inside the playstation 5: solving the chip bandwidth...

31
1 Integrated Systems Group Massachusetts Institute of Technology Inside the PlayStation 5: Solving the Chip Bandwidth Challenge Ben Moss

Upload: others

Post on 25-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

1

Integrated Systems GroupMassachusetts Institute of Technology

Inside the PlayStation 5:Solving the Chip Bandwidth Challenge

Ben Moss

Page 2: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 2

Moore’s Law

Photo credit: Intel

Inexpensive transistor density doubles roughly every two years

Page 3: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 3

Processor Parallelism

Intel Desktop Processors: 1970 - Now

Pentium

486

4004

Pentium III

2fCVP

• Power Constrained• No power density scaling• No battery energy scaling

Multi-Core

Page 4: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 4

Inside the PlayStation 3: IBM Cell

• How do we make the PS5? Add more cores!

Core

Core

Core

Core

Core

Core

Core

Core

Core

Power Core

L2 Cache

Central Bus

I/O C

ontr

olle

r

Photo Source: IBM

Page 5: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 5

Manycore System Bandwidth Needs“PlayStation 5”

Page 6: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 6

Interconnect Scaling: Not Good

• Wire gets smaller R increases• Wire gets smaller fringe cap dominates• Dense wires high crosstalk• Overall, RC time constant is not improving

Page 7: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 7

Manycore Bandwidth Bottlenecks

CPU

Cache

DR

AM

D

IMM

Manycore systemcores

Cache

DR

AM

D

IMM

Cache

DR

AM

D

IMM

CPU CPU

InterconnectNetwork

InterconnectNetwork

Bottlenecks due to energy and

bandwidth density limitations

Sun Niagara8 GPP cores (32 threads)

Intel®

XScale™

Core32K IC

32K DC

MEv210

MEv211

MEv212

MEv215

MEv214

MEv213

Rbuf64 @ 128B

Tbuf64 @ 128BHas

h48/64/12

8

Scratch16K

B

QDRSRA

M2

QDRSRA

M1

RDRAM1

RDRAM3

RDRAM2

GASKET

PCI

(64b)66 MHz

IXP2IXP2800800 16b16b

16b16b

1188

1188

1188

1188

1188

1188

1188

6464bb

SPI4orCSIX

Stripe

E/D Q

E/D Q

QDRSRA

M3

E/D Q11

881188

MEv29

MEv216

MEv22

MEv23

MEv24

MEv27

MEv26

MEv25

MEv21

MEv28

CSRs-Fast_wr-UART-Timers-GPIO-BootROM/SlowPort

QDRSRA

M4

E/D Q1188

1188

Intel Network Processor1 GPP Core

16 ASPs (128 threads)

IBM Cell1 GPP (2 threads)

8 ASPs

Picochip DSP1 GPP core248 ASPs

Cisco CSR-1188 Tensilica GPPs

Constraints:• Area (Bandwidth Density)• Energy Efficiency• Compatibility with Bulk-CMOS

Page 8: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 8

Silicon Photonicsmonolithic

• Conceived in the 1980’s

• Recently became feasible

• Must be compatible with Bulk-CMOS

• Need a fair electrical comparison

Page 9: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 9

An Optical Link

65 nm bulk CMOS chip designed to test various optical devices

Page 10: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 10

Optical Devices: Waveguides

• Basic Building Block• Poly (transistor gate) layer• ~0.5um wide, 0.1um tall• Must be undercut• Bi-directional• Can turn, bend, cross!• WDM

Page 11: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 11

Post-Processing the Waveguide

Define Etch Hole Selectively Etch Substrate

Silicon Substrate

DielectricPoly Waveguide

Page 12: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 12

Optical Devices: Vertical Couplers• Vital component• Sensitive to fiber position• Also made of poly• Can enable 3D stacking

Page 13: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 13

Optical Devices: Ring Filters

• Drops one λ onto a different waveguide

• Geometry is very sensitive • 1 THz/nm sensitivity on thickness• 30 GHz/nm sensitivity on width• Thermally sensitive

Page 14: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 14

Optical Devices: Ring Filter Bank

-200 0 200 400 600 800 1000

-14

-12

-10

-8

-6

-4

-2

0

Tran

smis

sion

, dB

Frequency, GHzFirst 100 GHz spaced bank in sub-100nm, first in bulk CMOS, first in poly Si- Enables 60-120 wavelengths/waveguide ( >200 Gb/s/um data rate density)

• FSR is ~16nm (2.7THz)• The scans are 1268nm -1276nm• 5nm ring radius step• Sensitivity

• 1THz/nm poly • 30GHz/nm poly W

Orcutt, J. S., A. Khilo, M. A. Popovic, C. W. Holzwarth, B. Moss, H. Li, M. S. Dahlem, T. D. Bonifield, F. X. Kärtner, E. P. Ippen, J. L. Hoyt, R. J. Ram, and V. Stojanovic, “Demonstration of an Electronic Photonic Integrated Circuit in a Commercial Scaled Bulk CMOS Process,” Optical Society of America - CLEO/QELS Conference, May 2008.

Page 15: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 15

Optical Devices - Photodiode

The current signal from the photodiode goes to a receiver

Integrated Photonic Waveguide

…01001101…

Φ ΦΦ

ΦΦ

Latching Data Receiver

Page 16: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 16

Optical Clocking

Φ

*

*

*

Integrated Photonic Waveguide

Off-Chip Laser

Clock Receiver

Optical clocking can reduce clock skew and increase energy efficiency

Page 17: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 17

Optical Devices: Ring Modulators

10 Gb/s

Page 18: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 18

Optical Devices: Ring Modulators

2

1

)0(11)(

o

injectedinjected

QQ

TQT

Page 19: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 19

Optical Devices: Ring Modulators

• Thermal crosstalk is high• Temperature changes ring’s refractive index

Page 20: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 20

P-I-N SPICE Model

Antonio G. M. Strollo, A New SPICE Model of Power P-I-N Diode Based on Asymptotic Waveform Evaluation, IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 12, NO. 1, pp.12-20, JANUARY 1997.

q0q0

i1

Page 21: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 21

Pre-emphasized Current Profile

with

without

Injected Current into P-I-N Diode

Configurability is necessary

Pre-emphasis Advantages

• Less power

• Controlling Qinjected

• Faster

Injected Current Profiles

Page 22: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 22

Modulator Driver Schematic

Page 23: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 23

Manufacturing Considerations

• Manhattan Geometry• Density requirements• No Optical LVS• 1-5 nm design grid

– Minimizes edge roughness• Thick-BOX SOI incompatible with

processor design (thermal issues)• Post-processing

Page 24: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 24

An Optical Link

65 nm bulk CMOS chip designed to test various optical devices

Page 25: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 25

Full System (Conventional DRAM)

25

Photonics < 7% chip area~40k rings, 200 waveguides, 64λ/waveguide/direction, 40Tbits/sec

NOT TO SCALE

Page 26: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 26

Optical power budgetComponent Preliminary Design Power loss Optimized Design Power loss

Coupler loss 1 dB/coupler 3 dB 1 dB/coupler 3 dBSplitter loss 0.2 dB/split 1 dB 0.2 dB/split 1 dB

Non-linearity 1 dB 1dB 1dB 1dBThrough loss 0.01 dB/ring 3.17 dB 0.01 dB/ring 3.17 dB

Modulator Insertion loss 1 dB 1 dB 0.5 dB 0.5 dBCrossing loss 0.2 dB/crossing 12.8 dB 0.05 dB/crossing 3.2 dB

On-chip waveguide loss 5 dB/cm 20 dB 1 dB/cm 4 dBOff-chip waveguide loss 0.5e-5 dB/cm ~ 0 dB 0.5e-5 dB/cm ~ 0 dB

Drop loss 2.5 dB/drop 5 dB 1.5dB/drop 3 dBPhotodetector loss 0.1 dB 0.1 dB 0.1 dB 0.1 dBReceiver sensitivity -20 dBm -20 dBm -20 dBm -20 dBm

Power per wavelength 26.07 dBm(0.40 W)

-1.03 dBm(0.78 mW)

Power required at source 3.3 kW 6.38 W

Page 27: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 27

Data transmission latency

• Total latency 14 bit times– Less than 4 clock cycles (with

2.5 GHz core clock)• Comparable to Electrical

Component LatencySerializer/Deserializer

(50ps each) 50ps

Modulator driver latency 108psThrough latency

(2.5ps/adjacent channel) 7.5ps

Drop latency (20ps/drop) 60ps

Waveguide latency (106.7ps/cm) 427ps

SM fiber latency(48.3ps/cm) 483ps

Photodetector+TIA latency 200ps

Total latency 1.385ns

Page 28: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 28

Silicon Photonics Area and Energy Advantage

Metric Energy (pJ/b)

Bandwidth density (Gb/s/μm)

Global on-chip photonic link 0.25 160-320

Global on-chip optimally repeated electrical link 1 5

Off-chip photonic link (50 μm coupler pitch) 0.25 13-26

Off-chip electrical SERDES (100 μm pitch) 5 0.1

On-chip/off-chip seamless photonic link 0.25

Page 29: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 29

Thermal Sensitivity/Crosstalk Issues

29

• High thermal crosstalk between adjacent rings• Released substrate can thermally isolate filter banks• Random variation small; systematic variation corrected thermally

NOT TO SCALE

Page 30: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 30

The Problem Spans Many Layers

• Device Level – Jason Orcutt, Milos Popovic, Anatoly Khilo, Charles Holzwarth, Jie Sun, Hanquing Li, Reja Amatya

• Circuits Level – Ben Moss, Michael Georgas, Jonathan Leu

• System Architecture Level – Ajay Joshi, ImranShamim, Chris Batten

Page 31: Inside the PlayStation 5: Solving the Chip Bandwidth Challengeweb.mit.edu/eecsgsa/6insight/www/slides/benm-20081119.pdf · 2008-11-23 · • On-chip optical networks are a new technology

Integrated Systems Group 31

Conclusion

• Multi-core machines demand more bandwidth than ever before

• On-chip optical networks are a new technology to widen this bottleneck

• We have demonstrated that on-chip optical networks are possible in standard CMOS processes

• Many tradeoffs exist that must be analyzed at the system, circuit and device level

• Photonic interconnects have over 5x energy efficiency improvement compared to electrical