implementing the irrigated ldlands rlregulatory program …...site 1: 600 to 700 years (1 pppp ppm...

25
Implementing the  Irrigated L d  R l  P  L ands  Regulatory  Program (ILRP) (ILRP) Scientific & Technical Approaches Cost Estimates John Schaap, P.E. Provost & Pritchard Consulting Group February 12, 2014

Upload: others

Post on 26-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Implementing the Irrigated LdLands RlRegulatory Program …...Site 1: 600 to 700 years (1 pppp ppm vs. 9 ppm NO 3) –Citrus – Drip/micro – Medium‐grained soil –Return flow:

Implementing the Irrigated L d  R l  P  Lands Regulatory Program 

(ILRP)(ILRP)

Scientific & Technical ApproachesCost EstimatesJohn Schaap, P.E.

Provost & Pritchard Consulting Groupg p

February 12, 2014

Page 2: Implementing the Irrigated LdLands RlRegulatory Program …...Site 1: 600 to 700 years (1 pppp ppm vs. 9 ppm NO 3) –Citrus – Drip/micro – Medium‐grained soil –Return flow:

Overview

Scientific and Technical Considerations andScientific and Technical Considerations and Approaches• Temporal and spatial disconnect between• Temporal and spatial disconnect between surface activities and groundwater quality;Ni H d I d (NHI) h• Nitrate Hazard Index (NHI) as an approach to designate vulnerability areas and to assess i i f i ipriority for monitoring;

Compliance cost estimate.

Page 3: Implementing the Irrigated LdLands RlRegulatory Program …...Site 1: 600 to 700 years (1 pppp ppm vs. 9 ppm NO 3) –Citrus – Drip/micro – Medium‐grained soil –Return flow:

Depth to Water, Legacy Impacts, and Time‐Lag

For deep groundwater:  For deep groundwater:• Nitrate residing in the unsaturated zone is an ongoing source to groundwater years after g g g ynitrogen is applied at ground surface;

• Addressing current farming practices will have little affect on legacy nitrate;

• Time lags exist between agricultural activities at d f d h i d tground surface and changes in groundwater 

quality.

Page 4: Implementing the Irrigated LdLands RlRegulatory Program …...Site 1: 600 to 700 years (1 pppp ppm vs. 9 ppm NO 3) –Citrus – Drip/micro – Medium‐grained soil –Return flow:

UC Davis Nitrate Loading Assessment

Nitrate Sources 1945 2007Nitrate Sources 1945-2007 (Harter et al., 2012 plus earlier activities)

Manure Separate from Crops5.4% 2003-2007 Sources

M anure

Atmospheric Deposit ion

Agricultural Wastewater

WWTP

Septic19.3%

Septic

Urban

Animal Corrals

Wells

Crops (Syn. Fert ., Irrig. Src.)59.4%Past Crops (1945-2002)

Past M anure (1945-2002)

Past Other (1945-2002)

59.4%

Page 5: Implementing the Irrigated LdLands RlRegulatory Program …...Site 1: 600 to 700 years (1 pppp ppm vs. 9 ppm NO 3) –Citrus – Drip/micro – Medium‐grained soil –Return flow:

UC Davis Nitrate Loading Assessment

Nitrate Sources 1945 2007Nitrate Sources 1945-2007 (Harter et al., 2012 plus earlier activities)

Manure Separate from Crops5.4% 2003-2007 Sources

Legacy Loading is84% of Total

M anure

Atmospheric Deposit ion

Agricultural Wastewater

WWTP

Septic19.3%

Septic

Urban

Animal Corrals

Wells

Crops (Syn. Fert ., Irrig. Src.)59.4%Past Crops (1945-2002)

Past M anure (1945-2002)

Past Other (1945-2002)

59.4%

Page 6: Implementing the Irrigated LdLands RlRegulatory Program …...Site 1: 600 to 700 years (1 pppp ppm vs. 9 ppm NO 3) –Citrus – Drip/micro – Medium‐grained soil –Return flow:

Unsaturated Zone: A Reservoir for Nitrate

Page 7: Implementing the Irrigated LdLands RlRegulatory Program …...Site 1: 600 to 700 years (1 pppp ppm vs. 9 ppm NO 3) –Citrus – Drip/micro – Medium‐grained soil –Return flow:

Water Level and Nitrate Concentration

Rise in groundwater table

Page 8: Implementing the Irrigated LdLands RlRegulatory Program …...Site 1: 600 to 700 years (1 pppp ppm vs. 9 ppm NO 3) –Citrus – Drip/micro – Medium‐grained soil –Return flow:

Depth to Water, Legacy Impacts, and Time‐Lag

• Successful trend analysis requires favorable signal toSuccessful trend analysis requires favorable signal to noise ratio;  

• Predicting the long term fate of nitrate and pesticides g g pin ground water in this region is difficult owing to intensive ground water pumping, mixed sources of recharge water, and complex flow paths.

Page 9: Implementing the Irrigated LdLands RlRegulatory Program …...Site 1: 600 to 700 years (1 pppp ppm vs. 9 ppm NO 3) –Citrus – Drip/micro – Medium‐grained soil –Return flow:

Transit Time

Site 1: 600 to 700 years (1 ppm vs. 9 ppm NO3)y ( pp pp 3)– Citrus– Drip/micro– Medium‐grained soil– Return flow:  2.3 inches/yr

/ /– N lost:  15 lbs/ac/yr– Stratigraphy:  Loam to clay at depth500 ft to groundwater– 500 ft to groundwater

Page 10: Implementing the Irrigated LdLands RlRegulatory Program …...Site 1: 600 to 700 years (1 pppp ppm vs. 9 ppm NO 3) –Citrus – Drip/micro – Medium‐grained soil –Return flow:

Transit Time

Site 2:  45 to 55 years (1 ppm vs. 9 ppm NO3)y ( pp pp 3)– Almonds– Drip/micro (90%) and Border strip (10%)– Coarse‐grained soil– Return flow:  5.0 inches/yr

/ /– N lost:  15 lbs/ac/yr– Stratigraphy:  Interlayered sand and clay330 ft to groundwater– 330 ft to groundwater

Page 11: Implementing the Irrigated LdLands RlRegulatory Program …...Site 1: 600 to 700 years (1 pppp ppm vs. 9 ppm NO 3) –Citrus – Drip/micro – Medium‐grained soil –Return flow:

Transit Time

Site 3:  10 to 15 years (1 ppm vs. 9 ppm NO3)y ( pp pp 3)– Cotton/wheat– Furrow/border– Coarse‐grained soil– Return flow:  16.4 inches/yr

/ /– N lost:  55 lbs/ac/yr– Stratigraphy:  Interlayered sand and clay150 ft to groundwater– 150 ft to groundwater

Page 12: Implementing the Irrigated LdLands RlRegulatory Program …...Site 1: 600 to 700 years (1 pppp ppm vs. 9 ppm NO 3) –Citrus – Drip/micro – Medium‐grained soil –Return flow:

Nitrate Vulnerability

• Not practical to only focus on hydrogeology andNot practical to only focus on hydrogeology and water quality in the Groundwater Quality Assessment Report (GAR);

• Surface factors need to be accounted for;• Need to look at present leaching vulnerability, not p g ylegacy impacts;

• Focus monitoring and regulatory effort accordingly (and don’t dedicate resources where they are not needed).

Page 13: Implementing the Irrigated LdLands RlRegulatory Program …...Site 1: 600 to 700 years (1 pppp ppm vs. 9 ppm NO 3) –Citrus – Drip/micro – Medium‐grained soil –Return flow:

Nitrate Hazard Index (NHI)

• Developed in 1994 by the StateDeveloped in 1994 by the State Water Board Nutrient Technical Advisory Committee (TAC).

• Growers or coalitions can identify field nitrate leaching vulnerability based on:– Soil characteristics;– Crops; and,– Irrigation techniques.

Page 14: Implementing the Irrigated LdLands RlRegulatory Program …...Site 1: 600 to 700 years (1 pppp ppm vs. 9 ppm NO 3) –Citrus – Drip/micro – Medium‐grained soil –Return flow:

Nitrate Hazard Index (NHI)

• Results in an index or ranking allowing to determineResults in an index or ranking allowing to determine risk severity and identify the major factors contributing to the risk;

• Does not provide an absolute value of N leaching; rather an index that provides a ranking within an overall spectrum.

Page 15: Implementing the Irrigated LdLands RlRegulatory Program …...Site 1: 600 to 700 years (1 pppp ppm vs. 9 ppm NO 3) –Citrus – Drip/micro – Medium‐grained soil –Return flow:

Nitrate Hazard Index (NHI)

• Each soil series, crop type, and irrigation technique is assigned a value (1 = low vulnerability, 5 = high vulnerability):– Crop and irrigation technique values range from 1 – 4;Soil values range from 1 5;– Soil values range from 1 – 5;

• The rankings are multiplied together resulting in the NHI 

i lcomposite value;• The NHI composite value is a 

relative value that indicates potential field N leaching risk.

Page 16: Implementing the Irrigated LdLands RlRegulatory Program …...Site 1: 600 to 700 years (1 pppp ppm vs. 9 ppm NO 3) –Citrus – Drip/micro – Medium‐grained soil –Return flow:

Nitrate Hazard Index (NHI)

Benefits of NHI:Benefits of NHI:• Can be customized to specific regions;• Has relatively low data requirements, is quick, y q , q ,and low‐cost when compared to other techniques to determine nitrate leaching;R l li bl f l d i li l• Results are applicable, useful, and require little interpretation; and,

• Representative of current conditions and• Representative of current conditions, and these are the only conditions that can be changed.

Page 17: Implementing the Irrigated LdLands RlRegulatory Program …...Site 1: 600 to 700 years (1 pppp ppm vs. 9 ppm NO 3) –Citrus – Drip/micro – Medium‐grained soil –Return flow:

Nitrate Hazard Index (NHI)

Page 18: Implementing the Irrigated LdLands RlRegulatory Program …...Site 1: 600 to 700 years (1 pppp ppm vs. 9 ppm NO 3) –Citrus – Drip/micro – Medium‐grained soil –Return flow:

Nitrate Hazard Index (NHI)

Page 19: Implementing the Irrigated LdLands RlRegulatory Program …...Site 1: 600 to 700 years (1 pppp ppm vs. 9 ppm NO 3) –Citrus – Drip/micro – Medium‐grained soil –Return flow:

Nitrate Hazard Index (NHI)

• Focus on areas or aspects that will reduceFocus on areas or aspects that will reduce leaching potential;

• Can also prioritize efforts based on the NHI• Can also prioritize efforts based on the NHI composite value;H l d i l• Help determine management plan implementation scheduling. 

Page 20: Implementing the Irrigated LdLands RlRegulatory Program …...Site 1: 600 to 700 years (1 pppp ppm vs. 9 ppm NO 3) –Citrus – Drip/micro – Medium‐grained soil –Return flow:

Nitrate Hazard Index (NHI)

• Additional variables can likely be included in a modified NHI ycalculation to strengthen its predictive capability.

• These variables can include, but are not limited to:– Nitrogen use efficiency;– Effective precipitation;Depth to groundwater;– Depth to groundwater;

– Variations in stratigraphy and soil type; and,– Specific best management practices (BMPs)Specific best management practices (BMPs).

• The NHI approach is a powerful, flexible, and defensible tool that can be used for assessing large areas over time and documenting relative nitrate leaching hazards.

Page 21: Implementing the Irrigated LdLands RlRegulatory Program …...Site 1: 600 to 700 years (1 pppp ppm vs. 9 ppm NO 3) –Citrus – Drip/micro – Medium‐grained soil –Return flow:

General Order Compliance CostGeneral Order Compliance Cost

Page 22: Implementing the Irrigated LdLands RlRegulatory Program …...Site 1: 600 to 700 years (1 pppp ppm vs. 9 ppm NO 3) –Citrus – Drip/micro – Medium‐grained soil –Return flow:

General Order Compliance Cost

• RWQCB estimated costs were developedRWQCB estimated costs were developed using the July 2010 Technical Memorandum Concerning the Economic Analysis of the ILRP – before Draft Order;

• The Order is vague in describing implementation practices and requirements;  

• No firm $/ac costs – depends greatly on size of coalition, size of farm, and specific conditions.

Page 23: Implementing the Irrigated LdLands RlRegulatory Program …...Site 1: 600 to 700 years (1 pppp ppm vs. 9 ppm NO 3) –Citrus – Drip/micro – Medium‐grained soil –Return flow:

RWQCB vs. P&P Annualized Costs

Current  RWQCB P&PConditional Waiver($/ac/yr)

RWQCB9/18/13($/ac/yr)

P&P9/18/13($/ac/yr)

Administration $0.91 $1.29 $1.32Farm Planning $0.00 $1.71 $3.30Monitoring/Monitoring/ Reporting/ Tracking $0.79 $3.33 $5.42

Management Practices $15.95 $20.21 $23.14Practices

Total $17.65 $26.55 $33.19

Page 24: Implementing the Irrigated LdLands RlRegulatory Program …...Site 1: 600 to 700 years (1 pppp ppm vs. 9 ppm NO 3) –Citrus – Drip/micro – Medium‐grained soil –Return flow:

Cost Estimate Differences

RWQCB P&PRWQCB P&P

Estimated Average Incremental Cost $8.90 / acre / yr $15.54 / acre / yr

Big differences:• Management Practices Evaluation Program (MPEP)Management Practices Evaluation Program (MPEP)• Nitrogen Management Plan (NMP)

A t O d i l t ti t ti t diffi lt tAccurate Order implementation cost estimates are difficult to obtain due to complex yet vague requirements.

Page 25: Implementing the Irrigated LdLands RlRegulatory Program …...Site 1: 600 to 700 years (1 pppp ppm vs. 9 ppm NO 3) –Citrus – Drip/micro – Medium‐grained soil –Return flow:

QUESTIONS?