index [] · 2015. 10. 23. · 3 mesocrystals 107 batio 3 nanocrystals 103 batio 3 nanoparticles 85,...

50
Index a ab initio calculation, theoretical background on brief review of elementary quantum chemistry 343346 density functional theory 346 ab initio density functional theory 343, 350 ABO 3 formula 480 ABO 3 perovskites 440, 454, 481, 632, 731 structure 456, 462, 870, 886 type oxides 440, 686 –– crystal structure of 870 abrasive materials 34 absolute oxygen nonstoichiometry 818 absorbing materials 5 absorbing oxides 6 acetaldehyde 543 acetates 81, 126 acetic acid 13, 74, 519, 530, 531, 532, 543 acetone 5, 15, 16 acetonitrile 16 acetylacetonates 16 acetylene 72 based ame 75, 76 based FSS 76 acoustic waves 91 acrolein 543 actinides 239 activated reactive synthesis 29 activation energies 155, 183, 193, 291, 298, 302, 908 apparent 382 –– the suprafacial and intrafacial processes 377 barriers 597 for ionic solid-state diffusion 315 for permeation 888 –– for O 2 /H 2 314 Seebeck effect 193 activation milling 29 activation of oxygen species, on perovskites with oxygen defects 393 actuators 37 adiabatic ame temperature 395 adsorbents 40 adsorption 179 and oxidation of gaseous NO 2 443 advanced oxidation process (AOP) 479, 489 aerosol droplets 105 aerosol formation 105 aerosol spray synthesis methods 69 AFeO 3 perovskite catalysts 482 AFM images showing the surface morphology of Ln 2 Ti 2 O 7 thin lms grown on 241, 243 A/F oscillations 566 agglomeration 29, 81, 83, 101, 873 hard 42 of particles 40 aging 5, 12 time 99 (AgNbO 3 ) 1x (SrTiO 3 ) x solutions 681 agreement factors 275, 276 AgSrTiO 3 photocatalysts 681 air 72 separation 767 alcohols 42, 74, 401, 406, 530 alcohol steam reforming (ESR) 539 reactions 540, 541 –– reactions involved and thermodynamic data 540543 types of alcohols used 539 aldehydes 401, 406 AlFe-pillared clay catalysts 492 Al 3+ ion 283 Al ions 200, 201 aliovalent doping 182 aliovalent substitutions 197 alkali metals 233 doped perovskites 442 929 Perovskites and Related Mixed Oxides: Concepts and Applications, First Edition. Edited by Pascal Granger, Vasile I. Parvulescu, Serge Kaliaguine, and Wilfrid Prellier. 2016 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2016 by Wiley-VCH Verlag GmbH & Co. KGaA.

Upload: others

Post on 08-Mar-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

Index

aab initio calculation, theoretical background on– brief review of elementary quantum

chemistry 343–346– density functional theory 346ab initio density functional theory 343, 350ABO3 formula 480ABO3 perovskites 440, 454, 481, 632, 731– structure 456, 462, 870, 886– type oxides 440, 686–– crystal structure of 870abrasive materials 34absolute oxygen nonstoichiometry 818absorbing materials 5absorbing oxides 6acetaldehyde 543acetates 81, 126acetic acid 13, 74, 519, 530, 531, 532, 543acetone 5, 15, 16acetonitrile 16acetylacetonates 16acetylene 72– based flame 75, 76– based FSS 76acoustic waves 91acrolein 543actinides 239activated reactive synthesis 29activation energies 155, 183, 193, 291, 298,

302, 908– apparent 382–– the suprafacial and intrafacial

processes 377– barriers 597– for ionic solid-state diffusion 315– for permeation 888–– for O2/H2 314– Seebeck effect 193activation milling 29

activation of oxygen species, on perovskiteswith oxygen defects 393

actuators 37adiabatic flame temperature 395adsorbents 40adsorption 179– and oxidation of gaseous NO2 443advanced oxidation process (AOP) 479, 489aerosol droplets 105aerosol formation 105aerosol spray synthesis methods 69AFeO3 perovskite catalysts 482AFM images showing the surface morphology

of Ln2Ti2O7 thin films grown on 241, 243A/F oscillations 566agglomeration 29, 81, 83, 101, 873– hard 42– of particles 40aging 5, 12– time 99(AgNbO3)1�x(SrTiO3)x solutions 681agreement factors 275, 276Ag–SrTiO3 photocatalysts 681air 72– separation 767alcohols 42, 74, 401, 406, 530alcohol steam reforming (ESR) 539– reactions 540, 541–– reactions involved and thermodynamic

data 540–543– types of alcohols used 539aldehydes 401, 406Al–Fe-pillared clay catalysts 492Al3+ ion 283Al ions 200, 201aliovalent doping 182aliovalent substitutions 197alkali metals 233– doped perovskites 442

929

Perovskites and Related Mixed Oxides: Concepts and Applications, First Edition.Edited by Pascal Granger, Vasile I. Parvulescu, Serge Kaliaguine, and Wilfrid Prellier. 2016 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2016 by Wiley-VCH Verlag GmbH & Co. KGaA.

Page 2: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

– ions 98– oxides 521– in perovskite La1�xMxAl0.7Ni0.3O3 510alkaline-earth– cations 9, 896– doping 182– halogenides 279– metals 233, 438, 549, 592–– oxides 521– oxides 507alkaline hydroxide 685alkaline metals 438– nitrate flux 10alkaline niobates 216alkanes 376, 416alkanolamines– chemical adsorption 883alkenes 376– oxidation 568alkoxides 12, 75, 396– based sol-gel process 126– groups 12– hydrolysis 12– solutions 126alkylaromatics, oxidation of 480alkyl hydroperoxides 477, 480alloys 27, 29, 886allylic oxidation 485Al2O3 membranes– templating from 51γ-Al2O3-supported Pt/Pd/Pt/Rh

oxidationcatalysts 559Al-substituted Co-spinel 621alumina 545– supported noble metal catalysts 568β-alumina 9β-aluminates 396aluminates, normalized cell volume 267alumina tubes 5alumina washcoats 564aluminophosphate surface 485aluminum-anodized alumina

microchannels 785aluminum oxidation 28ambipolar conductivity 180ammonia 15, 518, 561, 589ammonia conversion 828, 829ammonium bisulfate (NH4HSO4)

precipitation 587ammonium chloride 41ammonium heptamolybdate 14ammonium nitrate 587amorphization 239

amorphous citrate methods 69, 511amorphous mesoporous manganese oxide 703amorphous microporous mixed oxide

(AMM) 484, 486– catalysts 486amorphous rare earth silicates 54amphiphilic block copolymers (P123) 713anatase 15, 19Anderson–Schulz–Flory (ASF) 638– distribution 642angle-resolved photoemission system 149angular frequency 173anionic surfactants 705anions 48– deficiencies 370anisotropy 224, 228– oxygen diffusion 183annealing 12, 76, 180, 244– kinetic parameters 244– times 99– treatment–– conventional 100annular reactor 827– scheme 825anodization 18anthanides 239antiferrodistortive phase transition 197antiferroelectric (AFE) 220– transition behavior 220antiferromagnetic 226– properties 235antisite defects 282area-specific resistance 175Ar gas concentration, decay of 596aromatic hydrocarbons 487– total oxidation of 417–423aromatics– total oxidation of 429, 430Arrhenius equations 379, 382Arrhenius plots 61Arrhenius-type thermally activated ionic

conduction 298Aspen HYSYS 785, 789– flowsheet 790Aspen Plus software 522, 758, 785assembled measurement setup, with TOM

during a measurement at hightemperatures 203

atalytic membrane reactors 169atomic absorption spectroscopy 146atomic arrangement 354– phase stability, and transition 353–358atomic reconstruction 150

930 Index

Page 3: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

atomic relaxation 150atomizer 14aturation phenomenon 191Au/CeO2 WGS catalysts 463Auger spectroscopy 152Au-modified PMMA 130Au nanoparticles 131Au–Pd nanoparticles 530Aurivillius 685– phases 143, 234, 370– Subbaro protocols 685Aurivillius (Bi2O2)

2+(An–1BnO3n+1)2– 685

autocombustion– of a glycine complex 50automotive catalysts 41automotive emission 451automotive makers 799autothermal methane reforming 748autothermal operation 746autothermal process operation 523autothermal reforming (ATR) 546, 589, 741– catalyst 747– membrane reactor 759– of methane 747auxiliary power unit (APU) 7842,2´-azobis(2-methylpropionamidine)

dihydrochloride 133, 134

bBaBi0.05Co0.8Nb0.15O3�δ (BBCN)

membranes 901BaCeO3 perovskites 573BaCe0.98�xYxPt0.02O3�δ 463backup electricity 866BaCo0.7Fe0.2Nb0.1O3-δ asymmetric

membrane 723Ba(Co, Fe, Zr)O3-δ (BCFZ) 854– coating 854– perovskite 854– powder 743Baeyer–Villiger oxidation of aromatic

aldehydes catalyzed 477BaF2/CaF2 superlattices 149BaFe0.95�xLaxZr0.05O3�δ (BFLZ)

formulation 902BaFe0.9Zr0.1O3�δ (BFZ) 855ball-milled LaCoO3 perovskites 40ball mills 26balls motion, inside a planetary mill 35ball-to-powder weight ratios 29ball velocity 34Balzers Prisma-QMS 200, 667Ba/Mn-Ce catalysts 446

BaNbyFe1�yO3�δ (BNF) 902band energy 280bandgap 143, 350, 478– excitations 478– formation 346– of a photovoltaic material 147band structures 346– YAP and energy of its defects 283Ba nitrate 85barium cobaltite Ba0.5Sr0.5Co0.8Fe0.2O3-δ

(BSCF) 175, 855– family perovskites 723– membrane 726– membranes 728, 895, 920– O2 permeation flux, reversibility of 903– oxygen fluxes 760– permeating O2 flow 758– properties of 722– vs. SFC–BSCF membranes 727barium cobaltite Ba0.5Sr0.5Co0.8Fe0.2O3-δ

(BSCF)/Ag (BSCF/Ag) 855barium titanate (BTO) 99, 216– based solid solution 216barium zirconate oxide 99BaRuO3 perovskites 439Ba salt precursor 85Ba0.5Sr0.5Co0.8Fe0.1Ni0.1O3�δ (BSCFNiO) 763Ba0.5Sr0.5Co0.8Fe0.2O3�δ membrane– SEM analysis 726Ba0.5Sr0.5Fe0.9Al0.1O3�δ (BSFA) 902Ba0.5Sr0.5Fe0.8Cu0.2O3�δ (BSFC)

formulation 902(Ba, Sr)(Fe, X)O3�δ series (BSFX) 902BaTiO3 mesocrystals 107BaTiO3 nanocrystals 103BaTiO3 nanoparticles 85, 103, 107BaTiO3 network 683BaTiO3 particles 85, 104BaTiO3 perovskite 39– structure of 683BaTi1�xNixO3�δ 502batteries 144Ba1�xSrxCo1�yFeyO3�δ (BSCF) 720BaZr0.3Ce0.6Y0.1 Zn0.05O3�δ (BZCYZn) 905BaZSM-5 membranes 885BCFNO membrane reactor 762BCFZ membrane 854bed-to-wall mass 741bed-to-wall mass transfer limitations 744,

745belt design 8benzene hydrogenation 780benzene oxidation 423

Index 931

Page 4: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

benzyl alcohol– liquid-phase oxidation of 483Beta 811 zeolite 530bicarbonate species 727bimetallic perovskite as catalyst precursor 640bimetallic Pt/Rh catalysts 569bimetallic Pt/Rh synthesis 560binary CeO2-ZrO2 systems 297Bi2O3–B2O3 eutectic flux 10biodiesel 413bioethanol 540biofuel 810biogas 501biological structures, as templates 18biomass 517– derived alcohols 539biomedical applications 215bipyrimidyl platinum(II) 529birnessite, KxMnO2�nH2O 12bismuth ferrite 97bismuth layer-structured ferroelectrics 216bismuth sodium titanate ((Bi1/2Na1/2)TiO3)-

based solid solutions 216bismuth titanates 685bisphenol A– degradation and mineralization of 484biuret (H2N-CO-NH-CO-NH2) 806bixbyite (Mn2O3) 703black soot 801Bloch’s theorem 347boiling point 77Boltzmann constant 193bond angles 268bond distances versus the normalized cell

volume in (Y, REE) aluminates 266BO6 octahedron layers 235borates 279Born–Oppenheimer approximation 344Boudouard reaction 541boundary conditions 318Bridgman–Strockbarger method 17brittle materials 29, 31– fracture 31Brønsted acid centers 478bromide 414bromine leaching 529brookite 15, 19Brownmillerite structure 175, 176BSCFNiO membranes– SEM micrographs of 763B-site substitution 728bulk conductivities vs. strontium content in

Ce0.9(Eu1�xSrx)0.1O2�δ samples 300

bulk diffusion 179bulk–surface–gas interactions 453burning 13n-butanol 401– oxidation of 401Butler–Volmer-type equations 330Bc values evolution for assessing the

rate-determining step for O2 transportwithin 335

BX6 octahedron 48

cC 169CaCl2 matrix 9Ca-doped LaMn perovskite 38Ca2Fe1.6Co0.4O5 composition 175CaF2 lattice 123calcinations 9, 12, 14, 15, 19, 75, 77, 78, 82, 86,

126, 134, 137, 295, 423– furnace 133– at temperatures 12, 14, 48, 51, 69, 81, 84, 91,

105, 134, 292– of xerogel 69calcined material 5calcium 170calcium clusters 97calcium titanates– metal doping of 677Ca(Mg,Al)(Si,Al)2O6 678CaMnO3-based compounds 190–196capacitance 173, 175capacity 175caprolactam 780carbides 52carbon 28, 52– deposition 63– as template 54carbonate anions 889carbonate fuel cells 865carbonate ions 314, 888carbonates 4, 9, 49, 72, 123, 896, 900, 910, 914carbonation 175carbon-based fuels 189carbon blacks 71carbon capture energy processes 753carbon deposition 511– via Boudouard reaction 501– cerium content 508– removal of 503carbon dioxide 189, 518, 590– selectivity to 425– splitting 842carbon formation, on metal phase 546

932 Index

Page 5: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

carbon monoxide 169, 518, 530, 559carbon oxides 519, 524, 528carbon-templated microporous silica 885carbon-templated silica membranes 885carbon tetrachloride 403carbonylation 531carboxylic acid 74, 126carcinogen 413carrier flow rates 85carrier gas 82case studies 594, 605– H2-SCR of NO 594–600– lean NOx trap 601–604– simultaneous NOx reduction and soot

oxidation 605Ca-stabilized zirconia membrane 850catalysts 37, 144, 543, 549– effect of the support 546– general assessement 549– in-shell configuration 741– noble metal catalysts 545– non-noble metal catalysts 545– perovskite-type catalysts as good

candidates 547– types of catalysts used 544catalytic activities 74, 130, 377– in CO oxidation 451– of 3DOM LaCoO3 131– monitoring 61– of prepared perovskites 41– for toluene combustion 131catalytic combustion, of chlorinated organic

compounds 426catalytic dry reforming of methane– drawback 510catalytic flameless combustion, of

methane 377catalytic membranes 488catalytic oxidation 476– of HC and CO 799– in liquid phase 475– of NO 443– reactions in liquid phase 475catalytic performances– with a Pt–Rh/Al2O3–CeO2 reference

catalyst 576– of perovskite-type catalysts, for H2

production from alcohols–– ethanol steam reforming 549, 550–– glycerol steam reforming 551, 552– of perovskite-type materials, in NO+CO

reaction 575catalytic studies 56–63

– chemical looping combustion 57, 58– dry reforming of methane 59–63– reduction of 57– total oxidation of methane 56– total oxidation of methanol 59catalytic system, toward reduction of NO by H2

in presence of oxygen 590catalyzed continuously regenerating trap

(CCRT) 802cathode surface controls 868CaTi0.6Fe0.4O3 (CTF4) 849Ca3Ti2O7 compound 678Ca3Ti2O7 layered-perovskites 678CaTiO3 nanoparticles 677cation diffusion 873cationic Pd species 624cationic Rh species 618cationic substitution 47cationic surfactants 705cationic vacancies 402cations 6– Ce3+ 551– mobility 896– oxygen bonding 264– vacancies 182, 370CaTiO3 perovskites, during CO oxidation

reaction 459cavitations 15, 91, 102, 108cavities 895Ca1�xTixFeO3 (CTF) 856Ce-based mixed oxides 566, 569Ce-based oxides 567Ce-doped perovskite 378Ce0.8Fe0.2O2�δ– [F(R)hv]2 versus hv bandgap 671Ce0.8Fe0.2O2�δ mixed oxide 668CeFeO3 nanosheets 689Ce0.9Gd0.1O1.95 (GDC) electrolytes 292cell distortion factor (d) of orthogallate and

orthoaluminate perovskites 277cell parameters 275cell voltage 868centrifugation 19, 122– force 27, 35centrosymmetric orthorhombic space

group 264CeO2/Al2O3-based Pd catalysts 668, 671CeO2-based materials 564CeO2-based mixed oxides 568– solutions on NM/Al2O3 washcoat 568CeO2 fluorite structure 660– stability 566CeO2 or CeO2-based oxides 567

Index 933

Page 6: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

– mixed 568CeO2 redox properties 461CeO2–ZrO2 system 564ceramics 29, 35, 224– foam filters 426– materials 13– method 4, 6, 7– pigments 13– seals 756ceria crystal lattice 298ceria doped with trivalent cations 300ceria incorporation in NM/Al2O3

washcoat 568cerium– incorporated cage-type mesoporous KIT-6

materials 487– substitution of lanthanum 508cerium oxide (CeO2) 298, 566cermets 314, 905Ce0.9Sm0.1O1.95 (SDC) electrolytes 292cetyltrimethylalkylammonium salts 705cetyltrimethylammonium bromide

(CTABr) 708Ce1�xFexO2�δ mixed oxide systems– DRIFTS analyses, of synthesis gas 659Ce0.8�xGd0.2SrxO2�δ solid solutions 291CexZr1�xO2 improve catalyst stability

547C2 from methane 765CH4

– CO2 conversions 503, 504chameleons 369CH4 and CO2 conversions 504– dry reforming conversion as a function of

time on stream at 62charge 144– carriers 78– transfer 179–– interaction 710CH4 conversion 753, 767– selectivity problem 766chelating agents 12, 13, 83chemical absorption 383, 881– with alkanolamines 881chemical aerosol flow synthesis (CAFS) 82chemical diffusion coefficient 178Chemical etching 703chemical homogeneity 78chemical looping– carbon dioxide splitting 842– concepts 839, 843, 844–– schematic representation of 840– water splitting 842

chemical looping combustion (CLC) 840– oxygen carrier 63chemical potential 316, 318– gradient 176chemical reactions 8, 26– during milling 28chemical redistributions 143chemical species distributions 144chemical stability 80– of valence 371chemical stability of La0.6Sr0.4Co0.2Fe0.8O3�δ

(LSCF) membranes 899chemical surface exchange coefficient 179,

180chemical systems 91chemical vapor deposition 122chemical vapor transport (CVT) 17chemisorption enthalpies 527CH4 fuel cells 875chilled organic liquids 14chip-like silicon MSR 777– Pt/alumina catalyst 780chloride ions 98chlorinated hydrocarbons 403chlorine 402, 406chlorobenzene 427chloroethanes 402chloroethenes 402chloromethanes 238, 4024-chlorophenol 86chlorotrifluoromethane 405CH4 oxidation over perovskite series 377CH4-rich atmosphere 731chromate/dichromate salts 7chromatic parameters 262chromia 302chromites (MCr2O4) 7, 483chromium 271chromium incorporation– basic concepts and YAlO3–YCrO3 case study–– comparison with other Al–Cr solid

solutions 271–– (La,Nd)(Ga1�xCrx)O3 case study 274–– local bond distances 269–– polyhedral bond valence method

272–– structural relaxation coefficient 270– basic concepts and YAlO3–YCrO3 case

study 269–279chromophores 259, 264C2 hydrocarbons 521, 779citrate complex 54citrate method 81, 82, 417

934 Index

Page 7: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

citrate precursors (CIT) 643citrates 81citric acid 13, 69, 75, 81, 82, 85, 126, 129, 130,

131, 291, 396– assisted synthesis of LaNiO3 86– chelating function of 86– free synthesis 87– method 75– routes 84–– conventional 84Cl� anions 244clathrates 190climate change– anthropogenic CO2 emissions 881close-coupled catalyst (CCC) 564, 565cluster expansion (CE) energies– vs. ab initio DFT energies 356– vs. DFT energies 356cluster expansion formalism 355– energy formula 356, 357cluster-like oxygen vacancies 320cluster variation method (CVM) 356coal 189coalescence 81coal gas 855coal gasification/oxy-fuel coal combustion

technologies 720CO2 and O2 permeation within infiltrated

MC/perovskite DPMs 328cobalt 34, 175cobaltates 602cobalt-based catalysts 545cobalt-containing systems– oxygen flux of 726cobalt-doped calcium ferrite 175cobalt ions 53– spin states 173cobaltites 169, 173, 175– high performances of 173cobalt in LaNi1�xCoxO3 506cobalt oxides 397, 400Co-based membranes 896Co-based perovskites 350CO2 capture processes 751, 761, 882, 893– inorganic membranes for oxy-, pre-, and

post-combustion 884– membrane technologies 883– in post/oxy-combustion applications 881– pre-combustion 911CO2/CH4 reforming reactions 863CO2 consumption 667CO, conversion of 42CO conversions 466, 642, 644, 653, 751

CoCu alloy 640, 641, 642– dispersion of 64Co–Cu IFP catalyst 638CoCu/LaFeO3 catalyst 641Co-Cu/La2O3 catalysts– for synthesis of higher alcohols 63CoCu perovskites 640CO dissociation into Csurf and CO2 652codoping with chromium 283CO2 effluent streams 841CO2 emissions 855CO2 exposure 728Co–Fe deposited on zeolites 653Co/Fe ratio 352– in perovskite 648CO2 flux 328– of DPMs 328CO2 formation 661CO–H2 mixture 644CO+H2 mixture 633CO hydrogenation 42Co ions– spin states 349CO, isoconversion 647coke formation 747coke oven gas (COG) 762coke precursors 550coke resistance 63cold start 800cold welding 29, 30, 31, 42collision energy 29colloidal crystal– template methods 113, 130–– preparation of 3DOM materials using

122colloidal crystals 114, 122colloidal suspension of solid particles 10colossal magnetoresistance for

La1�2xSr1+2xMn2O7 234Combined Assembly by Soft and Hard

chemistries (CASH) 713combined surface exchange/diffusion

process 321, 325combustion, CO2 capture 6, 86, 290, 292, 376– Ce-containing perovskites 904– Ce-free formulations 909– dual-phase metal cerates–– cermets 905– at higher temperature 85– high-temperature membranes–– gasification systems combined with

combustion 890–– O2 separation and combustion 889

Index 935

Page 8: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

–– perovskite membranes for O2

separation 889–– R&D membrane concepts 889– high-temperature membranes and

membrane reactors for gas separation882

– high-temperature membranes 885–888– membrane design, general criteria for

893– permeation 910– perovskite-containing membranes for CO2

separation 892– perovskite membranes for H2 separation and

steam dosing 891– perovskite membranes for O2

permeation 895–– Co-free perovskites 901–– dual-phase membranes 902– perovskite membranes for selective H2

permeation 904– Praxair process for oxy-coal combustion

891– reaction 130– synthesis 6, 445commercial perovskite substrates 147Co2Mn4Al2 oxides 420compatibility 145complexation 50– by citric acid 85complex oxides 144, 145composite membranes 313composites 27compositional modifications 69, 216compounds composition 275, 276compression 889– in oxy-fuel combustion 881computational fluid dynamics (CFD) 783computational modeling 343condensation 15CONDENSER 789conduction 173conductivities 39, 78, 79, 128, 144, 177, 293,

295, 301, 317– vs. composition curves 294– diffusion coefficient 179– expressed as 315– of HIP LSGM 293– in perovskites 315– temperature characteristics–– comparison of 79– values 79–– comparison of 78conductors 289

configurations of a catalyst–ferroelectric hybridpacked 430

Co–Ni alloy 506CO2/N2 separation factors 885constant oxygen flow 854contamination 29, 34, 38– tolerated in final material composition 38continuously regenerating trap (CRT) 437, 802conventional ceramic method 5conventional cryogenic oxygen plants 753conventional rotary mills 32convergent beam electron diffraction

(CBED) 219conversion curves 404conversion data, expressed as T50 and T90 (°C)

of Pd/LaFe0.8Co0.2O3 andLaFe0.77Co0.17Pd0.06O3 577

CoOx clusters 616Co3O4/LaFe0.7Cu0.3O3 catalyst– structure evolution 641COOLER 789cooling rates 6, 9, 91cooperative electron delocalization effects 420cooperative interactions 283coordination number 48, 267– of cations 566CO oxidation 464, 567, 568– adsorption–desorption properties 461– catalysts 453– catalytic oxidation 451– Ce–Ni interaction 466– indicative perovskite-type oxides 573– LaBO3 perovskite solids 452– La1�xAxB1�yB´

yO3±δ-type perovskites 456– low-temperature 453– LSMO 457– NM/Al2O3 catalytic system 568– noble metal–perovskite hybrid

materials 456– presence of H2 /r “a20, 464– reactions 454, 456, 460–– on nano-LaFeO3 456–– over transition metal oxides 452– T90%, catalyst 458– water-gas shift reaction 460Co particles 549CO2 permeation 328, 910– within DPMs 327– flux 912– molten carbonate/perovsmolten carbonate/

perovskite membranes 910– properties, of perovskite membranes 911CO2 poisoning 726, 727

936 Index

Page 9: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

CO poisons 451copper-doped CaTiO3 677copper ion-substituted MAl2O4 482copper mortar 8copper oxide 150copper pestle 8coprecipitation 50, 105, 292coprecipitation method 101Co precursor 76CO preferential oxidation (PROX) 451CO2 purification 881cordierite (2MgO�2Al2O3�5SiO2) ceramic

monoliths 564CO2-robust membranes 729corrosion 730– of the membrane surface during

permeation 900Co3+ spin transition 721CO2-tolerant membranes 728CO2 transport– permeance versus. permeability

representations for 912Coulomb correlations 349Coulomb energy 346Coulomb explosion 149coulombic attractions 299covalent/ionic character of the metal–oxygen

bonds 477covalent precursors 16Crank’s equation 331Cr-doped LSCF membrane 731Cr-doped orthoaluminates 282Cr-doped YAlO3 (YAP) 259, 279Cr doping 280Cr ion 273critical micelle concentration (CMC) 706Cr-O-Cr clusters 271cross-validation (CV) 356Cr species– poisoning effect of 873Cr-steels 35Cr–YAP pigment 280cryogenic liquid 14cryogenic milling 29cryomilling 29crystal defects 30crystal growth 7crystal lattice 144crystalline CeO2

– XRD measurements of 670crystalline 3DOM materials, structures of 124crystalline perovskite-type oxides 69crystalline phases 3

– and conductivity 294– and conductivity 294, 295– in microwave-assisted hydrothermal

process 97crystalline PtOx species 464crystallinity 69, 84, 85crystal–liquid interface 17crystallite growth 77crystallite size 29, 39, 85– gas-sensing applications 39crystallization 17– of amorphous phases under compression

stress 26– perovskite 49– of rare earth silicates 63crystallization kinetics, of tetragonal phase 98crystallization temperature 103, 125crystallographic domain 241crystal parameters, of LiCoO2 12β-crystal phase, of PVDF 223crystal size 7, 10crystal structure 75, 148crystal structure of GdBaCo2O5+δ (δ= 0.5) 354crystal structure of La0.2Sr0.7TiO3�δ (LST)

materials 77Cu/Al2O3 catalysts 613cubic fluorite structure of CeO2 660cubic nanoparticles 98Cu-containing perovskite for methanol

synthesis 638Cu-doped LaFeO3 perovskites 574Cu/Fe-based perovskites 482CuFeO2 microparticles 484Cu(II)-grafted TiO2 493CuO clusters 620CuO-stabilized zirconia 302Cu2+ oxidation state 461Curie temperature 235, 239, 464Cu species 636Cu/SrTiO3 catalyst 442Cu-support interactions 442Cu–Zn–Al catalyst 638CuxZn1�xMn2O4 624cycloalkylarenes 481cycloheptane 15cyclohexane– dehydrogenation of 780– vs. hexane 706cyclohexane dehydrogenation 780cyclohexanol, formation of 487cyclohexanone/cyclohexanol oxidation

mixture, by HNO3 612cyclohexene 780

Index 937

Page 10: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

– oxidation of 484cyclones 81C2 yields 765cylindrical micelles 15Czochralski method 17

dDamköhler number 826dark brown resin 13DC/RF magnetron sputtering system– schematic representation of 155dead-end Pd-based membranes 751deagglomerate, energetic to 42deaths, from air pollution 390decarbonization 882decolorization 492– efficiency for X-GN 492decomposition 84– rates 107– temperature, of salt 73defect patterns, in substituted perovskites 393-deficient Co–Fe perovskite 654Degussa P25-modified catalysts 493, 681dehydration 9dehydrogenation 545dehydroxylation– of hydroxides 92D electron conductivity 150delocalization 198demethanizer 526denitration catalyst 808deNOx catalyst 590DeNOx processes 680, 804DeNOx trap (DNT) 591dense and hollow particle formation– routes in USS, schematic visualization 83dense electrolyte/porous electrodes– symmetrical cell made of 174dense membranes 845– crack-free membranes 821– reactors, H2/CO production 855dense particles 83densification 295density 26, 83– of active catalytic sites 29– of grain boundaries 37– of sites 40density functional theory (DFT) 346, 443, 677desulfurized fuels 559DFT+U calculated oxygen vacancy formation

energies 415dibenzodioxins 426dibenzofurans 414

1,2-dichlorethane 476dielectric constants 104, 222dielectric devices 37dielectric losses 5dielectric materials 5dielectric permittivity 5dielectric properties 84dielectric relaxations 293diesel aftertreatment catalysis– substitute for Pt in 603diesel engines 589– emissions control 588– exhaust gases of 779– exhaust stream 799, 808diesel exhaust 799– gas 805– gas aftertreatment, categories 591diesel fuel 587diesel oxidation catalyst (DOC) 47, 437,

799diesel oxidation flow– through monolith catalyst 800diesel particulate filter (DPF) 437, 801diesel posttreatment– carbon monoxide oxidation 799– DeNOx reduction 803– diesel engine specificity 799– diesel unburned hydrocarbon 799– single brick solution for lean-burn

DeNOx 807– soot abatement 807– soot treatment 801– urea and NH3 selective catalytic

reduction 804diesel soot combustion perovskite

catalysts 439different oxygen partial pressures 178diffuse reflectance infrared Fourier transform

spectroscopic (DRIFTS) 569, 576, 661– analyses 666–– adsorption of CO+O2+He 663–– adsorption of CO+O2+H2+He 664–– CO adsorption 661–– FexZr1�xO2 mixed oxides 661–– of synthesis gas 659–– temperature-programmed surface

reaction 667–– thermodynamics 667–– TPSR of propane oxidation with CO2

onCe1�xFexO2�(mixed oxides 667– of CO adsorption on Pt/Fe0.25Zr0.75O2

662– of CO+O2 adsorption on Pt/Fe2O3 664

938 Index

Page 11: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

– of CO+O2 adsorption on 1% Pt/Fe0.25Zr0.75O2 664

– of CO+O2+H2 adsorption on 1% Pt/Fe2O3 665

– spectroscopy 454, 571diffuse reflectance spectroscopy (DRS) 670diffusion 4, 5, 12, 38, 79, 177, 312, 333– coefficients 176, 177, 178, 180, 182, 298, 315–– of carbonate anions in theMCmaterial 328–– for hydroxyl ions 325– in dense ceramic membranes 883– of ions 4– limitations 821– mechanism 178– of mobile oxygen 320– of oxygen ions 462– path 4– from permeate/membrane surface 313– rate 4– of reactants, improvement 6– time 182diffusion, and surface exchange coefficients,

measurement of 329–334diffusion and surface exchange coefficients,

measurement of– electrical conductivity relaxation (ECR) 333– electrochemical impedance spectroscopy

(EIS) 333– isotopic exchange depth profile (IEDP) 331– semipermeation coupled to electrical

potential measurements 329– structure–property correlations 334β-diketonate 16dimensionless transient response curves 597,

600dimethyl ether (DME) 529, 783Dion–Jacobson phases 233dip coating 19dip-coating technique 238diphase composites 224– with piezomagnetic phase as matrix and

piezoelectric phase dispersed with0–x201E;3 connectivity 227

dipolar liquids 5dipolar polarization mechanism 100dipole moment 214dipole polarizability 274direct flame synthesis, of Y2O3 75direct MW irradiation of solid reactants 5direct piezoelectric effect 211– for compression and tensile stress 212disk-shaped dense membrane reactor 850disk-shaped perovskite membrane 850

dispersion-strengthened alloys 27displacement reaction 9distortions 1913DOM LaFeO3 perovskite– physicochemical properties of 132– syngas and hydrogen of 8483DOM La1�xKxCoO3 catalysts 4453DOM materials– applications 113– preparation 114–– colloidal crystal templates 114–– infiltration of precursors in voids of

templates 122–– removal of templates 122– structure (inverse opal structures) 1223DOM materials 113–1233DOM perovskite metal oxides– precursors, templates, calcination

temperatures, crystal phase properties, andapplications of 115–121

3DOM perovskite mixed metal oxides– preparation of–– characterization of 3DOM LaFeO3 134–– 3DOMLaFeO3withdifferent pore sizes 131–– formation mechanism 136–– precursor solution 123–– preparation of polymer spheres and

colloidal crystal templates 131–– synthesis of 3DOM LaFeO3 134– preparation of 123–138– selection of sphere templates 126– synthesis methods and applications of–– Eu1�xSrxFeO3 130– synthesis methods and applications of 131–– BaTiO3 127–– CaTiO3 and Yb- doped 127–– LaAlO3 131–– LaCoO3 and related oxides 131–– LaFeO3 and related oxides 129–– LaMnO3 and related oxides 128–– Li0.35La0.55TiO3 128–– LiNbO3 128–– Na0.5Bi0.5TiO3 128–– PbTiO3 and related oxides 127–– Sm0.5Sr0.5CoO3 1313DOM-structured materials 457dopant-induced metal support interactions

(DIMSI) 567dopants 527– cation 295, 297doping 38, 42, 294, 453, 680, 683– BiFeO3 689– of La2Ti2O7 684

Index 939

Page 12: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

double mechanical alloying 29double-perovskite phase 143double perovskite structure 176downstream exhaust gas 890droplet reactor 77droplet size distribution 71droplet-to-particle mechanism 71drying 77dual-membrane reactor 523dual-phase membrane (DPM) 311, 730, 888– materials 755dual-phase perovskite membranes 902dual reactor concept 524dual site Langmuir–Hinshelwood model 380ductile material 29, 30, 31DyBa2Cu3O7 films 146Dy0.08W0.04Bi0.88O1.56 (DWSB) 874

eearth metal doping of photocatalysts 490EDTA–citrate sol–gel process 910effective cluster interaction (ECI) 355, 356effective coordination number (ECoN) 274,

275efficiency and diesel oxidation catalyst– relation between 414elastic modulus 722elastic strain 144electrical balance 12electrical conduction 39– barrier 39electrical conductivity 173, 177, 190, 191, 193,

296– of ceramics 303electrical current 189electrical furnaces 5electrical potential 334– gradient 176electrical properties 306electrical resistivity 190, 191, 202electrical thermal conductivity 195electricity 169electric polarization 226electric resistivity 191electrocatalytic activity 101electrochemical cells 289electrochemical device 289electrochemical impedance spectroscopy

(EIS) 868electrochemical Nyquist diagram 174electrochemical reduction 867, 868, 870, 871electrochemistry 25electro-chemo-mechanical properties 144

electrode degradation 873electrode impedance 333electrode polarization resistance 177electrodeposition 122electrode resistance 175electrolyte materials 169, 173, 289, 299electrolyte resistance 175electrolyte systems 289electrolyzer cells 169electromagnetic energy 5electromagnetic MW 5electromechanical coupling coefficient 223electromechanical coupling factor 214electron 145electron density 346electron diffraction pattern 103, 107electron diffractograms 294electron-doped CaMnO3�δ compounds 193electronegativity, of cations 393electroneutrality– condition 822– of lanthanum-substituted ferrites 453– of perovskite structure 572electron holes 320– pairs 687electronic absorption spectroscopy (EAS)

269electronic bandgap conditions 315electronic charge transfer 150electronic compensation mechanism 182electronic conductivities 75, 180, 299, 301, 311,

318, 755, 896, 905, 914– by doping 895– of LSGM 901electronic conductor 177electronic contribution 176electronic density 198electronic disturbance 621electronic energy 344– levels 143electronic Hamiltonian 344electronic properties 79, 149, 311electronic/protonic conductivity 233electronic reconstructions 143electronic structure 349, 350electronic wave function 347electron migration 320electron paramagnetic resonance 82electron spin orientation (net spin) for Co

ions 350electron transport optimization 148electron transport properties 148electron vacancies 660

940 Index

Page 13: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

electrostatic effects 246electrostatic errors 348electrostatic instability 150electrostatic interaction 348electrostatic potential 316, 317– gradient 316, 317electrostatic precipitators 81elemental composition (EDX) 651emerald crystals 17emulsions 773endothermic reaction 526, 540energy– barrier 597– computation using expression 888– consumption 396, 517– demand 881– efficiency 753– function 355– research 144– transfer 91enthalpy 6, 74, 77, 81, 527, 888– combustion 74– of formation of ABO3 and A2BO4

perovskites 371environmental catalysis 563epitaxial films 148– STO films 147epitaxial strain 896epitaxial thin films 145epoxidation reactions 475epoxide unlike multimetallosilicate

materials 478equilibrium composition– of gases, in reaction of ethanol with

steam 542, 543– of gases, in reaction of glycerol with

steam 544equilibrium-limited reaction systems 739equivalent electric circuit, corresponding to an

oxide ion conductor 174esters 401, 540ethane 523, 524ethane dehydrogenation

(BaCoxFeyZr1�x�yO3�δ membranes) 855ethanol 74, 77, 402, 539, 541, 545, 546– dehydration 544ethanol steam reforming– at high temperature 542ethanol steam reforming (ESR) 540ethanol synthesis 783ethylbenzene 417ethylene 399, 523, 524, 549– cracking processes for 523

– selectivity at a methane 519ethylene glycol 13, 69, 126, 127, 129, 130, 131,

134, 137, 138, 543ethylene oxide 779ET-specific surface areas 54EuFeO3 perovskite 419Eu2+ ions 196Eu3+ oxidation state 196European emission standards for gasoline

passenger cars 560Europium-doped ceria matrix 299Europium–titanium oxynitrides, EuTi(O,

N)3 198eutectics 10EuTiO3 and related compounds 196–198evaporation 19, 122, 181evaporation-controlled (ECSA) 707evaporation temperature, of solvent 73excitation energies 193, 346exhaust emission control– application of perovskites in 569–578– application of perovskites in–– CO oxidation 572–– model reactions 572–– NO reduction by CO 573–– NO reduction by propene 575–– simulated exhaust conditions 576exhaust emissions 798exhaust gases 591– emissions 42exhaust gas recirculation (EGR) 801exhaust treatment technologies 800exothermicity 780exothermic reaction 540experimental apparatus– for ultrasonic spray pyrolysis system 106– for ultrasound-assisted sol–gel method 104external diffusion limitations 826external mass transfer limitations 751extrinsic defects 659

ffabrication, of devices by chemical sensor

materials integration 106face carbonate formation 727Faradaic flux 892Faradaic resistance 869Faraday constant 179Faraday resistance 871fasoline, European regulation 798fcc cell of cerium oxide with the fluorite

structure 566Fe2+ and Fe3+ chlorides 13

Index 941

Page 14: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

Fe-based alloys foil monoliths 564Fe0.5Ce0.5O2 619Fe codoping 689Fe-containing compounds 849Fe2.93Cr0.07O4 484Fe3+/Fe4+ oxidation 845Fe4+/Fe3+ redox cycle 455Fe-hydr(oxo) complexes in ferrierite

framework 624Fe(II) reacts 482Fe ions 372Fe57 Mössbauer 650Fe(NO3)3�9H2O 660Fenton conditions 482Fenton-like behavior 480Fenton oxidants 480Fenton oxidation 488Fenton process 488– on iron-bearing particles 489Fenton reactions 484, 488– oxidant 488Fenton system 488Fe3O4 crystallites 17Fe2O3 crystallized phase 650Fe2O3 nanoparticles 18Fe3O4 nanoparticles 484FeO6 octahedra 687ferrites 228, 452ferrite-type catalysts 420ferroelasticity 226ferroelectric 228ferroelectric ceramic 225ferroelectricity 97, 143, 144, 147, 213, 226,

248, 249– in the strained Srn+1TinO3n+1 phases

234ferroelectric materials 225ferroelectric nanodomains 155ferroelectric ordering 226ferroelectric properties 239ferroelectrics 5ferromagnetic 226, 228ferromagnetic–ferroelectric properties 38ferromagnetism 143, 144, 226ferrotoroidicity 226Fe-USY zeolite 624Fe3�xTixO4 484Fe

xZr

1�xO2

– DRIFTS analyses, of synthesis gas 659Fe/zeolites 654Fe–zeolite using ammonia 624FexZr1�xO2 oxides 661Fe-ZSM-5 catalyst 529, 620

– for direct N2O decomposition 620fibers 12, 224– dense membrane reactor 850Fick’s law 177, 819Fick’s second diffusion 180Fick’s second law 177, 331film growth, in-situ RHEED patterns 153film quality 151films 18film thickness 150filtration 122final product– size distribution of 71fine-grained ceramics 27first-order nonlinear ordinary differential

equation 279Fischer–Tropsch activity 652Fischer–Tropsch process 60Fischer–Tropsch product 653Fischer–Tropsch reaction 526– CO conversion 653Fischer–Tropsch synthesis 501– catalyst precursors, alcohols synthesis

632–– C1–Cn alcohols synthesis 639–– ethanol synthesis 638–– higher alcohols synthesis 638–– methanol synthesis 633– catalyst precursors, hydrocarbons

synthesis 644– catalyst precursors, perovskites structure

ABO3 631fitting error contribution 357fixed bed reactor 828flame 71– aerosol synthesis 71– methane 72– synthesis 71– type 71flame hydrolysis (FH) 80–82– La0.9Ce0.1CoO3±δ perovskites prepared

by 377flameless combustion, of methane 72flame-made compositions 79flame-made LSC 80flame-made materials 80– electronic properties 78flame-made titanates 79flame spray pyrolysis (FSP) 71, 395flame spray synthesis (FSS) 71–80– characterized by 72– perovskite-type oxides produced by

72

942 Index

Page 15: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

flame synthesis 77– crucial parameters for outcome 73flame temperatures 73, 74, 76flexible piezoelectric composites 225floating zone method, for single crystals

238flow rates 71, 73, 77, 81– of oxygen carrier 73– of precursor 73flue gas recycling 891fluidized bed membrane reactor (FBMR) 740,

745, 762– with oxygen addition 747– schematic representation of 746fluidized bed reactors 746fluorinated compounds 235fluorite 313– space 660– structure 296flux 10, 177foil coatings of Pd/CeO2 783formaldehyde, synthesis 781formate species (HCOO�) 666formation, ammonia oxidation over

LaCoO3 831formic acid 530fossil carbon-containing raw materials 517fossil fuels 189, 865fossil hydrocarbons– partial oxidation of 539fourth generation TWCs 566fracturing 30free energy 219, 354freeze-drying 50, 510frequency 173F-T synthesis 645– hydrocarbons 647fuel burning, atomized droplets 801fuel cells 108, 539– anode/cathode off-gas surrogate 784– Nyquist plot 869– technology 773fuel processing techniques 865fuel production 781– biodiesel production 783– dimethyl ether, synthesis of 783– Fischer–Tropsch synthesis 782– hydrogen production 784–– ammonia decomposition 785–– hydrocarbon reforming 784–– methane, direct partial oxidation of 785–– methane reforming 784–– methanol/ethanol reforming 784

–– water-gas shift 785– methane to C1 oxygenates, direct partial

oxidation of 781– methanol and ethanol, synthesis of 783– total syngas methanation to synthetic natural

gas 782full width at half maximum (FWHM) 242fumed silica 71furnace 71, 82

gGa–Cr substitution 259gadolinia-doped ceria (GDC) 300Ga-doped ceria (CGO) 729Ga-doped LSC membrane 731gahnite–Zn-chromite 271garnet Y3Al5O12 (YAG) 8gas containing nitric oxides 808gaseous oxygen 842gases/vapors, processes– chemical vapor deposition 16– gas flame combustion 16– processes involving 16gas hourly space velocity (GHSV) 590gasification 891gas–liquid asymmetric hydrogenations 777gas–liquid interface 777gas mixture– concentration profiles 825, 826gasoline 562gasoline engines 562, 804– powered 589gas permeability 894gas permeance 894gas permeation models, for perovskite

membranes 314–329– dual-phase perovskite membranes 325–– models for CO2 semipermeation in

infiltrated MC/perovskite DPMs 327–– models for H2 semipermeation in Ni-

cermets DFMs 326–– models for H2 semipermeation within

supported Ni perovskite 326– single-phase perovskite membranes 316–– models for O2 semipermeation 318–– surface diffusion as rate-determining

step 318, 322–– surface exchange kinetics as rate-

determining step 321, 324gas-phase heterogeneous catalytic

reactions 824gas-phase oxygen on ammonia oxidation 831gas-phase species 753, 830

Index 943

Page 16: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

gas-phase transient 820gas sensors 40, 106, 562gas–solid interface 176, 179gas stream 437Gauss equation 316GBCO perovskite 354– derived using the fitted ECI values 356Gd0.1Ce0.9O2 (GDC) 874Gd-doped CeO2 (CGO) 853Gd2Ti2O7 oxide 243gelation 10, 107gelification 422gel powder 104generalized gradient approximation

(GGA) 346generalized Ising model 355generic sputtering system 154geothermal energy 189giant magnetoresistance 349Gibbs free energy 541, 667glass fiber filters 81glass sealants, uses 756glass transition temperature 126global climate 189global warming 611glucose 12– sol–gel method 688glycerol 86, 395, 539, 540, 542, 545, 546, 549glycerol steam reforming 542–543– combination of glycerol cracking and water–

gas shift reaction 543glycine 86, 291, 395glycothermal method 660glyoxylate salt 137glyoxylic acid 400gold/ceramic sealed membrane 757gold nanoparticles 457Goldschmidt’s tolerance factor 370Goldschmidt t-factor 895– vs. A-O distances 268Goldschmidt tolerance factor 268grain boundaries 39, 40, 289, 290, 763– conductivity 292– resistance 299grain radius 39grain sizes 290green carbon feedstock 517green chemistry 93– principles 479green energy 147greenhouse gases 60, 189– emissions 587– Kyoto protocol 611

green oxidants 479grinding 6, 25, 26, 77, 78grinding devices 26grinding energy 35grinding reactions 8Grotthus mechanism 888grow oxides 145growth factors 151growth process– real-time experiment during 151growth rates 93

hhafnia-based oxide systems 300half-Heusler compounds 190halides 26, 48halogenated compounds 413, 414halogenated hydrocarbons– total oxidation of 426–428halogenated metal perovskites 369halogenated organic compounds, total

oxidation 402–404Hamiltonian operator 343hardness 722hard sphere 270Hartree–Fock approximation 345Haven ratio 179hazardous substances 93HCOO� species 661H2/CO ratio 62, 501H2 diffusion 334heat 5, 539– of adsorption 383– conductivity 824– conventional 93– decomposing salt 7– engines 189– exchange 891– exchangers 789– flux 203– precipitation 97HEATER 789heavy-duty diesel vehicles 802heavy hydrocarbons 413Hebb–Wagner technique 177HEBM mills 42hermetic RAB joint 759heterogeneous catalysis 47, 430, 476, 493, 519,

532, 570heterogeneous doping 144heterogeneous Fenton-like catalysts 484heterogeneous photocatalysis 492, 675heterogeneous photo-Fenton reactions 488

944 Index

Page 17: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

heterogeneous processes 91heterogeneous relaxation 150heteromixed tungsten–vanadia

(WO3/V2O5) 485, 486heterostructures 143, 145, 147, 154– growth of 149heterovalent cations 298, 451hexaaluminates, thermal stable 42hexachloroethane 403hexagonal lanthanum oxycarbonate phase

La2O2CO3 503hexagonal pores 14n-hexane 14H2 extraction 748H2 flux 325, 326, 327, 905, 908, 910H2 fuel cell 865, 866Hg porosimetry of nonporous LaFeO3

– incremental intrusion spectra of 137high-energy 32– ball milling 28, 29– impact 34high-pressure RHEED system– schematic diagram 157high-pressure sputtering system 155high-quality oxide superlattices 147high-resolution transmission electron

microscopy (HRTEM) 238high-temperature catalytic applications 615high-temperature expansion (HTE) 356high-temperature furnaces 6high-temperature proton-conducting

membranes 891high-temperature water-gas shift

(HT-WGS) 460high-throughput microreactors, uses 773H2O/CO2 splitting– hydrogen/CO production 855H2O/ethanol molar ratio 551H2O exhibits 727H2/O2 flame 81Hofmeister series 706– of anions 706H2O2 irradiation 488hollow fiber (HF) 845– configuration 743– dense membranes 850–– reactor, schematic diagram 853– LSCF system 731– membranes 724, 744–– reactors 744– robust porous substrate 723hollow particles 84homogeneity

– of final product 70homogeneous catalysts 540homogeneous gel 244homogeneous mixed oxide nanopowders 71homogeneous Ni–BaZr0.7Pr0.1Y0.2O3�δ (BZPY)

cermet membranes 909homogeneous precipitation 12homogenization 29homogenous elemental distribution– in flame-made titanate particles 79H2O2 permeance 488hot zone temperature(s) 85H2-permeable membranes 323, 324, 326, 905– Ce- and Zr-free formulations 910– equation for 324– within Ni 327– within perovskite membranes, equations for

modeling 323– properties, of perovskite membranes 906– schematic representation of 884H2 production 758, 855– from alcohols–– catalytic performances of perovskite-type

catalysts for 549–552– rate 855– by steam reforming of bioalcohols 539H2 purification-related CO oxidations 459H2-SCR catalytic system 588, 589, 590– selective ceramic membrane, uses 891H2 semipermeation, within dense Pd

membranes 324H2 separation, and purification 886H2 SOFCs, perovskite anode for 874H2 transport, permeance vs. permeability

representations 907H2 transport, within membranes 908huge oxygen permeability drop 730hybrid combustors 396hybrid composites 225hybridization 905hybrid solar cells, efficient 369hydride ions 888hydrocarbons (HCs) 169, 172, 376, 518, 524,

559– containing fuel 839– conversion, single catalytic membrane

reactor for 753– in gas streams 437– oxidation 568– radicals 559– synthesis, from syngas 652hydrochloric acid 402hydrochlorofluorocarbons 405

Index 945

Page 18: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

hydrocyanic acid 518hydrofluorocarbons (CHF3) 405hydrogen 289, 518, 525, 539hydrogenation reactor 524, 525hydrogen-bonding interactions 710, 711hydrogen bonds 14hydrogen combustion configuration 750, 751hydrogen-containing compounds 459hydrogen evolution– band diagram of nitrogen-doped strontium

titanate 680hydrogen fuels, electrochemical oxidation

of 867hydrogen ions 169hydrogenolysis 524hydrogen permselective membranes 748, 751hydrogen peroxide 530hydrogen production 850, 855– Aspen HYSYS flowsheet 787– with CO2 capture 751– rate 854hydrogen reduction 818hydrogen-selective catalytic reduction (H2-

SCR) 588–593hydrogen-selective membranes 741hydrogen separation 739hydrolysis systems 589hydrophilicity 547hydropower 189hydrotalcite-based catalysts 623hydrotalcite-like materials 9hydrotalcites 883hydrothermal bomb 7hydrothermal methods 93, 291, 292, 660hydrothermal microwave processing 98hydrothermal process 290hydrothermal stability 885hydrothermal synthesis– microwave-assisted 292hydrothermal treatment 8hydroxides 10, 49hydroxyacetone 543hydroxyl anions (HO�) 311hydroxyl radicals 405– on solid iron-containing catalysts 482H2 yields 848, 850hypo-stoichiometric perovskites 481hysteresis loop 197, 248, 357HZSM-5 zeolite 522

iideal cubic perovskite structure ABO3 for the

compound SrTiO3 370

ideal models of perovskite-type oxides 391ideal structure of ABO3 perovskite 370ignite precursor systems 76ignition temperature 31, 32impedance spectroscopy 173, 174, 293, 305impregnation 872impurities 17, 77, 78, 144incineration 4141-indanone 481induction 189inductively coupled plasma (ICP) 106industrial organic synthesis 475infiltration 871– MC, in perovskites 327– membranes 313inhomogeneous distribution, of elements in

crystallites 79initial regression analysis 822injection molding 225inorganic membranes 884inorganic porous solids 51insertion reactions 9in-situ hydrothermal synthesis 809insoluble solids 17insulator 172integrated gasification combined cycle

(IGCC) 890intensified charge couple device (ICCD) 160interaction– of gas species with particle surface 39interatomic angles 274intercalation 9, 233– of hydrated K+ cations 12interdiffusion 143, 886interface reconstruction 144, 155interface superconductivity 147interfacial crystal symmetry 143internal energy 357– evolution of 358internal lattice oxygen 372International Energy Agency 189interparticle friction 105INTEVEP– mesoporous silica material 511intra-atomic exchange energy 349intrafacial process 72intrinsic reaction kinetics, rate expression 817intrinsic resistance 173inverse opal structures 122inverse piezoelectric effects 211, 212ion-conducting materials 144, 289ion-conducting properties 235ion conductivity 144

946 Index

Page 19: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

ion conductors 145, 290ion displacement 144ion exchange 9, 233ionic compensation 182ionic conductivities 143, 149, 176, 180, 289,

290, 291, 295, 296, 297, 300, 302, 304, 322,325, 329, 874, 886

– after doping with trivalent cations 297– encountered were associated with the effect

of high sintering activity 293– LaNb0.84W0.16O4.08 electrolytes 306– of Mn-doped YSZ 296– in oxides 299– in perovskites 311ionic conductors 173ionic–covalent mixed oxides 477ionic defects 290ionic electrolytes 888ionic–electronic conductors 169ionic liquids 15ionic oxides 10– mixed 477, 483ionic radii 236, 268, 274, 393– of octahedral cations 274ionic radius 48, 242, 281, 415– REE 267ionic substitutions 190ionic transport 177, 351–353– properties 346ionization 289, 886– radiation 239ions-modifiedMCM-41mesoporous silica 477iron 175iron cations 302, 373iron-containing catalysts 486iron-containing mixed oxides 484iron-/copper-exchanged aluminosilicate

zeolites 807iron ions 400iron nitrate hydrate (Fe(NO3)3�9H2O 134iron oxide 302iron oxide-based pair (Fe3O4/FeO) 843iron oxide represents 856irradiation method 6– nonconventional 91irradiation times 101isoalkanes 416isoalkenes 416isobutane– C-H bond of 483isobutanol 540isocyanates 569– intermediate 602

isocyanic acid (HNCO) 805isomorphic compounds 47isopropanol 238, 407isopropyl alcohol photodecomposition 407isostructural substitution, of cations 371isothermal dense membrane process 854isothermal experiments 827isothermal isotope exchange (IIE) 604isotope exchange experiments 176isotopic exchange, on perovskite sample 331isotopic 16O2/

18O2 exchange-diffusion profile(IEDP)

– advantage of 819– experiments 819isotopic oxygen exchange experiments 822, 823isotopic ratio 182

jJahn–Teller distortions 349, 391– of Mn3+ ions 453

kketoglutaric acid 400ketones 401, 406kinetic energies 147, 154, 160, 344, 345, 346kinetic, estimated by RE 381kinetic models, for methane combustion over

perovskites 377kinetics 376– of methane oxidation 384kinetics measurement, of fast reactions

823–833– ammonia oxidation over LaCoO3 831– annular reactors 824–– modeling 825– case study 827– external diffusion limitations 826– high-temperature ammonia oxidation, in

annular reactor 827– N2O formation 832, 833– TAP reactor 830Kirkendall effect 703KIT-6 molecular silica 486KIT-6 template 53K2La2Ti3O10 catalysts 685KNbO3 catalysts 441K2NiF4 structure 171K2NiF4-type oxides 440KOH/NaOH eutectic 10Kohn–Sham approach 345Kröger–Vink notation 318(K1�xNax)NbO3 (KNN)-based ceramics 216Kyropoulos method 17

Index 947

Page 20: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

lLaAlO3 ceramic powders 107La-based catalysts 766La-based cobaltates, exhibit oxidation

activity 576La-based perovskite oxides 47LaBO3 catalysts 454LaBO3 perovskites 462, 464– CO oxidation 452(La0.6Ca0.4)(Co0.8Fe0.2)O3�δ (LCCF)

asymmetric membranes 900La0.7Ce0.2FeO3 perovskite-like catalyst 461La0.85Ce0.1Ga0.3Fe0.65Al0.05O3�δ (LCGFA)– CO2 permeation flux 912La0.85Ce0.1Ga0.3Fe0.65Al0.05O3�δ

(LCGFA)–carbonate system 913La0.8Ce0.2MnO3 perovskite 446La0.90Ce0.10NiO3 465La0.95Ce0.05NiO3 465LaCoCu catalysts 641LaCo0.7Cu0.3O3/SiO2

– structure evolution 642LaCoCu perovskites 641, 642– effect of preparation 643– structure 640LaCoFe– reducibility of 646LaCo0.2Fe0.8O3 618LaCo0.6Fe0.4O3 651LaCo0.25Fe0.75O3

– TPR profiles 646LaCo0.40Fe0.60O3 calcined– catalytic results in F–T reaction 648La0.7Co0.4Fe0.6O3�δ– TEM pictures 651LaCoFe perovskite, crystalline structure of 646LaCoxFe(1�x)O3

– CO conversion 647LaCoxFe(1�x)O3 catalysts 645La(CoxFe1�x)O3 perovskites 644LaCoO3

– catalyst 466, 467– doped by CuO 640– material 454– perovskite catalyst 454, 640, 828– powders 455– soot combustion 440– TPR profile of 639, 640LaCoO characteristics, effect of major

operating parameters on 73LaCo

xFe

(1�x)O3618

– diffractograms of 645– perovskites 638

– reduction 651– samples 617LaCr0.5Cu0.5O3 636– activity and selectivity 637LaCrO3

– soot combustion perovskite catalysts 442– TBHP catalytic system 481– transforms to rhombohedral (trigonal)

polymorph at high temperatures 170LaCrO3 perovskites 442, 481LaCr1�xCuxO3 perovskites 635La2CuO4 perovskite 481, 635La-deficient perovskites 618, 649LaFe0.8Cu0.2O3 composite films 689LaFeyNi1�yO3 perovskite-type oxide 550LaFeO3 lattice 75LaFeO3 nanocrystalline material 107LaFeO3 nanoparticles synthesized in

cetyltrimethylammoniumbromide emulsionnanoreactors 688

LaFeO3 perovskites 455, 643, 827– structure 461LaFeO3 system 466Lambda factor 562La–M–Cu–Zn–O 635lame hydrolysis 50Lamellar perovskites 676LaMnCu oxides 637LaMnO3+δ

– catalysts 455– influence of water, over total oxidation of

chlorobenzene on 427– perovskite catalysts 445LaMnO3+δ compounds 172LaMnO3, LaCoO3, and LaFeO3

perovskites 454LaMnO3 perovskite catalysts 439, 442, 464,

633LaMn1�xCuxO3 635, 636LaMn1�xCuxO3+δ 633LaMn1�xCuxO3 catalysts, activity and

selectivity of 637LaMnl�xCuxO3 perovskite 634LaMO3 perovskites 398La–Nd orthogallate perovskites 259Langmuir–Hinshelwood kinetics 379Langmuir–Hinshelwood mechanism 422Langmuir-type adsorption 321Lang’s equation 83La–Ni citrate complex precursors 511LaNix�1CoxO3�δ– TPR profile of 505La2NiO4

948 Index

Page 21: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

– catalytic activity of 511– energy of methane and carbon dioxide 508LaNiO3

– as catalyst precursor 506– perovskite 502, 505– precursor 511– SBA10 catalyst, in-situ crystallization 511– TEM micrograph 504LaNi0.8Ru0.2O3 507LaNi1�xCoxO3 perovskites– catalytic activity 506lanthanide 47, 241, 280– ionic radius 265– metals 126lanthanum 546, 727– perovskites 453, 454, 483, 509, 552lanthanum chromite 303lanthanum cobaltite 779lanthanum-doped polycrystalline EuTiO3 197lanthanum nickel oxide 507lanthanum nitrate hydrate

(La(NO3)3�6H2O 134lanthanum perovskite materials 616lanthanum-undoped perovskites 454lanthanum zirconate 872La2OCO3 641large crystals 9large-scale gas separation 753LaRhO3 structure 639laser-enhanced chemical vapor deposition

(LCVD) 16laser fluence 151laser parameters 151La0.6Sr0.4 Co0.2Fe0.8O3-δ (LSCF) 720, 721, 728,

729, 731, 821, 854, 855, 873, 895, 900, 901,910, 912, 914

– cathode materials 77– coating 723– effect of SO2, 730– family perovskites 723– perovskite materials 728– perovskite prepared by wet ball milling

method 397– perovskites 725– properties of 722La0.6Sr0.4Co0.8Ga0.2O3�δ (LSCG) HF

membrane– O2 permeation flux 900La0.6Sr0.4Co0.8Ga0.2O3�δ (LSCG) HF

membranes 900La0.8Sr0.2CoO3-δ

– in-situ ambient pressure XPS spectra 394La0.6Sr0.4CoO3�δ (LSC) membranes 899

La0.75Sr0.25Cr0.5Mn0.5O3 (LSCM) 172La0.7Sr0.3Cr1�xRuxO3 perovskite 458La0.5Sr0.5Fe0.8Cu0.2O3�δ (LSGCu)–(Li,

Na)2CO3–LiAlO2 membranes 910(La, Sr)(Fe, Ga)O3�δ (LSFG) perovskites 901La0.8Sr0.2Fe0.7Ga0.3O3�δ (LSFG)

membranes 901La0.7Sr0.3FeO3�δ (LSF731) matrix 857La0.7Sr0.3FeO3 membrane– scanning electron microscopy image 853La0.3Sr0.7FeO3 perovskite 854La0.2Sr0.8Fe0.6Ti0.4O3�δ (LSFT) 904La0.8Sr0.2Ga0.8Mg0.2O3�δ thin films– improve conductivity 153(La, Sr)0.5(Mn, Co)0.5O3�δ catalysts 481La–Sr–Mn perovskites 849LaSrNiO4

– energy of methane and carbon dioxide 508LaxSr1�xFeO3�δ perovskites 846La2Ti2O7

– photocatalysts 684– synthesized 684La2Ti2O7 crystal 236, 684LaTi1�xCuxO3 635LaTi1�xCuxO3 perovskites 634lattice defects 101lattice distortion 276lattice mismatche 242lattice oxide 315lattice oxygen 568– ion concentration 316lattice oxygen ions 324lattice oxygen species 318lattice thermal conductivity 195lattice vectors 348lattice vibrations 354La1�xAxFe1�y CoyO3�δ perovskites 443La1�xAgMnO3-type oxides 75La1�xCaxFe1�xCoxO3 catalyst 550La1�xCaxNiO3 perovskite-type structure 552La1�xCaxRu0.8Ni0.2O3 perovskites 509La1�xCexNiO3

– XRD patterns 508La1�xCexNiO3 catalyst 508La1�xKxCoO3 perovskite catalysts 440La1�xKxCo1�yCuyO3�δ perovskite catalysts for

soot combustion 443La1�xKxCo1�yPdyO3�δ perovskites-catalytic

combustion in NOx/O2 mixtures 443La1�xKxFeO3 perovskite catalysts 440La2�xKxNiMnO6 catalysts 443La2�xMxCuO4 perovskites 461La1�xPrxNiO3 series 509

Index 949

Page 22: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

La1�xSrxCoO3 catalysts 47La1�xSrxFeO3 (LSF) 856La1�xSrxFeO3 perovskites 374, 845La(1�x)Srx Fe(1�y)GayO3�δ membranes 334La1�xSrxGa1yMgxO3�δ (LSGM) 293, 901La1�xSrxMnO3 materials 616, 846, 850La1�yCo0.4Fe0.6O3�δ 651– magnetic behavior 650La1�y(CoxFe1�x)O3

– diffractogramms 649layered Aurivillius phase perovskite

(Bi2O2)2+(An�1BnO3n+1)

2� 407layered perovskite structures– and families 234– introduction and overview 233–235La2Zr2O7 872LBSM (La0.74Bi0.1Sr0.16MnO3�δ) 874leaching 42– of ZnO 41lead-free piezoelectrics– BaTiO3–CaTiO3–BaZrO3 solid

solutions 216–217– Na0.5Bi0.5TiO3 219–221– piezoelectric properties of BCT–BZT 218, 219– structural phase diagram of BZT–BCT 217,

218lead-free piezoelectrics 215–221lead zirconate titanate (PZT) films 107, 211lean-burn conditions 589, 591lean-burn DeNOx conditions 588– chemical processes 798– combustion of fossil fuels 797– diesel posttreatment (see diesel

posttreatment)– reduction 803– single brick solution 807lean-burn nitrogen oxides (NOx) 587lean NOx trap (LNT) 587, 591, 798lean NOx, after treatment of diesel engine

emissions 590–593Lewis acid 484Lewis acidic center 477Lewis acidity and conversion of cyclohexe 478Lewis acid sites 477Lewis acid TM sols 709ligand-assisted templating (LAT) 709light diffraction methods 31light-off curves for toluene on

nonsupported 422lignocellulosic biomass 540Li+ ion 128limestone 883LiNbO3 films 146

linear ME coefficient 227linear pseudo-piezomagnetism 228Li-O2 battery 103liqids, process involving– molecular self-assembling 14– other methods starting from liquid reactants

or solutions 15–– gel combustion method 15–– ionic liquids 15–– reverse microemulsion 15–– sonication 15– spray drying, and related methods–– freeze-drying 14–– spray–freeze-drying 14liquid crystal 14liquid droplet size 71liquid nitrogen 14liquid petroleum gas (LPG) 102liquid-phase catalytic oxidations– active sites and oxidants 476– environment-friendly processes 475– green oxidants 480–– mesoporous mixed oxide catalysts 486–– microporous mixed oxide catalysts 483–– perovskites catalysts 480– heterogeneous photo-fenton oxidation 488–– photo-fenton reactions 490, 491– photocatalytic ozonation reactions 492liquid-phase oxidations 476, 484liquid-phase selective oxidation 479– using hydrogen peroxide and heterogeneous

catalysts 479liquid-phase sintering 225liquids, processes involving 9– flux method 9– molten salt electrolysis 10– sol–gel 10–13– spray drying, and relatedmethodsquad;13, 14liquid stability 881– presence of O2 and SO2 881liquid–vapor surface tension 19lithium 289lithium-lanthanum-titanate (Li0.35La0.55TiO3,

LLTO) electrolyte 305lithium-substituted materials 510lithium zirconates 888Ln3+ cations 236, 237Ln3+ ions 392Ln/Sr ions 392LNT catalyst 602Ln2Ti2O7 compounds 235, 239– scope and properties of Ln2Ti2O7

oxides 238, 239

950 Index

Page 23: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

– structural properties of Ln2Ti2O7 withLn=lanthanide 236

– synthesis way 237, 238Ln2Ti2O7 oxides 236, 238Ln2Ti2O7 thin films– growth and structural characterization

of 239–244– growth and structural characterization of–– growth on (100)-oriented SrTiO3

substrates 239–241–– growth on (110)-oriented SrTiO3

substrates 241–243–– limit of stability of layered perovskite

structure 243, 244Ln1�xSrxNiO3 465local Cr�O distance and optical properties for

samples in 278local density approximation (LDA) 346Lorenz number 195low-cost standardized fabrication

techniques 778low energy electron diffraction (LEED) 152low-temperature expansion (LTE) 356low-temperature membranes 883low-temperaturewater-gasshift (LT-WGS) 460low-volatility compounds 413LPG detection, recovery speeds for 102LPG sensor 102LPG steam reforming 785LSC-based cathodes 79LSGM La0.9Sr0.1Ga0.8Mg0.2O3�δ

perovskites 293LSM (La1�xSrxMnO3) perovskite 871– YSZ cathode 871LTO crystals 241lyophilization 14lysine 126L-lysine 129, 130, 131

mMA-CLR concept 751, 752, 753macropores 126, 135MAFBR, advantages of 745magnesia ceramics 14magnesium sulfate 14magnetic devices 37magnetic interactions 147magnetite 13, 17– crystals 17magnetization 228magnetoelectric coefficient values 228magnetoelectric composites, and their coupling

constants 229

magnetoelectric coupling 226–228magnetoelectric effects 226–228magnetoelectric (ME) effects– as Cr2O3 226magnetoresistant 14magnetostriction 228– values 228magnetostrictive rare earth iron alloys 228magnetron sputtering 154manganates 194manganese-based catalysts 431manganese-based supported oxide phases 810manganese cations 373manganese oxides 302, 427manganite 172– films 151manganites 151Mars–van Krevelen reaction 72, 377, 593, 831mass-difference impurity scattering 196mass transfer 314, 322, 325, 326– effects 782– limitations 820, 828– in MIEC membranes 886mass transfer modeling– in perovskite membranes 312materials 289maximal methanol productivity 638M3+ cations 660MCFA detector 661MCM-41 materials 487MC simulations 358mean metal–oxygen bond 275mean particle size 75mean surface roughness 241, 243mechanical actions 26, 28, 29mechanical activation 8– energy 27mechanical alloying 25, 27, 28– community 28mechanical energy 8, 26, 50mechanical grinding 28, 42mechanically activated annealing 29mechanically activated self-propagating

(MASP) 31mechanically blended mixtures of

LaCoO3–CeO2–Co3O4 398mechanical mills 26, 28mechanical stability 784, 914mechanical treatment 8mechanochemical decomposition 9mechanochemical processing 25mechanochemical reactions 8, 27mechanochemical synthesis 28

Index 951

Page 24: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

mechanochemistry 25, 26– advantages 25– historical development 25–27mechanochemists, from ball milling 26mechanosynthesis 25, 28– synthesis of BiMnO3 via 38mechanosynthesis, of perovskites– increasing specific surface area 40– looking for an alternative route to synthesize

new compositions 38– lowering sintering temperature 38– reducing crystallite size and modifying

particle morphology 39mechanosynthesis, of perovskites 37–42mechanosynthesis process– acceleration of balls during milling 29– ball-to-powder mass ratio 29– brittle materials fracture under impact 31– crystal defects and internal residual stress 30– ductile material 30– evolution of diffraction patterns during the

synthesis of LaMnO3, 32– form new phases 31– fracturing of agglomerates 31– ignition–– occurs in-situ in mill 32– mass ratio 29– milled material comprised composed of

polycrystalline particles 30– milling times to achieve a full reaction 32– particle size, decreases rapidly 31– performed using high-energy ball- mill 29– progress of the reaction during ball

milling 32– reaction rate 31– re-agglomeration of fine particles 31– repeated collisions and plastic

deformations 30– stoichiometry of final product 29mechanosynthesis process 29–32mechanosynthesized Ba0.5Sr0.5Co0.5Fe0.5O3

perovskites 39ME coupling coefficient value 226melamine (C3H6N6) 806melt casting 225melting point 10membrane– design 885– exhibited a maximum CO2 flux 913– sealing 895– thickness 885membrane-assisted chemical looping

reforming (MA-CLR) 751

membrane-assisted fluidized bed reactor(MAFBR) 744

membrane-assisted fluidized bed reactors 745membrane housing 743membrane microreactor (MMR) 778membrane microstructure 728membrane permeability 894membrane reactor 103, 739– distributive feeding of reactant 740– drawbacks 747– embrane sealing 755–758– hydrogen production 739– methane conversion and C2 selectivity 767– O2 separation 753–758– reactors, types of 740–753– reactors, types of–– fluidized bed membrane reactors 744–– packed bed membrane reactor 740membrane reactor applications 885membrane reactor catalyst-in-tube 742membrane reactor concept– schematic representation 843membrane reactors 740, 891– feed gas traces 756– heating/cooling steps 757– leakage and back permeation 755– leakage of gas 757– for methane conversion 763– natural gas 764– with O2 membranes 758–768– syngas to ATR-MR 759– viscosity and rigidity 756membrane reduction surface 854membranes 18, 37– maintained their integrity 900– thickness 312, 821, 903membranes, impedance diagram of 334MeOH mixed solvent 130mesocrystals 103mesoporous ceria catalysts 424mesoporous LaCoO3 perovskites 53mesoporous manganese oxides– TEM images of 702mesoporous materials 51, 477– synthesis of 703mesoporous metal oxides 713mesoporous mixed oxides 52, 486mesoporous nickel–silicate membranes 488mesoporous nonsiliceous materials 52mesoporous oxides– formation mechanisms of 704– materials, formation of 704– synthesis of 702

952 Index

Page 25: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

– thermal stability of 712mesoporous perovskites 48– reduction treatment of 63mesoporous SBA-15 silica host support 511mesoporous silicas 486, 487– materials 701– synthesis 703mesoporous TM oxides 701, 703– stability of 712– template removal 713mesoporous transition metal oxides 701, 707mesostructured carbon 63, 64mesostructured silica 63mesostructured solid template 63metal acetates 14metal–acidic clays 485metal agglomeration-resistant catalysts 579metal alkoxide precursors 126metal aluminate 546metal–aluminophosphates (APO) 485metal atoms 47, 546metal-based catalysts 507metal cations 10, 13, 72, 74, 328, 373metal–CeO2 interfacial sites 568metal citrate complex, as precursor 53metal complexes 107metal dispersion 550metal electrodes 228metal-exchanged zeolite systems 807metal films 19metal-fuel additives 437metal-hydroperoxy species 530metal–insulator (MI) 351metal ion–oxide bond 483metal ions 107, 200, 398metallic conductivity 199metallic element 47metallic natural elements 49metalloenzymes 528metal matrix composites 31metal nanoparticles 590metal nitrates 13, 53, 74, 130, 131– as precursors 53– salts 131metal organic chemical vapor deposition

(MOCVD) 16metal-organic framework (MOF) 532metalorganic precursors 71metal oxides 3, 52, 81, 84, 123, 289, 394, 400,

521, 527, 883– catalytic oxidations over 593– complex 70– films 19

– precursors 69– reducible 521metal–oxygen bond 270, 276– distances 274metal–oxygen bonds 888metal particle size 549metal-perovskite catalysts– suppression of growth of precious metal

particles in 578metal precursors 71metals 29, 190, 886metal salts 396– precursors 69metal species 502metal-support interactions (MSI) 567metal–zeolites 485metastable monoclinic Y2O3 phase 75metastable particles 29metastable phases 18– stabilization of 7methane 72, 169, 373, 517, 531– to acetic acid 530–532– autothermal reforming of 758– combustion on metal oxides 72– combustion on, temperature dependence 56– conversion tomethanol, nondirect and direct

routes of 528– conversion to value-added products 517– dry reforming of 60– flameless combustion of 72– functionalization, noncommercialized routes

of 518– to methanol and its derivatives 527–530– oxidation, photocatalytic 530– oxidation to acetic acid, nondirect and direct

routes of 531– oxidation to methanol 519– oxidative coupling of 519, 765– oxidative transformations of 519– to produce liquid hydrocarbons directly

from 526– products from 518– resistant to chemical reactions 518– sources of 518– steam reforming of 518– total combustion of 63methane (fuel) 16methane-based flames 81methane combustion 72, 82, 101, 749methane combustion, kinetics of– approaches 378methane combustion, kinetics of 378–385– first-order kinetics 379–383

Index 953

Page 26: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

– power law kinetics 383–385– Rideal–Eley kinetics 379– two term kinetics 385methane combustion, mechanism of 376–378methane conversion 744– degree of 382methane cracking reaction 501methane, dry reforming of 502methane, dry reforming of– carbon dioxide 501– LaNiO3 as catalyst precursor 502– lanthanum in perovskite La1�xAxNi1�yByO3,

507– nickel in perovskite LaNi1�yByO3, 506– perovskite as support of active sites 510– supported perovskite 510methane flame 72, 75methane monooxygenase (MMO) 528methane oxidation 53, 82, 86, 129– intrafacial (lattice) and suprafacial (surface)

reactions 386– temperature profile 827methane oxidization 856methane partial oxidation 753methane steam microreformer 784methane steam reforming 750methane, temperature and molar fractions

of 789methanol 15, 63, 74, 129, 137, 138, 518, 528,

529, 530, 531, 539, 540, 543– selectivity 529methanol combustion 129methanol oxidation 61– conversion profiles as a function of

temperature for 60methanol synthesis 632methna oxidation 822-methoxy ethanol 1002-methoxyethanol 238methylammonium cation 369methyl bisulfate 529methylbutanol 540methyl diethanolamine (MDEA) 786methyl hydroperoxide 530methylpropanol 540methyl tert-butyl ether 559Me2Zr2O7 pyrochlore phase 295Mg-doped lanthanum gallate 13MgxNi1�xAl2O4 yield, for stabilizing

rhodium 546MgO crystallites 4Mg-substituted La1�xKxCo1�yMgyO3 440micellar concentration 14

micelle-TM sol assemblies 704micellization properties of the surfactants 706microannealing 102microchannels 777microcrystalline magnetite 17microcrystalline powder 3microcrystalline solid 16microemulsions 18micro-membrane reactor (MMR) 740micropacked bed reactor (MPBR) 776microporous crystalline 484microprocess engineering 778microreaction technology 784microreactors 70, 105, 774, 777microreactors, classification 774, 775– capacity regimes 775– liquids phase–– catalytic solid–liquid reactions 776–– homogeneous catalytic liquid

reactions 776– material used 775– reaction phase 776– reactions involving liquids 776microreactor technology– advantages and drawbacks 773– advantages and drawbacks of 774microscopic imaging 31micro-solid oxide fuel cells (μSOFCs) 144microstructural defects 149microstructural integrity 899microstructure 291, 393microstructured reactor (MSR) 773, 778microstructured reactors (MSRs) 774– applications 778microwa-assisted hydrothermal process– preparation of CaTiO3 (CT) powders 97microwave annealing– for synthesis of BaTiO3 nanowires 100microwave-assisted chemical reactions 93microwave-assisted citrate method 101microwave-assisted hydrothermal method

(HTWM) 93, 98– BiFeO3 (BFO) crystallites exhibited better

homogeneity 97– conditions, temperature range enhanced

crystallization of 99– synthesis of microcrystalline BaZrO3 (BZ)

powders 99– well-crystallized BFO pure phase

reobtained 97microwave-assisted methods 100microwave-assisted perovskite-catalyzed Soot

Combustion 446

954 Index

Page 27: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

microwave-assisted processes– of a La–Co citrate complex 100– in synthesis of perovskite materials 94microwave chemistry– basic concepts of 92, 93microwave coupling 97microwave-derived samples 101microwave excitation, of molecules 100microwave heating 93, 100– advantages over conventional heating 93– in area of synthetic organic chemistry 93– in combination with traditional synthesis

methods 93–99– vs. conventional heating 93microwave heating technique 92microwave irradiation 91, 100– frequency 99– time 101microwave methodology 92–101microwave operating powers 101microwave power 101microwave-prepared GdFeO3 nanocrystalline

ferrites 689microwave radiation 97, 98, 100microwaves 5, 8, 91– technique 100– treatment 100MIEC– capillary membranes 754– ceramic oxygen membranes 755– CO2 poisoning of 729– materials 755, 888MIECmembranes 725, 729, 754, 757, 759, 886,

891, 915– carbon dioxide on oxygen permeation of 729– for cost-effective oxygen separation 753– plant design of autothermal process 760MIEC performance 731– as electrode for SOFC or SOEC 173MIEC perovskite membranes 753MIEC properties, of perovskites 889MIEC systems 725milling devices 27, 28milling facilities– attrition mills 35– planetary mills 34– Spex mills 32– Zoz mills 36milling media 29, 38milling process 29, 30milling time 26, 32, 41, 42, 43– on process 38millistructured reactors 778

– applications/possible scale-up 778–– ammonia oxidation 779–– benzene hydrogenation to

cyclohexene 780–– cyclohexene, hydrogenation 780–– dehydrogenation of alkanes 781–– dehydrogenation of cyclohexane 780–– dehydrogenation of

methylcyclohexane 780–– dehydrogenation reactions 780–– diesel particulate combustion 779–– ethylene oxide synthesis 779–– hydrogenation reactions 780–– methane, oxidative coupling of 779–– oxidative dehydrogenation of

methanol 781– challenges 773– currents and operational conditions,

summary 788– gas phase 776–– catalytic wall microreactors 777–– micropacked bed reactors 776– synthesis gas production 781–– partial oxidation of methane 781–– steam methane reforming 781– three-phase reaction 777–– catalytic system 777–– configurations 778mills, disadvantage of 37mineralization– into CO2 and inorganic compounds

475mineralizer-free YAP 280mineralizers 279, 280, 281– on Cr–YAP, effect of 282minimum energy path (MEP) 351mini-scale fuel cell, natural gas 784miscut angle 145mixed growth mode 158mixed ionic–electronic conductive

(MIEC) 311, 739, 853, 886mixed ionic–electronic conductor 176mixed metal oxides 47mixed oxide 6, 7, 13mixed oxide materials– synthesis of 53mixed oxides 7, 10, 143, 289mixed oxides as electrolytes and mixed

conductors– applications of 303–306mixed oxides electrolytes– synthesis methods and properties of

290–293

Index 955

Page 28: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

– synthesis methods and properties of 290mixed oxides with ionic conductivity– solid electrolytes based on CeO2 298–300– solid electrolytes based on ZrO2 296–298mixed oxides, with ionic conductivity 295–300mixed oxides with mixed conductivity

301–303mixed oxide systems 390, 414, 841mixed solids 8mixed valences, in perovskites– mixed valences due to anion deficiencies 371– mixed valences due to isostructural

substitution of cations 373mixed valences, in perovskites 371–373Mn-based oxygen carriers 841Mn cations 12Mn ions 12Mn/Na2WO4/SiO2 catalysts 766Mn4+ species, in nanocast LaMnO3 54Mn system 182mobile ions 289mobile oxygen 144– species 466, 620mobility 290modeling O2 permeation within perovskite

membranes, equations for 319modified phase diagram of BCZT– showing phase convergence region and 218molar ratios 7, 297molecular beam epitaxy 19molecular beam epitaxy, growth chamber

of 146molecular oxygen dissociation 728molecular oxygen flux 756molecular sieves 883molecular weight 74molten carbonate (MC) 888molten carbonate fuel cell (MCFC) 865molten salts 9molybdenum 191momentum transfer 154Mo–Mn–Al mixed oxides 621monoatomic oxygen flux 180monoclinic distortions 48monoclinic La2Ti2O7 oxide 236monoclinic structure of Ln2Ti2O7 237monovalent halogen 369Monsanto technology 532Monte Carlo (MC) simulations 356morphology of perovskites– investigated for total oxidation of

VOCs 395–397morphotropic phase boundary (MPB) 216

motor vehicles, exhaust systems of 797Mott’s adiabatic small-polaron conduction

model 193MoV0.8Te0.23Ox perovskite 483MRT sealing 747MSR/heat exchanger configurations 779Mössbauer spectra recorded on EuFeO3 419Mössbauer spectroscopy 374, 422, 666, 726muffle furnace 42multianvil press 8multicomponent catalysts 527multicomponent oxide systems 483multiferrocity, in BiFeO3 144multiferroic materials 226, 227multiferroics 226multifunctional composites 211multifunctionality 226– in ceramics 226multifunctional piezoelectric composites

226–229multilayers 149multiple impregnations 54multiple reactions 28multiple roles of CeO2, in three-way catalytic

chemistry 565multitubular membrane reactor

configurations 741multizone furnace 82MW heating 5

nNano BaTiO3 683nanocasting 61, 63, 397, 702– series of perovskite-structured mixed metal

oxides with 54nanocasting (hard templating) 48nanocasting, general principles of 51nanocasting, of perovskites– H2-TPR studies 53nanocasting, of perovskites 52–54nanocasting process, using ordered

mesoporous SBA-15 silica 52nanocast LaNiO3, conversions rate 61nanocast materials 61nanocast mesoporous perovskites– structural parameters, physisorption

analysis 53– synthesized using, TEM images of 55nanocast oxides 54nanoconfinement 144nanocrystalline LaFeO3 103nanocrystalline materials 39nanocrystalline perovskites 41

956 Index

Page 29: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

nanocrystalline SrTiO3 synthesized 679nanocrystallinity 71nanoelectronics 144, 145, 239nanoferrite powder 107nanoionics 144, 145, 152, 290nanomaterials 6, 91– synthesis 93nanometric particle size 81nano-oxides 295nanoparticles 3, 85, 130, 136– of anatase 15– bottom-up methods 18– embedded in a matrix 18– mechanochemical synthesis 18– metallic oxides 395– top-down methods 18nanoparticles 18nanoporous Al2O3 18nanoporous perovskites, with BET surface

areas 48nanopowders 293nanorods 224nanoscale Fe-based perovskites (LaFe1�x

(Cu,Pd)O3) 574nanoscale pore– structure of the template 51nanosized crystalline mixed oxides 86nanosized crystallites 40nanosized Pd-doped LaCoO3 75nanosize particles 81nanostructured aerogels 679nanostructured CdSnO3 thin film 106nanostructured materials 69, 290nanostructured Ni/La2O3 catalyst 61nanostructured particles 31nanostructured perovskites 39nanostructuring 190nanotechnology 93nanowire arrays 51nanowires 100– annealed for 100naphtha 539naphthalene 417, 424Na-promoted perovskite 521Na2SO4/K2SO4 flux 684NaTaO3 nanoparticles 108natural gas 189, 539Na2WO4/SiO2 catalyst 855Nb-based catalysts 401NbMCM-41 materials in oxidation

reactions 477Nb2O5

– autocombustion method 441

Nb2O5–SiO2 system 485Nb-substituted sample 198NBT ceramics 221– captured in an oscilloscope–– response of 221– for external mechanical stimuli–– response of 221N2, dimensionless (Z) transient isotopic

response curves of 596Nd0.6Sr0.4FeO3�δ–60 wt% Ce0.9Nd0.1O2�δ

(40NSF-60CN) dual-phase membrane914

Nd2Ti2O7 thin film grown on (110)-SrTiO3

substrate 246NEB-derived energy 353NEB energy profiles 353– for an oxygen atom 353NEB method, schematic illustration 351nebulization 81– of precursor salt solution 82nebulizer 81nebulizer/atomizer 71– geometry 71N-electron wave function 345neodymium orthogallates 276neodymium oxide 302neodymium perovskite system 276Nernst–Einstein equation 176, 179, 315Nernst–Planck equations 316net current density 317net zero electricity consumption 753neutral ambipolar diffusion 178new compounds 3– improved properties 3N2 formation and N2O formation– integral reaction rate 595NG, oxy-combustion of 8906 NH3 conversion 828NH3 molecule 806NH4OH in aqueous solution 661NH3–O2 pump–probe experiment– NO, N2, and O2 pulse responses 831NH3-SCR applications 806NH3-SCR, location of current 589NH3-SCR process technology 587NH3-SCR technology 587, 591(NH4)2SO4 678NH3 under oxygen-rich conditions

(NH3-SCR) 587NiAl2O4 spinel 510Ni–BaCe0.95Tb0.05O3�δ (BCTb) 908Ni–BaCe0.8Y0.2O3�δ (Ni-BCY) cermets 908Ni–BaCe0.9Y0.1O3�δ (Ni-BCY) cermets 908

Index 957

Page 30: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

Ni-based catalysts 60, 762Ni-based cermet membranes 909– H2 permeation flux 909Ni–BaZr0.1Ce0.7Y0.2O3�δ (Ni-BZCY) 908Ni–BaZr0.1Ce0.7Y0.1Yb0.1O3�δ (Ni-

BZCYYb) 908Ni cations 87nickel alloys 27nickel atom cleaves 507nickel-based catalysts 507nickel-based perovskite– catalytic activity of 507nickel–iron alloy 506NiFe2O4–Ce0.8Tb0.2O2�δ with extraordinary

stability 729Ni/La2O3 catalyst 504niobium 191– in oxidation reactions 507niobium-doped perovskites 684NiO catalyst 550NiO–Fe2O3 644NiO/LaNiO3 856Ni° particles 547Ni particle size 550Ni–perovskite cermets 907Ni-supported catalyst 782nitrates 4, 14, 126, 395, 603– solutions 76nitric oxides 588nitridation 685nitrides 52, 145nitrogen 16– as carrier gas 85– oxide 431, 559– selectivity 804nitrous oxide emissions, from soil

denitrification 611nitroxyl HNO intermediate species 832Ni/YSZ anode 867, 869, 874– structure 867Ni/YSZ interface 875NM/Al2O3-based TWCs 567NOx adsorber catalyst (NAC) 591NOx adsorber materials, drawback of 593noble metals (NMS) 546, 572– for oxidation reactions 47– promoted perovskites 458, 573NO by propene– reduction of 42N2O,catalytic abatement– HRTEM images from Pt particles 626– medium-temperature decomposition 618– work function and kinetic parameters 622

N2O,catalytic abatement 611– different possible scenarios 613– end-of-pipe technologies 622– flow sheet of a dual-pressure 615– function of temperature 619– high-temperature decomposition 615– hydrocarbon-SCR technology 623– off-gases,characteristic 612– rate constants 617– reduction 625– Rh1-ZAl10 in N2O decomposition 612, 614– sase study 613– temperature over Fe-ZSM5 623N2O concentration 613NO conversion 590, 594, 595N2O conversion 611, 616, 620NOx conversion 604N2O emissions 611NO2-enriched exhaust stream 809NOx formation 762NOx molecules 623noncatalytic microplasma reactor 782noncentrosymmetry 213non-ferroelectric ceramic 225nonhomogeneous temperature profiles 5nonideal variances symmetry 370nonionic templating agents 292nonlogarithmic equations 320nonnoxious CO2 418non-oxide phases 259nonporous LaFeO3 136nonporous perovskite membranes 521nonsiliceous materials 52nonstoichiometric cerium oxides

(CeO2�x) 670nonstoichiometric oxides 886nonstoichiometric oxygen-deficient

oxides 660nonthermal microwave effects 93nonthermal plasma 428, 430– advantage of 405– technology 431nonvolatile metal salt precursors 71nonvolatile precursors 71, 81NO oxidation 576– activities, for LaCoO3 601NO reduction 863N2O reduction 613NO reduction by C3H6 576NOx reduction performed directly by ammonia

(NH3-SCR) 805NO selectivity 827NOx selectivity 828, 830

958 Index

Page 31: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

NOx storage and reduction (NSR) 592NOx storage catalyst (NSC) 591NOx storage reduction (NSR) 591, 798NO-to-NO2, C3H6, and C3H8 conversions

under simulated DOC inlet condition 603NOx trapping performance 592NOx trap technology 803nozzle, defined by the flow rate of oxygen

and 74nozzle geometry 73NR4

+ cations 14N2 selectivity 604N2-selectivity 569, 590, 594NSR mechanism, over Ba-containing

systems 592NSR process– chemical steps 592NSR technology 593n-type semiconductors possess anionic

vacancies 478n-type thermoelectrics 190nucleation 4, 81, 93, 107– rate 4nucleophilic attack of the hydrogen peroxide 477numerical simulations 107Nyquist diagram 174

oO2 and H2 semipermeation within composite

DPMs 313O2 and H2 semipermeation within single-phase

perovskite membranes 312O2� anion 659observed/calculated polyhedral bond valence

sum ratio 273observed reaction intermediates (La2Zr2O7 and

ScZrO3) from– semiquantitative analysis, from reaction 80OCM– carbon oxides hydrogenation, integrated

process scheme 525– catalysts, designing 520– conventional reactor types 766– membrane reactor 768– and methane reforming, integrated process

scheme 524– packed bed membrane reactor 768– reaction 766– system 765octahedral chromium content 274octanoic acid 74octanol 74O2-depleted air 761

O2-depleted stream 890o-dichlorobenzene 427O2 diffusion 334of CO+O2+H2 adsorption on 1% Pt/

Fe0.25Zr0.75O2 665off-site generation 866O2 flux 320, 324, 732, 899– achieving a stable value 903ohmic resistance 169– of the cell 304O2/H2 splitting at metal surface 325O2 leakages 756olefins 517, 588– selectivity 654oligomerization 12, 522olloidal crystal template of carboxyl-modified

PMMA 131one-electron wave functions 347O2/NH3 pump–probe experiment 832O2 partial pressure 318, 333, 910– gradient 889, 901operando characterization 476O2 permeation 321, 334– flux 904– properties and/or stability 896– properties, of perovskite membranes 897O2 pressure gradients 890optical microscopy image, of 3DOM

LaFeO3 135, 136optical spectra and coordinate of Cr-doped

(Y, REE)AlO3 synthesized withmineralizer 281

optical spectra of Cr-doped lanthanum, andneodymium, orthogallates 278

optical spectra of Cr-doped YAP 281optimization– of film quality complex 148– of growth process 149– of milling parameters 38optimized planar membranes 747optoelectronic properties 143optoelectronics 102orbitals 144order–disorder transition 355, 357ordered mesoporous SBA-15 silica 61organic acids 400– combustion of 400organic anions 12organic chemistry 93organic–inorganic hybrid piezoelectric

composites 225organic reactant 15organic solvents 74, 122

Index 959

Page 32: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

organic surfactants 18organometallic compounds 16orthoaluminate 266– perovskites 275orthoaluminates 266orthoaluminates 279–283orthoferrites 266, 418orthogallates 276– perovskite systems 274, 279– structures 275orthorhombic compounds 235orthorhombic distortions 48orthorhombic ferroelectric (O) phase 218orthorhombic perovskites 265, 646orthorhombic phase 359orthotitanates 677O2-selective membranes 758, 889Ostwald process 616, 827Ostwald ripening 7, 8OTM membranes 855OTM module 761O2� vacancies 660overoxidation 520– overcome for desired C2 hydrocarbons 522oxalyldihydrazide 15oxidant 72oxidation 47, 281, 370, 396, 475– activity improvement 82– capability 392– of carbon template during 54– catalysts 799– exothermicity of 779– of higher hydrocarbons 376– of hydrocarbons 373– mechanism 373– methane 50– of methanol 42– of propane 400– on Pt/alumina 376– of p-xylene 482– of stearic acid 42– of unsaturated chlorinated compounds 417oxidation of methane– to synthesis gas 502oxidation–reduction behavior of La1�xSrxFeO3

specimens for different degrees ofsubstitution 375

oxidation sensitivity of Eu2+ to Eu3+ 198oxidation states 4, 12, 18, 39, 75– of cations 371– for Co 350oxidation step of NO to NOx– role of 592

oxidative conditions 196oxidative coupling of methane (OCM) 518,

519, 740– catalytic materials applied 521– combined OCM over MgO/La2O3 with an

oligomerization of C2 hydrocarbons ove 526– combining with FT synthesis in two

consecutive reactors 525– dead-end membrane reactors 521– feeding of methane and oxidant 520– hollow fiber membrane reactors 521– membrane reactor for distributed oxygen

feeding over 522– new catalysts, strategies developing for 526,

527– process concepts 522–526– process scheme of ethylene production

by 523– publications in regular journals 519– reactor concepts for 520– reactors and modes of operation 520,

521oxidative steam reforming of methanol 777oxide 10, 16, 18, 28, 43, 49, 51, 52, 235,

259– additives 567– anions 4– compounds 190– diffusion 183– dispersion-strengthened 27– high-melting melting-point 17– materials 144, 204, 301– -type perovskites 60oxide ions 169, 176– conduction 314– conductor 173– diffusion 352oxide–oxygen carrier 856oxide/perovskite oxygen carriers 856oxide precursors 40– to LaCoO3 41oxide surface– oxygen interactions 864oxidized solid oxygen carrier 839oxidizing agent 518, 530oxy-combustion 882oxy-combustion CO2 capture– O2 separation in 882oxy-combustion processes 890oxyfluorides 235oxy-fuel combustion 881– energy consumption 881oxy-fuel power plants 725

960 Index

Page 33: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

oxygen 34, 72, 170, 273, 289– carrier gas through a nozzle 71– chemical potential gradients 753– content 357– defects 150– deficiency 196, 199– exchange from 72– exchange kinetics 821– flow rate 73– insertion 832– ion conductors 354– ions/molecules 755– ion transport 458– isotopic exchange experiments 819– linear velocity of 73– loss 191, 192, 846– membrane separation process 863– migration energy barrier 353– into milling reactor 40– mobility 51, 75, 182, 377, 398, 465– movement, from an octahedral site into 352– nonstoichiometry 303– overstoichiometry 427– permeability 39– -permeable membrane reactors 762– permeation cubic phase 348– permeation flux 728– permselective membranes 748– pressures 150, 151, 152, 160– radicals 491– sensor 305– sensors 289, 562– separation 765– separation from air 754– stoichiometry 845– storage capacity 42, 377, 843– storage capacity (OSC) 564, 566, 567, 660– storage properties 415– tracer diffusion coefficient 178– transfer–– within ionic and redox switchable

materials 883– transfer coefficient 176– transfer reactions 477– transport 175, 182, 183, 290– transport membrane 855– transport parameters 178– transport, in perovskite oxides 180– transport properties 170– vacancies 888– vacancies, genesis of 888β-oxygen 462oxygen anion-conducting electrolytes 864

oxygen anions 888– conductivity 864, 871oxygenated compounds 540oxygenated hydrocarbons 559oxygenatedorganic compounds, total oxidation

of 401, 402oxygenates 559– formation 667oxygen atoms 150oxygen carrier 840– candidates 856– oxidation of 839oxygen carrier-transport materials– chemical looping carbon dioxide

splitting 842– chemical looping combustion 839– chemical looping, in dense membrane

reactors 843– chemical looping reforming (CLR) 841– chemical looping water splitting 842– H2/CO production, by chemical looping

processes 844– oxidizable compound, reduction 845– oxygen carriers 840– perovskites, as dense membranes 850– powdered perovskites 845– solar radiation, reduction 849– thermochemical water/carbon dioxide

splitting 842oxygen concentration– in GdO (CoO2) layer 358– gradient 864oxygen conductivity– of perovskites 393oxygen-deficient species (CeO2�x) 670oxygen-depleted air 841oxygen diffusion 79, 175, 180, 181, 355– coefficient 182– in cubic perovskite 183oxygen exchange 34, 822– experiments 820, 822– parameters 822– rate 150oxygen exchange materials– for solar thermochemical splitting 844oxygen flux 180, 722, 726, 730, 754– analytical expression 821oxygen interaction 817– case study 820– isotopic exchange techniques 819– mixed ionic and electronic conductor

(MIEC) 820– nonstoichiometry 818

Index 961

Page 34: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

– secondary ion mass spectrometry 819– steady-state isotopic transient oxygen

exchange 819oxygen ion 289, 354– -conducting membrane separating 843oxygen ion conduction 149, 295, 323– in oxidizing conditions 298oxygen nonstoichiometry 818, 821– window 842oxygen partial pressure 178, 180– conditions 182oxygen reduction reaction (ORR) 874oxygen-selective membranes 741, 754– for membrane reactors 754– reactors 762, 764oxygen-selective membranes in membrane

reactors 755β-oxygen species 462oxygen transport kinetics, in MIEC material– factors governing 176oxygen vacancies 130, 150, 160, 182, 198, 202,

281, 282, 296, 352, 355, 462, 602, 719– arrangement 358– configuration of oxygen sites in the GdO

layer 359– creating 182– determining role in 183– gradient 854– ordering 896– suppression of 895oxygen variation 149– and epitaxial relation 150oxynitrides 48, 198, 235ozonation 492, 493ozone 405, 430, 559ozonization processes 483

ppacked-bed discharges– geometries for 429packed bed membrane reactor (PBMR) 740packed bed membrane reactors 741– limitations 744palladium 423– in total oxidation of toluene 423parabolic rate law 4paramagnetic species 430parameterizing energy function 355partial density of states (PDOS) 350partial doping 896partial oxidation 400, 882– of hydrocarbon 400– of methane (POM) 720, 741

partial pressures 16, 894partial reduction, of NO 560partial substitution 49– of La3+ with Ce4+ 373– of La3+ with Sr2+ 373particle agglomerations 101particle, average size 6particle formation– in flame 73– heterogeneous 75– mechanism–– in flame-assisted methods 72particle morphology 71, 77particle size 3, 27, 29, 30, 39, 71, 73, 74, 77, 81,

84, 85, 91, 98, 99, 101, 102, 104, 105, 107, 291,333, 395

– distribution 13, 31– distributions 91– effects 18– evolution during mechanical milling 27– evolution of 26– measurement 31– reduction 26, 41– refinement 28particulate matter (PM) 591partition function 354Pb-based piezoelectric systems 218PbO–PbF2 mixture 10Pd–Ag foils 747Pd/Al2O3 catalysts 573Pd-based dense membranes 739Pd-based membranes 745– -assisted fluidized bed reactor 745Pd-based planar membrane 748Pd–CaZr0.9Y0.1O3�δ (CZY) cermet

membranes 909Pd/ceramic nanocomposites 886Pd-doped catalysts 86Pd-doped perovskites 578, 604Pd films 886Pd(II)/H2SO4 catalytic system 531Pd/LaCoO3 catalysts 463Pd membrane reactor 780PdO nanoparticles 86Pd/perovskite catalytic systems 603Pd-rich TWC catalyst 578Pd-substituted LaFe0.65Co0.3Pd0.05O3

perovskites 576peak-valley roughness 241, 243Pechini method 13, 123, 291, 292, 667pecific surface area– of perovskites 40PEM fuel cells 866, 867

962 Index

Page 35: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

2,4-pentadione 238periodic boundary condition 347permeabilities 885, 886, 894– of membrane, steady-state 904permeance–permeability plots 905permeance vs. permeability 907– plots for dual-phase perovskite–carbonate

materials 910permeation 910– fluxes 893– of molecules (PIMs) 884– of oxygen 180– process 313– properties 885permittivities 316perovskite– -structured mixed metal oxides 47–– methods used for synthesis of 50– structure, under tensile stress 215perovskite compounds, with REE inside site A

adopting GdFeO3-type structure 264Perovskite lamellaire La4Srn�4TinO3n+2 172perovskite membranes 311, 334, 724, 739, 886,

890, 891, 893, 894, 895, 896, 901, 902, 907, 910,911, 912, 913, 914, 915, 920, 922, 923, 924

– H2 permeation of properties 906– membrane scientist for developing

efficient 894– O2 permeation of properties 897– optical micrographs 757– for partial oxidation of methane 763Perovskite Membranes for Selective O2

Permeation– Co-Containing PeroCo-containing

perovskites 895perovskite pigments 259– black 263– blue 263– brown to light brown 262– described, according to chemical

composition 259– magenta to pink 263– red and orange 261perovskite-related materials– epitaxially integrated 144perovskites 25, 29, 34, 47, 170– ABO3 502– activity 483– as a diverse and active class of materials 369–– structural diversity, tolerance factor, and

thermodynamic stability 370– applications, in diesel engine de-NOx

technology 594

– -based ceramic pigments 264– -based/dense membranes–– advantages 767– -based materials 627– -based membrane reactors, uses 739– BaTiO3 510– BCFNO membrane 762– Ca2Mn2O5 372– –carbonate composite 913– catalysts 445– -catalyzed combustion of soot 442– for CO2 capture 910– composition 76, 334– comprise 47– containing Cr 481– crystallographic characteristics 462– crystal structure 79–– flexibility 75– as dense membranes 852– -derived catalysts 539– -derived materials 635– with excellent gas gas-sensing properties 42– flexible structure for mixed ionic–electronic

conductivity 170– –fluorite DPMs encompasses systems 902– formation 54– formulations 35, 41, 42– hybridized with metal phases 314– LaNi0.8Fe0.2O3 506– LaNiO3 506– La2Ni2O5 372– LaNiO3 502– –LaSrMnO4 616– lattice 393– -like K2NiF4 oxide 507– material 178, 183, 754, 817–– GbBaCo2O5.5 (GBCO) 350–– providing mobile oxygen 888–– and related compounds oxygen transport

parameters 180– via mechanosynthesis 43– membrane 314, 889–– reactors 755, 763– as mixed ionic–electronic conductors 170– mixed metal oxides 123–– three-dimensionally ordered macroporous

(3DOM) 113– morphology 845– nanocast 54– nonstoichiometry 719– oxides 47, 442, 572, 604, 632–– substituted with Pd or Cu 47– and oxygen vacancy 414–416

Index 963

Page 36: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

– and perovskite membrane, compilation of O2

and H2 diffusion and surface exchangecoefficients in 332

– phases 29, 38, 42–– proposed as pigments 260– porosity-to-tortuosity ratios 328– as powders, forced reduction 847– as powders, solar reduction 851– preparation 25– semiconductor gas sensors 102– sheets 235– SrTiO3 678– stable 49– structure 47, 171, 721, 888–– by doping 727–– ideal 48, 49–– lattices with lower t values 48– structure 48, 49– surface area/porosity of 480– systems, investigated for NO reduction by

CO 574– titanates 215– using porous silica xerogel as hard

template 53perovskite structure LaNixFe1�xO3 506perovskite symmetry– cubic 895perovskite synthesis 32, 37– evolution of 49–– compatibility of support with desired

phase 50––method advantage of providing high surface

concentration 51–– resistance to SO2 poisoning 50–– sintering of particles 49–– specific surface areas of final products 50–– surface area 49–– thermal energy required for the

crystallization replaced by 50perovskite-type calcium manganates

(CaMnO3�δ) 190perovskite-type materials 85, 393perovskite-type mixed-conducting

materials 844Perovskite-type oxides 75– produced by flame spray pyrolysis (FSS) 72perovskite-type oxides 49, 69, 75, 83, 100, 451,

453, 456, 616– characteristics 190– in heterogeneous catalysis 72– SOFC-related 76perovskite-type oxides, investigated for NO

reduction by C3H6 575

perovskite-type oxides, investigated undersimulated exhaust conditions 577

perovskite-type oxideswith the general formulaof ABO3 572

perovskite unit cell volume (V) as a function ofoctahedral chromium content 277

peroxometal pathways 477peroxyacetyl nitrate (PAN) 559petroleum 189petroleum-derived fuels 417phase– content 295– decomposition 895– inversion process 850– purity 76, 84, 97, 99– stability 354, 724–– and purity 78– transformations 30– transforms to paraelectric cubic 216– transition 85, 196, 197, 235, 242, 355, 357,

895–– observed from XRD 219–– temperatures 354, 358, 359γ phase 242phenol– heterogeneous Fenton-like reactions of 482phenyl ketones 480phonon spectra 346phonon transfer 198phosgene gas 414phosphate fuel cells 865phosphorescence effect 238phosphoric acid fuel cell (PAFC) 865photoactivity of FexOy/TiO2 catalysts 491photoassisted Fenton oxidation 489photocatalysis 407, 478, 488photocatalyst 87, 238photocatalyst oxidizing sites 679photocatalysts containing CaTiO3 678photocatalytic activity 108, 407– of PrFeO3 490photocatalytic assisted processes– ferrites 686–– barium ferrites 687–– bismuth ferrite (BiFeO3) 689–– calcium ferrites 686–– energy band diagram of spherical

semiconductor particle 676–– rare earth ferrites 688–– strontium ferrites 686–– yttrium ferrites 687– heterogeneous photocatalysis 676– hydrogen and oxygen 675

964 Index

Page 37: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

– Ruddlesden–Popper series 676– TiO2–anatase 675– titanates 677–– barium titanates 683–– calcium titanates 677–– iron titanates 685–– lanthanum titanates 684–– strontium titanates 678photocatalytic destruction, of VOC 406, 407photocatalytic mechanism of decomposition of

oxalic and formic acids 491photocatalytic O2 evolution 684photocatalytic oxidation 475photocatalytic ozonation of dyes on copper

ferrite (CuFe2O4) nanoparticles 493photocatalytic ozonation system 493photocatalytic properties 233photocatalytic reactions 488photochemistry 25photo-Fenton catalytic activity of

hydroxy-iron–aluminum-pillared bentonite(H-Fe–Al-B) 492

photo-Fenton cycle 492photo-Fenton efficiency in degradation of

rhodamine B 490photo-Fenton oxidation of acetic acid 490, 688photo-Fenton oxidation of 4-chlorophenol

onto Al–Fe clay 492photo-Fenton processes on iron oxide 489photogenerated electron–hole pairs 682photoinduced electron–hole pairs 676photoluminescence 233photoluminescence properties 98photoluminescent emission 98photooxidation of isopropanol over 407photo-oxidative degradation of toxic organic

pollutants 478photosynthesis 539photosystem II, in plants 371photovoltaics 108physical vapor deposition methods 145piezo- and ferroelectric properties of Ln2Ti2O7

thin films– experimental setup 244– Ln2Ti2O7 (Ln = La, Pr, and Nd) thin films

grown on (100)-oriented SrTiO3

substrates 247– Ln2Ti2O7 (Ln = La, Pr, and Nd) thin films

grown on (110)-oriented SrTiO3

substrates 246– metastable Ln2Ti2O7 (Ln = Sm, Eu, and Gd)

thin films grown on (110)-oriented SrTiO3

substrates 249

piezo- and ferroelectric properties of Ln2Ti2O7

thin films 244–250piezoceramics 223piezoelectric-based flexible transducers 225piezoelectric ceramic (PZT) 221, 225, 228– vs. polymers 223piezoelectric charge constant 39piezoelectric coefficient 213, 214, 217, 221, 228– enhanced 216piezoelectric composites 224piezoelectric composites 223, 224piezoelectric constants 228piezoelectric devices 37piezoelectric domains 245, 247piezoelectric effects 212, 213piezoelectricity 212–215– intrinsic 215piezoelectric materials 212, 214, 215, 228– an overview 214– research, major breakthrough 212– and their comparison 214piezoelectric phenomena 215piezoelectric polymers 224– polyvinylidene fluoride 222piezoelectric polymers 221, 222piezoelectric properties 239piezoelectric voltage coefficient 214piezo-/ferroelectric properties 235piezoloops 246, 247, 248piezomagnetic coefficient 228piezoresponse 228– signals 246pigments, based on perovskite 259piston–cylinder press 8planar fiber robust porous substrate 723planetary, and vibrating mills 26planetary mills 27, 34plant-derived materials 517plasma activation conditions in gas, total

oxidation under 404–406plasma-driven catalysis for total oxidation of

hydrocarbons, mechanism for 431plasma emission 149plasma enhanced chemical vapor deposition

(PECVD) 16plasma particles 154plasma reactors 428plasmas advantages 428plastic deformations 27, 29, 30, 31plastics 35platinum 426platinum-based catalysts 799platinum-doped barium, uses 462

Index 965

Page 38: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

PLD system, schematic of 152Pluronic– family 705Pluronic F127, 130PM emissions 425PMMA colloidal crystals 133, 134poisoning tolerance 559Poix method 650polar catastrophe model 150, 160polar deformations 144polar favors micelles 705polarization 5, 79, 214– anisotropy 219– in crystal 215polarization resistance 175polarization vector 239polar materials 5polaron 173– transport activation energy 193pollutants, in exhaust gas 589polyalkylbenzenes 417poly(allylamine hydrochloride) 128polychlorinated dibenzofurans 426polychlorinated dioxins 414poly-citrate 13polycondensation, of ethylene glycol 396polycrystalline materials 153polycrystalline particle 30polycrystalline samples 17polycyclic aromatic hydrocarbons 424– total oxidation of 423, 424polyelectrolyte-coated PS template 128polyesterification 13poly(ethylene glycol) 129, 130poly(ethylene oxide) (PEO) 710polyhedral tilting 268polymer–ceramic hybrid piezoelectric

composites 225polymeric complex method 238polymerization initiator 130, 131, 133polymerized complex methods 480polymer templates 126– selection of 126polymethylbenzenes 417poly(methyl methacrylate (PMMA) 114polymorphic phase transition (PPT) 216polyol 13poly(sodium 4-styrenesulfonate) 128polystyrene (PS) 114POM systems air 741population of the surface Oβ species and– relationship between the 426pore sizes 48, 136, 396

pore volume 54porosity 41, 135, 136, 169, 198, 314, 316, 430,

914– measurements 54– ordered 397porous catalytic system 778porous electrode 173porous inorganic membranes (PIM) 881porous materials 301porous solids 18post-combustion 882potassium- and strontium-substituted

praseodymium manganatePr0.7Sr0.2K0.1MnO3 perovskite-typecatalysts 426

potassium cation 130potassium peroxosulfate 133, 134potassium persulfate 131potassium salt impregnation 444potassium-substituted SrTiO3 perovskite

catalysts 441potential energy 344powdered reactants 4powder X-ray diffraction diagram 4power consumption 753praseodymium 280praseodymium oxide Pr2O3 509Praxair’s oxygen transport membranes 754Pr3+ cation 728precipitation 17, 71, 76, 77, 107– of metal precursors 82– of oxide 85– rates 7– of TiO2 particles 16pre-combustion CO2 capture– proton-conducting membranes for 892precursors– decomposition 83– disordered 6– evaporation of 71– nonvolatile 71– salts, nature of 81– solubility 83– solutions–– fulfill criteria 123–– selection of 123pre-exponential factors 822preferential oxidation (PROX) 451pressure swing adsorption (PSA) 751, 786primary particles 84process simulation software 785production of nanosized BaTiO3 by USS 84production rate 81

966 Index

Page 39: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

product recovery– membrane reactor 740PROMAX 785propane 400propanol 74, 5402-propanol 407propanone 407propionic acid 74propylene 400proton-conducting membranes 892proton conductivity 324– affording H2 311proton-exchange membrane (PEM) 865proton exchange membrane fuel cell

(PEMFC) 451protonic conductivity 720proton ions 144PROX catalyst of providing oxygen species 465PROX reactions 459, 464, 465, 466, 467Pr0.7Sr0.2K0.1MnO3 perovskite-type

catalyst 445Pr2Ti2O7, Ce2Ti2O7, and Nd2Ti2O7 oxides 236Pr2Ti2O7 thin film grown on (100)-SrTiO3

substrate 248PSA off-gas 761pseudo-homogeneous diffusion–convection

equation 821Pt/Al2O3 catalysts 445Pt/alumina catalysts 47, 376Pt-based catalysts 40, 41Pt catalysts 551, 802– layer 780Pt-containing DOC catalyst 437Pt/CuLaO2-CeO2 466Pt-doped BaTiO3 459Pt-doped Mn perovskite 463Pt electrode 177, 239Pt/Fe2O3

– DRIFTS of CO adsorption 662Pt/Fe2O3 catalyst 663Pt/Fe2O3 sample– spectrum B for 6621% Pt/Fe0.25Zr0.75O2 catalyst 666Pt/Fe0.25Zr0.75O2 samples 661Pt-group metals 559, 567, 569Pt/La0.5Ce0.5MnO3

– in-situ DRIFTS spectra 598Pt/La0.7Sr0.2Ce0.1FeO3 compared– vs. Pt/SiO2, 625Pt loading 569, 596Pt nanoparticles 594, 597PTO10/STO10 superlattice 156Pt–Rh gauzes 614

Pt–Rh reference catalyst 577Pt/SiO2 catalysts 597Pt–Sn/Al–SAPO-34 catalyst 781Pt/SrTiO3 682p-type conductor 172pulse reactor– fundamental transport kinetics model 830pump–probe experiments 831pure compound 3purification, of waste gases 414purity 69PVK-carbonate-asym 912PVK-carbonate-sym 912pyrocarbonate species 328pyrochlore phases 239– stability of 295pyrochlores 144, 295pyrolysis 85, 105, 396PZT ceramics– industrial fabrication of 105PZT–plastic composites 225

qQHWGS 789quadrupole mass spectrometer 667quartz 5– crystal 146, 212quenching 244– effect 73quenching rates 76, 77, 80, 81

rRaman spectroscopy 63, 299, 427rare earth elements 233, 369rare earth oxides 290, 563rare metals 201rate constants for surface exchange at the

Ni–PVK interface 326raw materials, to synthesize LaCoO3 34Rb2La2Ti3O10 685reactants 4, 9, 16reaction apparatus, for polymerization of

MMA 133reaction engineering concepts, for OCM

reaction 519reaction milling 28reaction rate 4reactions network, taking place into cars’

exhaust catalysts 561reactive air brazing (RAB) 757reactive grinding 28reactive milling 28reactor 29

Index 967

Page 40: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

– configuration 748reactor design, synthesis– hard template, use of 701– inorganic additives 705– mesoporous oxide materials–– chemical transformation 702–– soft micelle templating 703– organic additives 706– surfactants, types of 705reagglomeration 42recovery, of RHEED intensity 158redox-active cobalt 721redox catalytic activity 369redox catalytic systems 371redox-free Z-scheme SrTiO3

– La/Rh – Ir/CoOx/Ta3N5

–– band structure 682redox migration oxygen properties 660REE-based perovskites 264REE orthoferrites 264, 265REE orthogallates 279refinement 276reforming efficiency profiles 752refractory materials 6regression analysis 822relative permittivities 317relaxation, to MEP 351renewable energy technologies 201reoxidation 372residual Si impurities 54residual stresses 904residual volume 122– structure 123resonance 174reversed loss-and-gain of one atom of oxygen

from the superlattice 372reversed uptake of oxygen, and different

sources 373–376reverse polarization experiments 247, 249reverse water–gas shift reaction (RWGS) 459,

501reversible adsorption–desorption of oxygen in

thermogravimetric O2/TPD experiments insolids 374

Reynolds number 826RFCMR concepts 742Rh/alumina-based catalyst 781Rh/Ce0.9Pr0.1O2 618rheology 14rhodamine B 86rhodium, replacement of 619rhodium-supported catalysts 545rhombohedral distortions 48

rhombohedral perovskites (Nd, Pr) 267Rh-supported catalysts 618Rideal–Eley mechanism 377, 379Rideal–Eley for methane oxidation– graphical representation of 380Rietveld refinements of (REE, Y)

orthoaluminates 266robust mixed-conducting membranes– A+B5+O3 and A3+B3+O3 719– BSCF and LSCF membranes 721– challenges 720– chemical robustness–– tolerance toward reducing

environments 731–– tolerance toward SO2, 729– chemical robustness 725–732– critical fracture stress of material 723– mixed ionic–electronic conducting

(MIEC) 720– perovskite-based membranes 720– perovskite cubic structure 719– phase stability 724rod mills 28rotary mill 34rotation speed 26ruby 17Ruddlesden–Popper family 685Ruddlesden–Popper fault layer planes 150Ruddlesden–Popper homologous series 148Ruddlesden–Popper phases 143, 147, 171, 233,

685Ruddlesden–Popper Srn+1TinO3n+1 phase 147Ruddlesson–Popper phases An+1BnO3n+1 370Ru-loaded materials 459RuNi-MCM-41, 488ruthenium 191rutiles 15, 144– films 19

ssalt-assisted spray synthesis 70salt-assistedultrasonicspraysynthesis(SASP) 85salt-assisted USP 82salt concentration 73sapphire 17SBA10 resist– to sintering 512sb initio calculations 198scanning electron microscopy images for the

vanadium 423scanning tunneling microscopy 18schematic of composite with 0–x201E;3

connectivity 224

968 Index

Page 41: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

schematic of experimental setup used for thetime-resolved imaging analysis by fastphotography technique 161

schematic representations of FSS, FH, and USSprocesses 70

Schottky junctions 682Schrödinger equation 343, 344, 345SDAs formed, by a single molecule or ion 14sealing application technique 756, 757secondary ion mass spectrometry (SIMS) 31,

180, 819Seebeck coefficient 190, 191, 199, 201, 202seed crystals 7segregated membranes 313selective catalytic reduction (SCR) 587, 804– by ammonia (SCR-NH3) 798– catalyst 809– chemical reactions 805selective catalytic reduction filters 808selective catalytic reduction filtration

(SCRF) 807selectivity 517self-diffusion 331self-diffusion coefficient 178, 179self-interaction correction 346self-regeneration 74self-supported thin membranes 755semiconducting temperature dependence 191semiconductors 16, 19– electronics 145– materials 190– –substrate system 683– technology 143SEM image of NBT ceramics synthesized

through solid-state reaction route 220SEM images– of colloidal crystal (opal structure) of PMMA

spheres and 3DOMLaFeO3 prepared by 114– of hierarchically porous Nb–TiO2 oxides 401– of LaFeO3 prepared using PMMA 135SEM images of interface between

La0.75Sr0.125Ce0.125Cr0.5Mn0.5O3�δ electrodeand YSZ electrolyte after cell test 301

SEM images ofLa0.90Sr0.10Ga0.80Mg0.20O3�δ. 293

SEM images of perovskites, obtained bydifferent preparation methods 594

SEM images of PMMA heated at 125SEM image of the NiO- Ce1�xGdxO2/

(ZrO2)0.95(Yb2O3)0.05O2/La1�xSrxMgyO3-(ZrO2)0.95(Yb2O3)0.05O2 single-cellmicrostructure 305

semipermeable membranes 169

semi-rigid solid 12SEM micrographs of LaMnO3+δ perovskites

prepared by combustion method 395SEM micrographs of pellets sintered at 299SEM pictures of PrCoO3 396sensitivity– to CO adsorption 42sensor operation temperature 306sensors 37, 39, 91, 97, 108, 144separation factor 894sequential deposition of SrO and TiO2

layers 158SFC2 films 854SFN-coated membrane 729shaking mills 27– mechanosynthesis in laboratory scale 27shear stress 28, 34shell-and-tube configuration 742shell structure 122, 123Sherwood number 826shrinkage 126Si/Al ratios 885SiC DPF– for soot removal in diesel exhausts 438SiC monoliths 824S–I interactions with pros 708Silica Aerosil 200 54silica MCM-41, 14silica mesoporous materials 701silica template, removal– by treating with aqueous NaOH solution

54silica xerogel 18silicon 147silicon oxide (SiO2) 114silicon wafer microchannel walls 780silver 75silver paste 756simulation model construction 346–348single-base metal oxides 398single crystals 3, 10, 16– accelerated crucible rotating technique

(ACRT) 17– Bridgman–Strockbarger method 17– chemical vapor transport 17– Czochralski method 17– flame fusion method (Verneuil) 17– floating zone method 17– flux method 17– hydrothermal method 17– Kyropoulos method 17– XRD analysis 264single-oxide component 370

Index 969

Page 42: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

single-phase transition from thelow-temperature 218

single Pt/Rh catalyst 562single-solid precursor 6single-vial Spex mill 33sintered density 291– of nanoparticle solid electrolytes 292sintered metal oxides 290sintering 38, 50, 903– Fe-doped materials 296– of particles 73– process 333– temperature 38, 290, 291, 295, 296, 297,

300SiO2 nanospheres 455SiO2, for optical fibers 12site requirements, importance of 400size reduction 25skeleton structure 122, 123skutterudites 190Sm0.2Ce0.8O1.9 as electrolyte 175Sm-doped ceria nanoparticles 901Sm2Ti2O7 thin film grown on (110)-SrTiO3

substrate 249Sn-beta zeolite 477SO2 contents, of effluent gases 559sodium 289sodium bismuth titanate (Na0.5Bi0.5TiO3,

NBT) 219sodium dodecyl sulfate (SDS) 708sodium oxide 17sodium/silver substitution 9SOFC anode 172SOFC applications 864SOFC cathodes 169, 175, 183SOFC electrodes 867, 873SOFC electrolyte 296SOFC, fabrication of 868SOFC technology– cost-effective 870SOFC, triple point boundary where oxygen

molecule reduction occurs 170soft surfactant-templating methods 705solar cells 147solar energy 189solar radiation 189sol–gel chemistry 103sol-gel method 291sol–gel method 476sol–gel method, based on complexation 395sol–gel, microwave synthesis 39sol–gel procedures 5, 13sol–gel processes 12

Sol–gel route 679solide fuel cell (SOFC)– principle of 170solid electrolytes 289, 290– based on ZrO2 296– component of SOFCs determining 304– materials, properties of 290–295solid flames 6solid, high-surface-area 63solidification 126– of transition metals 126solid mixture 7solid oxide fuel cell (SOFC) 5, 75, 107, 169, 289,

301, 303, 863– anode materials 874– CH4 fuel processing 866– fuel cell 864– functions and conductivities 871– i–V curve 868– perovskite process–– as cathode material 870–– low-temperature cathode materials 873– perovskites possess 870– principle of 170solid oxygen carrier 839, 842solid particles 6solid-phase materials 591solid reactants 4, 8solid–solid reactions 5, 395solid solubility– of transition metal cations 301solids, processes involving 4– ceramic method 4, 5– high-pressure methods 8– hydrothermal synthesis 7– mechanochemistry 8– microwave synthesis 5, 6– other methods starting from solids 9– precursor method 6– self-propagating high high-temperature

synthesis 6solid state 178solid-state chemistry 3, 93solid-state diffusion 29– coefficient 315solid-state gas sensors 39solid state reaction 49, 78, 84, 123solid-state synthesis 69solid-state techniques 292solubility 7, 9, 17, 73, 74– limit of Al 201– of nitrates 77– in organic acids 74

970 Index

Page 43: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

solvent 7– acts as fuel 72– evaporation 71, 83– volatility 74Sommerfeld value 195sonication process 15, 91, 92, 104sonochemical production of nanoparticles 107sonochemistry 102soot 425soot-catalysts mixtures 444soot combustion capacity 443soot combustion perovskite catalysts 439– BET surface 444– comparison of 438– deactivation of 446– kinetic and mechanistic studies 442– LaBO3 catalysts 441– microwave-assisted perovskite-catalyzed

soot combustion 446– partial substitution of cations 439– particular aspects 438– in real diesel exhausts 445– three-dimensionally ordered macroporous

soot combustion 444soot combustion reactions 439soot emissions 801soot oxidation 426, 443spark-ignited engines 799specific heat, evolution of 358specific surface areas 37, 40, 63, 69, 72, 73, 74,

75, 76, 81, 84– of the mechanosynthesized perovskites 40specular spot RHEED intensity variation during

the 2D growth by 158Spex mills 31, 35, 37sphere template 123spherical hollow particles 83spherical particles 4spin 144spin coating 19spinel–Mg-chromite 271spinels 47, 52, 144– high-surface-area 53spin functions 345spin orbitals 345spin states– for Co3+ ion 349– transitions 349spintronics 97spontaneous polarization 239– on z-direction 248spray combustion 85spray drying 50, 82

spray methods 69spray pyrolysis 76, 86, 238, 510spring constant 352spring force 352sputtering technique 19, 145, 238Sr2+ cations 602SrCe0.95Tm0.05O3�δ (SCT)– H2 permeation flux 907SrCe0.75Zr0.20Tm0.05O3�δ formulations 905SrCe0.7Zr0.25Yb0.05O3�δ membranes 905Sr0.95Co0.8Fe0.2O3�δ membrane 725Sr(Co0.8Fe0.2)0.8Ti0.2O3�δ (SCFT) HF

membranes 900SrCO3 formation 728SrCoO3�δ and related phases 199, 200SrCO3 phase 508Sr dopant, segregates to 416Sr, Fe, and Nb oxides (SFN) 729SrFeCo0.5Ox (SFC2) 853SrFeOx compounds 372SrFeO3 phase 374SrFeO3 structure 901Sr2+ ions 392SrRuO3 perovskite 101Sr substitution, in LaCoO3 and LaMnO3

perovskites 47SrTi0.1Fe0.9O3�x synthesized 687SrTiO3 (STO)– intensity RHEED monitoring of growth of

three molecular layers of 159SrTiO3 films 106SrTiO3 (STO), films 147SrTiO3 heteronanostructures 679SrTiO3 nanoparticles 681SrTiO3 nanopowders 680SrTiO3 perovskites 441, 442SrTiO3 photocatalysts 681SrTiO3 surface 679Sr1�xKxTiO3 perovskites 444Sr1�yBayCoO3�δ family 481stability– explained by 244– of F-phase 302– of La0.6Sr0.4CoO3�((LSC) membranes 899– long-term 893– of LSC membranes 914– of the metastable phase 244– m-ZrO2–α-Fe2O3 system 660– obtaining with Ca 550– under reforming conditions 62stack-like reactors 778state-of-the-art material 725state-of-the-art modular instrumentations 149

Index 971

Page 44: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

stationary conductivity measurements 176steady-state data 830steam methane reforming (SMR) 781steam permeation 311steam reforming of methane (SRM) 523steam reforming reaction 841sticking coefficients 527STO-based heterostructures 150stoichiometric expansion gradients 724stoichiometric gasoline engines 799stoichiometry– precise control of 70, 79STO single-crystal substrate 147strain effects 143, 147– induced indirect coupling 228– mediated magnetoelectric effect 227strontium 172– chromomanganite 303– doped lanthanum manganites 172– europium ratio 299– substituted LaFeO3 perovskites for soot

combustion 440strontium ferrites 686strontium-substituted lanthanum

manganite 169strontium-substituted manganites 452strontium titanate 678structural distortions 143structural engineering 216structural homogeneity– of LaCoO3 powder 72structural lattice stability 370structural phase transitions 221structural relaxation 38– coefficient 270, 271, 272, 279, 280– coefficients 279structural stability of A2B2O7 versus ionic

radii 245structural transitions and corresponding DSC

curves 392structure-director agent (SDA) 8structures of α-PVDF and β-PVDF 222strut-like bonds 123styrene, conversion of 479sublimation 14– heats of metals 888sulfates 896sulfation/desulfation behavior 593sulfides 48, 52sulfur dioxide (SO2) 591sulfuric acid 529, 531, 801sulfur poisoning– high tolerance to 563

sulfur removal, from fuel 559supercell method 348superconducting materials 10superconducting properties 150superconductivity 49, 143, 233– for La2�xSrxCuO4 234superconductors 10supercritical antisolvent precipitation 424superlattice La4Fe4O12 375superlattices 150– of complex oxides 149supersaturation 82supperlattice La4Fe4O12 376supported-Ni catalysts 545surface area 4, 40, 80, 81– evolution as function of composition and

synthesis method for 418surface contamination– problem 151surface defects 76, 87surface degradation 152surface diffusion 179– barrier energy 160– on Pt surface 597surface exchange adsorption 312surface exchange coefficient 176, 179, 180, 181,

321, 333, 334surface exchange desorption 313surface exchange kinetics 324, 901surface-exchange limitations 904surface oxygen 372surface oxygen complexes (SOC) 442surface oxygen exchange 176surface oxygen species 863surface self-exchange coefficients 331surface tension 12, 73, 83, 107surface transition metal ions 376surfactant 14surfactant-assisted sol–gel 480surfactant–inorganic (S–I) interactions– charge transfer interactions for mesoporous

TM oxides 710– Ginter interactions 707– hydrogen-bonding (S–I) interactions 711– mesoporous TM oxides 708, 709– thermodynamics of mesostructured

materials 707surfactant micellization 705, 707surfactant molecules 14surfactants 30, 42, 292– cooperative self-assembly 51– exhibits a strong influence on sintering

behavior 292

972 Index

Page 45: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

Suzuki coupling reactions 776sweep gas 750symmetry– of CaTiO3 170synchrotron radiation facility 151synergistic effects 493syngas 632, 641, 762, 765. see also synthesis gas

(syngas)syngas generation, from methane 844synthesis gas (syngas) 659, 890synthesis, of metals– grinding of halides 26Szegvari attritors 36Szegvari mills 28, 35, 36, 37, 42– configuration 35

tTammann temperature 712tantalum 191tantalum oxynitrides 415TAP experiments 832TAP measurements 621TAP reactor 830TAP-2 reactor 830tartaric acid 82TE efficiency 190teflon 7, 34TEG– conversion efficiency of 203TEM images– of Co3O4 nanocasted oxides 398– of 3DOM LaFeO3 137– of LaFeO3 421TEM microphotograph– of Ce0.78Gd0.2Sr0.02O2≏ grounded powder

prepared by Pechini sol-gel 291– of sintered electrolyte material with fluorite

structure 294temperature 15– of calcination 50– densification 290– dependence of methane combustion on 56– flame 82– gradient 7, 17– profiles of reaction rate of methane

oxidation 382temperature-programmed desorption

(TPD) 604– isotopic exchange 416temperature-programmed isotope exchange

(TPIE) 604temperature-programmed oxygen isotopic

exchange (TPOIE) 455

temperature-programmed reaction (TPR) 502,605

– of H2 54temperature-programmed superficial reaction

(TPSR) 659temperature-related oxygen

nonstoichiometry 80temperatures 289– for reactions 4templates 14, 18– crucial role 51– hard 63– hard, as precursors 52– pores 51, 54– three-dimensional structure, to maintain

51terfenol-D 228– magnetostriction value of 228ternary CeO2-ZrO2-MO systems 297ternary oxides 290Tessellation in space for the

Ba1�xSrxCo1�yFeyO3�δ (BSCF) 349tetraethyl lead 559tetrafluoromethane 405tetragonal distortions 48tetragonal zirconia-based phases 295tetrahedral fluorine 123tetraline 4171-tetralone 481tetra-n-butyl titanate 15tetraselmis suecica 677TGA approach 822TGA experiments 822theoretical background on Ab initio

calculation 343–346theoretical density 296thermal conditions 72thermal conductivity 190, 191, 196, 197, 203– lattice 190thermal conductivity and figure of merit ZT of

the series CaMn1�xMxO3�δ 195thermal destruction 613thermal diffusivity of the cubic phase 196thermal energy 50, 588thermal evaporation 290thermal expansion coefficient (TEC) 169,

175thermal gravimetric analysis (TGA) 818thermal instability 98thermally stable– porous structure 63thermal microwave effects 93thermal resistance 69, 82

Index 973

Page 46: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

thermal stability 69, 72, 74, 81, 239, 426, 559,563, 569, 572

– of oxides 398thermal treatment 29, 41, 42, 100, 122thermochemical reaction 26, 29, 41, 843thermochemical water splitting 850thermochemistry 25thermodynamic, and structural stability 370thermodynamic calculations 668thermodynamic driving force 8thermodynamic factor 178, 180thermodynamic parameters , estimated by

RE 381thermodynamic stability 376thermoelectric (TE) 190– applications 190– conversion 190– generators 189– materials 193– oxide modules and characterization

202–203– state 373– of the system 354thermoelectric modules based on oxides

(TOM) 203thermoelectric properties 198thermogravimetric analysis 507– under oxidation (TGA) of conventional

Ni/La2O3 catalysts 63thermogravimetric analyzer 857thermogravimetric measurements 178thermogravimetric oxidation/reduction

experiments 374thermopower excitation energy 193thermo-programmed reduction (TPR) 634thermosynthesis 43thin films 143, 149– coating 777– deposition methods 144– deposition techniques 145–– MBE 145–149–– PLD 149–152–– sputtering 153–155– in-situ monitoring 156–– plume analysis 159–161–– RHEED 156–158– and superlattices growth 145thin layers– interfacial and size effects in 143three-dimensionally ordered macroporous

(3DOM) materials 113, 444, 457, 848three-way catalyst (TWC) 562, 589, 799– by ceria and ceria-based mixed oxides

–– CO oxidation 567–– NO reduction by CO or HCs 568–– oxidation of hydrocarbons 568–– simulated stoichiometric exhaust

conditions 568– by ceria and ceria-based mixed oxides

565–569three-way catalytic converters (TWCs)

559–563three-way catalytic materials– potentials, aptitudes, limitations, and future

trends 562–565three-way catalytic performance 570Ti and B powders 31Ti-based perovskite mixed metal oxides 126Ti-based sol suspension 103Ti4+ ions 196time-dependent in-situ thermogravimetric

analyses of the oxygen loss and uptake ofCaMn1�xMxO3�δ 193

time-gated photography 160time-of-flight measurements 152TiO2 anatase 678TiO6 octahedra 236Ti-substituted SAPO molecular sieves 485titanates– morphological characteristics of 677– perovskites 687titania 302– formation 15– microspheres 15– particles 16titanium 170titanium dioxide 675titanium hydroxide clusters 97titanium isopropoxide 238titanium tetraisopropoxide 15, 16TM oxide-surfactant hybrid materials 709TM oxo-cluster 710– weakening 711TM sol–gel chemistry 707tolerance factor 48toluene 414, 417toluene oxidation reactions 130, 423, 455– total oxidation 418top-down methods 18total charge density 316total conduction– using four probes technique 177total conductivity 176– of perovskite 315total electrical properties 176total electron spin difference (net spin) 350

974 Index

Page 47: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

total energy 344total oxidation– of light hydrocarbons 399, 400– under plasma activation conditions 428, 429– of propane and neopentane using a

ferroelectric packed-bed plasma reactor 405– of soot 425–428, 430, 431– under thermal activation conditions 416,

417– of VOCs, under thermal activation

conditions 397, 398total resistance, of a material 177toxic by-product 3toxicity 881toxic polychlorinated dibenzodioxins 480Toyota Motors DPNR 437TPD-O2 measurements 454TPR profiles 509TPSR analyses of C3H8+CO2+He 669tracer composition gradient 176tracer diffusion coefficient 178, 179, 180– oxygen ions 179tracer for monitoring 331traditional synthesis methods, assisted by

“transformation– of liquid droplets into particles 71– into the paraelectric phase with Cmcm space

group 236trans–gauche–trans–gauche (TGTG) 222transient experiments, analysis 820transition 354transition metal (TM) 47, 143, 233, 234, 290,

352, 353, 369, 701– based materials 51– effect on conductivity 296– perovskite, reducing process 63transition metal ion (TMI) 149, 269, 296, 301,

371, 888transition metal oxides 289, 301, 476– Tammann temperatures of 712transition metals 191, 350, 549, 567– perovskites 144– substituted iron oxide catalysts 484transition temperature 358transition temperatures of BaTiO3 229transmission electron microscopy 503transport modeling 819transport properties of CaMnO3�δ 195transport properties, of CaMn1�xMxO3�δ 192,

194transverse piezoelectric coefficient 219triblock copolymer Pluronic P123 421triblock copolymers PEO–PPO–PEO 705

1,1,2-trichloroethane dehydrochlorinationpathway 403

1,1,1-trichloroethane destruction onLaMnO3+δ.

– by-products formation during 403trichloroethylene– oxidative decomposition of 405triclinic distortions 48trifluoroacetic acid 532trimethyl benzene (TMB) 706tris(2-hydroxyacetophenato)triaqua yttrium

(III) 5trontium-substituted LaMnO3 47L-tryptophan 129tube-in-tube configuration 744tubular geometry 724tubular membranes 724tumbling mills 26, 27, 28tungsten 28tungsten bronzes (NaxWO3) 10tungsten carbide 29, 34– ceramics 34tungsten diffusion 105tungsten-substituted samples 192, 196turnover frequencies (TOF) 373TWC conversion efficiency 562– CO, HCs, and NOx conversion efficiency

of 563– improvement 564– research contributions 565twinned structure of Ln2Ti2O7 237two-dimensional diffusion mechanisms 465

uUCT mesoporous materials 712ultrafine crystalline primary particles 84ultrasonic-assisted hydrothermal method 107ultrasonication 91, 104ultrasonic atomizer 105ultrasonic effects, during washing of the

gel 107ultrasonic energy 107ultrasonic irradiation 103, 104, 107ultrasonic nebulizer 84ultrasonic radiation 687ultrasonic spray combustion (USC) 82, 395ultrasonic spray pyrolysis technique 106ultrasonic spray synthesis (USS) 82–87– perovskite-typemixedoxides produced, form

of nanosized powders using 84– spherical hollow particlesspherical hollow

particles 83ultrasonic transducer 211

Index 975

Page 48: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

ultrasonic waves 82ultrasound 104ultrasound-assisted coprecipitation

method 102ultrasound-assisted methods 107ultrasound-assisted sample pretreatments 102ultrasound-assisted sol–gel method 103– of BaTiO3 nanoparticles 103ultrasound chemistry, basic concepts of 101ultrasound irradiation 107ultrasound methodology 101–107ultrasound spray pyrolysis (USP) 105– precursor solution is atomized to 105– synthesis of SrTiO3 films by 106Umklapp scattering 196UNISIM 785University of Connecticut (UCT) 711unusual valence states 369urea 291, 395, 805– decomposition of 12US Clean Air Act (US-CAA) 1975, 559U-shaped BCFT 763U-shaped BCFT hollow fiber membrane

reactor 764U-shaped Pd-based membranes 751U-shaped perovskite membrane 763UV-A irradiation 677UV irradiation 490, 679UV photocatalytic activity 684UV photons 149UV-vis light 488

vvacancy diffusivity 823– coefficient 179, 182, 315– constant 823– in perovskites 334– as rate-limiting step 322vanadia–titania systems 485vanadium oxide (V2O5) 485, 591, 806van der Waals attraction 103van der Waals bonds 14van’t Hoff equations 379vaporization– of volatile metal precursors 80vaporize volatile contaminants 6vapor phase 16vapor pressure 75variation of apparent reaction orders 383variation of conversion of naphthalene into

CO2 with 425variations of unit cell parameters of (REE)

AlO3 265

various ABO3 perovskite-type catalysts, usedfor MPO and MDR 548

Venn diagram– detailing simultaneous presence of various

properties in insulating material 213vertical attrition mill 27vinegar 8vinyl-functionalized KIT-6, 53virtual crystal approximation (VCA) 270viscosity 19, 83, 85VIS-light assisted process 492V-MCM-41 catalyst 487VMGSim 786VNb-MCM-41 catalysts 479volatile organic compounds (VOCs) 47, 238,

389– in ambient air undergo 389– biogenic 389– chlorinated 389– complete mineralization of 390– concentrations at ground level 390– distributions of 390– health risks for each 389– from industrial or other sources 390– major source of 389– negative effect of 389– oxidation 405– perovskites for total oxidation of 391, 394– pollution with 390– sensing properties, of sensors 106– total oxidation of 390– toxic 389volatile precursors 16, 81volatility 74Volkenstein mechanism 419VO4 species 483

wWagner equation 180, 320, 324Wagner hydration 323water– acting as a pressure transmitter 7water/acetic ratios 15water/alkoxide ratio 12water-gas shift (WGS) 451, 459, 577, 670, 751,

783, 882– CO2/H2 mixtures 893– reaction 460, 461, 462, 463, 670–– kinetic limitations of 460water–gas shift reaction (WGSR) 540water partial pressure 323water splitting reaction 842, 854, 855water vapor flow 890

976 Index

Page 49: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

water vapor sensitivity 42wave function 347Weibull modulus 724weight loss 375well-dispersed noble-metal-based

catalysts 453wet ball milling method 396wet-chemical methods 69, 290wet grinding 36wet-phase processes 76wide-angle powder XRD patterns– of mesoporous perovskite oxides synthesized

using 55wide-angle XRD analysis 54Wiedemann–Franz law 195wind energy 189wormhole-like mesoporous LaFeO3 455worst soot combustion catalysts 439WO3–V2O5 catalysts 48540 wt% Nd0.6Sr0.4FeO3�δ–60 wt%

Ce0.9Nd0.1O2�δ (40NSF-60CN) DPM– O2 permeation flux 904Wyckoff notation 237

xXANES spectra– of the material prepared by spray

synthesis 86xerogel 12xerogel film 12xhaust emission control– application of perovskites in, model reactions–– N2O decomposition 573XPS analyses 454XPS characterization, decreasing the

lanthanum content 399XPS data, interpretation 87X-ray absorption near edge structure

(XANES) 604X-ray absorption spectroscopy (XAS) 74,

505X-ray adsorption fine-structure (XAFS) 578X-ray analysis of oxides 297X-ray diffraction (XRD) 31, 242, 294, 818– data 726– patterns 33– patterns of Ln2Ti2O7 thin films 239– patterns of Ln2Ti2O7 thin films grown

on 242– patterns versus temperature for

La2Ti2O7 243– on perovskite-type oxides 550– on rare earth orthoferrites 418

X-ray scattering factor 355XRD patterns of La0.7Ca0.5Fe0.7Ni0.3O3 after

preparation and calcination 550XRDpatterns of Ln2Ti2O7 powders obtained by

the sol–gel route 239, 240, 242, 244xylene 16

yYAl1�xCrxO3 perovskite solid solution 270YBaCuO materials 635YCrO3 perovskite 273YFeO3 nanoparticles 688Y, REE aluminate perovskites– crystal chemistry and structural principles–– crystal structure of ideal and distorted

ternary ABO3 perovskites 263–– lattice parameters, A site coordination, and

bond valence analysis in (Y,REE)orthoaluminates 264

–– tilting of octahedral framework andtolerance factor 268

– crystal chemistry and structuralprinciples 263–268

ytterbium 280Yttria-stabilized zirconia 305yttria-stabilized zirconia (YSZ) 291, 818, 863– electrolytes 296, 867– superlattices 153yttrium 280

zzeolites 8, 9, 530, 883, 894– Fe- and Cu-containing 528– materials 621– nucleation 885– phases 809– storage 803zeolitic imidazolate framework (ZIF) 885zero electrostatic potential gradient 320zero sulfur content 587zirconate titanate (PZT) 105Zirconia (ZrO2) 29, 289, 567– balls 37– ceria-based electrolytes 290– doped with M rare earth elements 296– materials 80– oxygen vacancies 660zirconia lattice– oxygen vacancies of 663zirconia membranes 755zirconia solid solutions 297zirconium lattice 295Zn-doped BSF perovskite (BSFZ) 727

Index 977

Page 50: Index [] · 2015. 10. 23. · 3 mesocrystals 107 BaTiO 3 nanocrystals 103 BaTiO 3 nanoparticles 85, 103, 107 BaTiO 3 network 683 BaTiO 3 particles 85, 104 BaTiO 3 perovskite 39 –

Zn-doped materials 728Zn2+ ions 200ZnO lattice 200, 201ZnO loading 529ZnO nanoparticles 9ZnO for thermoelectric applications 200, 201ZOZ mills 42Zr-doped ceria 305Zr doping 908ZrO2-CeO2 system

– incorporation of a second rare earth oxidedopant in 302

ZrO2-Me2O3 systems 295ZrO2-MO systems 295ZrO2-Sc2O3 system 295ZrO2-Yb2O3-Y2O3 system– synergetic effects reported 297Z-scheme principle 683Z-STEM images of the BZY film 153ZT values 190

978 Index