iaea workshop on nsdd, trieste, november 2003 the nuclear shell model p. van isacker, ganil, france...

38
IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of the shell model: Racah’s SU(2) pairing model Wigner’s SU(4) symmetry Elliott’s SU(3) model of rotation

Upload: marcus-leonard

Post on 27-Dec-2015

218 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

The nuclear shell model

P. Van Isacker, GANIL, France

Context and assumptions of the model

Symmetries of the shell model:Racah’s SU(2) pairing model

Wigner’s SU(4) symmetry

Elliott’s SU(3) model of rotation

Page 2: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Overview of nuclear models

• Ab initio methods: Description of nuclei starting from the bare nn & nnn interactions.

• Nuclear shell model: Nuclear average potential + (residual) interaction between nucleons.

• Mean-field methods: Nuclear average potential with global parametrization (+ correlations).

• Phenomenological models: Specific nuclei or properties with local parametrization.

Page 3: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Ab initio methods

• Faddeev-Yakubovsky: A≤4

• Coupled-rearrangement-channel Gaussian-basis variational: A≤4 (higher with clusters)

• Stochastic variational: A≤7

• Hyperspherical harmonic variational:

• Green’s function Monte Carlo: A≤7

• No-core shell model: A≤12

• Effective interaction hyperspherical: A≤6

Page 4: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Benchmark calculation for A=4

• Test calculation with realistic interaction: all methods agree.

• But Eexpt=-28.296 MeV need for three-nucleon interaction.

Ψ δ r −rkl( )k<l

4

∑ Ψ

H. Kamada et al., Phys. Rev. C 63 (2001) 034006

Page 5: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Basic symmetries

• Non-relativistic Schrödinger equation:

• Symmetry or invariance under:– Translations linear momentum P– Rotations angular momentum J=L+S– Space reflection parity – Time reversal

H =pk

2

2mkk=1

A

∑ + W2 ξk,ξl( )k<l

A

∑ + W3 ξk,ξl,ξm( )k<l<m

A

∑ +L

ξk ≡r r k,

r σ k,

r τ k{ },

r p k =−ih

r ∇ k[ ]

Page 6: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Nuclear shell model

• Separation in mean field + residual interaction:

• Independent-particle assumption. Choose V and neglect residual interaction:

H =pk

2

2mkk=1

A

∑ + W ξk,ξl( )k<l

A

=pk

2

2mk

+V ξk( )⎡

⎣ ⎢ ⎤

⎦ ⎥ k=1

A

∑mean field

1 2 4 4 4 3 4 4 4 + W ξk,ξl( )

k<l

A

∑ − V ξk( )k=1

A

∑⎡

⎣ ⎢ ⎤

⎦ ⎥

residualinteraction1 2 4 4 4 4 3 4 4 4 4

H ≈HIP =pk

2

2mk

+V ξk( )⎡

⎣ ⎢ ⎤

⎦ ⎥ k=1

A

Page 7: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Independent-particle shell model

• Solution for one particle:

• Solution for many particles:

pk2

2mk

+V ξk( )⎡

⎣ ⎢ ⎤

⎦ ⎥ φi k( ) =Eiφi k( ) φi k( ) ≡φi

r r k,

r σ k,

r τ k( )[ ]

Φi1i2K i A1,2,K ,A( ) = φik

k( )k=1

A

HIPΦi1i2K i A1,2,K ,A( ) = Eik

k=1

A

∑⎛ ⎝ ⎜ ⎞

⎠ Φi 1i2K iA 1,2,K ,A( )

Page 8: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Independent-particle shell model

• Antisymmetric solution for many particles (Slater determinant):

• Example for A=2 particles:

Ψi1i2K i A1,2,K ,A( ) =

1A!

φi1 1( ) φi 12( ) K φi1 A( )

φi 21( ) φi 2

2( ) K φi 2A( )

M M O M

φiA 1( ) φiA 2( ) K φiA A( )

Ψi1i2 1,2( )=12

φi1 1( )φi 22( ) −φi1 2( )φi2 1( )[ ]

Page 9: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Hartree-Fock approximation

• Vary i (ie V) to minize the expectation value of H in a Slater determinant:

• Application requires choice of H. Many global parametrizations (Skyrme, Gogny,…) have been developed.

δΨi1i2K iA

* 1,2,K ,A( )HΨi1i2K i A1,2,K ,A( )dξ1dξ2K dξA∫

Ψi1i 2K iA* 1,2,K ,A( )Ψi1i2K iA

1,2,K ,A( )dξ1dξ2K dξA∫=0

Page 10: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Poor man’s Hartree-Fock

• Choose a simple, analytically solvable V that approximates the microscopic HF potential:

• Contains– Harmonic oscillator potential with constant .

– Spin-orbit term with strength ls.

– Orbit-orbit term with strength ll.

• Adjust , ls and ll to best reproduce HF.

HIP =

pk2

2m+

12

mω2rk2 −ζls

r l k ⋅

r s k −ζll lk

2⎡

⎣ ⎢ ⎤

⎦ ⎥ k=1

A

Page 11: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Energy levels of harmonic oscillator• Typical parameter

values:

• ‘Magic’ numbers at 2, 8, 20, 28, 50, 82, 126, 184,…

hω ≈41A−1/3 MeV

ζlsh2 ≈20A−2/3 MeV

ζll h2 ≈0.1MeV

∴ b≈1.0A1/6 fm

Page 12: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Evidence for shell structure

• Evidence for nuclear shell structure from– Excitation energies in even-even nuclei– Nucleon-separation energies– Nuclear masses– Nuclear level densities– Reaction cross sections

• Is nuclear shell structure modified away from the line of stability?

Page 13: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Shell structure from Ex(21)

• High Ex(21) indicates stable shell structure:

Page 14: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Shell structure from Sn or Sp

• Change in slope of Sn (Sp) indicates neutron (proton) shell closure (constant N-Z plots):

A. Ozawa et al., Phys. Rev. Lett. 84 (2000) 5493

Page 15: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Shell structure from masses

• Deviations from Weizsäcker mass formula:

Page 16: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Shell structure from masses

• Deviations from improved Weizsäcker mass formula that includes nn and n+n terms:

Page 17: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Validity of SM wave functions • Example: Elastic electron

scattering on 206Pb and 205Tl, differing by a 3s proton.

• Measured ratio agrees with shell-model prediction for 3s orbit with modified occupation.

QuickTime™ et undécompresseur TIFF (non compressé)sont requis pour visionner cette image.

J.M. Cavedon et al., Phys. Rev. Lett. 49 (1982) 978

Page 18: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Nuclear shell model

• The full shell-model hamiltonian:

• Valence nucleons: Neutrons or protons that are in excess of the last, completely filled shell.

• Usual approximation: Consider the residual interaction VRI among valence nucleons only.

• Sometimes: Include selected core excitations (‘intruder’ states).

H =pk

2

2m+V ξk( )

⎣ ⎢ ⎤

⎦ ⎥ k=1

A

∑ + VRI ξk,ξl( )k<l

A

Page 19: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

The shell-model problem

• Solve the eigenvalue problem associated with the matrix (n active nucleons):

• Methods of solution:– Diagonalization (Strasbourg-Madrid): 109

– Monte-Carlo (Pasadena-Oak Ridge):– Quantum Monte-Carlo (Tokyo):– Group renormalization (Madrid-Newark): 10120

′ i 1K ′ i n VRI ξk,ξl( )

k<l

n

∑ i1K in 1K ni1K in ≡Ψi1K in 1K n( )[ ]

Page 20: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Residual shell-model interaction

• Four approaches:– Effective: Derive from free nn interaction taking

account of the nuclear medium.– Empirical: Adjust matrix elements of residual

interaction to data. Examples: p, sd and pf shells.– Effective-empirical: Effective interaction with

some adjusted (monopole) matrix elements.– Schematic: Assume a simple spatial form and

calculate its matrix elements in a harmonic-oscillator basis. Example: interaction.

Page 21: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Schematic short-range interaction

• Delta interaction in harmonic-oscillator basis.

• Example of 42Sc21 (1 active neutron + 1 active proton):

Page 22: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Symmetries of the shell model

• Three bench-mark solutions:– No residual interaction IP shell model.– Pairing (in jj coupling) Racah’s SU(2).– Quadrupole (in LS coupling) Elliott’s SU(3).

• Symmetry triangle:

HIP =pk

2

2m+

12

mω2rk2 −ζls

r l k ⋅

r s k −ζll lk

2⎡

⎣ ⎢ ⎤

⎦ ⎥ k=1

A

+ VRI ξk,ξl( )k<l

A

Page 23: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Racah’s SU(2) pairing model

• Assume large spin-orbit splitting ls which implies a jj coupling scheme.

• Assume pairing interaction in a single-j shell:

• Spectrum of 210Pb:

j2JM J Vpairing j2JM J =−1

22j +1( )g, J =0

0, J ≠0

⎧ ⎨ ⎩

Page 24: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Solution of pairing hamiltonian

• Analytic solution of pairing hamiltonian for identical nucleons in a single-j shell:

• Seniority (number of nucleons not in pairs coupled to J=0) is a good quantum number.

• Correlated ground-state solution (cfr. super-fluidity in solid-state physics).

jnυJ Vpairingξk,ξl( )k<l

n

∑ jnυJ =−14 G n−υ( ) 2j −n−υ +3( )

G. Racah, Phys. Rev. 63 (1943) 367

Page 25: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Pairing and superfluidity

• Ground states of a pairing hamiltonian have superfluid character:– Even-even nucleus (=0):– Odd-mass nucleus (=1):

• Nuclear superfluidity leads to– Constant energy of first 2+ in even-even nuclei.– Odd-even staggering in masses.– Two-particle (2n or 2p) transfer enhancement.

S+( )n j /2

o

aj+ S+( )

nj /2o

Page 26: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Superfluidity in semi-magic nuclei• Even-even nuclei:

– Ground state has =0.

– First-excited state has =2.

– Pairing produces constant energy gap:

• Example of Sn nuclei:

Ex 21+

( )=12 2j +1( )g

Page 27: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Two-nucleon separation energies

• Two-nucleon separation energies S2n:

(a) Shell splitting dominates over interaction.

(b) Interaction dominates over shell splitting.

(c) S2n in tin isotopes.

Page 28: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Generalized pairing models

• Trivial generalization from a single-j shell to several degenerate j shells:

• Pairing with neutrons and protons:– T=1 pairing: SO(5).– T=0 & T=1 pairing: SO(8).

• Non-degenerate shells:– Talmi’s generalized seniority.– Richardson’s integrable pairing model.

S+ ∝ 12 2j+1 aj

+×aj+

( )0

0( )

j∑

Page 29: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Pairing with neutrons and protons

• For neutrons and protons two pairs and hence two pairing interactions are possible:– Isoscalar (S=1,T=0):

– Isovector (S=0,T=1):−S+

01⋅S−01, S+

01= l +12 a

l 12

12

+ ×al 12

12

+⎛ ⎝

⎞ ⎠

001( )

, S−01 = S+

01( )

+

−S+10⋅S−

10, S+10 = l +1

2 al 1

212

+ ×al 1

212

+⎛ ⎝

⎞ ⎠

010( )

, S−10 = S+

10( )

+

Page 30: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Superfluidity of N=Z nuclei• Ground state of a T=1 pairing hamiltonian for

identical nucleons is superfluid, (S+)n/2o.• Ground state of a T=0 & T=1 pairing

hamiltonian with equal number of neutrons and protons has different superfluid character:

Condensate of ’s ( depends on g0/g1).• Observations:

– Isoscalar component in condensate survives only in N~Z nuclei, if anywhere at all.

– Spin-orbit term reduces isoscalar component.

cosθS+10⋅S+

10 −sinθS+01⋅S+

01( )

n/4o

Page 31: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Wigner’s SU(4) symmetry• Assume the nuclear hamiltonian is invariant

under spin and isospin rotations:

• Since {S,T,Y} form an SU(4) algebra:– Hnucl has SU(4) symmetry.– Total spin S, total orbital angular momentum L,

total isospin T and SU(4) labels () are conserved quantum numbers.

Hnucl,Sμ[ ]= Hnucl,Tν[ ] = Hnucl,Yμν[ ] =0

Sμ = sμ k( ),k=1

A

∑ Tν = tν k( )k=1

A

∑ , Yμν = sμ k( )k=1

A

∑ tν k( )

E.P. Wigner, Phys. Rev. 51 (1937) 106F. Hund, Z. Phys. 105 (1937) 202

Page 32: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Physical origin of SU(4) symmetry

• SU(4) labels specify the separate spatial and spin-isospin symmetry of the wavefunction:

• Nuclear interaction is short-range attractive and hence favours maximal spatial symmetry.

Page 33: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Breaking of SU(4) symmetry

• Breaking of SU(4) symmetry as a consequence of– Spin-orbit term in nuclear mean field.– Coulomb interaction.– Spin-dependence of residual interaction.

• Evidence for SU(4) symmetry breaking from– Masses: rough estimate of nuclear BE from

decay: Gamow-Teller operator Y,1 is a generator of SU(4) selection rule in ().

B N,Z( )∝ a+bgλμν( ) =a+b λμν C2 SU 4( )[ ]λμν

Page 34: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

SU(4) breaking from masses

• Double binding energy difference Vnp

Vnp in sd-shell nuclei:

δVnp N,Z( )=14 B N,Z( )−B N −2,Z( )−B N,Z−2( )+B N −2,Z−2( )[ ]

P. Van Isacker et al., Phys. Rev. Lett. 74 (1995) 4607

Page 35: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

SU(4) breaking from decay

• Gamow-Teller decay into odd-odd or even-even N=Z nuclei:

P. Halse & B.R. Barrett, Ann. Phys. (NY) 192 (1989) 204

Page 36: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Elliott’s SU(3) model of rotation

• Harmonic oscillator mean field (no spin-orbit) with residual interaction of quadrupole type:

H =pk

2

2m+

12

mω2rk2⎡

⎣ ⎢ ⎤

⎦ ⎥ k=1

A

∑ −κQ⋅Q,

Qμ =4π5

rk2Y2μ ˆ r k( )

k=1

A

∑ + pk2Y2μ ˆ p k( )

k=1

A

∑⎛ ⎝ ⎜ ⎞

J.P. Elliott, Proc. Roy. Soc. A 245 (1958) 128; 562

Page 37: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Importance and limitations of SU(3)

• Historical importance:– Bridge between the spherical shell model and the

liquid droplet model through mixing of orbits.– Spectrum generating algebra of Wigner’s SU(4)

supermultiplet.

• Limitations:– LS (Russell-Saunders) coupling, not jj coupling

(zero spin-orbit splitting) beginning of sd shell.– Q is the algebraic quadrupole operator no

major-shell mixing.

Page 38: IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of

IAEA Workshop on NSDD, Trieste, November 2003

Generalized SU(3) models

• How to obtain rotational features in a jj-coupling limit of the nuclear shell model?

• Several efforts since Elliott:– Pseudo-spin symmetry.– Quasi-SU(3) symmetry (Zuker). – Effective symmetries (Rowe).– FDSM: fermion dynamical symmetry model.– ...