innovative low-mass cooling systems for the alice its ......2016/05/11  · innovative low-mass...

36
Innovative low-mass cooling systems for the ALICE ITS Upgrade detector at CERN LTCM, École Polytechnique Fédérale de Lausanne (EPFL) Doctoral Programme in Energy (EDEY) 11 th May 2016 Student: Manuel Gómez Marzoa Thesis director: Prof. John R. Thome EPFL Thesis 6993 public defence

Upload: others

Post on 15-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Innovative low-mass cooling systems for the ALICE ITS Upgrade detector at CERN

    LTCM, École Polytechnique Fédérale de Lausanne (EPFL) Doctoral Programme in Energy (EDEY)

    11th May 2016

    Student: Manuel Gómez Marzoa

    Thesis director: Prof. John R. Thome

    EPFL Thesis 6993 public defence

  • Goals

    17/05/2016 M. Gómez Marzoa 2

    1.  Lightweight cooling system for ALICE ITS Upgrade

    2.  Flow boiling heat transfer in a polyimide channel

    §  Design parameters §  Experimental setup & methodology §  Cooling performance results

  • ALICE ITS Upgrade

    17/05/2016 M. Gómez Marzoa 3

    Inner Barrel (3 layers)

    ITS Upgrade (2019)

    ALICE

    Silicon pixels Cooling structure

    STAVE:

    Layer

    290 x 15 mm

    Middle & Outer Barrel (2+2 layers)

    843 x 60 mm 1475 x 60 mm

  • Power dissipation

    17/05/2016 M. Gómez Marzoa 4

    ITS Upgrade sectional view

    Charged and neutral particles cross detector chips:

    1.  Ionizing current: signal

    2.  Non-ionizing current: radiation damage → power dissipation

    Ø  If Tchip ↑ 7 K, 2x radiation damage (irreparable!!)

    12.5 GPix “camera” 100-400 kHz

  • Design parameters

    17/05/2016 M. Gómez Marzoa 5

    [%]100Xx0

    [cm]ρ

    Z287ln1)Z(Z

    A716.4X N0+

    ⋅=

    x=1 mm of material x/X0 [%] Copper 6.94 Polymide (Kapton®) 0.34 CFRP (K13D2U-2K) 0.42

    Power dissipation 0.10 W cm-2 (2015)

    0.15 W cm-2 (1.5 FS)

    Chip temperature < 30°C Temperature non-uniformity 5-10 K

    Global material budget

    Water (liquid) 0.28 Two-phase R245fa 0.06*

    * ε = 0.85

    IB: x/X0 ≤ 0.3% per layer MB/OB: x/X0 ≤ 1.0% per layer

  • 17/05/2016 M. Gómez Marzoa 6

    Ultra-light cooling concept

    Graphite foil λ~1000 W m-1 K-1

    [1] Gómez Marzoa et al., ExHFT8, Lisbon, 2013.

    9 Chips 270 x 15 mm

    Spaceframe

    CFRP λ=620-1000 W m-1 K-1

    Polyimide, 1 mm ID z

    y

    x

  • 17/05/2016 M. Gómez Marzoa 7

    Single-phase water

    261 6

    1

    coolant,intcoolant,ou

    iNTCilantheater-coo

    TTTΔT

    +−= ∑

    =

    < 15 K

    Cooling performance:

    + Radiation hard + Loop simplicity

    -  Leak-less (Δp < 0.3 bar) -  Liquid: ↑ x/X0

  • 17/05/2016 M. Gómez Marzoa 8

    Two-phase C4F10 loop

    G = Eheaterilv!xin-out

    1Ai

    x5 =

    Eheater !EairGAi

    + i4 ! i5,l

    i5,lvx4 = f (p4, i4 )

    + Radiation hard, dielectric +  psat =1.9 bar @15°C +  ↓ x/X0

    -  More complex loop -  Flow distribution (346 staves)

  • Inner Barrel staves

    Inlet

    Outlet

  • 17/05/2016 M. Gómez Marzoa 10

    Inner Barrel: stave layouts

    IB1

    IB2

    IB3

    1.4 g

    1.8 g

    1.7 g

    Total x/X0=0.29% (water, services

    included [2])

    z

    y

    x

  • 0

    1

    2

    3

    4

    5

    6

    7

    8

    2 3 4 5 6 7 8 9

    ∆T

    hea

    ter-

    wat

    er [

    K]

    Water flow rate [L h-1

    ]

    Re=2300

    IB1

    IB2

    IB3

    6.4 6.6 6.7 6.8 6.86.76.8 6.8

    6.06.0 6.1 6.3 6.3 6.1

    6.06.16.2 6.2 6.3

    6.46.5

    17/05/2016 M. Gómez Marzoa 11

    Water: ΔTheater-water, 0.15 W cm-2

    3

    Heat load [W]

  • 17/05/2016 M. Gómez Marzoa 12

    Water: total Δp (inc. singularities)

    0.3 ü

    Vwater = 3 L h-1

    [3] [4]

  • 17/05/2016 13

    IB2: 2-Ph C4F10, 0.30 W cm-2

    * ε = 0.85 as by Steiner [5] void fraction method

    C4F10 vs. H2O: 10.5% MB save*

    M. Gómez Marzoa

  • 17/05/2016 14 M. Gómez Marzoa

    Δp=0.32 bar ; ΔTheater-max=6.0 K 14.9°C

    17.3°C

    H2O, 3 L h-1

    ΔTsat=4.6 K ; ΔTheater-max=6.5 K Tsat,out=16.2°C

    Tsat,out=11.6°C

    C4F10, 270 kg m-2 s-1

    xin=0.15

    xout=0.72

    IB2: Water vs. C4F10, 0.30 W cm-2

  • 30 mm

    Outer Barrel staves

  • 17/05/2016 M. Gómez Marzoa 16

    Outer Barrel: half-stave layouts

    OB1

    OB2

    OB3

    20.4 g

    20.7 g

    22.0 g

    Total x/X0=0.770% (inc. water, services)

    Total x/X0=0.741%* (two-phase C4F10, services included)

    * ε = 0.85 as by Steiner [5] void fraction method

    z

    y

    x

  • Water: ΔTheaters-water, 0.15 W cm-2

    17/05/2016 M. Gómez Marzoa 17

    0

    2

    4

    6

    8

    10

    5 7 9 11 13 15

    ∆T

    hea

    ters

    -wat

    er [

    K]

    Water flow rate [L h-1

    ]

    Re=2300

    OB1

    OB2

    65.765.7 66.8 67.9

    67.665.8

    67.4 67.667.6

    63.9 64.7 65.3 65.4 66.1 65.7 65.866.267.4

    6 Δp=0.2 bar ü

  • 0

    2

    4

    6

    8

    10

    12

    0 200 400 600 800

    4 8 12 16 20

    ∆T

    hea

    ters

    -co

    ola

    nt [

    K]

    C4F10 mass flux [kg m-2

    s-1

    ]

    Water flow rate [L h-1

    ]

    OB1, waterOB3, waterOB3, two-phase C4F10

    17/05/2016 M. Gómez Marzoa 18

    OB3: 2-Ph C4F10: 0.15 W cm-2

    xin [-] xout [-] ΔTheaters-C4F10 [K] 0.16 0.59 5.9 0.03 0.43 6.1

    SC=3.5 K 0.34 8.1

  • 17/05/2016 M. Gómez Marzoa 19

    OB3: Water vs. C4F10, 0.15 W cm-2

    xin=0.07

    xout=0.67

  • Goals

    17/05/2016 M. Gómez Marzoa 20

    1.  Lightweight cooling system for ALICE ITS Upgrade ü  Innovative solutions: plastic tubing & CFRPs. ü  Robust, low material budget. ü  ΔTheater-coolant < 7 K @0.15 W cm-2. Water or two-phase C4F10.

    2.  Flow boiling heat transfer of R245fa in a polyimide channel Heat Transfer Research Group (Prof. Ribatski), Escola de Engenharia de São Carlos, USP.

    9-month project funded by the Swiss National Science Foundation (SNSF) Doc.Mobility Project no. 155264

    Ø  No data in literature on flow boiling in plastic channels

    Ø  HTC vs. G, q, Tsat ??

  • Polyimide channel

    17/05/2016 21

    §  Dimensions measured in microscope:

    §  Statistical aver. roughness: 12 nm, AFM (Fiorenza et al. [6])

    §  λPolyimide= 0.12 W m-1 K-1

    M. Gómez Marzoa

    Ø  ID=2.689±0.025 mm Ø w=0.063±0.011 mm

  • Test rig

    17/05/2016 22

    1. SC R245fa SC=10-20 K

    2. SS Preheater (PH) 2.3 mm ID

    3. Polyimide channel 4. Visualisation Quartz, 2.1 mm ID 4000 fps High-speed camera

    M. Gómez Marzoa

    §  Glass ID = 4.925 mm

    §  ΔTwater= 0.9-2.5 K §  Rewater = 3500-5500 Q = !mcp!Twater

  • Experimental apparatus

    17/05/2016 23

    Facility: Tibiriçá and Ribatski (2010) [7]

    M. Gómez Marzoa

    Parameter Uncertainty T (type K) 23-79°C 0.10-0.11 K Water flow rate 40-80°C 0.031 L min-1

    Δp (differential) 150 Pa P transducer 4.5 kPa Coriolis flow meter 0.1% g s-1

    hts,mean 13-39% xts,mean ~ 4%

  • Two-phase tests: data reduction

    17/05/2016 24

    G [kg m-2 s-1] q [kW m-2] Tsat [°C] xmean [-] 100-500 15-55 35, 41, 47 0.1-0.9

    §  Mean vapour quality (xts,m):

    §  Mean HTC (hts,m):

    Rconv,int =Twater,m !TR245 fa,m

    Enet! Rcond,wall ! Rconv,ann

    KW"

    #$%

    &'

    hts,m =1

    Rconv,int (! Lheated Di )

    Water-water tests

    xts,in =

    QphGphAi,ph

    + iph,in!

    "##

    $

    %&&' il,ts,in

    ilv,ts,inxts,out =

    QphGphAi,ph

    +QnetGtsAi,ts

    + iph,in!

    "##

    $

    %&&' il,ts,out

    ilv,ts,out

    M. Gómez Marzoa

    Petukhov [8] (validated)

  • Results: influence of G

    17/05/2016 25

    0 0.2 0.4 0.6 0.8 1

    x 103

    0

    1

    2

    3

    4

    5

    6

    xts,mean [-]

    h ts,m

    ean [

    W m

    -2 K

    -1]

    200200

    Tsat=41°C, qts,mean=15 kW m-2

    300300

    100100G [kg m-2 s-1]

    1 23

    4

    Dryout

    M. Gómez Marzoa

  • Results: influence of G

    17/05/2016 26

    0.1 0.2 0.3 0.4 0.5 0.6

    x 103

    2

    3

    4

    5

    6

    7

    8

    xts,mean [-]

    h ts,m

    ean [

    W m

    -2 K

    -1]

    Tsat=47°C ;

    ExperimentalExperimental

    Liu-WintertonLiu-WintertonKanizawa et al.Kanizawa et al.

    400 kg m-2 s-1G=300

    qts,mean=45 kW m-2

    Kandlikar-Balas.Kandlikar-Balas.Cioncolini-ThomeCioncolini-Thome

    M. Gómez Marzoa

    [9] [10]

    [11] [12]

  • Results: influence of q

    17/05/2016 27

    0 0.2 0.4 0.6 0.8

    x 103

    0

    1

    2

    3

    4

    5

    6

    7

    xts,mean [-]

    h ts,m

    ean [

    W m

    -2 K

    -1]

    Tsat=41°C; G=200 kg m-2 s-1

    1515

    2525

    qts,mean [kW m-2]Δxin-out≈ 0.18

    Δxin-out≈ 0.30

    0 0.2 0.4 0.6 0.8 1

    x 103

    0

    1

    2

    3

    4

    5

    xi [-]

    h ts,m

    ean [

    W m

    -2 K

    -1]

    15

    Tsat=41°C

    2525

    G=200 kg m-2 s-1

    qts,mean [kW m-2]xIn xOut

    M. Gómez Marzoa

  • Results: influence of q

    17/05/2016 28

    0 0.2 0.4 0.6 0.8 1

    x 103

    0

    2

    4

    6

    8

    10

    xts,mean [-]

    h ts,m

    ean [

    W m

    -2 K

    -1]

    35

    Tsat=41°C; G=300 kg m-2 s-1

    15152525

    4545

    Kanizawa Exp

    qts,mean [kW m-2]

    et al. (2016)[10]

    M. Gómez Marzoa

  • Results: influence of q

    17/05/2016 29

    0 0.1 0.2 0.3 0.4 0.5 0.6

    x 103

    1

    2

    3

    4

    5

    6

    xts,mean [-]

    h ts,m

    ean [

    W m

    -2 K

    -1]

    35

    Tsat=41°C; G=300 kg m-2 s-1

    15152525

    4545

    qts,mean [kW m-2]

    ExpLiu-Winterton

    Cioncolini-ThomeCioncolini-Thome

    M. Gómez Marzoa

    [9]

    [12]

  • Results: influence of Tsat

    17/05/2016 30

    0 0.2 0.4 0.6 0.8

    x 103

    0

    1

    2

    3

    4

    5

    6

    xts,mean [-]

    h ts,m

    ean [

    W m

    -2 K

    -1]

    41

    G=200 kg m-2 s-1

    3535Tsat [°C]

    qts,mean=15 kW m-2

    M. Gómez Marzoa

  • Results: influence of Tsat

    17/05/2016 31

    0 0.1 0.2 0.3 0.4 0.5 0.6

    x 103

    0

    1

    2

    3

    4

    5

    6

    xts,mean [-]

    h ts,m

    ean [

    W m

    -2 K

    -1]

    41

    G=300 kg m-2 s-1; qts,mean=25 kW m-2

    3535

    4747

    Tsat [°C]ExpCioncolini-Thome

    M. Gómez Marzoa

    [12]

  • Concluding remarks

    17/05/2016 M. Gómez Marzoa 32

    1.  Lightweight cooling system for ALICE ITS Upgrade

    2.  Flow boiling heat transfer in a polyimide channel

    ü  ↑ HTC with ↑G, ↑xmean ü  HTC not depending on q

    ü  ↑ HTC with ↓ Tsat at high G, high q.

    ü  Cioncolini-Thome [12] convective method fits experimental data.

    ü  Innovative solutions: plastic tubing & CFRPs. ü  Robust, low material budget. ü  ΔTheater-coolant < 7 K @0.15 W cm-2. Water or two-phase C4F10.

    Convective boiling

  • Next steps

    17/05/2016 M. Gómez Marzoa 33

    §  ALICE ITS Upgrade

    §  Flow boiling heat transfer in a polyimide channel

    Ø  Cooling tests on fully assembled staves (chips, glue, FPC, power bus).

    Ø  Cooling test full staves assembled IB, OB layer.

    Ø  Loop design (water).

    Ø  Influence of diameter (1.024, 2.052 mm ID), fluid (R134a).

    Ø  Direct flow visualisation (transparent Kapton® tube).

    Ø  Improve test section: thermopile, local HTC measurements.

    Ø  Condensation tests.

  • Acknowledgements: CERN EN-CV Group, CFD-Team ALICE Collaboration M. Battistin, Prof. E. Da Riva, C. Gargiulo (CERN) Swiss National Science Foundation (SNSF) Heat Transfer Research Group, EESC-USP Prof. G. Ribatski LTCM Prof. J. R. Thome Lucia & my family

    Thank you!

  • References (1/2)

    17/05/2016 M. Gómez Marzoa 35

    [1] M. Gómez Marzoa. et al. (2013). Thermal Studies of an Ultra-Low-Mass Cooling System for ALICE ITS Upgrade Project at CERN. In Proc. of the 8th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Instituto Superior Técnico, Lisbon. [2] The ALICE Collaboration (2013). Technical Design Report for the Upgrade of the ALICE Inner Tracking System. Technical Report CERN-LHCC-2013-024. ALICE-TDR-017, CERN, Geneva. [3] I. E. Idelchik and E.Fried (1966). Handbook of hydraulic resistance. U.S. Atomic Energy Commission. [4] S. W. Churchill (1977), Friction factor equation spans all fluid-flow regimes, Chem. Eng., 91 [5] D. Steiner (2010). H3.1 Flow Patterns in Evaporator Tubes. Verein Deutscher Ingenieure. VDI Heat Atlas: Second Edition. [6] G. Fiorenza et al. (2013). An innovative polyimide microchannels cooling system for the pixel sensor of the upgraded ALICE Inner Tracker. Proceedings, 5th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI 2013), pages 81–85. [7] C. B. Tibiriçá, and G. Ribatski (2010). Flow boiling heat transfer of R134a and R245fa in a 2.3 mm tube. International Journal of Heat and Mass Transfer, 53(11), 2459-2468.

  • References (2/2)

    17/05/2016 M. Gómez Marzoa 36

    [8] B. S. Petukhov, B. S. (1970). Heat transfer and friction in turbulent pipe flow with variable physical properties. Advances in heat transfer, 6(503), i565. [9] Liu, Z. and Winterton, R. H. S. (1991). A General Correlation for Saturated and Subcooled Flow Boiling in Tubes and Annuli Based on a Nucleate Pool Boiling Equation, Int. J. Heat Mass Transfer , 34, pp. 2759-2766 [10] F. T. Kanizawa, C. B. Tibiriça ́, and G. Ribatski (2016). Heat transfer during convective boiling inside microchannels. International Journal of Heat and Mass Transfer, 93:566–583. [11] S. G. Kandlikar and P. Balasubramanian (2004). An extension of the flow boiling correlation to transition, laminar, and deep laminar flows in minichannels and microchannels. Heat Transfer Engineering, 25(3):86–93. [12] A. Cioncolini and J. R. Thome (2011). Algebraic turbulence modeling in adiabatic and evaporating annular two-phase flow. International Journal of Heat and Fluid Flow, 32(4):805–817.