impact with rigid tutorial

Upload: ahbenli6439

Post on 14-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Impact With Rigid Tutorial

    1/142013 Hormoz Zareh 1 Portland State University, Mechanical Engineerin

    AbaqusCAE(ver.6.12)ImpacttutorialProblemDescription

    Analuminumpartisdroppedontoarigidsurface.Theobjectiveistoinvestigatethestressanddeformationsduring

    theimpact.

  • 7/27/2019 Impact With Rigid Tutorial

    2/14

    2013 Hormoz Zareh 2 Portland State University, Mechanical Engineerin

    AnalysisSteps1. StartAbaqusandchoosetocreateanewmodeldatabase2. InthemodeltreedoubleclickonthePartsnode(orrightclickonpartsandselectCreate)

    3. IntheCreatePartdialogbox(shownabove)namethepartBracketa. Select3Db. SelectDeformablec. SelectSolidd. Setapproximatesize=200e. ClickContinue

    4. Createthegeometryshownbelow(notdiscussedhere). Dimensionsareinmillimeters.a. Extrudetheshapetoadepthof20.

  • 7/27/2019 Impact With Rigid Tutorial

    3/14

    2013 Hormoz Zareh 3 Portland State University, Mechanical Engineerin

    5. IntheCreatePartdialogbox(shownabove)namethepartRigida. Select3Db. SelectAnalyticalrigidc. Setapproximatesize=200d. ClickContinue

    6. Createthegeometryshownbelow(notdiscussedhere). Dimensionsareinmillimeters.

    a. Settheextrusiondepthto200mm.

    7. Createadatumpointatthecenteroftheplate(midwaybetweendiagonalpoints).

    8. FromthemenubarselectToolsReferencePoint

  • 7/27/2019 Impact With Rigid Tutorial

    4/14

    2013 Hormoz Zareh 4 Portland State University, Mechanical Engineerin

    a. Selectthedatumpointjustcreated.b. Thereferencepointwillbecreatedas

    shown.

    9. Createasurfaceontherigidplate.a. ClickontheToolsSurfaceCreateb. Selecttherigidplate.c. Youwillbepromptedtopickasideforinternalfaces.Pickthecolorthatis

    likelycandidateastheimpactsurface.Inthisexample,Brownhasbeenselected.

    10.DoubleclickontheMaterialsnodeinthemodeltree

    a. NamethenewmaterialAluminumandgiveitadescriptionb. ClickontheMechanicaltabElasticityElasticc. DefineYoungsModulusandthePoissonsRatio(useSI(mm)units)

    i. Youngsmodulus=70e3,Poissonsratio=0.33d. Sincethisisanexplicitmodel,materialdensitymustalsobedefinede. ClickontheGeneraltabDensity

    i. Density=2.6e6f. ClickOK

  • 7/27/2019 Impact With Rigid Tutorial

    5/14

    2013 Hormoz Zareh 5 Portland State University, Mechanical Engineerin

    11.DoubleclickontheSectionsnodeinthemodeltreea. Namethesectionbracket_secandselectSolidforthecategoryandHomogeneousforthetypeb. ClickContinuec. Selectthematerialcreatedabove(Aluminum)andClickOK

    12.ExpandthePartsnodeinthemodeltree,expandthenodeofthepartBracket,anddoubleclickonSectionAssignments

    a. SelecttheentiregeometryintheviewportandpressDoneinthepromptareab. Selectthesectioncreatedabove(bracket_sec)c. ClickOK

  • 7/27/2019 Impact With Rigid Tutorial

    6/14

    2013 Hormoz Zareh 6 Portland State University, Mechanical Engineerin

    13.ExpandtheAssemblynodeinthemodeltreeandthendoubleclickonInstancesa. SelectDependentfortheinstancetypeb. Selecttheparts:Bracketandrigidc. SelectAutooffsetfromotherinstancesd. ClickOK

    14.Now,rotatethebracketsothattheimpactwilloccuratthelowerrightcorner. Thiswillbaaccomplishedbyrotatingtheobjectfirstwithrespecttothezaxisfollowedbyrotationaboutxaxis.

    a. SelectRotateInstanceicon.b. SelecttheBracketc. Acceptthedefaultvaluesofstartingpoint(0,0,0)bypressingEnterd. Enter(0,0,1)fortheendpointofrotationaxis.e. Enter 15(degrees)forAngleofRotation.

    Theassemblyshouldlooksimilartothescreenshot

    below.Besuretoconfirmthefinalrotatedposition

    byclickingonOKatthepromptregion!

    15.Now,rotatethebracketaboutthexaxis.a. SelectRotateInstanceicon.b. SelecttheBracketc. Acceptthedefaultvaluesofstartingpoint(0,0,0)bypressingEnterd. Enter(1,0,0)fortheendpointofrotationaxis.e. Enter 15(degrees)forAngleofRotation.Besuretoconfirmthefinalrotatedpositionby

    clickingonOKatthepromptregion!

  • 7/27/2019 Impact With Rigid Tutorial

    7/14

    2013 Hormoz Zareh 7 Portland State University, Mechanical Engineerin

    Theassemblyshouldlooksimilartothescreenshotbelow.

    16. InthetoolboxareaclickontheTranslateInstanceicona. SelecttheBracketgeometry,clickDoneb. Selectthebottomcornerofthebracketasshown.c. SelectthereferencepointontheRigidmemberastheendpoint.d.

    ClickOk

    e. Thecompletedassemblyshouldnowlooklikeisshownbelow.

  • 7/27/2019 Impact With Rigid Tutorial

    8/14

    2013 Hormoz Zareh 8 Portland State University, Mechanical Engineerin

    17.DoubleclickontheStepsnodeinthemodeltreea. Namethestep,settheproceduretoGeneral,selectDynamic,

    Explicit,andclickContinue

    b. OntheEditSteppageundertheBasictab,setthetimeperiodto0.02seconds.

    18.DoubleclickontheBCsnodeinthemodeltreea. Nametheboundaryconditionfix_rigid_plateandselect

    Symmetry/Antisymmetry/Encastreforthetype.

    b. SelectthereferencepointonthebracketgeometryandclickDonec. SelectENCASTREfortheboundaryconditionandclickOK

    19.Open FieldOutputRequestsnodeinthemodeltreea. DoubleclickontheFOutput1.b. ChangethevalueofIntervalto100.Thisallowsfor

    capturingofmoreoutputincrementssothatimpact

    canbebettervisualized.

    c. YoumaywishtoalsochangetheHistoryoutputRequeststoallowforbetterresolutionofhistory

    outputplots.

  • 7/27/2019 Impact With Rigid Tutorial

    9/14

    2013 Hormoz Zareh 9 Portland State University, Mechanical Engineerin

    20.SelecttheCreatePredefinedFieldiconundertheLoadmodule.a. Namethepredefinedfield.b. PullldownInitialstepundertheStepselection(seefigure).c. SettheCategorytoMechanicalandbesureVelocityisselected.d. Notethepromptregionasksyoutoselecttheregions.

    e. Rotatetheimageonthescreensothatthebracketcanbehighlighted.Besuretherigidplateisnotselected!

    f. ClickDoneinthepromptregion.g. Whenprompted,Enter 500[mm/s]intheV2fieldoftheEditPredefinedFieldwindow.The

    velocityvectors

    should

    now

    be

    displayed

    on

    the

    screen.

  • 7/27/2019 Impact With Rigid Tutorial

    10/14

    2013 Hormoz Zareh 10 Portland State University, Mechanical Engineerin

    21.DoubleclickontheInteractionPropertiesnodeinthemodeltreea. NametheinteractionpropertiesandselectContactforthetype,clickContinue

    b. OntheMechanicaltabSelectTangentialBehaviori. SetthefrictionformulationtoPenaltyii. SetFrictionCoefficientto0.5

    c. OntheMechanicaltabSelectNormalBehaviord. Acceptdefaults,

    ClickOK

    22.DoubleclickontheInteractionsnodeinthemodeltreea. Nametheinteraction,selectGeneralContact(Explicit)

    (Explicit)andclickContinue

    b. SelectAll*withselfontheEditInteractionsWindow.c. Besuretoassigntheappropriateinteractionpropertyunder

    GlobalPropertyassignmentintheContactPropertiestabof

    thewindow.

    d. Changethecontactinteractionpropertiestotheonecreatedabove(ifnotalreadydone)

    e. ClickOK

  • 7/27/2019 Impact With Rigid Tutorial

    11/14

    2013 Hormoz Zareh 11 Portland State University, Mechanical Engineerin

    23.OpentheFieldOuput1andchangetheIntervalfortheoutputrequestto100.

    24. InthemodeltreedoubleclickonMeshfortheBracketpart,orusetheModulesectionoftheiconpanelasshown.

    a. SelectExplicitforelementtypeb.

    Select

    Quadratic

    for

    geometric

    order

    c. Select3DStressforfamilyd. SelectTettabandbesuretheelementisC3D10Me. SelectOK

    YoumaychecktheMeshControltobesureonlyTETelements

    arebeingusedinmeshing.

    25. InthetoolboxareaclickontheSeedParticona. UnderSizingControlssetApproximateglobalsizeto2,ClickOK

    26. InthetoolboxareaclickontheMeshParticon

  • 7/27/2019 Impact With Rigid Tutorial

    12/14

    2013 Hormoz Zareh 12 Portland State University, Mechanical Engineerin

    a. ClickYes

    Caution: Themeshwillexceedtheabilityofstudentversionofthe

    softwaretosolve.YouneedtouseeitherAcademicversionorthe

    Researchversiontobeabletorunthejob.

    27. InthemodeltreedoubleclickontheJobnodea. Namethejobb. Givethejobadescription,clickContinuec.

    Accept

    defaults,

    click

    OK

    28. InthemodeltreerightclickonthejobjustcreatedandselectSubmita. WhileAbaqusissolvingtheproblemrightclickonthejobsubmitted,andselectMonitorb.

    In

    the

    Monitor

    window

    check

    that

    there

    are

    no

    errors

    or

    warnings

    i. Ifthereareerrors,investigatethecause(s)beforeresolvingii. Iftherearewarnings,determineifthewarningsarerelevant,somewarningscanbesafely

    ignored.Anexampleisinformationwarningmessagebelow:

    Theoption*boundary,type=displacementhasbeenused;checkstatusfilebetweenstepsforwarningsonanyjumpsprescribedacrossthestepsindisplacementvaluesoftranslationaldof.Forrotationaldofmakesurethattherearenosuchjumps.Alljumpsindisplacementsacrossstepsareignored

  • 7/27/2019 Impact With Rigid Tutorial

    13/14

    2013 Hormoz Zareh 13 Portland State University, Mechanical Engineerin

    29. Inthemodeltreerightclickonthesubmittedandsuccessfullycompletedjob,andselectResults30.31.Toseetheeffectofimpact,youcaneitheranimatethedeformedshape,orstepthrougheachtimestepof

    thesolution.Herethestepbystepmethodisdiscussed.

    a. Inthetoolboxareaclickonthefollowingiconsi.Plot

    Contours

    on

    Deformed

    Shape

    ii. SwitchtotheFirststepofthesolution.iii. ClickontheNextstep.iv. Repeatafewtimesandobservethechangeinthestresscontours,and

    alsobesurethecontactdoesnotextendintotherigidsurface.Youallalsonoticethatthe

    Bracketwillstarttoseparatefromtherigidplate!

  • 7/27/2019 Impact With Rigid Tutorial

    14/14

    32.Youmayalsowishtoseethebehaviorofthesystemenergy,specificallymakingsuretheartificialstrainenergyisnotasubstantialpercentageoftheoverall(Internal)energyofthesystem.

    a. ClickontheCreateXYDataicon.b. BesuretheSourceisODB

    Historyoutputthenclick

    Continue

    c. HoldtheCTRLkeyandselecttheenergy

    terms

    you

    wish

    to

    plot.

    IN

    the

    example

    belowInternalandArtificalenergy termshave

    beenselected.

    YoullnotethatArtificialEnergyisaverysmallportionoftheoverallInternalEnergy,thusthemodel

    seemstobevalid,atleastfromthestandpointofelementbehaviorandpossibilityoferrorsdueto

    meshing.