in-medium cluster binding energies and mott points in low density nuclear matter

20
In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects in Low Density Nuclear Matter

Upload: zola

Post on 22-Feb-2016

38 views

Category:

Documents


0 download

DESCRIPTION

Clustering and Medium Effects in Low Density Nuclear Matter. In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter. K. Hagel SSNHIC 2014 Trento , Italy 8-Apr-2014. Outline. Experimental Setup Clusterization and observables in low density nuclear matter. - PowerPoint PPT Presentation

TRANSCRIPT

In-Medium Cluster Binding Energies and Mott Points in Low Density

Nuclear Matter

K. HagelSSNHIC 2014Trento, Italy8-Apr-2014

Clustering and Medium Effects in

Low Density Nuclear Matter

Outline

โ€ข Experimental Setupโ€ข Clusterization and observables in low

density nuclear matter.โ€ข Clusterization of alpha conjugate

nucleiโ€ข Summary

3

Cyclotron Institute, Texas A & M University

Beam Energy: 47 MeV/uReactions:40Ar + 112,124Sn

35 MeV/u40Ca + 181Ta, Ca, C

35 MeV/u28Si + 28Si

35 MeV/u40Ca + 181Ta, Ca, C

35 MeV/u28Si + 28Si

4

โ€ข 14 Concentric Ringsโ€ข 3.6-167 degreesโ€ข Silicon Coverageโ€ข Neutron Ball

S. Wuenschel et al., Nucl. Instrum. Methods. A604, 578โ€“583 (2009).

Beam Energy: 47 MeV/uReactions: 40Ar + 112,124SnNIMROD

beam

Low Density Nuclear Matterโ€ข Systems studied

โ€“ 47 MeV/u 40Ar + 112,124Snโ€“ 35 MeV/u 40Ca + 181Ta (preliminary data)

โ€ข Use NIMROD as a violence filterโ€“ Take 30% most violent collisions

โ€ข Use spectra from 40o ringโ€“ Most of yield from intermediate velocity

sourceโ€ข Coalescence analysis to extract

densities and temperaturesโ€“ Equilibrium constantsโ€“ Mott pointsโ€“ Symmetry energy

Coalescence Parameters

๐’…๐Ÿ‘๐‘ต (๐’ ,๐‘ต ,๐‘ฌ๐‘จ )๐’… ๐‘ฌ๐‘จ๐’… ๐œด =๐‘น๐’๐’‘

๐‘ต ๐‘จโˆ’๐Ÿ

๐‘ต !๐’ ! { ๐Ÿ’๐…๐Ÿ‘ ๐‘ท๐ŸŽ

๐Ÿ‘

[๐Ÿ๐’Ž๐Ÿ‘ (๐‘ฌโˆ’๐‘ฌ๐’„ ) ]๐Ÿ/๐Ÿ }๐‘จโˆ’๐Ÿ

[ ๐’…๐Ÿ‘๐‘ต (๐Ÿ ,๐ŸŽ ,๐‘ฌ )๐’… ๐‘ฌ๐’…๐œด ]

๐‘จ

๐’…๐Ÿ‘๐‘ต (๐’ ,๐‘ต )๐’…๐’‘๐Ÿ‘ =๐‘น๐’๐’‘

๐‘ต ๐‘จ๐Ÿ‘ (๐Ÿ ๐’”+๐Ÿ )๐’† (๐‘ฌ๐ŸŽ /๐‘ป )

๐Ÿ๐‘จ (๐’‰๐Ÿ‘

๐‘ฝ )๐‘จโˆ’๐Ÿ[ ๐’…๐Ÿ‘๐‘ต (๐Ÿ ,๐ŸŽ)

๐’…๐’‘๐Ÿ‘ ]๐‘จ

๐‘‰=[( ๐‘ !๐‘ ! ๐ด32๐ด ) (2๐‘ +1 )๐‘’ (๐ธ 0/๐‘‡ )]1

๐ดโˆ’1 3h3

4๐œ‹ ๐‘ƒ03

๐’…๐Ÿ‘๐‘ต (๐’ ,๐‘ต )๐’…๐’‘๐Ÿ‘ โˆ๐‘น๐’๐’‘

๐‘ต ๐’‡ (๐‘ท ๐ŸŽ)[ ๐’…๐Ÿ‘๐‘ต (๐Ÿ ,๐ŸŽ)๐’…๐’‘๐Ÿ‘ ]

๐‘จ

PRC 72 (2005) 024603

vsurf, cm/ns

t avg,

fm/c

Temperatures and Densitiesโ€ข Recall vsurf vs time calculationโ€ข System starts hotโ€ข As it cools, it expands

47 MeV/u 40Ar + 112Sn

Equilibrium constants from ฮฑ-particles model predictions

โ€ข Many tests of EOS are done using mass fractions and various calculations include various different competing species.

โ€ข If any relevant species are not included, mass fractions are not accurate.

โ€ข Equilibrium constants should be independent of proton fraction and choice of competing species.

โ€ข Models converge at lowest densities, but are significantly below data

โ€ข Lattimer & Swesty with K=180, 220 show best agreement with data

โ€ข QSM with p-dependent in-medium binding energy shifts PRL 108 (2012) 172701.

๐พ ๐‘ ( ๐ด ,๐‘ )= ๐œŒ(๐ด ,๐‘)๐œŒ๐‘๐‘ ๐œŒ๐‘›

(๐ดโˆ’๐‘ )

Density dependent binding energiesโ€ข From Albergo, recall thatโ€ข Invert to calculate binding energiesโ€ข Entropy mixing term ๐‘™๐‘› [๐พ ๐‘ /๐ถ (๐‘‡ )]=๐ต

๐‘‡ โˆ’๐‘๐‘™๐‘›( ๐‘๐ด )โˆ’๐‘๐‘™๐‘› (๐‘๐ด )

๐‘ฒ ๐’„(๐‘จ ,๐’ )=๐‚ (๐“ )๐’†(๐‘ฉ(๐‘จ ,๐’ )๐‘ป )

ฮ” ๐น=๐‘‡ (๐‘๐‘™๐‘›( ๐‘๐ด )+๐‘๐‘™๐‘›(๐‘๐ด ))

PRL 108 (2012) 062702

Symmetry energy

โ€ข Symmetry Free Energyโ€“ T is changing as ฯ increasesโ€“ Isotherms of QS calculation that includes in-medium modifications to cluster

binding energiesโ€ข Entropy calculation (QS approach)โ€ข Symmetry energy (Esym = Fsym + T Sโˆ™ sym)

โ€“ quasiparticle mean-field approach (RMF without clusters) does not agree with the data

S. Typel et al., Phys. Rev. C 81, 015803 (2010).

PRC 85, 064618 (2012).

Alpha clustering in nucleiโ€ข Ikeda diagram (K. Ikeda,

N. Takigawa, and H. Horiuchi, Prog. Theor. Phys. Suppl. Extra Number, 464, 1968.)

โ€ข Clusterization of low density nuclear matter in collisions of alpha conjugate nuclei

โ€ข Role of clusterization in dynamics and disassembly.

Estimated limit N = 10ฮฑ for self-conjugate nuclei(Yamada PRC 69, 024309)

40Ca + 40Ca

28Si + 40Ca

40Ca + 28Si 28Si + 28Si40Ca + 12C 28Si + 12C40Ca + 180Ta

28Si + 180Ta

Data Taken

10, 25, 35 MeV/u

Alpha-like multiplicities

โ€ข Large number of events with significant alpha conjugate mass for all systems

Vparallel vs Amax

โ€ข Observe mostly PLF near beam velocity for low E*โ€ข More neck (4-7 cm/ns) emission of ฮฑ-like fragments with

increasing E*

๐ธโˆ—=โˆ‘๐‘–=1

๐‘€

๐พ ๐‘๐‘ (๐‘– )+๐‘€๐‘› โŸจ๐พ ๐‘›โŸฉโˆ’๐‘„

โ€ข Heavy partner is near beam velocity

โ€ข alphas originate from neck emission

Origin of alpha conjugate clusters

Source Frame study of Origin of clusters

Origin of alpha conjugate clusters(continued)

Source Frame Origin of clusters(continued)

Summaryโ€ข Clusterization in low density nuclear matter

โ€“ In medium effects important to describe dataโ€“ Equilibrium constants

โ€ข EOS Implicationsโ€“ Density dependence of Mott pointsโ€“ Symmetry Free energy -> Symmetry Energy

โ€ข Clusterization of alpha conjugate nucleiโ€“ Large production of ฮฑ-like nuclei

โ€ข Ca + Caโ€ข Ca + Taโ€ข Ca + C

โ€“ Neck emission of alphas important

Outlook and near futureโ€ข Low density nuclear matter

โ€“ We have a set of 35 MeV/u 40Ca+181Ta and 28Si+181Ta

โ€ข Disassembly of alpha conjugate nucleiโ€“ Analysis on presented systems

continuesโ€“ Have Si + C, Si + Ta (almost calibrated)

and Ca + Si

Collaborators

J. B. Natowitz, K. Schmidt, K. Hagel, R. Wada, S. Wuenschel, E. J. Kim, M. Barbui, G. Giuliani, L. Qin, S. Shlomo, A. Bonasera, G. Rรถpke, S. Typel, Z. Chen, M. Huang, J. Wang, H. Zheng, S. Kowalski, M. R. D. Rodrigues, D. Fabris, M. Lunardon, S. Moretto, G. Nebbia, S. Pesente, V. Rizzi, G. Viesti, M. Cinausero, G. Prete, T. Keutgen, Y. El Masri, Z. Majka, and Y. G. Ma