 –#  i # 1/

    Thus ! 0 1> 1; a)  i La)L 1

    ! l i h th th ll i i l i l i l

  • 8/19/2019 Introduction to Discrete Time Signals & System

    54/119

    ; First calculate energy o the signal

    ! o .n/ is gi%en =y:

      n 0 ∞  n 0 ∞

    ! 0 L .n/L )  0 L (An u .n/L )

      n 0 ;∞

      n 0 ;∞

    -Since this signal is multiplied =y unit step: n is rom ; ∞

      ( signal is ero for n )

      n 0∞

      n 0∞

      n 0∞! 0 L .1>)/ n L )  0 .1>)/ ) n  0

    .1>/ n

      n 0 n 0 n0  n 3 ∞

    ?@tandard %eometric series Σ  A n   = A = A*= A / . . . < (-A)  .# 0 /<

      n 3 8#us ! 0 1 > .1 ;1> / 0 1> U 0 > 4 0 1(444 

    - Thus ! is inite

    Since !nergy is inite it is energy signal

     

    !plain +hether the ollo+ing signals are po+er  signal or energy signal(

    i (A n u .n/ 

  • 8/19/2019 Introduction to Discrete Time Signals & System

    55/119

    Eperations on discrete time signals:

    The mathematical transormation rom one signal to another 

     is represented as:y .n/ 0 T ? .n/@

    ; Eperations in%ol%ing:

    ; Independent %aria=le . time/

    ; Dependent %aria=le .amplitude/

    The =asic operations on DT signals are:

    1( Time shiting

    )( Time re%ersal Independent varia&le, time

    4( Time scaling

    ( Scalar multiplication

    A( Signal addition and

    multiplication

    Dependent varia&le,

     Amplitude

  • 8/19/2019 Introduction to Discrete Time Signals & System

    56/119

    Eperations in%ol%ing independent %aria=le . time/

     1( Time Shiting

    ; Shit n =y ; G in  .n/ Delay.G is an integer/

    y .n/ 0 .n ; G/ for 6 3 /, ! () 3 (-/)

    ; i G is negati%e the shiting results in ad%ancing =y LGL units 

    - .n / 0 ;1, , 1, ), 4 , , , , , <

      ↑

    -.n;4/ 0 ;1, , 1, ), 4 , , , , , < shiting delay G 0 4 (-/ &ecomes origin)

     ↑

    -. n 3)/ ;1, , 1, ), 4 , , , , , < ad%ancing G0 ;) (=* &ecomes origin)

     ↑

    Hote: delay >ad%ance is easy in stored signal

    .o+e%er, ad%ancing in real time, generated signal is not possi=le(/

    Future

    )( Time re%ersal –

  • 8/19/2019 Introduction to Discrete Time Signals & System

    57/119

    Folding> Relection a=out the time origin n 0 :

    ; Replacing n =y –n y .n/ 0 .;n/

    .n / 0 ), ), ), , 1, ), 4, <

     ↑ .;n/ 0 , 4, ), 1, , ), ), )<

      ↑

      .;n ; )/ 0 , 4, ), 1, , ), ), )< .Folding and delayed =y )/

      ↑   .;) =ecomes origin/

    4( Time scaling:

  • 8/19/2019 Introduction to Discrete Time Signals & System

    58/119

    g

    ; Changing in time scale

    ; T+o types do+n scaling and up scaling

    ; Do+n scaling is represented as:

    y .n/ 0 T ? .n/@ 

    !ample y .n/ 0 .)n/

    .n/ 0 ;4, ;), ;1, , 1, ), 4, , , , , , , <

     ↑

    y .n/ is taGing e%ery other  sample rom .n/

    y./ 0 ./ 0 , y.;1/ 0.;)/0 )

    y .1/ 0 .)/ 0 y.;)/ 0.;/0

    y.)/ 0 ./ 0 ,

    Thus y .n/ ;), , ) , , , , <

     ↑

    .n/ 0 ;4, ;), ;1, , 1, ), 4, , , , , , , <

      ↑

    y .n/ 0 .)n/ 0 ;), , ), , , , <

      ↑

    Sampling is reduced to hal 

  • 8/19/2019 Introduction to Discrete Time Signals & System

    59/119

    Op scaling

  • 8/19/2019 Introduction to Discrete Time Signals & System

    60/119

    Op scaling

    y .n/ 0 .n > ) /

     

    .n/ 0 A, , 4, ), 1, ), 4, , A<

     ↑

     y . /0 .>)/ 0 ./ 0 1

     y .1/0 .1>)/ 0 .(A/ 0 no sample

     y .) /0 .)>)/ 0 .1/ 0 )

     y .4 /0 .4>)/ 0 .1(A/ 0 no sample

     y . /0 .>)/ 0 .)/ 0 4

     y .6 /0 .6>)/ 0 .4/ 0 y .2 /0 .2>)/ 0 ./ 0 A

      Thus y .n/ is epanded %ersion o .n/ +ith y .1/, y.4/, y.A/ ( ( Ho sample

    - -1 - -0 -+ -/ -* - * / + 0 1

    8#e sampling rate is increased from

  • 8/19/2019 Introduction to Discrete Time Signals & System

    61/119

    #ddition, multiplication, and scaling o se"uences

    ; #mplitude modiication includes addition, multiplication and scaling

    o discrete;time signals

    ( #mplitude scaling:

    ; Multiplying =y a constant 

    y .n/ 0 # .n/ ; ∞ n ∞

    A( Signal addition and multiplication

    ; The sum o t+o signals

    y .n/ 0 1 .n/ 3 ) .n/ ; ∞ n ∞

    .add corresponding terms)

    ; The product o t+o signals

    y .n/ 0 1 .n/ ( ) .n/ ; ∞ n ∞

     .multiply corresponding terms)

  • 8/19/2019 Introduction to Discrete Time Signals & System

    62/119

  • 8/19/2019 Introduction to Discrete Time Signals & System

    63/119

     At -*, - . 3

      -, * . 3

    , * . 3 *

      , . * 3 *

      *, . / 3

    Discrete time Systems

  • 8/19/2019 Introduction to Discrete Time Signals & System

    64/119

    Sy

    ; DT system is a de%ice> algorithm that operates on 

    a discrete;time signal .input> ecitation/,according to some +ell;deined rule,

    to produce another discrete;time signal .output> response/

    ; It is a set o operations perormed on input signal  .n/ to produce

    output signal y .n/ 

    .n/ is said to =e transormed to y .n/

    y .n/ ≡  T ? .n/ @ +here T is transormation

     

    or .n /→  y .n/  .transormed to /

    Determining the response:

    LnL 4 n 4

  • 8/19/2019 Introduction to Discrete Time Signals & System

    65/119

      LnL, ; 4≤

     n≤

      4

    .n/ 0 , other+ise? .n/0 , 4, ), 1, , 1 ,), 4, <

     ↑ 

     V .n/ 0 .n ;1/ 0 , 4, ), 1, , 1 ,), 4, 4, ), 1, )>4 , 1 ,), A>6, 1, , <

      ↑

      (n ) 3 ? , , /, *, , , , *, /, , ,

    B() 3

  • 8/19/2019 Introduction to Discrete Time Signals & System

    66/119

    y . / . . / . / . /

    .n/0 , 4, ), 1, , 1 ,), 4, <

     ↑

    0 , 4, 4, 4, ), 1, ), 4, 4, 4, <

     ↑

      n

      y .n/ 0∑

      .G/ 0 .n/ 3 .n;1/ 3 . n;)/ 3 ( ( B ( ) 3 () = (-) = (-*)

    G 0 ; ∞  = (-/), = (-+) = (-0)

    .n/0 , 4, ), 1, , 1 ,), 4, <

     ↑

    y .n/ 0 , 4, A, 6, 6, 5, ,1),1)< . G 0 ; ∞/ sum o all past %alues 8

      y./ 0 ./ 3 .;1/ 3 .;)/ ( (

      = /

      = / =*

      = / =*=

      = / =*== =

     Classiication o Discrete Time Systems

  • 8/19/2019 Introduction to Discrete Time Signals & System

    67/119

    y

      Discrete time system is a de%ice or algorithm that operates on

     a discrete time signal

    ; It is represented as y .n/ 0 T ? .n/@

    1( Static and Dynamic systems (@tatic - current input)

    )( Causal and #nti;causal systems .Causal - resent and past

    no future

    4( $inear  and Hon;linear  systems

    ( Time %ariant and Time in%ariant systems

     

    A( Sta=le and unsta=le systems

    6( FIR and IIR systems

    (Finite Impulse Response< infinite impulse response)

    Static %ersus Dynamic systems

  • 8/19/2019 Introduction to Discrete Time Signals & System

    68/119

    y y

    Static system:

    # system is static i the output o a system depends

    only the current input andnot on the past or uture input

    ; !amples o static systems:

    y .n/ 0 T ? .n/@

     y .n/ 0 ( .n/, y .n/ 0 a .n/

    y .n/ 0 log .n/

     y .n/ 0 # cos .n/

    y .n / 0 a .n / 3 = 4 .n/

    ; In each case y .n/ re"uires only present %alue o input  .n/

    ; Static systems are also called memory less system

    as no memory is re"uired to store pre%ious input %alues

    e( in case o y .n/ 0 ( .n/,  ! () 3 + (  (), ! (*) 3 + (  (*), . . .

    Dynamic system

  • 8/19/2019 Introduction to Discrete Time Signals & System

    69/119

    ; #ll the systems that are not static(

    ; In dynamic systems, the output may depends on the

    present as +ell as

    past input signals (ven future signals)

    y .n/ 0 .n/ 3 .n;)/ is a dynamic system

     

    ; as or inding y ./ 0 ./ 3 .)/ . current input = past input)

    past input is re"uired

    ; Thus the dynamic system re"uires memory to store the past inputs

      Dynamic system is also called memory system

    !amples:

  • 8/19/2019 Introduction to Discrete Time Signals & System

    70/119

    p

    y .n/ 0 ? .n/ 3 .n;1)/@

    for ! (0), (0) and (/) are re"uired

    y .n/ 0 .n/ ( .n;1/

    n

    y .n/ 0 ∑  .n ;G/ Re"uires Finite memory

    G0

      ny .n/ 0 ∑  .n ; G/ Re"uires Ininite memory

      G0 ; ∞

    )( Causal and Hon;causal system

  • 8/19/2019 Introduction to Discrete Time Signals & System

    71/119

    ; # system is causal i the output o the system y .n/ at any n

     

    depends on present and past inputs =ut

    not on uture inputs

    ; !ample:

      y .n / 0 .n/ 3 .n;)/ 3 .n;4/

    .present past past)

    Hon;causal system:

  • 8/19/2019 Introduction to Discrete Time Signals & System

    72/119

    ; I the output also depends upon the uture input

     then it is Hon causal system

      ; !ample:y .n/ 0 .n/ 3 .n31 / Future

      (present = future) y ./ 0 ./ 3 .A/

    ; ence or a non;causal system,

    ; Future input needs to =e predicted to ind the present

    Ether eamples:

    y .n/ 0 .)n/

    y .n/ 0 .n/ – .n3)/

    4( $inear and non; linear  

  • 8/19/2019 Introduction to Discrete Time Signals & System

    73/119

    ; $inear systems satisies superposition principle:

    ; The superposition principle states that the response to

    a +eighted sum o input signals, 

    should =e e"ual to the corresponding 

    +eighted sum o the outputs o the system

    to indi%idual input signals(

    i( e(T? a11.n/ 3 a)).n/ @ 0 a1T ? 1.n/ @ 3 ? a) T ? ).n/ @

      (response to t#e $eig#ted sum of inputs 3

    t#e $eig#ted sum of responses to t#e individual inputs)

  • 8/19/2019 Introduction to Discrete Time Signals & System

    74/119

     1 .n/

     ) .n/

     3 T  y1 .n/ 0 T ?a1 1 .n/ 3 a) ) .n/@a1

    a)

     1 .n/

     ) .n/#HD

    T

    T 3  y) .n/ 0 a1 T ?1 .n/@ 3 a) T ? ) .n/@

    a1

    a)

    ChecG +hether the y .n/ 0 n( .n/ is a linear or non linear  system8

  • 8/19/2019 Introduction to Discrete Time Signals & System

    75/119

    #s y .n/ 0 T ? .n/@

    ence, the system is n ( .n/

    For linearity:

    ChecG i T ?1 .n/ 3 ) .n/@ 0 T ? 1.n/ @ 3 T?) .n/@ or

    ! (n) 3 !* (n)

    so y1

     .n/ 0 T ?1

     .n/ 3 )

     .n/@ 

    0 n( ?1 .n/ 3 ) .n/@ 0 n( 1 .n/ 3 n() .n/ 

    y) .n/ 3 T ? 1.n/ @ 3 T?) .n/@  0 n ( 1.n/ 3 n( ) .n/

    ence y1 .n/ 0 y) .n/

    The system y .n/ 0 n( .n/ is linear

    similarly y .n/ 0 n ( ) .n/ is non;linear can =e pro%ed

    Time;%ariant and time; in%ariant systems

  • 8/19/2019 Introduction to Discrete Time Signals & System

    76/119

    Time;in%ariant system:

    In Time;in%ariant system

     the input >output characteristic does not change +ith time

    ; suppose input .n / produces y .n/ at any stage,

    y .n/ 0 T ? .n/@

    ; i the input signal is delayed =y G units,

    the output y .n; G/ +ill =e same as y .n/ ecept that it is delayed =y G units

    - First delay the input =y G samples , and o=ser%e the output →  y .n, G/- Delay the output =y G samples →  y .n ; G/

    I y .n; G/ 0 y .n, G/ the system is time;in%ariant

  • 8/19/2019 Introduction to Discrete Time Signals & System

    77/119

      .n ;G/  y .n ;G/ .n/  y .n/T T

    ChecG +hether the ollo+ing systems are time in%ariant8

  • 8/19/2019 Introduction to Discrete Time Signals & System

    78/119

    1( y .n/ 0 e .n/ 

    ; Delay input =y PGQ y .n, G/ 0 e .n; G/ 

    ; Delay the output y .n/ =y G, y .n ; G / 0 e .n;G/ 

    Since =oth are e"ual the system is time;in%ariant 

    )( y .n/ 0 n ( .n/  is time %ariant  as

    1( Delaying input y .n, G/ 0 n( .n ; G/

    )( Delaying output y .n ; G/

    y .n; G/ 0 . n; G/ ( .n; G/

    Koth are not e"ual the system is time;%ariant 

    Sta=le and unsta=le systems :

    For a Sta=le system

  • 8/19/2019 Introduction to Discrete Time Signals & System

    79/119

    For a Sta=le system

    a =ounded input, produces =ounded output

    $et M is inite num=ers such that M ∞

     ,the input is said to =e =ounded i L .n /L ≤  M  ∞

      for all value of n

      My is a inite num=er  such that My  ∞,

    the output is said to =e =ounded i   Ly .n/L≤

      My ∞

     for all value of n

    ; I or a =ounded input .n/,  there is ∞  output 

    the system is unsta=le

      ChecG +hether the ollo+ing systems are sta=le8

    1( y .n/ 0 e .n/

    )( y .n/ 0 .)n/

    Koth are sta=le, as or =ounded input, there is =ounded output

    #nalysis o $inear Time –In%ariant systems  .$T I / systems:

  • 8/19/2019 Introduction to Discrete Time Signals & System

    80/119

    ; $T I systems are characteried in time domain =y

    their response to a unit sample se"uence

    ; #ny ar=itrary signal can =e represented as

    +eighted sum o unit sample se"uences

    Techni"ues or analysis o $inear systems:

    1( Direct solution o the input;output e"uation

    )( First decomposing the input signals into elementary signals, then

     

    determining the response to each elementary signal and

     adding all the responses 

    Direct solution o the input;output e"uation

    I t t t ti h th

  • 8/19/2019 Introduction to Discrete Time Signals & System

    81/119

    Input –output e"uation has the orm

    y .n/ 0 F ? y .n;1/, y .n;)/, ( ( V .n;H/, .n/, .n;1/, .n;1/,  . . . - .n;M/@

    F ?( ( ( ( @ denotes some unction o "uantities in =racGets

    ; Specially, or  $TI .$inear Time;in%ariant/ systems

    ; The general orm o input;output relationship:

     H M

    y .n/ 0 ; ∑  aG y .n ; G/ 3 ∑  =G  .n ; G/

    G01 G 0aG and =G are constant parameters that speciy the system and

    aG and =G are independent o .n / and y .n/

    - The a=o%e e"uation is called a dierence e"uation- It represents one +ay to characterie the =eha%ior o a

    discrete;time $TI system

    Second method o analying the =eha%ior o a linear system

  • 8/19/2019 Introduction to Discrete Time Signals & System

    82/119

    ; Resol%e the input signal .n/ into

    +eighted sum o elementary signal components ?G .n/ @

    - (8#e elementar! signals are selected so t#at t#e response

    to eac# component is easil! determined)

    -  Ose the linearity property to add the responses to

    indi%idual components to o=tain the total response .output/

    .n / 0 ∑ cG G .n/ ()

      G

      G .n/ are the elementary signal component

      cG are the set o amplitudes .+eighting coeicients/

    in the decomposition o the signal .n/

    I the y .n/ is the response o the system to

  • 8/19/2019 Introduction to Discrete Time Signals & System

    83/119

    I the yG .n/ is the response o the system to

    the elementary component G  .n/

    then yG .n/≡

     T ?G .n/@ (*)

    #ssuming the system response to the cG G .n/ is cG ? yG .n/@

    #s a conse"uence o scaling property o the linear systems (n) from ()

    y .n/ 0 T ? .n/@ 0T ?∑

     cG G .n/ @ 0∑

     cG T ? G .n/@G G

    Osing additi%e property o the linear system

    y .n/ 0 ∑ cG yG .n/  ( ! 6 (n) from (*)

      G

    (8#e response to t#e input (n ) $#ose components are c6  (n)

    e"uals to t#e $eig#ted sum of

    t#e responses to t#e components)

    Resolution o a discrete time signal into impulses

  • 8/19/2019 Introduction to Discrete Time Signals & System

    84/119

    - $et an ar=itrary signal =e .n/  ? , *, /, , *, , /

      ↑

    ; Resol%ing the signal .n/ into a sum o unit sample se"uences

      let Gth component o .n/, G .n/ 0 .n ;G/ 4 (n- 6)t# impulse5

    +here G is the delay o the unit sample se"uence

      ; Multiplying .n/  and .n ;G/ 6 3/

    Since .n ; G/  is ero e%ery+here ecept at n 0 G  .Impulse/

      the result o the multiplication +ill =e a se"uence: 

    +hich is ero at e%ery+here ecept at n 0 G

      Thereore .n/( .n; G/ 3 .G/(  .n ; G/ 

    -/ -* - * /

    (n)

    -/ -* -   * /

    (/)

    i +e taGe dierent %alues o G +e +ill get:

  • 8/19/2019 Introduction to Discrete Time Signals & System

    85/119

    i +e taGe dierent %alues o  G +e +ill get:

     ∞

    .n/ 0∑

      .G/ .n ;G/ 

    G 0 ; ∞

    0 summation o an ininite num=er  o unit sample se"uence , .n ;G/ 

    ha%ing amplitude %alues o .G/

    Representation o a signal in terms o

    +eighted sum o shited, discrete impulses :

  • 8/19/2019 Introduction to Discrete Time Signals & System

    86/119

    +eighted sum o shited, discrete impulses :

    #ny ar=itrary signal can =e represented as

    summation o shited and scaled impulses

      .n/ 0 (A, ), 1, (A, 1, ), (A<

      ↑

    ; The sample ./ can =e o=tained =y

    multiplying ./, the magnitude, +ith a unit unction .n/ 

    ./ W or n 0i( e( ./ ( .n/ 0 0 (A ( 1 0 (A . multipl!)

      W or n≠

     

    δ (n)

    n n

    () . δ (n) .0

    -/ -* - * /

    .n/ 0 (A, ), 1, (A, 1, ), (A

  • 8/19/2019 Introduction to Discrete Time Signals & System

    87/119

      ↑

    Similarly other components can =e o=tained:

    :

    .1/( .n;1/ 0 1 ( 1 0 1

      .)/( .n;)/ 0 ) ( 1 0 )

      .4/( .n;4/ 0 (A ( 1 0 (A

    .;4/( .n 34/ 0 (A ( 1 0 (A

      .;)/( .n 3)/ 0 ) ( 1 0 )

      .;1/( .n 31/ 0 1 ( 1 0 1 

    Thus .n/ 0 (A( .n 34/ 3 ) ( .n 3)/ 3  1. .n 31/ 3

      3 (A ( .n/ . 3 1 ( .n ;1 / 3 ) ( .n ;)/ 3 (A ( .n ;4/ 

    The signal .n/ can =e %ie+ed as a summation o scaled andshited impulses

      ∞ 

    in general, .n/ 0∑

      .G/( .n ;G/ 

    6 3 - ∞

    $et .n / 0 ) 4

  • 8/19/2019 Introduction to Discrete Time Signals & System

    88/119

    $et .n / 0 ), , , 4<

      ↑

    Resol%e into a sum o +eighted impulse se"uence

    since .n / is non;ero at the time instant n 0  ;1, , )

    +e need three impulses at G 0 ;1, , )

      .n/ 0 ) ( 

    .n31/ 3 ( .n/ 3 4 ( 

    .n;)/

      ↑

    Impulse response and con%olution

    . / T ? . / @ O t t ( ) t f f ti ( )

  • 8/19/2019 Introduction to Discrete Time Signals & System

    89/119

    y .n/ 0 T ? .n/ @ Output ! (n) 3 transfer function (n)

    I input  .n/ is a unit impulse  .n/ then the output o the system is

    Gno+n as impulse response h .n/

    ; Thereore impulse response: h .n/ 0 T ?  .n/@

    .transfer function of unit impulse)

      Impulse response completely characterie the system

      .n/  y .n/8

      .n/  h .n/8

    Con%olution sum

  • 8/19/2019 Introduction to Discrete Time Signals & System

    90/119

    Since input signal .n/ can =e represented as

      +eighted sum o discrete impulses

     ∞  i( e( .n/ 0 ∑  .G/( .n; G/  ($#ere n is t#e time inde, 

    G 0 ; ∞  6 is a parameter  s#o$ing

      t#e location of input impulse

     ∞

      Thus output signal y .n/ 0 T ? .n/@ 0 T ∑  .G/( .n ;G/ 

    G 0 ;∞

      ; I the system is linear :

      ∞

    y .n/ 0 ∑  T ? .G/( .n; G/ 5

    G 0 ;∞

    y .n/ 0∑

      .G/( T ? .n; G/ 5 ()  G 0 ;

     

    $et T ? .n G/@ 0 h .n G/ # (n 6) unit pulse response dela!ed

  • 8/19/2019 Introduction to Discrete Time Signals & System

    91/119

      $et T ?  .n ;G/@  0 h .n, G/ # (n, 6) unit pulse response dela!ed

     

    y .n/ 0 ∑  .G/( h .n, G/  (From ()

      G 0 ;∞

    I the system is time in%ariant: h .n, G/ 0 h .n ;G/ ( Response $it#

    t#e input dela!ed 3

    8#e response $it#

     ∞

    t#e output dela!ed)

       y .n/ 0∑

      .G/ ( h .n ; G/ 

    G 0 ;∞

     . The output> response at PnQ  is summation o  

    %alues o input at G, multiplied =y unit impulse response at n ; G,

    or all %alues o G/

       y .n/ 0 ∑  .G/( h .n ; G/ 

  • 8/19/2019 Introduction to Discrete Time Signals & System

    92/119

    y . / . / . /

    G 0 ;∞

       The a=o%e e"uation is called con%olution sum:

     For a $inear Time In%ariant .$TI/ system 

    i input se"uence  .n/  and

    the impulse response h .n/ is Gno+n

    The response y .n/ can =e ound out =y the con%olution sum 

       y .n/ 0 ∑  .G/( h .n ; G/ 

    G 0 ;∞

     (Output ! at n 3 sum of values of input (n) at n 3 6,multiplied &! unit impulse response at n -6,

    for all values of 6

      The con%olution sum is represented as

    y .n/ 0 .n/ X h .n/

    X

    roperties o Con%olution

  • 8/19/2019 Introduction to Discrete Time Signals & System

    93/119

    1( Commutati%e $a+ : .n/ X h .n/ 0 h .n/ X .n/

      G Gy .n/ 0 ∑  .G/( h .n ; G/ 0 ∑  h . G/(  .n ;G/(

      G 0 ; ∞  G 0 ; ∞

    )( #ssociati%e $a+: ?  .n/ X h1 .n/ @ X h) .n/  3 .n/ X ? h) .n/ X h1 .n/ @

    4( Distri=uted $a+: .n/ X ? h1 .n/ @ 3 h) .n/@  3 .n/ X h1 .n/ 3 .n/ X h) .n/ 

    Computation o $inear Con%olution

  • 8/19/2019 Introduction to Discrete Time Signals & System

    94/119

    1( *raphical Method

    )( Ta=ular  method

    The linear con%olution is gi%en =y:

      ∞

    y .n/ 0 ∑  .G/ ( h .n ; G/

    G 0 ; ∞

    ( Response ! (n) at n, is summation of values of   (n) at  6,multiplied &! unit impulse response at n - 6, for all values of 6)

    Calculating the %alue y .n/ or time instant n 0

    ∞   ∞

    y./ 0∑

      .G/( h. ; G/ 0∑

      .G/( h. ; G/ G 0 ; ∞  G 0 ; ∞

    . h . ;G/ indicates olding /

    For n 0 1

  • 8/19/2019 Introduction to Discrete Time Signals & System

    95/119

     ∞

    y.1/ 0 ∑  .G/( h.1 ; G/ 0 ∑  .G/( h.; G 3 1/ 

    G 0 ; ∞   G 0 ; ∞

     h.; G 3 1/ indicates shiting o olded signal h

      h .;G 31/ Indicates h .;G/, the olded signal is delayed =y P1Q sample 

    For n 0 )

    ∞   ∞

    y.)/ 0∑

      .G/( h.1 ; G/ 0∑

      .G/( h.; G 3 )/ G 0 ; ∞

      G 0 ; ∞

     

    h.; G 3 )/ indicates shiting o olded signal h

      h .;G 3)/ Indicates h .;G/, the olded signal is delayed =y P)Q sample

    #nd so on

    Steps or computing the con%olution =et+een .G/ and h .G/

  • 8/19/2019 Introduction to Discrete Time Signals & System

    96/119

    1 Folding: old h .G / # ( -6)

    ) Shiting: shit h . ;G/ # (-6 =)

    4 Multiplication: Multiply .G/ =y h .n –G/,

    ind all the product terms or all the %alues o G

    Summation: Sum all the product terms to ind y .n/

      Find y .n/ or all %alues o n, ollo+ing steps ) to or each

    %alue o n

      ∞

    Range o PnQ and PGQ , or calculating y .n/ 0∑  .G/ ( h .n ; G/

  • 8/19/2019 Introduction to Discrete Time Signals & System

    97/119

    g g y . / . / . /

    G 0 ; ∞

     

    Range o PnQ $o+est %alue o n in y. n/ 0 lo+est %alue o n in .n/  3  lo+est %alue n in h h .n/

    to

    ighest %alue o n in y. n/ 0 highest %alue o n in .n/  3

      highest %alue n in h .n/

     

    Range o PGQ

    The range G +ill =e same as range o n in .n/

    E=tain the impulse response o a system h .n/ 0 1, ), 1, ;1<

    I t Si l . / 1 ) 4 1

  • 8/19/2019 Introduction to Discrete Time Signals & System

    98/119

    Input Signal  .n/ 0 1, ), 4, 1<

     ↑

    Range o n in y .n/ 0 .$o+est %alue o n in .n/ 3 lo+est %alue o n in h .n//

      to .highest %alue o n in .n/ 3 highest %alue o n in h .n// 

    n in y .n/  0 .;1 3 0 ;1/ to .) 3 4 0 A / 0 ;1 to 3 A

    Range o G 0 range o n in .n / 0 to 4

    Determining the response> output y: For n 0 : y ./ h .n/ 0 1, ), 1, ;1

  • 8/19/2019 Introduction to Discrete Time Signals & System

    99/119

    y . / . / . / , , , <

    y .1/ 0∑

      .G/ ( h .;G 31/ G %aries rom to 4↑

      .G/ ( h .;G 31 /

    y .1/ 0∑

      1, ), 4, 1< ( ;1, 1, ), 1

  • 8/19/2019 Introduction to Discrete Time Signals & System

    100/119

    Similarly y ./ 0 ;)

     y. A/ 0  ;1 

    y . ;1/ 0  1

    !ntire response o the system ( ( ( (, , , 1, , 2, 2, 4, ;), ;1, , , ( ( ( <  ↑

      .G/ ( h .;G 34 /

    y .4/ 0 ∑  1, ), 4, 1< ( , ;1, 1, ), 1

  • 8/19/2019 Introduction to Discrete Time Signals & System

    101/119

      .n/ 0 1, ), 1, )< h .n/ 0 1, 1, 1<

    Since the se"uences are gi%en in terms o PnQ

    o=tain .G/ and h .G / =y su=stituting =y G

    .G/ 0 1, ), 1, )< h .G/ 0 1, 1, 1<

     ↑

     ↑

     

    Con%olution is gi%en =y:

    y .n/ 0∑

      .G/( h .n ; G/  G 0 ;

    Range o PnQ or y .n/ 0 $ 3 h$  0 3 0 to h 3 hh 0 ) 3 4 0 A

    0 to A

    Range o PGQ : same as the %alue o n in .n/ 0 to 4

    Ta=ulation method o linear con%olution

  • 8/19/2019 Introduction to Discrete Time Signals & System

    102/119

    $et .n/ 0 ./, .1/, .)/ < and h .n/ 0 h./, h.1/, h.)/<

      ↑  ↑

    Step I: Form the matri as sho+n =elo+:.n/

    ./ .1/ .)/

    h./

    h .n/ 0 h.1/

     h.)/

    Step II Multiply the corresponding elements o .n/ and h .n/ and

  • 8/19/2019 Introduction to Discrete Time Signals & System

    103/119

    Step II Multiply the corresponding elements o .n/ and h .n/, and

    Step III Separate out elements diagonally as sho+n =elo+:

    .n/

    ./  .1/ .)/h./  h./(./ h./(.1/  h./(.)/ 

    h.n/ 0 h.1/ h.1/(./ h.1/(.1/  h.1/(.)/ 

    h.)/ h.)/(./ h.)/(.1/  h.)/(.)/ 

    Step I : #dd the elements in each =locG(

    Thi ill i di l . /

  • 8/19/2019 Introduction to Discrete Time Signals & System

    104/119

     This +ill gi%e corresponding %alues o y .n/

     V./ 0 h./(./

     V.1/ 0 h./(.1/ 3 h.1/(./ V.)/ 0 h./(.)/ 3 h.1/(.1/ 3 h.)/(./

     V.4/ 0 h.1/(.)/ 3 h.)/(.1/

     V./ 0 h.)/(.)/

     V .n/ 0 y.1/, y.)/, y.4/, y./<

    Range o n in y .n/ 0 $o+est %alue o n in .n/ 3 lo+est %alue o n in h .n/

      to highest %alue o n in .n/ 3 highest %alue o n in h .n/

    0 . 3 0 / to .) 3 ) 0  / 0 to 3

    The range o PnQ or y .n/ 0 to

    Compute con%olution y .n/ 0 .n/X h. n/

    . / 1 1 1 1< h . / 1 ) 4

  • 8/19/2019 Introduction to Discrete Time Signals & System

    105/119

    .n/ 0 1, 1, , 1, 1< h .n/ 0 1( ;), ;4, <

     ↑

     ↑

      .n/ 1 1 1 1

    h .n/1 1 1 1 1 (

    ;) ;) ;) ;) ;) ( -*

    ;4 ;4 ;4 ;4 ;4 .-/

    . +

    y .n/ 0 1, 1;), ;);4, 13 ;43, 1 ;) 3 3, ;) ;4 3, ;43 , <

      0 1, ;1, ;A, ), 4, ;A, 1, <

    ∑ .n/ ( ∑ h(.n/ 0 ∑ y .n/

    .13133131/ ( .1 ;) ;4 3/ 0 . 1 ;1 ;A 3)34 ;A 31 3/

      ( 0

    Erigin

    Correlation:

    ; Correlation is used or the comparison o t+o signals

    It i d t hi h t i l i il

  • 8/19/2019 Introduction to Discrete Time Signals & System

    106/119

    ; It is measure o degree to +hich t+o signals are similar 

    ; Cross correlation

    Correlation o  t+o separate signals is Gno+n ascross correlation

    ; #uto correlation

    Correlation o a signal +ith itsel is Gno+n as

    auto correlationCross Correlation:

    Correlation =et+een t+o signals .n/ and y .n/

    3 ∞

    r  y . l / 0∑

      .n/ ( y .n ; l/ +here l 0 ,±

    1,±

    ), ±

    4 ( ( (n 0 ; ∞

    Inde  l  is time shit .or  lag/ parameter and E

      the su=scripts , y on cross correlation se"uence r  y . l /

    indicates the se"uences =eing correlated

  • 8/19/2019 Introduction to Discrete Time Signals & System

    107/119

    #uto correlation

    The correlation o a signal +ith itsel to determine time delay

  • 8/19/2019 Introduction to Discrete Time Signals & System

    108/119

    The correlation o a signal +ith itsel   to determine time delay

    =et+een the transmitted signal and the recei%ed signal

      3∞

    r  .l/ 0∑

      .n/ ( .n ; l/ +here l 0 ,±

    1,±

    ), ±

    4 ( ( (n 0 ; ∞

    Compute the cross;correlation =et+een:

    .n/ 0 1 1 1

  • 8/19/2019 Introduction to Discrete Time Signals & System

    109/119

    .n/ 0 1, 1, , 1<

    y .n/ 0 , ;4, ;), 1<

    ; Cross correlation o .n/ and y .n/ is gi%en =y :

    3 ∞

    r  y.l/ 0 ∑  .n/ ( y .n ; l/ +here l 0 , ±1, ±), ±4 ( ( (

    n 0 ; ∞

     ; Range o n:#s y .n/ is delayed =y l, and .n/ is not changed

    so the range o  n in the summation is

    same as .n/  0 ;) to 31 

    1

    So r   y .l/ 0 ∑  .n/ ( y .n ; l/ 

    n 0 ;)

    Range o n in .n/ is ;) to 31

    Range o n in y .n/ is ;) to 31

  • 8/19/2019 Introduction to Discrete Time Signals & System

    110/119

    Range o  l:

    since the e"uation y .n; I/ should ha%e maimum %alue at y .n/ 0 y.1/

     n – l 0 1 maimum

    Starting %alue o PnQ in summation is ;) in (n) 

    ;) –l 0 1 or n 0 ;) 

    I 0 ;1 ;) 0 ;4

    or starting %alue o l 0 ;4

    The e"uation y .n – l / should ha%e minimum %alue at y n / 0 y .;)/

      n; I 0 ;)

    =ut the summation should stop at n 01 in (n)

    1; I 0 ;)

    or I 0 4

    So the range o I 0 ;4 to 3 4

     The range o n 0 ;) to 31

     The range or l is ;4 to 4

  • 8/19/2019 Introduction to Discrete Time Signals & System

    111/119

      1

    r  y.l/ 0 ∑  .n/ ( y .n ; l/ +here l 0 ;4 to 3 4

    n 0 ;)

      Ho+ .n/ 0 1, 1, , 1< and y .n/ 0 , ;4, ;), 1<

     ↑

    R y .;4/ or I 0;4, n 0 ;) to 31

     n 0 ;) ;1 1 

    .n/ ( y .n ; l/

    r y.;4/ 0 .;)/ (y.;) 34 / 3 .;1/( y .;1 34/ 3 ./ ( y. 34/ 3 .1/( V.134/

      .;)/( V.1/ 3 .;1/ y .3)/  3 ./y.34/ 3 .1/( V./

      1 ( 1 3 1 ( 3 ( 3 1 (

      0 1 3 3 3 0 1

  • 8/19/2019 Introduction to Discrete Time Signals & System

    112/119

    r y . 1/ or I 01, n 0 ;) to 31 

  • 8/19/2019 Introduction to Discrete Time Signals & System

    113/119

    r y.1/ 0 .;)/ y.;) ;1 / 3 .;1/ y .;1 ;1/ 3 ./y. ;1/ 3 .1/( V.1;1/ 

    0 .;)/ y.;4 / 3 .;1/ y .;)/ 3 ./y.;1/ 3 .1/( V./

      1 ( 3 1 ( 3 ( ;4 3 1 (;)  3 3 ;) 0 )

    Similarly r y.)/ 0 ;4  and r y.4/ 0 

      Ry.l/ 0 1, ;1, ;A, ), ), ;4, <  ↑

    Simple method to calculate correlation

    Solution using property o correlation 

  • 8/19/2019 Introduction to Discrete Time Signals & System

    114/119

    r  y .l / 0 .n/ X y .;n/ ( 3 convolution of (n) and ! (-n))

    ; So taGe .n/ as it is: .n/ 0 1, 1, , 1<↑

    ; Fold y .n/: y .n/ 0 , ;4, ;), 1<

      y .;n/ 0 1, ;), ;4, /

     ↑

    E=tain the con%olution o .n/ and y .;n/ =y matri method

     y.;n/ .n/ 1 1   1

      1 1 1 1

      ;)  ;) ;)   ;)

      ;4 ;4 ;4  ;4

       

    r  y.l/ 0 .1, 1 ;), ;);4, 13;43, ;)33, ;43, <

    r y.l/ 0 .1, ;1, ;A, ), ), ;4, <

     ↑

     

    Determine the autocorrelation o the ollo+ing signal

  • 8/19/2019 Introduction to Discrete Time Signals & System

    115/119

    .n/ 0 .1, ), 1, 1< $et 1 .n/ =e 1, ), 1, 1<

      ↑  ↑

      )

    .n/ =e 1, ), 1, 1<

    Folding ) .n/ ↑

    ).;n/0 1, 1, ), 1<

    So r  .l/ 0 .n/ X .;n/

      1.n/ 1, ), 1, 1

      ).;n/ 1 1 ) 1 1

    1 1 ) 1  1

    ) ), , ), )  →  1  1, ), 1, 1

      r  .I/ 0 1, ) 31, 13)3), 131331, 1 3)3), )31, 1<R .l/ 0 1, 3 4, 3A, 3 5, 3 A, ,3 4, 31 <

      ↑

    roperties o Correlation

  • 8/19/2019 Introduction to Discrete Time Signals & System

    116/119

    1( The result o autocorrelation is maimum

    +hen the signal matches +ith itsel  and there is no phase shiting(

    )( #uto;correlation is an e%en unction

    r   .l/ 0 r   .; l/ 

    4( The cross;correlation is not commutati%e(

    That means r  y.l/ ≠  r y  .l/

    FIR and IIR

    From the con%olution sum:

  • 8/19/2019 Introduction to Discrete Time Signals & System

    117/119

    y .n/ 0∑

      .G/( h .n ; G/

      G 0 ; ∞

    h .G/ is the impulse response o the system

    FIR

    I h .G/ is o inite duration, the system is called

    Finite Impulse Response .FIR/ system

    IIR

    I h .G/ is o ininite duration, the system is called

    Ininite Impulse Response .IIR/ system

  • 8/19/2019 Introduction to Discrete Time Signals & System

    118/119

    !HD

    )( .t/ 0 sin.2 πt/ 3 4 sin .5) πt/  is sampled +ith Fs 0 6 times per sec.

  • 8/19/2019 Introduction to Discrete Time Signals & System

    119/119

    .1/ 7hat are the re"uencies in radians in the resulting DT signal .n/8

    .)/ I .n/ is passed through an ideal interpolator,

    +hat is the reconstructed signal8

      To ind DT signal re"uencies sample the CT signal

     

    ut t 0 n Ts 0 n > Fs 0 n>6 Ts sampling time period

    Fs sampling re"uency 0 1> Ts

    . t/ 0 sin . 2π

     t / 3 4 sin .5)π

    t/

    ? n@ 0 sin . 2 π  n > 6/ 3 4 sin .5) π n> 6/

     0 sin . (2 π  n / 3 4 sin . 1() π  n /

    .* π  n 3 (* .) π  n 3 -. π  n 

    0 sin .(2π

      n / 3 4 sin .;(2π

      n/ 0 ; ) sin .(2π

      n/

    0 ; ) sin .+ n/

    thus + 0 2 radians