discrete -time signals and systems continuous-time signals &...

43
Yogananda Isukapalli Discrete - Time Signals and Systems Continuous - Time signals & systems Fourier Transform

Upload: others

Post on 26-Jan-2021

14 views

Category:

Documents


0 download

TRANSCRIPT

  • Yogananda Isukapalli

    Discrete - Time Signals and Systems

    Continuous-Time signals & systemsFourier Transform

  • Fourier Transform

    Motivation:We need to define the frequency spectrum for

    a more general class of continuous time signals.Fourier Transform is at the heart of moderncommunication systems

    We have defined the spectrum for a limited class of signals such as sinusoids and periodic signals. These kind of spectrum are part ofFourier series representation of signals

  • ( ) ( ) (

    1( ) ( ) 2

    1)j t

    j t

    Inverse continuous ti

    Forward continuous time Fourier Transform

    X j x

    me Fourier Transform

    x t

    t e

    X j e dt

    dt

    w

    ww

    wp

    ¥

    ¥-

    -

    ¥

    =

    =

    -

    -

    ò

    ò

    (

    (2)

    () )FFrequency domTime doma aii n

    X j

    n

    x t w¬¾®

    :Fourier Transform Definition

  • Example

    7

    7

    ( ) ( )

    ; ( ) ( )

    ( )

    j t

    t

    t

    Forward continuous

    Determine the Fourier Transform of the one - sided

    expontime Fourier Transform

    X j x t

    ential signal

    e d

    x

    t

    t

    e u

    t

    t

    e u

    ww¥

    -

    -

    ¥

    -

    -

    =

    -

    =

    =

    ò

    7

    0

    j t

    t j t

    e dt

    e e d (notice the change in limits)t

    w

    w

    ¥-

    -¥¥

    - -=

    ò

    ò

  • ( )( )

    ( )( ) ( )( )

    ( )

    ( )( )( )

    ( )

    77

    0 0

    7 7 0

    7

    7

    = 7

    7

    1

    7

    1

    7

    0

    j t

    j t

    F

    j j

    t

    j

    ee dt

    j

    e e

    j

    j

    Ti Frequency domainme dom i

    j

    e

    a n

    e

    ww

    w w

    w

    w

    w

    w

    w

    ¥- +¥- +

    - + ¥ -

    + ¥

    -

    -

    +

    =- +

    -=

    - +

    =+

    +

    =

    ¬¾®

    ò

    !

    Example contd…

  • Fourier Series & Fourier Transform

    periodic signal, with period

    Time ‘t’0 20T20T-0T- 0T23 0T-25 0T- 02T-

    0T

    Interpretation of Fourier Transform from Fourier Series

    Note that the shape of the signal is drawn arbitrarily

    0( )Tx t

    0( )Tx t

    Fig.18.1

  • Fourier Series & Fourier Transform contd…

    0

    0

    0

    0

    2

    0 20

    0

    ;

    1 ( ) ,

    2

    ,

    ( )

    k

    kj tT k

    T k

    T

    T

    k

    j tk

    k

    Fourier Analysis equation

    a

    And the Fourier synthesis equation

    x t a e

    x e tT

    kT

    t d

    w

    w pw w

    ¥

    =-¥

    -

    -

    =

    =

    = =ò

    å

    The periodic signal can be approximated by summingup harmonically related periodic exponential signals

    ka Spectrum

    Frequency, 0ww k=0 0w 03w …..0w-03w-………..

  • Now, assume that the period of the signal x(t) is infinite

    Time ‘t’

    x(t)

    0 20T20T-

    00

    ( )

    li

    )

    (

    '

    m

    '

    TT

    Note that the above equation also implies thatall non periodicsignals can be consider

    x

    ed periodicwith a peri

    x t

    od f

    t

    o

    ®¥=

    Fourier Series & Fourier Transform contd…

    Fig.18.3

  • 0

    0

    0

    0

    0

    0

    2

    0

    2

    02

    2

    0

    0

    0

    ;

    ( ) ( ) (

    1 ( )

    )

    ( ) ,) (

    k

    k

    Tj t

    kk

    k T kT

    k k

    Tj t

    k TT

    Now defi

    Consider the Fourier Analysis e

    ne

    X j X jk x t e dt T a

    quation

    a x t e dtT

    XX j

    T

    aj

    a

    T

    w

    w

    w w

    ww

    -

    -

    -

    -

    =

    = = =

    \ =

    = ò

    ò

    Fourier Series & Fourier Transform contd…

  • 0

    2 2

    0

    0

    0

    0

    0

    0

    , ;

    ,

    ( )

    1( ) (

    li

    ( )

    m

    )

    1jk t jk t

    k

    T Tk

    k

    j t

    j

    T

    j

    j tT k

    k

    T kk

    tk

    k

    pay at

    Then from the Fourier synthesis equation

    x t a

    tention to the term e e e

    e

    x t XT

    X je

    j

    T

    e

    p p

    w

    w

    w

    w

    w

    w

    æ ö æ öç ÷ ç ÷ç ÷ ç ÷è ø è ø

    ¥

    ¥

    =-¥

    ¥

    =-

    ¥

    ®

    -

    ¥

    ¥

    =

    = ®

    =

    \ =

    æ ö= ç ÷

    è øå

    å

    å kt

    Fourier Series & Fourier Transform contd…

  • Fourier Series & Fourier Transform contd…

    0

    0

    0

    10 0 0

    0

    ;2 ( 1) 2 2

    2

    1( ) ( )

    1( ) ( ) ( )2

    ,

    2

    k

    k

    k

    j tT k

    k

    j tkT

    k k

    k

    k k kk k

    substitute the result in the sysnthesis equ

    Def

    x t X j e

    inek kT T T

    ation

    T

    x t X j X j e

    T

    w

    w

    w

    w w w wp

    p p pw w

    w

    p

    w

    p

    ¥

    =-

    +

    ¥

    ¥ ¥

    =-¥ =-¥

    +D = - = - =

    =D

    =

    D= = D

    å

    å å

  • Fourier Series & Fourier Transform contd…

    0

    0

    0 0

    0

    0

    '

    2lim 0

    2

    lim

    ' ' '

    k kT

    k k

    kT

    k

    The above equation implies that the discrete variablecan now be replaced with a conti

    T

    nuous variable

    T

    kk

    TT

    Going back to the orig

    pw w

    pw w

    w w

    w w

    ®¥

    ®¥

    æ öÞ D ® D =ç

    -

    ÷è ø

    = = D

    Þ ®

    !

    00

    ; lim ( )( ) TT

    inal equation connecting the periodicand non perio xdic signa s xtl t

    ®¥=-

  • 00

    0

    0

    0

    0

    0

    1lim ( )2

    1 ( )

    lim ( ) ( ) lim

    1( ) ( )2

    ; ( ) lim (

    ( )2

    )

    ( ) ( )

    k

    k

    k

    k

    j tk k

    k

    T TT

    j tT k k

    k

    j t

    uk

    X j

    Because x u du X k u

    x t x

    e

    x

    t x t

    x t X j e

    t X j

    u

    x

    d

    t

    e

    w

    w

    w

    w

    w

    w wp

    w wp

    w wp

    ¥ ¥

    D ®=-¥-¥

    ®¥

    ¥

    ¥

    D ®

    D ®=-¥

    -

    ¥

    ¥

    =

    D

    =

    = =

    D

    Þ

    =

    D

    D

    =

    å

    ò

    ò

    å

    å

    Fourier Series & Fourier Transform contd…

  • Fourier Series & Fourier Transform contd…

    1( ) ( ) :

    (1) (2) ,

    ( ) ( ) :

    lim ( ;

    ) 0

    (2)

    1

    ( )

    )

    2

    (j t

    t

    t

    jx t X j

    Fourier Transform integrals

    equati

    X j x t e d An

    ons and exis

    a

    t if and

    e d Synthesis

    l

    only if

    tha

    x t

    x tt

    s

    s

    y

    i

    siw

    ww w

    w w

    p

    ®¥

    ¥-

    ¥

    -

    ¥

    ¥

    =

    =

    = ò

    ò

    ò ( )Sufficient condition for the existance

    dt

    of X jw

    < ¥

  • Example

    The periodicity is increased to show theeffect of higher period.Notice that for fig.c, norepetition is visible inthe plot. Also the spectrum plot for thethree cases shows aninteresting phenomenon.

  • 0

    0

    0

    2

    02

    2 2 2

    02

    2

    0 2

    ;

    1 ( )

    (

    sin( 2)2

    )

    k

    k k

    k

    k

    T

    Tj t

    kT

    Tj t j T j T

    k

    j tk T

    kT

    k

    k

    k

    T

    a T e dt

    notice the change in limits for the present case

    e

    Fourier Analysis equation

    a x

    e ea T

    j

    t

    T

    j

    t e dT

    w

    w w w

    w

    w

    w

    w

    w

    -

    -

    -

    - -

    -

    -

    =

    é ù-= = ú-

    =

    =

    ê -ë û

    ò

    ò

    Example contd…

  • 17

    Example contd…

    0

    0

    0

    0

    , ,

    sin( 2)( ) lim2

    .

    ' '

    k

    k

    k

    k

    k

    The frequecnciesget closer and closer as

    and eventuallybecome dense in the interval

    The quatitiesapproach a continuous

    envelope functiT

    X

    on

    j

    k

    T

    a T

    w w

    w w

    w

    www®

    =

    ®¥

    -¥ <

    =

    < ¥

    sin( 2) 2Tw

    w=

    Fig.18.5

  • 0

    = ( )

    (

    ) (

    ( ) ( )

    )

    at j t

    a

    j t

    t t

    at

    j

    e

    Forward continuous time Fourier Transform

    (notice the change in l

    u t e dt

    e e d

    X j x t e

    x t e

    imi

    t

    )t

    u

    t

    t

    s

    d ww

    w

    - -

    -¥¥

    - -

    ¥-

    -

    =

    =-

    = òò

    ò

    Fourier Transform Pair 1

    Fig.18.6

  • ( )( )

    ( )( ) ( )( )

    ( )

    ( )( )( )

    ( )

    0 0

    0

    =

    1

    1

    0

    ( ) ,

    a j ta j t

    a

    a j a j

    a

    j

    Ft Fourier transform

    ee dt

    a j

    e e

    a j

    a j

    Time domain

    e

    Fr

    is u

    e

    n

    quency doma

    e

    ique

    in

    a ju t

    ww

    w

    w

    w

    w

    w

    w

    w

    ¥- +¥- +

    - +

    - +

    ¥ - +

    ¥

    -

    =

    =- +

    -=

    - +

    +

    =+

    ¬¾®

    ò

    !

    Fourier Transform Pair 1 contd….

  • Fourier Transform Pair 1 contd….

    ( )

    ( )

    ( ) ( ){ } { }

    2 2

    1

    2 2

    2 2 2 2

    1

    ( ) ta

    1( )

    1

    n

    ( )

    ( ) ;

    (

    (

    ;

    )

    )

    1

    a jX jw

    a j a

    a

    a a

    X jw

    a

    X w

    a

    j

    j

    a ja j

    e X jw m X

    X jw

    jw

    ww

    w

    w

    w

    w

    w

    w

    ww

    w-

    -=

    + +

    -

    +

    +

    Ð = -

    =+

    +

    =

    æ öç ÷

    æ ö-=ç ÷-è ø

    Â = Á =

    è ø

  • Fourier Transform Pair 1 contd….

    { } 2 2( )a

    ae X jw

    w+Â =

    { } 2 2( ) am X jw w

    w

    -

    +Á =

  • Fourier Transform Pair 2

    [ ]

    [ ]

    ( ) ( 2) ( 2)

    ( ) ( )

    = ( 2 ) ) 2 ( j t

    j t

    Forward continuous time Fourier Transform

    x t u t T u t T

    u t T u t T e

    X j x t e dt

    dtw

    ww¥

    -

    ¥-

    +

    = + - -

    - -

    -

    = ò

    ò

    Fig.18.8

  • Fourier Transform Pair 2 contd….

    ( )( )

    ( )( ) ( )( )

    ( )

    22

    2 2

    2 2

    =

    2 sin( 2) sin( 2)

    sin( )

    ,=2

    ;

    j tj t

    j j

    TT

    T T

    T T

    Time domain Frequ

    ee dt

    j

    e e

    j

    j T

    enc o

    T

    j

    y d

    'sinc' function

    ww

    w w

    pqpq

    w

    w

    w ww w

    --

    - -

    -

    =-

    -=

    -

    -=

    -

    ò

    [ ] ( 2) ( 2) sin( 2)2

    F

    main

    u t u t TT

    Tww

    + - ¬¾®-

  • 0

    0

    sin( 2)

    sin( 2)

    2 os )

    c ( 2

    : ( 0) lim ,

    ( )=

    2

    ' ; ( 0

    2

    ) lim1 2

    T

    T T

    T

    Note X j

    using L Hospitals rule T

    X j

    X j

    w

    w

    w

    w

    www

    ®

    =

    = =

    Fourier Transform Pair 2 contd….

    Fig.18.9

  • Fourier Transform Pair 2 -- Synthesis

    ( )X jw1

    bw- bw w

    [ ]1( )

    (

    ( )

    ,

    :

    ) ( ) ( )

    2t

    b b

    j

    The frequency domain information is given aboveFind the corresponding time domain sign

    x t X j e d Synthesis equa

    X j

    ti

    l

    u

    a

    on

    u

    ww w

    w w w

    p

    w w¥

    -

    = - -

    =

    +

    ò

    Fig.18.10

  • [ ]

    ( )

    ( )

    ( ) ( )( )( )

    ( ) ( )

    1( ) ( ) ( )

    2

    1

    = 2 2

    2 sin( ) sin( )

    2

    ( )

    =

    2

    b bb

    b

    b

    b

    j t j t

    j tb b

    j t

    j t

    b b

    notice the change in lim

    e ee

    jt j t

    j t

    x t u u

    its

    e d

    e d

    t

    j t t

    w

    ww

    w www

    w

    w

    w w w w

    p p

    w wp

    p

    w

    p

    w

    p

    ¥

    -

    -

    -

    = + - -

    =

    -

    =

    =

    ò

    ò

    Fourier Transform Pair 2 – Synthesis contd…

  • [ ]( )

    ( ) ( )

    sin

    (

    )

    Fb

    bb

    Frequen

    Note : finite - time signals are infinite in frequeny domain

    finite - freq

    cy domain Time doma

    t

    u

    i

    t

    e

    u

    n

    uw

    w wp

    w w+ - - ¬¾®

    ncy signals are infinite in time domain

    Fourier Transform Pair 2 – Synthesis contd…

    Fig.18.11

  • Fourier Transform Pair 3

    0

    (

    ( ) ( ) =

    )

    ( )

    ( )

    )

    (

    j t j t

    j

    F

    tt

    X j x t

    x t

    A

    e A t

    t

    dt t e d

    A

    A

    e

    A t

    A

    w w

    w

    d

    w d

    d¥ ¥

    - -

    -¥ -¥

    -

    =

    =

    =

    =

    ¬¾®

    =

    ò ò

    Fig.18.12 Fig.18.13

  • Fourier Transform Pair 3 -- Synthesis

    (2 )p 1

    ( ) 2 ( )X jw pd w=

    0

    1( ) ( ) : 2

    1 2 ( ) 2

    = 1 j t

    j t

    j t

    x t X j e d Synthesis equation

    e d

    e

    w

    w

    w

    w

    w wp

    pd w wp

    ¥

    -¥¥

    ==

    =

    =

    ò

    ò

    ( )x t

    w tFig.18.15Fig.18.14

  • Fourier Transform Pair 4

    0

    0

    0

    0

    0

    0

    1( ) ( ) : 2

    1 2 ( ) 2

    2 ( )

    ( ) 2 ( )

    =

    2

    j t

    j t

    j t

    j tj

    F

    t

    Fr Ti

    Let X j

    me do

    x t X j e d Synthesis equation

    e d

    e quency domain main

    e

    e e

    w

    w

    ww w

    w

    w

    w pd w w

    w wp

    pd w w wp

    pd w w

    ¥

    -¥¥

    =

    = -

    ¬¾

    =

    =

    ®

    = -

    -

    ò

    ò

    00 ( )

    F j te wpd w w -¬¾®+

  • Fourier Transform Pair 5

    0

    0

    0

    0

    0

    0

    0

    ( ) sin

    ( ) ( ),

    (

    2 ( )

    ) sin( )

    ( )2

    F

    Fj t

    Fj

    t

    t

    j t j

    x t X j use the identities from previous exampl

    Find the Fourier Transform f

    e

    e

    e

    or x t t

    e ex t t

    j

    w

    w

    w ww

    w

    pd w

    w

    w-

    -æ ö-= = ç ÷ç ÷

    ¬¾®

    ¬¾® -

    ¬¾®

    ø

    =

    è

    0

    0 00

    1 21 2

    ( ) ( )

    - (

    ( ) ( )

    ) (

    sin(

    )

    2 (

    )

    )

    F

    F

    Time domain

    ax t bx t

    Frequency domain

    aX j bX j

    j

    t j

    pd

    w w

    pd w w pd w ww

    w w

    +

    - +

    ¬¾®

    ¬¾® +

    +

    +

  • Fourier Transform Pair 5 contd….

  • Fourier Transform Pair 6

    0

    0

    0

    0

    0

    0

    0

    ( ) ( ),

    2 ( )

    ( ) cos( )2

    (

    ) cos( )

    F

    Fj t

    Fj

    j t j t

    t

    x t X j use the identities from previous example

    e

    e

    Find the Fourier Transfo

    e ex

    rm

    t t

    for x t tw w

    w

    w

    w

    pd w w

    w

    w

    -

    -æ ö+= = ç ÷

    ¬¾®

    ¬¾® -

    =

    ¬¾®

    ç ÷è ø

    0

    0 00

    1 21 2

    ( ) ( )

    ( ) ( )

    ( )

    2 (

    ()

    )

    )cos(

    F

    F

    Frequency domain

    aX

    Time domain

    ax t j bX jbx

    t

    t w w

    pd w w pd w w

    pd w w

    w

    ¬¾®

    ¬ - +¾® +

    +

    +

    +

  • Periodic Signals

    { }

    00

    0

    0

    0

    00

    2

    0 2

    ( ) ( )2

    1

    ( )

    ( ) ,

    (

    ( )

    ( )

    )

    :

    k

    F

    jk t

    k

    Tjk

    j tk

    t

    k

    k

    k

    k

    T

    x t x t Tk

    kT

    a x t e dt

    x

    Whe

    x t X j

    F x t F a e

    t

    r

    a

    e

    e

    Tw

    w

    w

    pw w

    w

    ¥

    =-¥

    ¥

    -

    =-¥

    -

    =

    = +

    =

    ¬¾®

    ì ü=þ

    =

    ý

    =

    íî

    å

    å

    ò

  • 0

    0

    0

    0

    0

    0 2 ( )

    2 ( )

    2 (

    ( ) 2 ( )

    )

    k F

    k

    Fj t

    Fjk t

    j tk

    k

    kkk

    e

    e k

    Time domain Frequen

    X

    c

    j a k

    a e

    y domain

    a

    k

    w

    w

    w

    w

    p

    p d

    pd

    w w

    w w

    pd w w

    d w w

    ¥

    =-

    ¥

    =-

    ¥

    =

    ¥

    ¥¥ -

    ¬¾® -

    \ ¬¾

    ¬

    = -

    ¾

    ®

    -

    å

    å å

    Periodic Signals contd…

  • Example: Square Wave

    0 0

    0

    02 2 2

    0 0 0

    0

    02

    2

    2

    1

    1 ( ) ,

    Tjk t

    Tjk t

    kT

    jk T jk T

    T

    a x

    e e eT jk k T

    d

    j

    t e tT

    w

    w w w

    w w

    -

    -

    -

    -

    -æ ö æ ö-= =ç ÷ ç ÷ç ÷ ç ÷- -è

    =

    è ø ø

    ò

    Fig.18.17

  • 0

    02

    00

    0

    0

    0

    2

    0

    0

    000

    sin( 2)

    50% , ,

    2

    0

    1

    sin( 2

    1 1 = 2

    ) sin( 2

    0

    2

    2

    2

    ;

    2

    )

    T

    T

    k

    Assume a duty cycle which means

    and

    k T

    Ta dt

    k kka

    k

    kk T k

    T

    T TT

    T

    T

    TT pw pw p

    w pw

    p

    p

    p-

    \

    æ ö æ ö=ç

    = =

    ì ¹ïï= íï =

    ÷ ç ÷è øè

    =

    ø

    = =

    ïî

    =

    ò

    Example: Square wave contd…

  • Example: Square wave contd…

    0

    02sin( 2)( ) ( ) (

    2

    )

    ( )kj tkk

    k

    k

    k

    F aa ke

    kX j kk

    w

    pw pd w d w

    p d w w

    w

    ¥

    =-¥

    ¥

    ¥

    =-¥

    =-¥¬

    æ ö= + -ç

    ¾

    ÷

    ®

    è ø

    -åå

    å

    Fig.18.18

  • Example: Impulse Train

    0

    22

    0 2 2

    ( ) ( )

    1 1( ) ( )s

    s

    s

    TTjk t jk t

    k

    n

    sT

    s

    Ta x t e dt t e dt

    T T

    p t t nT

    w w

    d

    d

    ¥

    =

    - -

    -

    -=

    = -

    å

    ò

    Fig.18.19

  • 2

    2

    2(

    1 1 ( )

    ) 2 ( ) ( )

    ss

    s

    Tjk t

    s sT

    k s sk k s

    P j a k k

    t e tT T

    T

    dw

    pw p d w w d w w

    d

    ¥ ¥

    =- -¥

    -

    =

    -

    ¥= = -

    =

    -

    =

    å

    ò

    å

    Example: Impulse Train contd…

    Fig.18.20

  • Table 1: Fourier Transform Pairs

    ( )( )

    ( )( )

    ( )

    1

    1

    : ( )

    ( ), 0

    ( ),

    : ( )

    sin( 2)

    b 0

    2

    ( ) ( )

    ( 2) ( 2)

    sin( )

    ( )

    ( )

    1

    d

    at

    bt

    b

    d

    b b

    j t

    e

    be

    a j

    j

    Time domain x Ft

    u t a

    u t

    u t T u t T

    tt

    t

    requency domain X

    t

    j

    T

    u u

    t e w

    w

    w

    w

    wpd

    ww

    w

    d

    w w w

    -

    -

    +

    -

    >

    - >

    -

    + - -

    + - -

  • Table 2: Fourier Transform Pairs

    0

    0

    0

    0 00

    0

    0

    0 0

    0 0

    0

    : ( )1

    ( )

    2 ( )

    2 ( )

    ( ) ( )( ) ( )

    - ( ) ( )

    2

    : ( )

    ( )

    1

    cos( )cos( )sin(

    ( )

    )

    (

    j j

    j

    kk

    t

    jk tk

    k

    FrequencTime domain x t

    u t

    e

    A ttt

    a e

    t

    y domain X j

    j

    Ae Ae

    nT

    j j

    a k

    f f

    w

    w

    w

    w

    pd ww

    pd w

    pd w w

    p d w w p d w wpd w w pd w wpd w w pd w w

    p

    fw

    d w

    w

    d

    w

    -

    ¥

    =-¥

    ¥

    =-¥

    +

    -

    - + +- + +-

    +

    + +

    -

    -

    åå

    2( ))

    n kk

    Tp d w w

    ¥

    =- ¥¥

    ¥

    =--å å

  • James H. McClellan, Ronald W. Schafer and Mark A. Yoder, “ 11.1- 11.4 “SignalProcessing First”, Prentice Hall, 2003

    Reference