innovative low-mass cooling systems for the alice its upgrade detector...

36
Innovative low-mass cooling systems for the ALICE ITS Upgrade detector at CERN LTCM, École Polytechnique Fédérale de Lausanne (EPFL) Doctoral Programme in Energy (EDEY) 11 th May 2016 Student: Manuel Gómez Marzoa Thesis director: Prof. John R. Thome EPFL Thesis 6993 public defence

Upload: others

Post on 22-Apr-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

Innovative low-mass cooling systems for the ALICE ITS Upgrade detector at CERN

LTCM, École Polytechnique Fédérale de Lausanne (EPFL) Doctoral Programme in Energy (EDEY)

11th May 2016

Student: Manuel Gómez Marzoa

Thesis director: Prof. John R. Thome

EPFL Thesis 6993 public defence

Page 2: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

Goals

17/05/2016 M. Gómez Marzoa 2

1.  Lightweight cooling system for ALICE ITS Upgrade

2.  Flow boiling heat transfer in a polyimide channel

§  Design parameters §  Experimental setup & methodology §  Cooling performance results

Page 3: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

ALICE ITS Upgrade

17/05/2016 M. Gómez Marzoa 3

Inner Barrel (3 layers)

ITS Upgrade (2019)

ALICE

Silicon pixels Cooling structure

STAVE:

Layer

290 x 15 mm

Middle & Outer Barrel (2+2 layers)

843 x 60 mm

1475 x 60 mm

Page 4: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

Power dissipation

17/05/2016 M. Gómez Marzoa 4

ITS Upgrade sectional view

Charged and neutral particles cross detector chips:

1.  Ionizing current: signal

2.  Non-ionizing current: radiation damage → power dissipation

Ø  If Tchip ↑ 7 K, 2x radiation damage (irreparable!!)

12.5 GPix “camera” 100-400 kHz

Page 5: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

Design parameters

17/05/2016 M. Gómez Marzoa 5

[%]100Xx0

[cm]ρ

Z287ln1)Z(Z

A716.4X N0

+

⋅=

x=1 mm of material x/X0 [%]

Copper 6.94 Polymide (Kapton®) 0.34 CFRP (K13D2U-2K) 0.42

Power dissipation 0.10 W cm-2 (2015) 0.15 W cm-2 (1.5 FS)

Chip temperature < 30°C Temperature non-uniformity 5-10 K

Global material budget

Water (liquid) 0.28 Two-phase R245fa 0.06*

* ε = 0.85

IB: x/X0 ≤ 0.3% per layer MB/OB: x/X0 ≤ 1.0% per layer

Page 6: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

17/05/2016 M. Gómez Marzoa 6

Ultra-light cooling concept

Graphite foil λ~1000 W m-1 K-1

[1] Gómez Marzoa et al., ExHFT8, Lisbon, 2013.

9 Chips 270 x 15 mm

Spaceframe

CFRP λ=620-1000 W m-1 K-1

Polyimide, 1 mm ID z

y

x

Page 7: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

17/05/2016 M. Gómez Marzoa 7

Single-phase water

261 6

1

coolant,intcoolant,ou

iNTCilantheater-coo

TTTΔT

+−= ∑

=

< 15 K

Cooling performance:

+ Radiation hard + Loop simplicity

-  Leak-less (Δp < 0.3 bar) -  Liquid: ↑ x/X0

Page 8: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

17/05/2016 M. Gómez Marzoa 8

Two-phase C4F10 loop

G =Eheater

ilv!xin-out

1Ai

x5 =

Eheater !Eair

GAi+ i4 ! i5,l

i5,lvx4 = f (p4, i4 )

+ Radiation hard, dielectric +  psat =1.9 bar @15°C +  ↓ x/X0

-  More complex loop -  Flow distribution (346 staves)

Page 9: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

Inner Barrel staves

Inlet

Outlet

Page 10: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

17/05/2016 M. Gómez Marzoa 10

Inner Barrel: stave layouts

IB1

IB2

IB3

1.4 g

1.8 g

1.7 g

Total x/X0=0.29% (water, services

included [2])

z

y

x

Page 11: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

0

1

2

3

4

5

6

7

8

2 3 4 5 6 7 8 9

!T

hea

ter-

wat

er [

K]

Water flow rate [L h-1

]

Re=2300

IB1

IB2

IB3

6.4 6.6 6.7 6.8 6.86.76.8 6.8

6.06.0 6.1 6.3 6.3 6.1

6.06.16.2 6.2 6.3

6.46.5

17/05/2016 M. Gómez Marzoa 11

Water: ΔTheater-water, 0.15 W cm-2

3

Heat load [W]

Page 12: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

17/05/2016 M. Gómez Marzoa 12

Water: total Δp (inc. singularities)

0.3 ü

Vwater = 3 L h-1

[3] [4]

Page 13: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

17/05/2016 13

IB2: 2-Ph C4F10, 0.30 W cm-2

* ε = 0.85 as by Steiner [5] void fraction method

C4F10 vs. H2O: 10.5% MB save*

M. Gómez Marzoa

Page 14: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

17/05/2016 14 M. Gómez Marzoa

Δp=0.32 bar ; ΔTheater-max=6.0 K 14.9°C

17.3°C

H2O, 3 L h-1

ΔTsat=4.6 K ; ΔTheater-max=6.5 K Tsat,out=16.2°C

Tsat,out=11.6°C

C4F10, 270 kg m-2 s-1

xin=0.15

xout=0.72

IB2: Water vs. C4F10, 0.30 W cm-2

Page 15: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

30 mm

Outer Barrel staves

Page 16: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

17/05/2016 M. Gómez Marzoa 16

Outer Barrel: half-stave layouts

OB1

OB2

OB3

20.4 g

20.7 g

22.0 g

Total x/X0=0.770% (inc. water, services)

Total x/X0=0.741%* (two-phase C4F10, services included)

* ε = 0.85 as by Steiner [5] void fraction method

z

y

x

Page 17: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

Water: ΔTheaters-water, 0.15 W cm-2

17/05/2016 M. Gómez Marzoa 17

0

2

4

6

8

10

5 7 9 11 13 15

!T

hea

ters

-wat

er [

K]

Water flow rate [L h-1

]

Re=2300

OB1

OB2

65.765.7 66.8 67.9

67.665.8

67.4 67.667.6

63.9 64.7 65.3 65.4 66.1 65.7 65.866.267.4

6 Δp=0.2 bar ü

Page 18: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

0

2

4

6

8

10

12

0 200 400 600 800

4 8 12 16 20

!T

hea

ters

-co

ola

nt [

K]

C4F10 mass flux [kg m-2

s-1

]

Water flow rate [L h-1

]

OB1, waterOB3, waterOB3, two-phase C4F10

17/05/2016 M. Gómez Marzoa 18

OB3: 2-Ph C4F10: 0.15 W cm-2

xin [-] xout [-] ΔTheaters-C4F10 [K] 0.16 0.59 5.9 0.03 0.43 6.1

SC=3.5 K 0.34 8.1

Page 19: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

17/05/2016 M. Gómez Marzoa 19

OB3: Water vs. C4F10, 0.15 W cm-2

xin=0.07

xout=0.67

Page 20: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

Goals

17/05/2016 M. Gómez Marzoa 20

1.  Lightweight cooling system for ALICE ITS Upgrade

ü  Innovative solutions: plastic tubing & CFRPs.

ü  Robust, low material budget.

ü  ΔTheater-coolant < 7 K @0.15 W cm-2. Water or two-phase C4F10.

2.  Flow boiling heat transfer of R245fa in a polyimide channel

Heat Transfer Research Group (Prof. Ribatski), Escola de Engenharia de São Carlos, USP.

9-month project funded by the Swiss National Science Foundation (SNSF) Doc.Mobility Project no. 155264

Ø  No data in literature on flow boiling in plastic channels

Ø  HTC vs. G, q, Tsat ??

Page 21: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

Polyimide channel

17/05/2016 21

§  Dimensions measured in microscope:

§  Statistical aver. roughness: 12 nm, AFM (Fiorenza et al. [6])

§  λPolyimide= 0.12 W m-1 K-1

M. Gómez Marzoa

Ø  ID=2.689±0.025 mm

Ø w=0.063±0.011 mm

Page 22: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

Test rig

17/05/2016 22

1. SC R245fa SC=10-20 K

2. SS Preheater (PH) 2.3 mm ID

3. Polyimide channel 4. Visualisation Quartz, 2.1 mm ID 4000 fps High-speed camera

M. Gómez Marzoa

§  Glass ID = 4.925 mm

§  ΔTwater= 0.9-2.5 K §  Rewater = 3500-5500 Q = !mcp!Twater

Page 23: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

Experimental apparatus

17/05/2016 23

Facility: Tibiriçá and Ribatski (2010) [7]

M. Gómez Marzoa

Parameter Uncertainty T (type K) 23-79°C 0.10-0.11 K Water flow rate 40-80°C 0.031 L min-1

Δp (differential) 150 Pa P transducer 4.5 kPa Coriolis flow meter 0.1% g s-1

hts,mean 13-39% xts,mean ~ 4%

Page 24: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

Two-phase tests: data reduction

17/05/2016 24

G [kg m-2 s-1] q [kW m-2] Tsat [°C] xmean [-] 100-500 15-55 35, 41, 47 0.1-0.9

§  Mean vapour quality (xts,m):

§  Mean HTC (hts,m):

Rconv,int =Twater,m !TR245 fa,m

Enet

! Rcond,wall ! Rconv,annKW"

#$%

&'

hts,m =1

Rconv,int (! Lheated Di )

Water-water tests

xts,in =

Qph

GphAi,ph+ iph,in

!

"##

$

%&&' il,ts,in

ilv,ts,inxts,out =

Qph

GphAi,ph+

Qnet

GtsAi,ts+ iph,in

!

"##

$

%&&' il,ts,out

ilv,ts,out

M. Gómez Marzoa

Petukhov [8] (validated)

Page 25: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

Results: influence of G

17/05/2016 25

0 0.2 0.4 0.6 0.8 1

x 103

0

1

2

3

4

5

6

xts,mean [-]

h ts,m

ean [

W m

-2 K

-1]

200200

Tsat=41°C, qts,mean=15 kW m-2

300300

100100G [kg m-2 s-1]

1 23

4

Dryout

M. Gómez Marzoa

Page 26: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

Results: influence of G

17/05/2016 26

0.1 0.2 0.3 0.4 0.5 0.6

x 103

2

3

4

5

6

7

8

xts,mean [-]

h ts,m

ean [

W m

-2 K

-1]

Tsat=47°C ;

ExperimentalExperimental

Liu-WintertonLiu-WintertonKanizawa et al.Kanizawa et al.

400 kg m-2 s-1G=300

qts,mean=45 kW m-2

Kandlikar-Balas.Kandlikar-Balas.Cioncolini-ThomeCioncolini-Thome

M. Gómez Marzoa

[9] [10]

[11] [12]

Page 27: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

Results: influence of q

17/05/2016 27

0 0.2 0.4 0.6 0.8

x 103

0

1

2

3

4

5

6

7

xts,mean [-]

h ts,m

ean [

W m

-2 K

-1]

Tsat=41°C; G=200 kg m-2 s-1

1515

2525

qts,mean [kW m-2]Δxin-out≈ 0.18

Δxin-out≈ 0.30

0 0.2 0.4 0.6 0.8 1

x 103

0

1

2

3

4

5

xi [-]

h ts,m

ean [

W m

-2 K

-1]

15

Tsat=41°C

2525

G=200 kg m-2 s-1

qts,mean [kW m-2]xIn xOut

M. Gómez Marzoa

Page 28: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

Results: influence of q

17/05/2016 28

0 0.2 0.4 0.6 0.8 1

x 103

0

2

4

6

8

10

xts,mean [-]

h ts,m

ean [

W m

-2 K

-1]

35

Tsat=41°C; G=300 kg m-2 s-1

15152525

4545

Kanizawa Exp

qts,mean [kW m-2]

et al. (2016)[10]

M. Gómez Marzoa

Page 29: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

Results: influence of q

17/05/2016 29

0 0.1 0.2 0.3 0.4 0.5 0.6

x 103

1

2

3

4

5

6

xts,mean [-]

h ts,m

ean [

W m

-2 K

-1]

35

Tsat=41°C; G=300 kg m-2 s-1

15152525

4545

qts,mean [kW m-2]

ExpLiu-Winterton

Cioncolini-ThomeCioncolini-Thome

M. Gómez Marzoa

[9]

[12]

Page 30: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

Results: influence of Tsat

17/05/2016 30

0 0.2 0.4 0.6 0.8

x 103

0

1

2

3

4

5

6

xts,mean [-]

h ts,m

ean [

W m

-2 K

-1]

41

G=200 kg m-2 s-1

3535Tsat [°C]

qts,mean=15 kW m-2

M. Gómez Marzoa

Page 31: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

Results: influence of Tsat

17/05/2016 31

0 0.1 0.2 0.3 0.4 0.5 0.6

x 103

0

1

2

3

4

5

6

xts,mean [-]

h ts,m

ean [

W m

-2 K

-1]

41

G=300 kg m-2 s-1; qts,mean=25 kW m-2

3535

4747

Tsat [°C]ExpCioncolini-Thome

M. Gómez Marzoa

[12]

Page 32: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

Concluding remarks

17/05/2016 M. Gómez Marzoa 32

1.  Lightweight cooling system for ALICE ITS Upgrade

2.  Flow boiling heat transfer in a polyimide channel

ü  ↑ HTC with ↑G, ↑xmean

ü  HTC not depending on q

ü  ↑ HTC with ↓ Tsat at high G, high q.

ü  Cioncolini-Thome [12] convective method fits experimental data.

ü  Innovative solutions: plastic tubing & CFRPs.

ü  Robust, low material budget.

ü  ΔTheater-coolant < 7 K @0.15 W cm-2. Water or two-phase C4F10.

Convective boiling

Page 33: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

Next steps

17/05/2016 M. Gómez Marzoa 33

§  ALICE ITS Upgrade

§  Flow boiling heat transfer in a polyimide channel

Ø  Cooling tests on fully assembled staves (chips, glue, FPC, power bus).

Ø  Cooling test full staves assembled IB, OB layer.

Ø  Loop design (water).

Ø  Influence of diameter (1.024, 2.052 mm ID), fluid (R134a).

Ø  Direct flow visualisation (transparent Kapton® tube).

Ø  Improve test section: thermopile, local HTC measurements.

Ø  Condensation tests.

Page 34: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

Acknowledgements: CERN EN-CV Group, CFD-Team ALICE Collaboration M. Battistin, Prof. E. Da Riva, C. Gargiulo (CERN) Swiss National Science Foundation (SNSF) Heat Transfer Research Group, EESC-USP Prof. G. Ribatski LTCM Prof. J. R. Thome Lucia & my family

Thank you!

Page 35: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

References (1/2)

17/05/2016 M. Gómez Marzoa 35

[1] M. Gómez Marzoa. et al. (2013). Thermal Studies of an Ultra-Low-Mass Cooling System for ALICE ITS Upgrade Project at CERN. In Proc. of the 8th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Instituto Superior Técnico, Lisbon. [2] The ALICE Collaboration (2013). Technical Design Report for the Upgrade of the ALICE Inner Tracking System. Technical Report CERN-LHCC-2013-024. ALICE-TDR-017, CERN, Geneva. [3] I. E. Idelchik and E.Fried (1966). Handbook of hydraulic resistance. U.S. Atomic Energy Commission. [4] S. W. Churchill (1977), Friction factor equation spans all fluid-flow regimes, Chem. Eng., 91 [5] D. Steiner (2010). H3.1 Flow Patterns in Evaporator Tubes. Verein Deutscher Ingenieure. VDI Heat Atlas: Second Edition. [6] G. Fiorenza et al. (2013). An innovative polyimide microchannels cooling system for the pixel sensor of the upgraded ALICE Inner Tracker. Proceedings, 5th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI 2013), pages 81–85. [7] C. B. Tibiriçá, and G. Ribatski (2010). Flow boiling heat transfer of R134a and R245fa in a 2.3 mm tube. International Journal of Heat and Mass Transfer, 53(11), 2459-2468.

Page 36: Innovative low-mass cooling systems for the ALICE ITS Upgrade detector …cfd.web.cern.ch/cfd/Presentazioni/2016/GomezMarzoa_Th... · 2016-05-18 · Innovative low-mass cooling systems

References (2/2)

17/05/2016 M. Gómez Marzoa 36

[8] B. S. Petukhov, B. S. (1970). Heat transfer and friction in turbulent pipe flow with variable physical properties. Advances in heat transfer, 6(503), i565. [9] Liu, Z. and Winterton, R. H. S. (1991). A General Correlation for Saturated and Subcooled Flow Boiling in Tubes and Annuli Based on a Nucleate Pool Boiling Equation, Int. J. Heat Mass Transfer , 34, pp. 2759-2766 [10] F. T. Kanizawa, C. B. Tibiriça ́, and G. Ribatski (2016). Heat transfer during convective boiling inside microchannels. International Journal of Heat and Mass Transfer, 93:566–583. [11] S. G. Kandlikar and P. Balasubramanian (2004). An extension of the flow boiling correlation to transition, laminar, and deep laminar flows in minichannels and microchannels. Heat Transfer Engineering, 25(3):86–93. [12] A. Cioncolini and J. R. Thome (2011). Algebraic turbulence modeling in adiabatic and evaporating annular two-phase flow. International Journal of Heat and Fluid Flow, 32(4):805–817.