hydrological study cfrs-m -2013

85
ESTUDIO HIDROLÓGICO SUPERFICIAL PARA DETERMINAR LOS ESCURRIMIENTOS PLUVIALES DE LAS SUBCUENCAS SAN JOSÉ DEL VALLE Y PINO SOLO, HASTA EL PUNTO DE SALIDA DENOMINADO “CFRS-M. (MUNICIPIO RAMOS ARIZPE, COAHUILA DE ZARAGOZA) JULIO, 2013 No full version. Copyright TRADECO GROUP

Upload: carlos-andres-castano-vargas

Post on 19-Aug-2015

32 views

Category:

Documents


0 download

TRANSCRIPT

ESTUDIO HIDROLÓGICO SUPERFICIAL

PARA DETERMINAR LOS ESCURRIMIENTOS

PLUVIALES DE LAS SUBCUENCAS SAN JOSÉ

DEL VALLE Y PINO SOLO, HASTA EL PUNTO

DE SALIDA DENOMINADO “CFRS-M”.

(MUNICIPIO RAMOS ARIZPE, COAHUILA DE

ZARAGOZA)

JULIO, 2013

No full

versi

on.

Copyri

ght T

RADECO GROUP

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página i

M.C. Carlos Andrés

Castaño Vargas.

Ing. Silvio Cuevas

Romero.

Ing. Armando Herrera

Barrientos.

Elaboró. Revisó. Vo. Bo.

No full

versi

on.

Copyri

ght T

RADECO GROUP

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página ii

ÍNDICE

1 ANTECEDENTES ........................................................................................................ 2

2 OBJETIVOS .................................................................................................................. 4

2.1 GENERAL .............................................................................................................. 4

2.2 ESPECÍFICOS ....................................................................................................... 4

3 ALCANCES. .................................................................................................................. 4

4 ZONA DE ESTUDIO .................................................................................................... 5

4.1 DELIMITACIÓN DEL ÁREA DE APORTACIÓN, POR MEDIO DE LAS

SUBCUENCAS DE LA CONAGUA. .............................................................................. 6

4.1.1 GENERALIDADES ....................................................................................... 6

4.1.2 REGIONES HIDROLÓGICAS ADMINISTRATIVAS (RHA) ................ 7

4.1.3 SUBCUENCAS HIDROLÓGICAS DE APORTACIÓN AL PUNTO DE

SALIDA DEL CFRS-M. ............................................................................................... 8

4.2 CARACTERÍSTICAS DEL SITIO DE ESTUDIO ............................................ 9

4.2.1 GEOLOGÍA DEL SITIO. .............................................................................. 9

4.2.1.1 Estratigrafía del sitio. ................................................................................ 9

4.2.1.2 Geología estructural. ............................................................................... 10

4.2.1.3 Geología del subsuelo. ............................................................................ 11

4.2.2 TIPO DE SUELO Y USO ACTUAL. ......................................................... 12

4.2.2.1 Tipo de suelo ........................................................................................... 12

4.2.2.2 Uso de suelo actual. ................................................................................. 15

4.2.3 HIDROGRAFÍA. .......................................................................................... 20

4.2.4 HIDROGEOLOGÍA. ................................................................................... 21

4.2.4.1 Tipo de acuífero. ..................................................................................... 21

4.2.4.2 Parámetros hidráulicos ............................................................................ 21

4.2.4.3 Piezometría .............................................................................................. 22

4.2.4.4 Comportamiento hidráulico..................................................................... 22

Profundidad a nivel estático ................................................................. 22 4.2.4.4.1

Elevación del nivel estático .................................................................. 22 4.2.4.4.2

5 METODOLOGÍA ....................................................................................................... 23

5.1 ANÁLISIS DE LLUVIAS MÁXIMA EN 24 HORAS E ISOYETAS ............. 23

5.1.1 ESTACIONES METEOROLÓGICAS ...................................................... 23

5.1.1.1 Análisis de Información y Series anuales de Precipitación Máxima en 24

h ................................................................................................................. 24

No full

versi

on.

Copyri

ght T

RADECO GROUP

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página iii

5.1.2 ANÁLISIS DE FRECUENCIA, POR MEDIO DE LA DISTRIBUCIÓN

GUMBEL ..................................................................................................................... 26

5.1.2.1 Distribución Gumbel ............................................................................... 27

5.1.2.2 Comportamiento de la precipitación en cada estación con respecto a los

períodos de retorno. ................................................................................................... 34

5.1.2.3 Comprobación dela regionalización de estaciones, para comprobar su

elección. ................................................................................................................. 34

5.1.3 DESTRIBUCIÓN ESPACIAL DE LA PRECIPITACIÓN ..................... 38

5.2 CÁLCULO DE GASTO MÁXIMO ................................................................... 41

5.2.1 MÉTODO RACIONAL AMERICANO. .................................................... 41

5.2.1.1 Determinación de los parámetros de diseño. ........................................... 42

Determinación del coeficiente de escurrimiento (C)............................ 42 5.2.1.1.1

Tiempo de Concentración de la Cuenca (TC). ...................................... 43 5.2.1.1.2

Intensidad de lluvia .............................................................................. 44 5.2.1.1.3

5.2.1.2 Resultados ............................................................................................... 45

Gasto máximo ...................................................................................... 45 5.2.1.2.1

Gráfica del Gasto Máximo de salida a diferentes períodos de retornos, 5.2.1.2.2

para su posterior uso en el análisis hidráulico del cauce “La Encantada”. ............ 45

5.2.2 MÉTODO GRÁFICO DE LA SCS ............................................................. 46

5.2.2.1 Condiciones ............................................................................................. 46

5.2.2.2 Estimación de la lámina de escurrimiento............................................... 46

5.2.2.3 Clasificación de grupo de uso de suelo y valor de CN............................ 48

Grupo de uso de suelo .......................................................................... 48 5.2.2.3.1

Uso de Suelo actual y Valor de la CN .................................................. 48 5.2.2.3.2

Estimación de descarga pico ................................................................ 49 5.2.2.3.3

Coeficientes de distribución de la lluvia tipo por la SCS ..................... 50 5.2.2.3.4

5.2.2.4 Resultados ............................................................................................... 51

Gasto máximo ...................................................................................... 51 5.2.2.4.1

Gráfica del Gasto Máximo de salida a diferentes períodos de retornos, 5.2.2.4.2

para su posterior uso en el análisis hidráulico del cauce “La Encantada”. ............ 56

5.2.3 DIFERENCIA DE RESULTADOS POR MÉTODOS UTILIZADOS ... 57

Gasto máximo ...................................................................................... 57 5.2.3.1.1

Gráfica del Gasto Máximo de salida a diferentes períodos de retornos y 5.2.3.1.2

métodos de estimación, para su posterior uso en el análisis hidráulico del cauce

“La Encantada”. ..................................................................................................... 57

Método seleccionado. ........................................................................... 57 5.2.3.1.3

No full

versi

on.

Copyri

ght T

RADECO GROUP

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página iv

5.3 SIMULACIÓN HIDROLÓGICA, ESTIMADA POR EL MÉTODO SCS. .. 58

5.3.1 DESCRIPCIÓN DEL SOFTWARE HEC-HMS ....................................... 58

5.3.2 DATOS DE ENTRADA A LA SIMULACIÓN POR DIFERENTES

PERÍODOS DE RETORNO. ..................................................................................... 58

5.3.3 RESULTADOS DE LA SIMULACIÓN, POR EL MÉTODO SCS. ....... 59

5.3.3.1 Representación gráfica de las subcuencas ingresadas al simulador HEC-

HMS. ................................................................................................................. 59

5.3.3.2 Hidrograma de salida para diferentes períodos de retorno ...................... 59

6 CONCLUSIÓN ............................................................................................................ 60

7 REFERENCIAS .......................................................................................................... 61

ANEXOS DIGITALES ...................................................................................................... 62

ANEXO DIGITAL 1 ....................................................................................................... 63

ANEXO DIGITAL 2 ....................................................................................................... 72

ANEXO DIGITAL 3 ....................................................................................................... 73

ANEXO DIGITAL 4 ....................................................................................................... 76

No full

versi

on.

Copyri

ght T

RADECO GROUP

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página v

ÍNDICE DE FIGURAS

Figura 1. Zona de estudio. ...................................................................................................... 5 Figura 2. Regiones Hidrológicas Administrativas. (Fuente: Comisión Nacional del Agua,

2011) ....................................................................................................................................... 7 Figura 3. Delimitación de la subcuencas de aportación ......................................................... 8 Figura 4. Tipo de rocas en la zona de estudio ........................................................................ 9 Figura 5. Sistema de Geología, Era, Falla y Minas en la zona de estudio ........................... 11 Figura 6. Tipo de suelo ......................................................................................................... 14 Figura 7. Uso de suelo en las subcuencas de estudio. .......................................................... 20 Figura 8. Red hidrológica de la zona de estudio................................................................... 21 Figura 9. Región Hidrológica Administrativa VI, y Ubicación de las Estaciones

Meteorológicas Seleccionadas. ............................................................................................. 24

Figura 10. Distribución de la precipitación máxima en 24 h por estación y período de

retorno ................................................................................................................................... 34 Figura 11. Tabla de datos ingresada al software IBM SPSS Statistcs .................................. 34 Figura 12. Gráfica de sedimentación para decidir los componentes principales.................. 36 Figura 13. Componentes principales por estación ................................................................ 37 Figura 14. Agrupación de estaciones por análisis cluster ..................................................... 38 Figura 15. Isoyetas para una precipitación máxima de 24 h, y un período de retorno de 5

años. ...................................................................................................................................... 39 Figura 16. Isoyetas para una precipitación máxima de 24 h, y un período de retorno de 20

años. ...................................................................................................................................... 39 Figura 17. Isoyetas para una precipitación máxima de 24 h, y un período de retorno de 50

años. ...................................................................................................................................... 40 Figura 18. Isoyetas para una precipitación máxima de 24 h, y un período de retorno de 100

años. ...................................................................................................................................... 40 Figura 19. Isoyetas para una precipitación máxima de 24 h, y un período de retorno de 1000

años. ...................................................................................................................................... 41 Figura 20. Intensidades de diseño para diferentes estaciones y períodos de retorno.

(Determinar en las isoyetas el valor que está próximo al centroide). ................................... 44 Figura 21. Gasto máximo en el punto de salida “CFRS-M”, para diferentes períodos de

retorno. .................................................................................................................................. 45 Figura 22. Gasto máximo en el punto de salida “CFRS-M”, para diferentes períodos de

retorno. .................................................................................................................................. 56 Figura 23. Gasto máximo en el punto de salida “CFRS-M”, para diferentes períodos de

retorno y métodos de estimación. ......................................................................................... 57

Figura 24. Representación gráfica del área tributaria de las subcuencas. ............................ 59

Figura 25. Hidrograma simulado en el Pto. CFRS-M, a diferentes períodos de retorno. .... 59

No full

versi

on.

Copyri

ght T

RADECO GROUP

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página vi

ÍNDICE DE TABLAS

Tabla 1. Proporción de superficie y tipo de suelo ................................................................ 12 Tabla 2. Uso de suelo, y su porcentaje de participación en función del área. ...................... 15 Tabla 3. Clave del SMN de las estaciones seleccionadas .................................................... 25 Tabla 4. Serie de datos de precipitación máxima en 24 h, desde 1950 a 2010 .................... 25 Tabla 5. Valores de yn y σn, Según los números de datos. ................................................... 28 Tabla 6. Distribución Gumbel para la estación “Cuatro Ciénagas”. .................................... 29 Tabla 7. Distribución Gumbel para la estación “La Cruz”. .................................................. 30 Tabla 8. Distribución Gumbel para la estación “Las Comitas”. ........................................... 31 Tabla 9. Distribución Gumbel para la estación “Chupaderos del Indio”. ............................ 32 Tabla 10. Distribución Gumbel para la estación “Matehuala”. ............................................ 33 Tabla 11. Extraída del IBM SPSS, de valor de la Media y desviación estándar .................. 35

Tabla 12. Correlación de comunidades ................................................................................ 35 Tabla 13. Resultados de autovalores, variancia y selección de los mejores factores

representativos de la muestra. ............................................................................................... 35 Tabla 14. Peso de cada variable por factor ........................................................................... 36 Tabla 15. Valores de los componentes por factores seleccionados (Caso presente Factor 1

Vs 2) ..................................................................................................................................... 36 Tabla 16. Precipitación asociada a los períodos de retorno para cada estación ................... 38 Tabla 17. Determinación del coeficiente de escurrimiento .................................................. 42 Tabla 18. Resultados del tiempo de concentración por diferentes métodos. ........................ 44 Tabla 19. Parámetros para determinar el Gasto Máximo ..................................................... 45 Tabla 20. Grupo de uso de suelo .......................................................................................... 48 Tabla 21. Valores de CN asociados al uso de Suelo (Ver Anexo Digital 3) ........................ 49

Tabla 22. Coeficientes de regresión de distribución de tormenta Tipo I A .......................... 50 Tabla 23. Gasto máximo para un período de retorno de 5 años. .......................................... 51 Tabla 24. Gasto máximo para un período de retorno de 20 años. ........................................ 52 Tabla 25. Gasto máximo para un período de retorno de 50 años. ........................................ 53 Tabla 26. Gasto máximo para un período de retorno de 100 años. ...................................... 54 Tabla 27. Gasto máximo para un período de retorno de 1000 años. .................................... 55 Tabla 28. Parámetros para determinar el Gasto Máximo ..................................................... 56 Tabla 29. Gasto Máximo por método de estimación. ........................................................... 57

Tabla 30. Datos de entrada al HEC-HMS. ........................................................................... 58 Tabla 31. Gasto Máximo por método de estimación. ........................................................... 59

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 1

INTRODUCCIÓN

La Hidrología en su definición más simple es la ciencia que estudia la distribución,

cuantificación y utilización de los recursos hídricos que están disponibles en el globo

terrestre. Estos recursos se distribuyen en la atmósfera, la superficie terrestre y las capas del

suelo. Como ha ocurrido con otras ciencias, a medida que los estudios hidrológicos se

fueron desarrollando fue necesario dividir el tema general en una serie de tópicos

especializados e interdisciplinarios que se agruparon bajo el nombre de Planeamiento de los

Recursos Hidráulicos. En el planeamiento se incluyen como temas principales la

Meteorología, la Hidrología Superficial y la Hidrología del Agua Subterránea.

La Meteorología trata de los fenómenos que se desarrollan en la atmósfera y de la

relación que existe entre los componentes del sistema solar. La Hidrología Superficial

estudia la distribución de las corrientes de agua que riegan la superficie de la tierra y los

almacenamientos en depósitos naturales como lagos, lagunas o ciénagas. Por último, en la

Hidrología del Agua Subterránea se incluyen los estudios de los almacenamientos

subterráneos, o acuíferos, en lo referente a localización, volumen, capacidad de

almacenamiento y posibilidad de recarga.

Los aspectos que tienen una relación muy estrecha con los anteriores en la

Planeación de Proyectos de Ingeniería son: Geografía Física y Económica, Hidráulica

Fluvial (Canales abiertos), Hidráulica Marítima, Hidrogeología, Geotecnia, Estadística,

Teoría de Probabilidades, e Ingeniería de Sistemas.

Además se tienen los modelos hidrológicos, que reproducen el fenómeno lluvia-

escurrimiento de una cuenca, y pueden clasificarse de manera general en globales y

distribuidos; Los modelos globales consideran básicamente a la precipitación y a las

características físicas como un promedio de toda la cuenca, en cambio, los modelos

distribuidos sí toman en cuenta la variación espacial de la precipitación y las características

fisiográficas de la propia cuenca, mediante una discretización de los parámetros de entrada.

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 2

1 ANTECEDENTES

El presente proyecto se realizó en cumplimiento a las solicitudes del cliente

OIEGSA (Operadora de Infraestructura de Guanajuato S.A. de C.V.), en especial para

determinar los gastos máximos en diferentes periodos de retorno (5, 20,50, 100 y 1000

años), como parámetro importante, para así alimentar el siguiente Estudio Hidráulico del

Cauce, y a través de la simulación de éste, se definirán las cotas topográficas denominadas

como NAME (por sus siglas es Nivel de Aguas Máximas Extraordinarias) y a su vez

implementar diferentes escenarios hidráulicos para obtener la mejor solución desde el punto

de vista hidráulico, ambiental y económico.

Se utilizó información oficial del INEGI del año 2011, para realizar el presente y de

ésta forma se consideró las cartas topográficas, Modelos Digitales de Elevación (DEM, por

sus siglas en ingles), Red Hidrológica Nacional, Tipo de Suelo y Uso actual, en escalas de

1:500,000 y 1:250,000. Además se obtuvo por medio de la CONAGUA (Comisión

Nacional del Agua) y CONAPO (Consejo Nacional de Población) las Regiones

Hidrológicas Administrativas, Subcuencas y Microcuencas en escalas 1:500,000, para

estimar los parámetros físicos de las Subcuencas

En las Subcuencas de San José del Valle y Pino solo, no se pudo conocer los gastos

máximos de estaciones hidrométricas cercanas al sitio de estudio, pero No obstante a que se

carece de ésta información hidrométrica que permita realizar un cotejo de lo real medido Vs

los resultados de Gastos Máximo del presente estudio. La anterior comparación de datos,

generaría mayor confiabilidad al presente, sin embargo es posible realizar la estimación de

Gasto Máximo, con la aplicación de dos metodologías diferentes (Racional Americana y

SCS- por sus siglas en inglés, Servicio de Conservación de Suelos) y posterior a ello

realizar un análisis profundo, de cada uno de los parámetros tales como: Precipitación que

proviene de las Estaciones meteorológicas, y que las anteriores estén de la región

hidrológica, Tipo de suelo, Uso de Suelo, Vegetación, Coeficiente de escurrimiento, Área

de aportación, pendiente y tiempo de concentración.

En la actualidad, las condiciones demográficas e industriales en las zonas urbanas y

en casos las rurales tales como: Saltillo, y Ramos Arizpe, son dinámicas en el tiempo y

espacio, por tal razón, es importante considerar lo anterior en el estudio. Debido que al

seleccionar un periodo de retorno en particular, es fundamental considerar los cambios en el

uso de suelo o Coeficientes de escurrimiento. Al no poder determinar, los cambios futuros,

se consideró como antecedente del presente, diferentes referencias bibliográficas y artículos

científicos para determinar el coeficiente de escurrimiento, asociado a diferentes periodos

de retorno, y así representar el fenómeno del Gasto Máximo en condiciones futuras.

Aunado a todo lo anterior, y considerando los artículos de la IPCC (Por su siglas en

ingles significa, Grupo Intergubernamental de Expertos sobre el Cambio Climático),

menciona que el cambio en la temperatura frecuentemente viene acompañado por cambios

en la humedad atmosférica y, en consecuencia, en el régimen de lluvias. Ambos cambios,

tienen efectos en eventos importantes como la formación de huracanes y la ocurrencia de

inundaciones. El vapor de agua total en el aire sobre los océanos aumentó 1.2% por década,

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 3

lo que ya podría estarse reflejando en cambios en las precipitaciones, tanto en forma de

lluvia como de nieve. En el último siglo se han incrementado significativamente las

precipitaciones en las zonas orientales de América del Norte y América del Sur, Europa

septentrional, Asia septentrional y el este de Australia. Con respecto a la intensidad de las

lluvias, el IPCC indica que es probable que se hayan incrementado muchas regiones de la

Tierra a partir del año 1950. En México hemos vivido situaciones similares en los estados

de Tabasco, Chiapas y Durango, donde ocurrieron graves inundaciones en el 2007 y 2013

a causa de las fuertes lluvias y cambios en su régimen de ocurrencia, además las más graves

registradas en los últimos 50 años observados.

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 4

2 OBJETIVOS

2.1 GENERAL

Determinar los gastos máximos para los períodos de retorno de 5,20, 50, 100 y 1000

años.

2.2 ESPECÍFICOS

1. Identificar las estaciones meteorológicas cercanas a las subcuencas.

2. Generar un comportamiento estadístico del registro histórico de la precipitación.

3. Identificar por medio de la información digital del INGECI, la delimitación de

subcuencas, tipo de suelo, red hidrológica, uso del suelo y demás que influyen en el

Gasto Máximo.

4. Cotejar los resultados obtenidos por los Métodos Racional Americano y Gráfico

SCS con respecto a la simulación en el software HEC-HMS.

5. Ilustrar los hidrogramas de salida para períodos de retorno de 5, 20, 50, 100 y 1000

años.

3 ALCANCES.

1. Los resultados del presente, no definirán ningún nivel tirante máximo asociado a

diferentes periodos de retorno en el cauce “La Encantada”, debido que en éste solo

realiza la transformación de la lluvia en escurrimiento superficial, que es afectada

por diferentes parámetros particulares del entorno de estudio.

2. El presente estudio contempla información del INEGI, del año 2011 y posiblemente

algunas de las características de las zonas han sido modificadas desde aquel

entonces hasta la fecha, por lo cual se obtuvo valores de coeficientes de

escurrimiento para 5, 20, 50, 100 y 1000 años, para así estimar el Gasto Máximo

con los cambios futuros en las condiciones y usos del suelo.

3. Los resultados generados del presente serán variados, pero de estos se utilizará

específicamente el estimado de Gasto máximo, asociado a diferentes periodos de

retorno, y en consecuencia a éste último, será utilizado en el siguiente estudio

Hidráulico como parámetro de entrada, en el sistema, y allí determinar las

velocidades, Número de Froude, pendientes, Tirantes y tipo de flujo, en diferentes

escenarios aplicados en el cauce problema “La Encantada”. Lo cual conllevará a

tomar la mejor decisión desde el punto de vista Ambiental, Económico, Hidrológico

e hidráulico.

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 5

4 ZONA DE ESTUDIO

La zona de estudio se localiza al Norte de México, en proximidades de la Ciudad de

Saltillo del Estado de Coahuila de Zaragoza, e igual se puede apreciar en la margen

izquierda superior de la Figura 1, y el terreno donde se está construyendo el CFRS-M., se

ubica en cercanías del municipio de Ramos Arizpe, a aproximadamente 58 km., y esto

genera un tiempo promedio de recorrido de 50 min., entre los puntos nombrados

anteriormente.

Para llegar al CFRS-M., desde Ramos Arizpe es necesario tomar la carretera federal

#57 que va de Saltillo a Monclova, y a la altura del Km. 33 de la misma, se visualiza el

puente Gardenias, y desde allí se tiene acceso a la vía de terracería (Camino de Acceso, con

encadenamiento K0+000), la cual cruza al K8+500 la línea férrea de propiedad de

FERROMEX y en el K10+000 aproximadamente se encuentra la “Exhacienda de

Mesillas”, posterior a éste, se encuentra el CFRS-M., en el K18+000, y continuando por el

mismo hasta terminar, se encuentra la localidad de “El Paredón” al K29+000 (Véase la

Figura 1.).

Figura 1. Zona de estudio.

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 6

4.1 DELIMITACIÓN DEL ÁREA DE APORTACIÓN, POR MEDIO DE LAS SUBCUENCAS DE LA CONAGUA.

4.1.1 GENERALIDADES

Para el presente, se consideraron los polígonos o áreas de aportación suministrados

por la CONAGUA e INEGI en medio digital, debido que cumplen con todos los requisitos

metodológicos de delimitación de Cuencas Hidrológicas, Subcuencas y Microcuencas. Y

allí mismo establecieron los criterios para su respectiva delimitación, los cuales se

mencionan (INEGI et al, 2007):

1. Las cuencas son unidades morfográficas, por lo cual su delimitación debe estar

regida únicamente por variables topográficas e hidrográficas, dejando de lado

criterios como: tamaño, uso del suelo, grado de contaminación y/o características

administrativas.

2. La delimitación debe presentar consistencia y homogeneidad para todo el territorio

nacional.

3. Se delimitaron cuencas principales de tipo exorreico, endorreico y arreico

empleando siempre información e insumos con escala 1:250,000

Consideraciones para el proceso de delimitación: Inicialmente el mapa fue

elaborado por el Instituto Nacional de Ecología en el 2003 (INE, 2003), y el mismo

constituyó el insumo principal para la elaboración del mapa final de cuencas hidrográficas

INEGI-CNA, por lo cual los pasos (a), (c) y parcialmente el (d), descritos a continuación,

fueron retomados de dicho mapa. Los pasos metodológicos seguidos para la obtención del

mapa de cuencas hidrográficas fueron:

a) Integración, revisión y rectificación de la red hidrográfica y las curvas de nivel a

escala 1:250 000 de todo el país

b) Generación del Modelo Digital de Elevación a partir del continuo de curvas de

nivel corregido y la elaboración de un modelo sombreado del relieve.

c) Complementación e incremento de la red de drenaje superficial, infiriendo

corrientes a partir del análisis de las curvas de nivel y el modelo sombreado.

d) Identificación y trazado de las divisorias de aguas a partir de la visualización de

las curvas de nivel, la hidrografía y modelos sombreados del relieve, es decir, se

realizaron trazados en dicho taller de expertos de cartografía, de los parteaguas

sobre las inflexiones de las curvas de nivel de máxima altura relativa, en la zona

límite entre laderas de exposición opuesta, separando a los diferentes sistemas

hidrográficos junto con sus áreas de drenaje a través de su configuración

geomorfológica (morfográfica). Se verificaron dichos límites, analizándolos en

pantallas estereoscópicamente para los modelos de sombreados del terreno de

todo el país.

e) Para asistir la delimitación de algunas cuencas endorreicas y arreicas del norte y

del sureste del país, se utilizaron los boletines hidrológicos de la Secretaría de

Recursos Hidráulicos de 1970 con la finalidad de complementar el mapa e

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 7

incrementar la precisión de los límites trazados con ayuda del insumo base

(mapa topográfico 1: 250 000 INEGI)

f) Los límites de las cuencas en las zonas costeras, fueron revisados y rectificados

utilizando compuestos de color derivados de imágenes satelitales. Dichos

compuestos fueron visualizados en pantalla con una escala de despliegue

comparable a la del insumo base (1:250 000) para tener congruencia con el nivel

de detalle de la delimitación original.

g) La delimitación preliminar de las cuencas fue puesta a revisión por un grupo de

expertos nacional, con la finalidad de aumentar su exactitud y de incluir aquellas

cuencas que no pudieron ser delimitadas hasta esta fase del trabajo, pero que

poseen una gran importancia en la eco-geográfica regional.

h) Posteriormente, se obtuvo el mapa final de cuencas hidrográficas de México,

implementada bajo un ambiente de SIG, lo que permitió y permitirá

paralelamente la generación de tabla de atributos, que contiene las propiedades

básicas de las cuencas.

4.1.2 REGIONES HIDROLÓGICAS ADMINISTRATIVAS (RHA)

De acuerdo a las Estadísticas del Agua en México Edición 2010, elaboradas por la

Comisión Nacional del Agua, una región hidrológica se puede definir como «Área

territorial conformada en función de sus características orográficas e hidrológicas, con el

fin de agrupar la información hidrológica y de calidad del agua. Los límites regionales no

coinciden con los estatales ni los municipales.» (Véase la Figura 2)

Lo anterior es de conformidad con el artículo 7, del reglamento interior de la

Comisión Nacional del Agua, que delega a las instituciones territoriales para la

administración y el uso del agua. (Comisión Nacional del Agua, 2011)

Figura 2. Regiones Hidrológicas Administrativas. (Fuente: Comisión Nacional del

Agua, 2011)

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 8

4.1.3 SUBCUENCAS HIDROLÓGICAS DE APORTACIÓN AL PUNTO DE SALIDA DEL CFRS-M.

Considerando lo anterior, y la ubicación del predio donde se construye el CFRS-M,

que está en una zona de depresión topográfica, y la cual pertenece a la Región Hidrológica

No. VI, denominada como “Rio Bravo-San Juan”, de la división realizada por la Comisión

Nacional del Agua (Véase la Figura 2).

El área presenta escurrimientos de agua solo en temporadas de lluvia, y la longitud

del cauce principal es de 106.90 Km. presentando una pendiente media del 1.809 %. y está

constituida básicamente su aportación por dos subcuencas denominadas como: San Jose

del Valle y Pino Solo, que presentaron una superficie proyectada de 1,907.32 Km2, y la

cual fue extraída de la base de subcuencas oficiales de la CONAGUA (Véase la Figura 3).

Figura 3. Delimitación de la subcuencas de aportación

El cauce principal denominado “La Encantada”, se genera a partir, de donde se

encuentra la localidad que tiene el mismo nombre, éste cruza por la ciudad de Saltillo y

Ramos Arizpe, recolectando todas las aportaciones que se generan desde su inicio, y

además se conectan varios arroyos que se generan en la propia subcuenca, uniéndose a él

tanto por su margen izquierda como en la derecha, por lo que este arroyo es el de mayor

Caudal o Gasto.

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 9

4.2 CARACTERÍSTICAS DEL SITIO DE ESTUDIO

4.2.1 GEOLOGÍA DEL SITIO.

La geología presentada en las subcuencas está constituida por rocas de caliza,

Lutita, lutita Arenisca y conglomerados, que varían del Mesozoico (Jurásico) al Cenozoico

(Cuaternario). Está representada por rocas sedimentarias marinas y continentales, cuyo

registro estratigráfico comprende edades que van del Triásico (Mesozoico) al Reciente

(Véase la Figura 4).

Figura 4. Tipo de rocas en la zona de estudio

4.2.1.1 Estratigrafía del sitio.

Dentro de la estratigrafía del sitio se puede encontrar rocas del grupo Huizachal del

Triásico tardío, constituido por lechos rojos, resultado de la erosión de horsts (pilares)

formados durante el Mesozoico Temprano. En orden cronológico, durante el período

Jurásico se formaron extensas plataformas sobre las que se depositaron principalmente

carbonatos y evaporitas representados por la Caliza Zuloaga y la Formación Olvido. A

finales del Jurásico tardío se depositaron las formaciones La Casita y La Caja, las cuales

representan facies litorales y de plataforma, respectivamente. Ambas formaciones

sobreyacen concordantemente tanto a la caliza Zuloaga como a la Formación Olvido.

Del período Cretácico la unidad más antigua es la Formación Taraises que aflora en

toda la Curvatura de Monterrey, donde sobreyace a las formaciones La Caja y La Casita.

Esta formación consiste de calizas con intercalaciones de lutitas y se ha reportado la

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 10

presencia de areniscas pardo-rojizas. También del Cretácico, se encuentra la Formación

Cupido, que se localiza al norte de la zona en los potreros La Virgen y San Marcos, así

como en la parte alta de la Sierra de San Marcos. Es una unidad de calizas de color gris y

estratificación gruesa, delgada y media, que se presenta en la porción media de la Sierra de

Parras (Véase la Figura 5).

De manera concordante a la Formación Cupido, sobreyace la formación La Peña

constituida por calizas de grano medio en estratos delgados, con intercalaciones de lutitas y

limolitas muy fosilíferas. A ésta formación la sobreyacen, la Caliza Cuesta del Cura y la

Caliza Tamaulipas Superior. La Caliza Tamaulipas Superior aflora principalmente en el

este y sureste de la Curvatura de Monterrey y está constituida, por estratos medianos a

gruesos de calizas de grano fino de color gris, con delgadas intercalaciones de lutitas

calcáreas y abundantes estilolitos paralelos a la estratificación.

La Formación Indidura sobreyace concordantemente a la caliza Cuesta del Cura y

consiste de estratos delgados de caliza de grano medio de color gris claro y lutitas rosadas

muy fosilíferas. También del período Cretácico se observa la Formación de Agua Nueva

conformada por calizas de textura media de color gris a negro, en estratos delgados, con un

contenido moderado a abundante de nódulos de pedernal negro y con intercalaciones

laminares de lutitas negras, ocasionalmente carbonatadas.

En el oeste, la Formación Caracol sobreyace concordantemente a la Formación

Indidura consistente de una secuencia rítmica de estratos delgados de areniscas de grano

fino, en ocasiones algo calcáreas y limolitas interestratificadas, que hacia la cima de la

formación, se vuelven más arcillosas. La Formación San Felipe, constituida por estratos

delgados, con abundantes laminaciones, de calizas de grano medio intercaladas con

limolitas, lutitas y bentonita, se encuentra sobre yaciendo en el este y sureste de la

Curvatura de Monterrey.

En el Valle de Saltillo – Ramos Arizpe, la Lutita Parras sobreyace a la Formación

Caracol, mientras que en el sur y sureste de la megaestructura, la Lutita Méndez sobreyace

de la misma manera a la Formación San Felipe. La litología de la Lutita Parras y de la

Lutita Méndez son muy similares solo la Lutita Parras contiene más terrígenos (algunos

horizontes de arenas finas) y hacia el este–sureste, la Lutita Méndez presenta un mayor

contenido de carbonatos y en el área de la Cuenca de Parras, subyace concordantemente al

Grupo Difunta, el cual está conformado por estratos gruesos de areniscas de grano fino,

lechos rojos, areniscas conglomeráticas y lutitas con algunos lentes carbonatados que han

sido interpretados como resultado de un ambiente deltaico.

4.2.1.2 Geología estructural.

Las rocas que predominan en la región corresponden al periodo que va del Jurásico

al Cretácico y con pequeños afloramientos de rocas cenozoicas y depósitos de relleno

aluvial. Esta región fue sumergida a medida que el Atlántico se abrió para constituir el

Geosinclinal Mexicano, después de una sedimentación triásica en fosas tectónicas. La

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 11

deformación de las rocas que se localizaban hacia la porción occidental, proporcionó la

fuente de sedimentos característicos de los depósitos Jurásicos en la porción oriental de

México. Durante el Cretácico Medio, la mayor parte de lo que conforma actualmente el

territorio nacional estuvo inundado por aguas marinas, depositándose carbonatos y

evaporitas. Posteriormente, en el Cretácico Superior se depositó una secuencia de lutitas y

areniscas (flysch), que en algunas zonas se prolongó hasta el Eoceno. La Orogenia

Laramide en su última fase (Eoceno) produjo los pliegues y fallas que se observan en la

región (Véase la Figura 5).

Figura 5. Sistema de Geología, Era, Falla y Minas en la zona de estudio

4.2.1.3 Geología del subsuelo.

El acuífero se encuentra alojado en los sedimentos aluviales y en la secuencia de

areniscas y lutitas fracturadas, alcanzando un espesor conjunto del orden de los 250 m,

según la información disponible. El basamento y las barreras al flujo subterráneo están

integrados por las lutitas de la formación Parras y las unidades arcillosas del Grupo

Difunta. La profundidad al basamento hidrogeológico del acuífero se desconoce; los pozos

más profundos perforados a 250 m cortaron areniscas fracturadas a esa profundidad. El

Grupo Difunta tiene un espesor de 600 m en la zona en el contacto con las lutitas y calizas

arcillosas de la Formación Eagle Ford y/o con las lutitas de la Formación Parras, que

subyacen al Grupo Difunta. Sin embargo, también es posible que el fracturamiento a

profundidad se reduzca y de esta forma el basamento podría estar a menor profundidad

dentro del mismo Grupo Difunta.

Las fronteras laterales de carácter impermeable están constituidas por el contacto

entre el Grupo Difunta con las formaciones de baja permeabilidad Eagle Ford y Parras, al

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 12

norte en el flanco de las Sierras La Gavia y La Chata; al poniente en el flanco de la Sierra

La Paila.

4.2.2 TIPO DE SUELO Y USO ACTUAL.

La información del tipo y uso de suelo, tiene incidencia en las cartas de series de

actualización I, II, III y IV:

La serie I, tiene sus antecedentes a partir de 1978, la serie II en 1996 a 1999, la Serie

III, realizada bajo procesos y métodos digitales, se realizó del año 2002 a 2005. Como

insumo tuvo escenas del satélite LANDSAT ETM del año 2002, y la última serie IV fue

desarrollada bajo el mismo marco conceptual de la serie III, con imágenes de satélite SPOT

multiespectrales correspondientes a febrero, marzo y junio de 2007. Ésta información está

disponible en el INEGI, y es manifiesta de la dinámica y transformación de suelos

afectados considerablemente al ecosistema y tema relevante para definir parámetros de

diseño en condiciones actuales, pero también para predecir cambios futuros.

4.2.2.1 Tipo de suelo

En las subcuencas de estudio, se encontraron diferentes tipos de suelos e igual en

proporciones de superficie (Véase la Tabla 1):

Tabla 1. Proporción de superficie y tipo de suelo

TIPO DE SUELO ÁREA (ha) %

Feozem 2305.55 1.45%

Litosol 83111.42 52.32%

Regosol 14290.39 9.00%

Solonchak 7915.74 4.98%

Xerosol 51237.39 32.25%

TOTAL 158860.51 100%

De la Tabla 1, se destaca el suelo “Litosol”, que representa un 52.32% con

respecto al área total, y además las características Físico-Químicas de éste, acondicionan la

zona para determinar una clasificación en función de la tasa de permeabilidad, y se

describen a continuación por tipo suelo:

FEOZEM: Una participación del 1.45% del área total (Véase la Figura 6), casi

despreciable de textura media, y significa literalmente, tierra parda. Suelos que se pueden

presentar en cualquier tipo de relieve y clima, excepto en regiones tropicales lluviosas o

zonas muy desérticas. Es el cuarto tipo de suelo más abundante del país de México. Se

caracteriza por tener una capa superficial oscura, suave, rica en materia orgánica y en

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 13

nutrientes, semejante a las capas superficiales de los Chernozems y los Castañozems, pero

sin presentar las capas ricas en cal con las que cuentan estos dos tipos de suelos.

Los Feozems son de profundidad muy variable. Cuando son profundos se

encuentran generalmente en terrenos planos y se utilizan para la agricultura de riego

temporal, de granos, legumbres u hortalizas, con rendimientos altos. Los Feozems menos

profundos, situados en laderas o pendientes, presentan como principal limitante la roca o

alguna cementación muy fuerte en el suelo, tienen rendimientos más bajos y se erosionan

con más facilidad, sin embargo, pueden utilizarse para el pastoreo o la ganadería con

resultados aceptables. El uso óptimo de estos suelos depende en muchas ocasiones de otras

características del terreno y sobretodo de la disponibilidad de agua para riego. Además se

subdividen por unidades de suelo en dos grupos que fueron encontrados en la zona:

Háplico: Suelos que no presentan características de otras subunidades existentes en

ciertos tipos de suelos.

Calcárieo: Suelos ricos en cal y nutrientes para las plantas.

LITOSOL: Una participación del 52.32% del área total (Véase la Figura 6), donde

éste suelo es el predominante en las subcuencas de textura media, y significa literalmente

suelo de piedra. Son los suelos más abundantes del país pues ocupan 22 de cada 100

hectáreas de suelo. Se encuentran en todos los climas y con muy diversos tipos de

vegetación, en todas las sierras de México, barrancas, lamerías y en algunos terrenos

planos. Se caracterizan por su profundidad menor de 10 centímetros, limitada por la

presencia de roca, tepetate o caliche endurecido. Su fertilidad natural y la susceptibilidad a

la erosión es muy variable dependiendo de otros factores ambientales.

El uso de estos suelos depende principalmente de la vegetación que los cubre. En

bosques y selvas su uso es forestal; cuando hay matorrales o pastizales se puede llevar a

cabo un pastoreo más o menos limitado y en algunos casos se destinan a la agricultura, en

especial al cultivo de maíz o el nopal, condicionado a la presencia de suficiente agua.

REGOSOL: Una participación del 9.00% del área total (Véase la Figura 6), igual

de despreciable que el FEOZEM, de textura media, y significa literalmente cobija o capa

de material suelto que cubre a la roca. Suelos ubicados en muy diversos tipos de clima,

vegetación y relieve. Tienen poco desarrollo y por ello no presentan capas muy

diferenciadas entre sí. En general son claros o pobres en materia orgánica, se parecen

bastante a la roca que les da origen. En México constituyen el segundo tipo de suelo más

importante por su extensión (19.2%). Muchas veces están asociados con Litosoles y con

afloramientos de roca o tepetate. Frecuentemente son someros, su fertilidad es variable y su

productividad está condicionada a la profundidad y pedregosidad.

Se incluyen en este grupo los suelos arenosos costeros y que son empleados para el

cultivo de coco y sandía con buenos rendimientos. En Jalisco y otros estados del centro se

cultivan granos con resultados de moderados a bajos. Para uso forestal y pecuario tienen

rendimientos variables.

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 14

SOLONCHAK: Una participación del 4.98% del área total (Véase la Figura 6),

igual de despreciable que el FEOZEM y REGOSOL, de textura media, y significa

literalmente suelos salinos. Se presentan en zonas donde se acumula el salitre, tales como

lagunas costeras y lechos de lagos, o en las partes más bajas de los valles y llanos de las

regiones secas del país. Tienen alto contenido de sales en todo o alguna parte del suelo. La

vegetación típica para este tipo de suelos es el pastizal u otras plantas que toleran el exceso

de sal (halófilas). Su empleo agrícola se halla limitado a cultivos resistentes a sales o donde

se ha disminuido la concentración de salitre por medio del lavado del suelo. Su uso

pecuario depende del tipo de pastizal pero con rendimientos bajos.

XEROSOL: Una participación del 32.25% del área total (Véase la Figura 6), donde

éste suelo es el segundo predominante en las subcuencas, por detrás del LITOSOL, de

textura media, y significa literalmente, suelo seco. Se localizan en las zonas áridas y

semiáridas del centro y norte de México. Su vegetación natural es de matorral y pastizal.

Son el tercer tipo de suelo más importante por su extensión en el país (9.5%). Tienen por lo

general una capa superficial de color claro por el bajo contenido de materia orgánica.

Debajo de esta capa puede haber un subsuelo rico en arcillas, o bien, muy semejante a la

capa superficial. Muchas veces presentan a cierta profundidad manchas, aglomeraciones de

cal, cristales de yeso o caliche con algún grado de dureza. Su rendimiento agrícola está en

función a la disponibilidad de agua para riego. El uso pecuario es frecuente sobre todo en

los estados de Coahuila, Chihuahua y Nuevo León. Son de baja susceptibilidad a la erosión,

salvo en laderas o si están directamente sobre caliche o tepetate a escasa profundidad.

Figura 6. Tipo de suelo

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 15

4.2.2.2 Uso de suelo actual.

La más reciente estimación de la superficie ocupada por diferentes formas de uso

del suelo en México proviene del Inventario Forestal Nacional del 2004-2009 (IFN 2009),

con el objeto de cumplir con lo estipulado en la LGDFS (Ley General de Desarrollo

Forestal y Sustentable), y su Reglamento, establece mantener actualizado el inventario cada

cinco años. En México existen todos los tipos de vegetación terrestre natural conocidos que

ocupan una superficie cercana a las 140 millones de hectáreas (Mha), que representa el

73% de la superficie total del país (196 Mha aprox.). Los ecosistemas existentes en la

mayor parte de la superficie con cobertura forestal como los matorrales xerófilos (41%), los

bosques templados (24%) y las selvas (23%).

En las subcuencas de estudio, se encontraron diferentes usos de suelos e igualmente

en proporciones de superficie (Véase la Figura 7 y Tabla 2):

Tabla 2. Uso de suelo, y su porcentaje de participación en función del área. Uso de suelo Área Ponderación

(ha) (%)

Agricultura de Riego 10310.02 6.49%

Agricultura de Temporal 17521.26 11.03%

Área sin vegetación 209.73 0.13%

Área Urbana 8528.10 5.37%

Bosque de Encino 743.26 0.47%

Bosque de Oyamel 2363.88 1.49%

Bosque de Pino 19680.41 12.39%

Bosque de Pino-Encino 257.05 0.16%

Chaparral 6369.82 4.01%

Matorral Desértico Micrófilo 18023.78 11.35%

Matorral Desértico Rosetófilo 54794.40 34.49%

Pastizal Inducido 11295.58 7.11%

Pastizal Natural 6059.97 3.81%

Vegetación Halofila 2703.25 1.70%

TOTAL 158860.52 100.00%

AGRICULTURA DE RIEGO: Representa un 6.49% de la superficie total estudiada

y, considera los diferentes sistemas de riego (método con el que se proporciona agua

suplementaria a los cultivos, durante el ciclo agrícola, en el sitio de información),

básicamente es la manera de cómo se realiza la aplicación del agua, por ejemplo la

aspersión, goteo, o cualquier otra técnica, es el caso del agua rodada, son los surcos que van

de un canal principal y mediante la mano de obra se distribuye directamente a la planta; así

existe otro método que parte de un canal principal y con sifones se aplica el agua a los

surcos. También con el uso de mano de obra, generalmente se le llama riego por gravedad

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 16

cuando va directamente a un canal principal desde aguas arriba de una presa o un cuerpo de

agua natural. La agricultura de riego considera la forma de transporte de agua como

bombeo o gravedad, en general implica el suministro del agua para los cultivos. Es

independiente de la duración del cultivo sea por meses, años o décadas. Se destaca que la

tubería de transporte generalmente es sobre la superficie de tierra, sin embargo también

puede estar sepultada hasta las parcelas agrícolas como en algunas áreas de la planicie

costera del estado de Sinaloa (Véase la Figura 7).

AGRICULTURA TEMPORAL: Representa un 11.03% de la superficie total

estudiada, y se clasifica como tal, al tipo de agricultura de todos aquellos terrenos en donde

el ciclo vegetativo de los cultivos que se siembran depende del agua de lluvia, sea

independiente del tiempo que dura el cultivo en el suelo, un año o más de diez como los

frutales. O bien son por periodos dentro de un año como los cultivos de verano. Incluye los

que reciben agua invernal como el garbanzo. Estas áreas pueden dejarse de sembrar algún

tiempo, pero deberán estar dedicadas a esta actividad por lo menos en el 80% de los años de

un periodo dado. Algunas superficies son sembradas de manera homogénea por un cultivo

o más de dos, o pueden estar combinados con pastizales o agricultura de riego, en un

mosaico complejo difícil de separar, pero siempre con la dominancia de los cultivos cuyo

crecimiento depende del agua de lluvia.

En casos muy particulares, como es el cultivo del cafeto, cacao y vainilla, que se

desarrollan a la sombra de árboles naturales y/o cultivados, su delimitación cartográfica es

muy difícil por medio de sensores remotos de baja resolución por lo que se hace de acuerdo

con lo observado en campo, con todas sus limitantes en cuanto a vías de comunicación y

acceso a las zonas. También es común encontrar zonas abandonadas con los cultivos

mencionados y en donde las especies naturales han restablecido la sucesión natural al

desaparecer la influencia del hombre; en estas condiciones las áreas se clasifican como

vegetación natural de acuerdo a su fase sucesional o como vegetación primaria si

predominan componentes arbóreos originales (Véase la Figura 7).

ÁREA SIN VEGETACIÓN: Representa un 0.13%de la superficie total estudiada,

que es casi despreciable, y se clasifica a toda superficie apta para la vegetación, por sus

condiciones físico-químicas, pero por diferentes razones no es aprovechado, lo cual

conlleva a ser un suelo susceptible a la erosión por el desaprovechamiento (Véase la Figura

7).

ÁREA URBANA: Representa un 5.37% de la superficie total estudiada, y se

clasifica a toda superficie Urbana, que ha sido modificada y alterada por el hombre para

diferentes usos: industrial, urbanizaday vías de comunicación terrestre. Lo anterior conlleva

a alterar medio ambiente y características propias de la zona (Véase la Figura 7).

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 17

BOSQUE ENCINO: Representa un 0.47% de la superficie total estudiada que es

igual de despreciable al Área sin vegetación. Comunidad vegetal formada por diferentes

especies aproximadamente (más de 200 especies) de encinos o robles del género Ouercus;

estos bosques generalmente se encuentran como una transición entre los bosques de

coníferas y las selvas, pueden alcanzar desde los 4 hasta los 30 m de altura más o menos

abiertos o muy densos; se desarrollan en muy diversas condiciones ecológicas desde casi el

nivel del mar hasta los 3,000 m de altitud, salvo en las condiciones más áridas, y se les

puede encontrar en casi en todo el país. En general este tipo de comunidad se encuentra

muy relacionada con los de pino, formando una serie de mosaicos difíciles de cartografiar

dependiendo de la escala que se esté trabajando (Véase la Figura 7).

BOSQUE DE OYAMEL: Representa un 1.49% de la superficie total estudiada, y

comunidad que se caracteriza por la altura de sus árboles que a veces sobrepasan los 30 m

de altura, se desarrollan en clima semifrío y húmedo, entre los 2,000 a 3,400 m de altitud,

en la mayoría de las sierras del país, principalmente en el Eje Neovolcánico; la mayor parte

de los parques nacionales y naturales entran en este tipo de vegetación. Las masas

arboladas pueden estar conformadas por elementos de la misma especie o mixtos,

acompañados por diferentes especies de coníferas y latifoliadas; algunos bosques son

densos sobre todo en condiciones de libre disturbio, pero debido al fuerte impacto que

provocan las actividades humanas, su área se encuentra en constante disminución para dar

lugar a espacios agrícolas y pecuarios (Véase la Figura 7).

BOSQUE DE PINO: Representa un 12.39% de la superficie total estudiada, siendo

el segundo en importancia, y es una comunidad siempre verde, constituida por árboles del

género Pinus, de amplia distribución y con aproximadamente 49 especies, 18 variedades, 2

subespecies en las cadenas montañosas de todo el país, desde los 300 m de altitud hasta los

4,200 m en el límite altitudinal de la vegetación arbórea. Estos bosques que se encuentran

asociados con encinares y otras especies, son los de mayor importancia económica en la

industria forestal del país por lo que prácticamente todos soportan actividades forestales

como aserrío, resinación, obtención de pulpa para celulosa, postería y recolección de frutos

y semillas. La vegetación está dominada por diferentes especies de pino con alturas

promedio de 15 a 30 m, los pinares tienen un estrato inferior relativamente pobre en

arbustos, pero con abundantes gramíneas, esta condición se relaciona con los frecuentes

incendios y la tala inmoderada (Véase la Figura 7).

BOSQUE DE PINO-ENCINO: Representa un 0.16% de la superficie total

estudiada, y comunidad de bosque ampliamente distribuida, que ocupa la mayor parte de la

superficie forestal de las porciones superiores de los sistemas montañosos del país, la cual

está compartida por las diferentes especies de pino (Pinus spp.) y encino (Ouercus spp.);

dependiendo del dominio de uno y otro, se le denomina pino-encino si predominan las

coníferas y es llamado encino-pino cuando dominan los encinares. La transición del bosque

de encino al de pino está determinada (en condiciones naturales) por el gradiente

altitudinal. Estas mezclas son frecuentes y ocupan muchas condiciones de distribución.

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 18

Algunas de las especies más comunes son pino chino (Pinus leiaphylla), pino (P hartwegil),

acote blanco (P. mantezumae), pino lacio (P pseudastrobus), pino (P rudis), pino escobetón

(P michaacana), pino chino (P teacate), acote trompillo (P aacarpa), pino ayacahuite (P

ayacahuite), pino (P pringlel), P duranguensis, P chihuahuana, P engelmannii, P lawsani, P

aaxacana, encino laurelillo (Ouercus laurina), encino (O magnaliifalia), encino blanco (O

candicans), roble (O crassifalia), encino quebracho (O. rugosa), encino tesmilillo (O

crassipes), encino cucharo (O urbanil), charrasquillo (Q. microphylla), encino colorado (O

castanea), encino prieto (O laeta), laurelillo (O mexicana), O glaucaides, y O scytaphylla.

(Véase la Figura 7).

CHAPARRAL: Representa un 4.01% de la superficie total estudiada, y asociación

generalmente densa, de arbustos resistentes al fuego, que se desarrolla sobre todo en laderas

de cerros por arriba del nivel de los matorrales de zonas áridas y semiáridas de Pastizales

Naturales y en ocasiones mezclada con los Bosques de Pino y Encino. Está formada por

especies arbustivas de Ouercus spp. (Encinillo, Charrasquillo), Adenostoma spp.

(Chamizos), Arctostaphylos spp. (Manzanita), Cercocarpus spp. (Rosa de castilla), etcétera.

El segundo tipo de matorral propio de la misma región prospera por lo general en altitudes

más elevadas de las sierras de Juárez y San Pedro Mártir y en las montañas de la Isla

Cedros, ocupando muchas áreas de suelos someros que no tienen humedad suficiente para

la existencia de vegetación boscosa, o bien desarrollándose como comunidad secundaria en

sitios donde tal vegetación ha sido destruida. Es un matorral perennifolio, por lo común de

1 a 2 m de alto, muy denso y difícilmente penetrable, cuya existencia frecuentemente

resulta también favorecida por incendios, ya que muchos de los arbustos tienen la

capacidad de regenerar a partir de sus sistemas radicales. En la literatura botánica, sobre

todo la norteamericana, se conoce con el nombre español de Chaparral aunque es

importante indicar que los campesinos de diferentes partes de México usan este término

para designar muchas clases de vegetación arbustiva y arbórea baja (Véase la Figura 7).

MATORRAL DESÉRTICO MICRÓFILO: Representa un 11.35% de la superficie

total estudiada, y es el tipo de matorral de zonas áridas y semiáridas de mayor distribución,

formado por arbustos de hoja o foliolo pequeño. Se desarrolla principalmente sobre

terrenos aluviales más o menos bien drenados y puede estar formado por asociaciones de

especies sin espinas, con espinas o mezclados; asimismo pueden estar en su composición

otras formas de vida, como cactáceas, izotes o gramíneas.

La distribución de este matorral se extiende a las zonas más secas de México, y en

áreas en que la precipitación es inferior a 100 mm anuales, la vegetación llega a cubrir solo

el 3% de la superficie, mientras que en sitios con climas menos desfavorables la cobertura

puede alcanzar 20%; la altura varía de 0.5 a 1.5 m. Larrea y Ambrosia constituyen 90 a

190% de la vegetación en áreas de escaso relieve, pero a lo largo de las vías de drenaje o en

lugares con declive pronunciado aparecen arbustos como, especies de Prosopis, Cercidium,

Olneya, Condalia, Lycium, Opuntia, Fouquieria, Hymenoclea, Acacia, Chilopsis, etcétera.

(Véase la Figura 7).

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 19

MATORRAL DESÉRTICO ROSETÓFILO: Matorral dominado por especies con

hojas en roseta, con o sin espinas, sin tallo aparente o bien desarrollado (Representa un

34.49% de la superficie total, siendo la más importante de las subcuencas). Se encuentra

generalmente sobre xerosoles de laderas de cerros de origen sedimentario, en las partes

altas de los abanicos aluviales o sobre conglomerados en casi todas las zonas áridas y

semiáridas del centro, norte y noroeste del país. Aquí se desarrollan algunas de las especies

de mayor importancia económica de esas regiones áridas como: Agave lechuguilla

(Lechuguilla), Euphorbia antisiphylitica (Candelilla), Parthenium argentatum (Guayule),

Yucca carnerosana (Palma samandoca), etcétera. (Véase la Figura 7).

PASTIZAL INDUCIDO: Representa un 7.11% de la superficie total estudiada, y es

aquel que surge cuando es eliminada la vegetación original. Este pastizal puede aparecer

como consecuencia del desmonte de cualquier tipo de vegetación; también puede

establecerse en áreas agrícolas abandonadas o bien como producto de áreas que se

incendian con frecuencia. Son de muy diversos tipos y aunque cabe observar que no hay

pastizales que pudieran considerarse como totalmente libres de alguna influencia humana,

el grado de injerencia del hombre es muy variable y con frecuencia difícil de estimar. Los

pastizales inducidos algunas veces corresponden a una fase de la sucesión normal de

comunidades vegetales, cuyo clímax es por lo común un bosque o un matorral. A

consecuencia del pastoreo intenso o de los fuegos periódicos, o bien de ambos factores

juntos, se detiene a menudo el proceso de la sucesión y el pastizal inducido permanece

como tal mientras perdura la actividad humana que lo mantiene (Véase la Figura 7).

PASTIZAL NATURAL: Representa un 3.81% de la superficie total estudiada, y es

considerado principalmente como un producto natural de la interacción del clima, suelo y

biota de una región. Es una comunidad dominada por especies de gramíneas, en ocasiones

acompañadas por hierbas y arbustos de diferentes familias, como son: compuestas,

leguminosas, etc. Su principal área de distribución se localiza en la zona de transición entre

los matorrales xerófilos y la zona de bosques; en sus límites con los bosques de encino, que

forma una comunidad denominada Bosque Bajo y Abierto por la apariencia de los primeros

árboles de los Encinares de las partes elevadas propiamente dichos (Véase la Figura 7).

VEGETACIÓN HALÓFILA: Representa un 1.70% de la superficie total estudiada,

además está área pertenece al sitio del CFRS-M. Constituyen comunidades vegetales

arbustivas o herbáceas que se caracterizan por desarrollarse sobre suelos con alto contenido

de sales, en partes bajas de cuencas cerradas de las zonas áridas y semiáridas, cerca de

lagunas costeras, área de marismas, etcétera. Esta comunidad se caracteriza por especies de

baja altura y por la dominancia de pastos rizomatosos y tallos rígidos, además de una

escaza cobertura de especies arbustivas. Se desarrolla en partes bajas de las cuencas

cerradas de las zonas áridas y semiáridas, en donde los factores climáticos y geológicos

dieron origen áreas salinas (Véase la Figura 7).

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 20

Figura 7. Uso de suelo en las subcuencas de estudio.

4.2.3 HIDROGRAFÍA.

En la zona de estudio, se encontraron dos subuencas y cada una de ellas tiene su

cauce principal, sin embargo el cauce el cauce de Pino Solo desemboca en el Cauce “La

Encantada” de la subcuenca San José del Valle que tiene mayor extensión en la zona.

Además en la Figura 8, se observan varias corrientes de diferente orden, y se conectan al

cauce “La encantada” en mayor proporción, por la margen izquierda de éste. En la misma

figura hay diferentes redes hidrológicas, que no hacen parte del área de aportación del

presente estudio, debido a sus condiciones orográficas y topográficas, que indican

pertenecer a otras subcuencas, sin que estás afecten en la estimación del Gasto Máximo..

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 21

Figura 8. Red hidrológica de la zona de estudio

4.2.4 HIDROGEOLOGÍA.

4.2.4.1 Tipo de acuífero.

En base a información geológica y geofísica, se puede establecer que el acuífero “El

Paredón” es de tipo libre. Esta localizado en las partes bajas de los valles, en el que el agua

circula por un medio conformado de materiales aluviales que pueden alcanzar un espesor

de hasta 50 m, el espesor saturado en esta unidad es muy pequeño y en ocasiones se

encuentra totalmente drenado.

Las rocas de tipo sedimentario del Grupo Difunta, dominan la composición del

acuífero por debajo de estos depósitos y hacia las estribaciones de las sierras,

específicamente por las capas de areniscas fracturadas que se intercalan con las lutitas. Es

un acuífero en medio fracturado en el que las capas de lutitas intercaladas funcionan como

semiconfinantes de las capas de arenisca, cuando carecen de permeabilidad secundaria, o

bien, pueden formar parte del acuífero cuando se encuentran fracturadas.

4.2.4.2 Parámetros hidráulicos

La Comisión Nacional del Agua (CONAGUA) reporto haber obtenido valores de

conductividad hidráulica que varían entre 9.4 x10-7 y 1.2 x10-3 m/s para los materiales

probados, que conforme a la literatura especializada, corresponden a limos, loess y arena

limosa.

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 22

4.2.4.3 Piezometría

Para analizar el comportamiento de los niveles del agua subterránea, se está

considerando información de los años 1978-1998 y 2006, publicada por CONAGUA en

2008.

4.2.4.4 Comportamiento hidráulico

Profundidad a nivel estático 4.2.4.4.1

Los niveles piezométricos registrados en 2006 presentan variaciones entre 20 y 80

m para la mayor parte del acuífero. Los valores menores se presentan en las zonas cercanas

a las corrientes de agua y van incrementándose hacia las zonas topográficamente más

elevadas. Los niveles más profundos se presentan en áreas topográficamente más altas y los

más someros en áreas más bajas. Las zonas de niveles profundos se asocian a las áreas de

recarga natural por la infiltración de la lluvia y los escurrimientos en los pie de monte,

localizados en la Sierra “El Potrero” y demás sierras ubicadas hacia el sur.

Elevación del nivel estático 4.2.4.4.2

Las cargas hidráulicas de los acuíferos están estimadas entre los 750 y 1200 msnm,

con los valores más bajos registrados hacia las estribaciones de las sierras circundantes y

los bajos hacia la porción oriental del acuífero. Las zonas de recarga al acuífero se localizan

en la Sierra El Potrero y sierras del sur, otra fuente de recarga se identifica en la margen

noroeste del valle, desde Hipólito hasta Plan de Guadalupe, y está relacionada con la

infiltración de los arroyos que descienden de la Sierra La Paila, a través de los depósitos

aluviales permeables. Resalta la existencia de dos componentes principales de flujo, una

con dirección de Sur a Norte y otra de oeste a este, que confluyen hacia el Arroyo Patos

para continuar en dirección hacia el oriente a lo largo del Valle San Juan de Amargos-

Paredón.

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 23

5 METODOLOGÍA

5.1 ANÁLISIS DE LLUVIAS MÁXIMA EN 24 HORAS E ISOYETAS

El análisis de lluvia máxima diaria (24 h) para las subcuencas de estudio, se llevó a

cabo mediante la integración de series anuales provenientes del ERIC-III (Extractor Rápido

de Información Climática), generado por el Instituto Mexicano de Tecnología del Agua

(IMTA, 2005). Y además a la anterior, se integró información del Servicio Nacional

Meteorológico de la Comisión Nacional del Agua (SMN-CNA, 2013).

Posterior a lo anterior, se realizó el procesamiento estadístico de la serie de datos y

la distribución de lluvia en las subcuencas. Para determinar la distribución de lluvia, se

utilizó la serie de datos de lluvias máxima diaria (24 h) registrada para cada año de cada

una de las estaciones (Véase la Tabla 3), para luego someterlas a una Distribución y

Frecuencia Gumbel a diferentes periodos de retorno.

5.1.1 ESTACIONES METEOROLÓGICAS

La selección de las estaciones meteorológicas fue según los criterios que enmarca la

Organización Mundial Meteorológica en la guía de Practicas Hidrológicas (OMM, 1995):

1. Distribución geográfica nacional uniforme (de conformidad con las normas de la

red), con mayores densidades en zonas donde el caudal presenta variaciones rápida.

2. Cobertura, en la medida de lo posible, de cada tipo de región hidrológica

homogénea de cada país. Cuencas fluviales relativamente pequeñas (hasta alrededor

de 5 000 Km2, y en algunos casos excepcionales hasta 10 000 Km

2);

3. Datos de caudales que representan el caudal natural del río, es decir que se debieron

corregir porque la desviación, abstracción, o redistribución por almacenamiento de

agua es muy importante.

4. Registros de muy buena calidad ( No menciona ningún mínimo de años, pero en

diferentes artículos recomiendan un mínimo de 30 años, y en preferencia si se tienen

más, considerarlo para comprender mejor el fenómeno en el tiempo y así dar mayor

credibilidad al estudio)

Además, se deben seleccionar aquellas estaciones que cumplen con las

especificaciones técnicas de los equipos de medición y su estricta ubicación como lo

menciona la Organización Mundial Meteorológico, aunado a lo anterior, se debe considerar

los criterios que menciona la Guía de la Red de Estaciones de Observación en Superficie

del SMOC (GNS) y de la Red de Estaciones de Observación de Altitud del SMOC

(GUAN).

Con respecto a la GSN, que es la que interesa para el presente, se debe considerar la

distancia horizontal entre dos estaciones de la red, que no deberá ser inferior a la longitud

abarcada por 2,5 grados de longitud (278 km en el ecuador). Para las estaciones más

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 24

alejadas de los 60 grados de latitud (norte o sur), la distancia mínima ha sido fijada en la

longitud abarcada por 2,5 grados de longitud a una latitud de 60 grados (139 km). Por

consiguiente, la separación mínima varía desde 278 km en el ecuador, hasta 139 km en las

regiones polares (GCOS, 2010).

De acuerdo a lo criterios establecidos anteriormente de la OMM y GCOS, se

seleccionaron cinco estaciones Meteorológicas que están dentro de la Región Hidrológica

VI, aunque una de ellas se encuentra por fuera de la región, y se observa el polígono de

color verde (Véase la Figura 9), se incluyó la estación 5044 (Cuatro Ciénagas), a razón de

poder generar mejores líneas de isoyetas de precipitación en el sentido Nor-Oeste, sin que

esto afecte los resultados generados dentro de la zona de estudio.

Figura 9. Región Hidrológica Administrativa VI, y Ubicación de las Estaciones

Meteorológicas Seleccionadas.

5.1.1.1 Análisis de Información y Series anuales de Precipitación Máxima en 24 h

Considerando la Figura 9, donde se observan las estaciones meteorológicas

seleccionadas espacialmente, se procedió a extraer la información de precipitación máxima

en 24 h por año, en cada una de ellas, y en el caso de no contener estos valores observados,

se procedió a extraer la información de forma más extensa, debido que proviene de otra

fuente, el cual muestra la precipitación máxima diaria, y posteriormente se filtran por mes y

año, para finalmente obtener la serie que es requerida. (Véase el Anexo Digital 1)

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 25

Tabla 3. Clave del SMN de las estaciones seleccionadas

CLAVE ESTADO ESTACIÓN

5044 Coahuila Cuatro Ciénagas

19031 Nuevo León Las Cruz

19038 Nuevo León Las Comitas

19165 Nuevo León Chupadero del Indio

24040 San Luís potosí Matehuala

De la anterior tabla, se extrajo la siguiente información de diferentes fuentes

oficiales, y se muestra en la Tabla 4, en unidades de mm de precipitación máxima en 24 h:

Tabla 4. Serie de datos de precipitación máxima en 24 h, desde 1950 a 2010

AÑO 5044 FUENTE 19031 FUENTE 19038 FUENTE 19165 FUENTE 24040 FUENTE

1950 N/A N/A 17 SNM-CNA N/A 26.7 SNM-CNA

1951 N/A N/A 103 SNM-CNA N/A 51 SNM-CNA

1952 N/A N/A 17.2 SNM-CNA N/A 27.5 SNM-CNA

1953 N/A N/A 57 SNM-CNA N/A 49.5 SNM-CNA

1954 N/A N/A 78 SNM-CNA N/A 18 SNM-CNA

1955 N/A N/A 55 SNM-CNA N/A 69 SNM-CNA

1956 N/A N/A 117 SNM-CNA N/A 43 SNM-CNA

1957 N/A N/A 33 SNM-CNA N/A 30 SNM-CNA

1958 N/A N/A 50 SNM-CNA N/A 52 SNM-CNA

1959 N/A N/A 60 SNM-CNA N/A 31 SNM-CNA

1960 41 SNM-CNA 33 ERIC - III 37 SNM-CNA N/A 120 SNM-CNA

1961 41.5 SNM-CNA 51.5 ERIC - III 62 SNM-CNA N/A 62 SNM-CNA

1962 28 SNM-CNA 29 ERIC - III 65 SNM-CNA N/A 5 SNM-CNA

1963 65.4 SNM-CNA 74 ERIC - III 55 SNM-CNA N/A 63.6 SNM-CNA

1964 27 SNM-CNA 21 ERIC - III 45 SNM-CNA N/A 20 SNM-CNA

1965 54 SNM-CNA 45 ERIC - III 23 SNM-CNA N/A 42.9 SNM-CNA

1966 50 SNM-CNA 28 ERIC - III 25 SNM-CNA N/A 25.1 SNM-CNA

1967 29 SNM-CNA 132 ERIC - III 82 SNM-CNA N/A 106.7 SNM-CNA

1968 30 SNM-CNA 50 ERIC - III 42 SNM-CNA N/A 54.6 SNM-CNA

1969 24 SNM-CNA 60 ERIC - III 111 SNM-CNA N/A 50 SNM-CNA

1970 68 SNM-CNA 78 ERIC - III 35 SNM-CNA N/A 76 SNM-CNA

1971 80 SNM-CNA 40 ERIC - III 40 SNM-CNA N/A 48.2 SNM-CNA

1972 27 SNM-CNA 25 ERIC - III 42 SNM-CNA N/A 24 SNM-CNA

1973 40 SNM-CNA 34 ERIC - III 95 SNM-CNA N/A 31.1 SNM-CNA

1974 22 SNM-CNA 60 ERIC - III 82 SNM-CNA N/A 49.4 SNM-CNA

1975 20 SNM-CNA 40 ERIC - III 85 SNM-CNA N/A 33.3 SNM-CNA

1976 26 SNM-CNA 63 ERIC - III 43 SNM-CNA N/A 52.8 SNM-CNA

1977 32 SNM-CNA 70 ERIC - III 128 SNM-CNA N/A 62 SNM-CNA

1978 60 SNM-CNA 200 ERIC - III 31 SNM-CNA N/A 163.7 SNM-CNA

1979 28 SNM-CNA 60 ERIC - III 49 SNM-CNA N/A 53.5 SNM-CNA

CLAVE DE STACIONES M ETEREOLÓGICA, SELECCIONADAS EN LASREGIÓN HIDROLÓGICA ADM INISTRATIVA VI

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 26

Fuente: Servicio Nacional Meteorológico de la Comisión Nacional del Agua (SNM-CNA,

2013)

5.1.2 ANÁLISIS DE FRECUENCIA, POR MEDIO DE LA DISTRIBUCIÓN GUMBEL

Se utilizó la distribución de probabilidad Gumbel tipo I, ya que en el comparativo

de métodos, es la que mejor arrojó resultados; a partir de esta distribución se obtuvieron las

precipitaciones para diferentes periodos de retorno. Los valores de precipitación máxima en

24 h se muestran en las tablasTabla 6,Tabla 7, Tabla 8, Tabla 9 y Tabla 10.

AÑO 5044 FUENTE 19031 FUENTE 19038 FUENTE 19165 FUENTE 24040 FUENTE

1980 17 SNM-CNA 75 ERIC - III 57.4 SNM-CNA N/A 63.2 SNM-CNA

1981 46 SNM-CNA 54 ERIC - III 92.5 SNM-CNA N/A 52.4 SNM-CNA

1982 66 SNM-CNA 40 ERIC - III 59.8 SNM-CNA 17.2 ERIC - III 30 SNM-CNA

1983 13 SNM-CNA 60 ERIC - III 64.8 SNM-CNA 30 ERIC - III 89 SNM-CNA

1984 48 SNM-CNA 24 ERIC - III 43.5 SNM-CNA 46 ERIC - III 10 SNM-CNA

1985 58 SNM-CNA 40 ERIC - III 33.4 SNM-CNA 60 ERIC - III 0 SNM-CNA

1986 53 SNM-CNA 43 SNM-CNA 63.8 SNM-CNA 33 ERIC - III 80 SNM-CNA

1987 45 SNM-CNA 59 SNM-CNA 50.5 SNM-CNA 36 ERIC - III 40 SNM-CNA

1988 0 SNM-CNA 188 SNM-CNA 358.5 SNM-CNA 120 ERIC - III 33.5 SNM-CNA

1989 54 SNM-CNA 54.8 SNM-CNA 44 SNM-CNA 60 ERIC - III 41.5 SNM-CNA

1990 48 SNM-CNA 46 SNM-CNA 50.5 SNM-CNA 25 ERIC - III 70 SNM-CNA

1991 32 SNM-CNA 45.2 SNM-CNA 44 SNM-CNA 20 SNM-CNA 62 SNM-CNA

1992 42 SNM-CNA 45.3 SNM-CNA 60.5 SNM-CNA 23 SNM-CNA 44.3 SNM-CNA

1993 35 SNM-CNA 5 SNM-CNA 65.5 SNM-CNA 43 SNM-CNA 66.5 SNM-CNA

1994 19 SNM-CNA 80 SNM-CNA 40.7 SNM-CNA 78 SNM-CNA 75 SNM-CNA

1995 29.5 SNM-CNA 102 SNM-CNA N/A 28 SNM-CNA 93.5 SNM-CNA

1996 38 SNM-CNA 104 SNM-CNA N/A 45.5 ERIC - III 25.5 SNM-CNA

1997 44 SNM-CNA 80 SNM-CNA N/A 44 ERIC - III 28 SNM-CNA

1998 30 SNM-CNA 60 SNM-CNA N/A 16 SNM-CNA 59 SNM-CNA

1999 50 SNM-CNA 51 SNM-CNA N/A 0 SNM-CNA 96.5 SNM-CNA

2000 17 SNM-CNA 40 SNM-CNA N/A 7.1 SNM-CNA 28 SNM-CNA

2001 60 SNM-CNA 25 SNM-CNA N/A 29.5 SNM-CNA 40 SNM-CNA

2002 27 SNM-CNA 65 SNM-CNA N/A 69 SNM-CNA 51.1 SNM-CNA

2003 46 SNM-CNA 60 SNM-CNA N/A 33.3 SNM-CNA 63.5 SNM-CNA

2004 70 SNM-CNA 42 SNM-CNA N/A 20 SNM-CNA 57.3 SNM-CNA

2005 18 SNM-CNA 115 SNM-CNA N/A 57 SNM-CNA 52 SNM-CNA

2006 46.6 SNM-CNA 60 SNM-CNA N/A 60 SNM-CNA 68 SNM-CNA

2007 36.4 SNM-CNA N/A N/A 46.5 SNM-CNA 76 SNM-CNA

2008 N/A N/A N/A 43.5 SNM-CNA 61 SNM-CNA

2009 N/A N/A N/A 193.9 SNM-CNA 52 SNM-CNA

2010 N/A N/A N/A 52 SNM-CNA 56 SNM-CNA

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 27

5.1.2.1 Distribución Gumbel

El “valor máximo” que se quiere determinar para un determinado período de retorno

se determina de la siguiente forma, por medio de la expresión:

Dónde:

X: Valor máximo (caudal o precipitación) para un período de retorno T.

Xm: Media de la serie, generada de valores máximos

Dx: Desviación respecto a la media, que se estima mediante el producto: k*yn-1

k : Factor de frecuencia, que indica el número de veces de desviación típica en que

el valor extremo considerado, excede a la media de la serie.

yn-1: Desviación estándar, desviación típica de los valores extremos.

El valor de la variable “k” se estima a partir del conocimiento del período de retorno

en años y del número de años disponibles en la serie. Así:

Dónde:

yt: Variable de Gumbel para el período de retorno T. Se determina a partir del valor

del período de retorno. El valor se puede obtener de la siguiente ecuación.

(

)

n:Valor que se obtiene a partir del número de años, mediante la Tabla 5

n: Valor que se obtiene a partir del número de años de la serie, mediante la Tabla 5

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 28

Tabla 5. Valores de yn y σn, Según los números de datos.

Para dar el apoyo necesario de la información base, que dio como resultados las

siguientes tablas, el lector puede dirigirse en el mismo al Anexo Digital 1, series de datos

de cada estación).

Nºdatos Ўn σn Nºdatos Ўn σn Nºdatos Ўn σn

1 0.36651 0.00000 35 0.54034 1.12847 69 0.55453 1.18440

2 0.40434 0.49838 36 0.54105 1.13126 70 0.55477 1.18535

3 0.42859 0.64348 37 0.54174 1.13394 71 0.55500 1.18629

4 0.44580 0.73147 38 0.54239 1.13650 72 0.55523 1.18720

5 0.45879 0.79278 39 0.54302 1.13896 73 0.55546 1.18809

6 0.46903 0.83877 40 0.54362 1.14131 74 0.55567 1.18896

7 0.47735 0.87493 41 0.54420 1.14358 75 0.55589 1.18982

8 0.48428 0.90432 42 0.54475 1.14576 76 0.55610 1.19065

9 0.49015 0.92882 43 0.54529 1.14787 77 0.55630 1.19147

10 0.49521 0.94963 44 0.54580 1.14989 78 0.55650 1.19227

11 0.49961 0.96758 45 0.54630 1.15184 79 0.55669 1.19306

12 0.50350 0.98327 46 0.54678 1.15373 80 0.55689 1.19382

13 0.50695 0.99713 47 0.54724 1.15555 81 0.55707 1.19458

15 0.51284 1.02057 49 0.54812 1.15901 83 0.55744 1.19604

16 0.51537 1.03060 50 0.54854 1.16066 84 0.55761 1.19675

17 0.51768 1.03973 51 0.54895 1.16226 85 0.55779 1.19744

18 0.51980 1.04808 52 0.54934 1.16380 86 0.55796 1.19813

19 0.52175 1.05575 53 0.54972 1.16530 87 0.55812 1.19880

20 0.52355 1.06282 54 0.55009 1.16676 88 0.55828 1.19945

21 0.52522 1.06938 55 0.55044 1.16817 89 0.55844 1.20010

22 0.52678 1.07547 56 0.55079 1.16955 90 0.55860 1.20073

23 0.52823 1.08115 57 0.55113 1.17088 91 0.55876 1.20135

24 0.52959 1.08646 58 0.55146 1.17218 92 0.55891 1.20196

25 0.53086 1.09145 59 0.55177 1.17344 93 0.55905 1.20256

26 0.53206 1.09613 60 0.55208 1.17467 94 0.55920 1.20315

27 0.53319 1.10054 61 0.55238 1.17586 95 0.55934 1.20373

28 0.53426 1.10470 62 0.55268 1.17702 96 0.55948 1.20430

29 0.53527 1.10864 63 0.55296 1.17816 97 0.55962 1.20486

30 0.53622 1.11237 64 0.55324 1.17926 98 0.55976 1.20541

31 0.53713 1.11592 65 0.55351 1.18034 99 0.55989 1.20596

32 0.53799 1.11929 66 0.55378 1.18139 100 0.56002 1.20649

33 0.53881 1.12249 67 0.55403 1.18242 101 0.56015 1.20701

34 0.53959 1.12555 68 0.55429 1.18342

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 29

Tabla 6. Distribución Gumbel para la estación “Cuatro Ciénagas”.

Estación AñoPrecipitación

máx. en 24 h.

(mm)

Orden No. Tr (años)Variable reducida

(adim)

Precipitación máx. en 24 h.

(mm)

1000 6.91 128.64

100 4.60 96.55

50 3.90 86.89

20 2.97 74.13

1950 0 1 47 3.84 13

1951 0 2 46 3.82 17

1952 0 3 45 3.80 17

1953 0 4 44 3.77 18

1954 0 5 43 3.75 19

1955 0 6 42 3.73 20

1956 0 7 41 3.70 22

1957 0 8 40 3.68 24

1958 0 9 39 3.65 26

1959 0 10 38 3.62 27

1960 41 11 37 3.60 27

1961 41.5 12 36 3.57 27

1962 28 13 35 3.54 28

1963 65.4 14 34 3.51 28

1964 27 15 33 3.48 29

1965 54 16 32 3.45 29.5

1966 50 17 31 3.42 30

1967 29 18 30 3.38 30

1968 30 19 29 3.35 32

1969 24 20 28 3.31 32

1970 68 21 27 3.28 35

1971 80 22 26 3.24 36.4

1972 27 23 25 3.20 38

1973 40 24 24 3.16 40

1974 22 25 23 3.11 41

1975 20 26 22 3.07 41.5

1976 26 27 21 3.02 42

1977 32 28 20 2.97 44

1978 60 29 19 2.92 45

1979 28 30 18 2.86 46

1980 17 31 17 2.80 46

1981 46 32 16 2.74 46.6

1982 66 33 15 2.67 48

1983 13 34 14 2.60 48

1984 48 35 13 2.53 50

1985 58 36 12 2.44 50

1986 53 37 11 2.35 53

1987 45 38 10 2.25 54

1988 0 39 9 2.14 54

1989 54 40 8 2.01 58

1990 48 41 7 1.87 60

1991 32 42 6 1.70 60

1992 42 43 5 1.50 65.4

1993 35 44 4 1.25 66

1994 19 45 3 0.90 68

1995 29.5 46 2 0.37 70

1996 38 47 1 #¡NUM! 80

1997 44 48

1998 30 49

1999 50 50

2000 17 51

2001 60 52

2002 27 53

2003 46 54

2004 70 55

2005 18 56

2006 46.6 57

2007 36.4 58

2008 0 59

2009 0 60

2010 0 61

Esta

ció

n 5

04

4, C

uat

ro c

ien

agas

Xm= 40.03

N= 51

Dx= 16.20

σn= 1.16226

Ўn= 0.54895

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 30

Tabla 7. Distribución Gumbel para la estación “La Cruz”.

Estación AñoPrecipitación máx.

en 24 h. (mm)

Orden No. Tr (años)Variable reducida

(adim)

Precipitación máx. en 24 h.

(mm)

1000 6.91 267.71

100 4.60 192.80

50 3.90 170.25

20 2.97 140.44

1950 0 1 47 3.84 5

1951 0 2 46 3.82 21

1952 0 3 45 3.80 24

1953 0 4 44 3.77 25

1954 0 5 43 3.75 25

1955 0 6 42 3.73 28

1956 0 7 41 3.70 29

1957 0 8 40 3.68 33

1958 0 9 39 3.65 34

1959 0 10 38 3.62 40

1960 33 11 37 3.60 40

1961 51.5 12 36 3.57 40

1962 29 13 35 3.54 40

1963 74 14 34 3.51 40

1964 21 15 33 3.48 42

1965 45 16 32 3.45 43

1966 28 17 31 3.42 45

1967 132 18 30 3.38 45.2

1968 50 19 29 3.35 45.3

1969 60 20 28 3.31 461970 78 21 27 3.28 50

1971 40 22 26 3.24 51

1972 25 23 25 3.20 51.5

1973 34 24 24 3.16 54

1974 60 25 23 3.11 54.8

1975 40 26 22 3.07 59

1976 63 27 21 3.02 60

1977 70 28 20 2.97 60

1978 200 29 19 2.92 60

1979 60 30 18 2.86 60

1980 75 31 17 2.80 60

1981 54 32 16 2.74 60

1982 40 33 15 2.67 60

1983 60 34 14 2.60 63

1984 24 35 13 2.53 65

1985 40 36 12 2.44 70

1986 43 37 11 2.35 74

1987 59 38 10 2.25 75

1988 188 39 9 2.14 78

1989 54.8 40 8 2.01 80

1990 46 41 7 1.87 80

1991 45.2 42 6 1.70 102

1992 45.3 43 5 1.50 104

1993 5 44 4 1.25 115

1994 80 45 3 0.90 132

1995 102 46 2 0.37 188

1996 104 47 1 #¡NUM! 200

1997 80 48

1998 60 49

1999 51 50

2000 40 51

2001 25 52

2002 65 53

2003 60 54

2004 42 55

2005 115 56

2006 60 57

2007 0 58

2008 0 59

2009 0 60

2010 0 61

Esta

ció

n 1

90

31

, La

Cru

zXm= 60.78

N= 47

Dx= 37.59

σn= 1.15555

Ўn= 0.54724

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 31

Tabla 8. Distribución Gumbel para la estación “Las Comitas”.

Estación AñoPrecipitación máx.

en 24 h. (mm)

Orden No. Tr (años)Variable reducida

(adim)

Precipitación máx. en 24

h. (mm)

1000 6.91 348.20

100 4.60 245.41

50 3.90 214.47

20 2.97 173.56

1950 17 1 45 3.80 17

1951 103 2 44 3.77 17.2

1952 17.2 3 43 3.75 23

1953 57 4 42 3.73 25

1954 78 5 41 3.70 31

1955 55 6 40 3.68 33

1956 117 7 39 3.65 33.4

1957 33 8 38 3.62 35

1958 50 9 37 3.60 37

1959 60 10 36 3.57 40

1960 37 11 35 3.54 40.7

1961 62 12 34 3.51 42

1962 65 13 33 3.48 42

1963 55 14 32 3.45 43

1964 45 15 31 3.42 43.5

1965 23 16 30 3.38 44

1966 25 17 29 3.35 44

1967 82 18 28 3.31 45

1968 42 19 27 3.28 49

1969 111 20 26 3.24 501970 35 21 25 3.20 50.5

1971 40 22 24 3.16 50.5

1972 42 23 23 3.11 55

1973 95 24 22 3.07 55

1974 82 25 21 3.02 57

1975 85 26 20 2.97 57.4

1976 43 27 19 2.92 59.8

1977 128 28 18 2.86 60

1978 31 29 17 2.80 60.5

1979 49 30 16 2.74 62

1980 57.4 31 15 2.67 63.8

1981 92.5 32 14 2.60 64.8

1982 59.8 33 13 2.53 65

1983 64.8 34 12 2.44 65.5

1984 43.5 35 11 2.35 78

1985 33.4 36 10 2.25 82

1986 63.8 37 9 2.14 82

1987 50.5 38 8 2.01 85

1988 358.5 39 7 1.87 92.5

1989 44 40 6 1.70 95

1990 50.5 41 5 1.50 103

1991 44 42 4 1.25 111

1992 60.5 43 3 0.90 117

1993 65.5 44 2 0.37 128

1994 40.7 45 1 #¡NUM! 358.5

1995 0 46

1996 0 47

1997 0 48

1998 0 49

1999 0 50

2000 0 51

2001 0 52

2002 0 53

2003 0 54

2004 0 55

2005 0 56

2006 0 57

2007 0 58

2008 0 59

2009 0 60

2010 0 61

Esta

ció

n 1

90

38

, Las

co

mit

asXm= 64.30

N= 49

Dx= 51.74

σn= 1.15901

Ўn= 0.54812

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 32

Tabla 9. Distribución Gumbel para la estación “Chupaderos del Indio”.

Estación AñoPrecipitación

máx. en 24 h.

(mm)

Orden No. Tr (años)Variable reducida

(adim)

Precipitación máx. en 24

h. (mm)

1000 6.91 259.66

100 4.60 183.10

50 3.90 160.05

20 2.97 129.58

1950 0 1 28 3.31 7.1

1951 0 2 27 3.28 16

1952 0 3 26 3.24 17.2

1953 0 4 25 3.20 20

1954 0 5 24 3.16 20

1955 0 6 23 3.11 23

1956 0 7 22 3.07 25

1957 0 8 21 3.02 28

1958 0 9 20 2.97 29.5

1959 0 10 19 2.92 30

1960 0 11 18 2.86 33

1961 0 12 17 2.80 33.3

1962 0 13 16 2.74 36

1963 0 14 15 2.67 43

1964 0 15 14 2.60 43.5

1965 0 16 13 2.53 44

1966 0 17 12 2.44 45.5

1967 0 18 11 2.35 46

1968 0 19 10 2.25 46.5

1969 0 20 9 2.14 52

1970 0 21 8 2.01 57

1971 0 22 7 1.87 60

1972 0 23 6 1.70 60

1973 0 24 5 1.50 60

1974 0 25 4 1.25 69

1975 0 26 3 0.90 78

1976 0 27 2 0.37 120

1977 0 28 1 #¡NUM! 193.9

1978 0 29

1979 0 30

1980 0 31

1981 0 32

1982 17.2 33

1983 30 34

1984 46 35

1985 60 36

1986 33 37

1987 36 38

1988 120 39

1989 60 40

1990 25 41

1991 20 42

1992 23 43

1993 43 44

1994 78 45

1995 28 46

1996 45.5 47

1997 44 48

1998 16 49

1999 0 50

2000 7.1 51

2001 29.5 52

2002 69 53

2003 33.3 54

2004 20 55

2005 57 56

2006 60 57

2007 46.5 58

2008 43.5 59

2009 193.9 60

2010 52 61

Esta

ció

n 1

91

65

, Ch

up

ade

ros

de

l In

dio

Xm= 47.73

N= 28

Dx= 36.73

σn= 1.1047

Ўn= 0.53426

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 33

Tabla 10. Distribución Gumbel para la estación “Matehuala”.

Estación AñoPrecipitación

máx. en 24 h.

(mm)

Orden No. Tr (años)Variable reducida

(adim)

Precipitación máx.

en 24 h. (mm)

1000 6.91 200.02

100 4.60 146.90

50 3.90 130.91

20 2.97 109.78

1950 26.7 1 60 4.09 5

1951 51 2 59 4.07 10

1952 27.5 3 58 4.05 18

1953 49.5 4 57 4.03 20

1954 18 5 56 4.02 24

1955 69 6 55 4.00 25.1

1956 43 7 54 3.98 25.5

1957 30 8 53 3.96 26.7

1958 52 9 52 3.94 27.5

1959 31 10 51 3.92 28

1960 120 11 50 3.90 28

1961 62 12 49 3.88 30

1962 5 13 48 3.86 30

1963 63.6 14 47 3.84 31

1964 20 15 46 3.82 31.1

1965 42.9 16 45 3.80 33.3

1966 25.1 17 44 3.77 33.5

1967 106.7 18 43 3.75 40

1968 54.6 19 42 3.73 40

1969 50 20 41 3.70 41.51970 76 21 40 3.68 42.9

1971 48.2 22 39 3.65 43

1972 24 23 38 3.62 44.3

1973 31.1 24 37 3.60 48.2

1974 49.4 25 36 3.57 49.4

1975 33.3 26 35 3.54 49.5

1976 52.8 27 34 3.51 50

1977 62 28 33 3.48 51

1978 163.7 29 32 3.45 51.1

1979 53.5 30 31 3.42 52

1980 63.2 31 30 3.38 52

1981 52.4 32 29 3.35 52

1982 30 33 28 3.31 52.4

1983 89 34 27 3.28 52.8

1984 10 35 26 3.24 53.5

1985 0 36 25 3.20 54.6

1986 80 37 24 3.16 56

1987 40 38 23 3.11 57.3

1988 33.5 39 22 3.07 59

1989 41.5 40 21 3.02 61

1990 70 41 20 2.97 62

1991 62 42 19 2.92 62

1992 44.3 43 18 2.86 62

1993 66.5 44 17 2.80 63.2

1994 75 45 16 2.74 63.5

1995 93.5 46 15 2.67 63.6

1996 25.5 47 14 2.60 66.5

1997 28 48 13 2.53 68

1998 59 49 12 2.44 69

1999 96.5 50 11 2.35 70

2000 28 51 10 2.25 75

2001 40 52 9 2.14 76

2002 51.1 53 8 2.01 76

2003 63.5 54 7 1.87 80

2004 57.3 55 6 1.70 89

2005 52 56 5 1.50 93.5

2006 68 57 4 1.25 96.5

2007 76 58 3 0.90 106.7

2008 61 59 2 0.37 120

2009 52 60 1 #¡NUM! 163.7

2010 56 61

Esta

ció

n 2

40

40

, Mat

eh

ual

aXm= 53.44

N= 60

Dx= 27.12

σn= 1.17586

Ўn= 0.55351

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 34

5.1.2.2 Comportamiento de la precipitación en cada estación con respecto a los períodos

de retorno.

Sintetizando las tablas anteriores, se obtiene el comportamiento de la precipitación

máxima en 24 h de cada una de las estaciones meteorológicas, para los períodos de retorno

analizados tales como; 5, 20, 50, 100 y 1000 años, y además se muestra su comportamiento

temporal por estación en la Figura 10.

Figura 10. Distribución de la precipitación máxima en 24 h por estación y período de

retorno

5.1.2.3 Comprobación dela regionalización de estaciones, para comprobar su elección.

La anterior gráfica explica que hay diferencia de precipitación máxima en 24 h, por

estación y esto es debido al uso de sus propias variables, que interfieren en cada una de

ellas, tales como: Zona de ubicación, Altura sobre el nivel medio del mar, tipo de

infraestructura, distancia a los polos de desarrollos urbanos y zonas costeras. Por tal razón

se realizó el análisis de Estadístico de Componentes Principales conocido regularmente por

sus siglas en ingles ACP, y para su desarrollo se utilizó el Software IBM SPSS Statistics

Versión 7. Con lo anterior, se ingresan los datos fisiográficos de cada una de las estaciones

para luego obtener un resumen del estadístico descriptico y posterior a ello, aplicar el ACP

con las variables de; Nombre de la estación, Altura Sobre el Nivel del Mar, Latitud, Altitud,

Precipitación de los períodos calculados de 5, 20, 50 , 100 y 1000 años. (Véase la Figura

11).

Figura 11. Tabla de datos ingresada al software IBM SPSS Statistcs

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 35

Tabla 11. Extraída del IBM SPSS, de valor de la Media y desviación estándar

En los resultados de la Tabla 11, se observó valores por fuera de la media general, y

esto significa que alguna de las variables de entrada al inicio, son diferentes en sus

características fisiográficas. Lo anterior podría llevar a crear ruido en los valores en una de

las variables de interés, que en nuestro caso es la precipitación máxima en 24, y las

estaciones corresponden a La Cruz y Matehuala. En las anteriores mencionas, se observa

que ambas superan los 1,500 m, de A.S.N.M., lo que genera, es que a mayor altura, la

probabilidad de lluvia es alta, lo que es ocasionado por el fenómeno conocido comúnmente

como “Influencia Orográfica”.

Tabla 12. Correlación de comunidades

Las comunidades aparecen al principio del análisis, y se puede comprobar que son

muy cercanas al valor de 1 (Véase la Tabla 12), con lo cual se puede decir que las variables

quedan muy bien explicadas a través de las componentes extraídas (Múltiples variables).

Tabla 13. Resultados de autovalores, variancia y selección de los mejores factores

representativos de la muestra.

En la Tabla 13, se muestran los resultados previo a la gráfica de ACP, y además se

comprobó el porcentaje de varianza, que explicada a cada componente. También se observó

que el autovalor de 4.9295, es el de mayor peso en el conjunto de datos, el cual representa

el fenómeno del conjunto en un 98.5% de las variables analizadas. La anterior tabla se

muestra gráficamente en la Figura 12. En otras palabras, de la totalidad del 100% del

fenómeno estudiado (Precipitación), el componente 1, explica dicho fenómeno en un

98.50% y el componente 2, solo explica un 1.28%. Por tal razón se analizará el

Componente 1 y 2 para representar el conjunto en un 99.79%.

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 36

Figura 12. Gráfica de sedimentación para decidir los componentes principales

En la Tabla 14, se observa que la selección de los componentes mencionados

anteriormente, fue adecuada, pues a partir de la tercera componente, se muestra en la Figura

12 no es recomendable utilizarla, debido que no están bien distribuidas las contribuciones

de las variables, en cambios si, las que se observan en la columna de Factor 1 y 2.

Tabla 14. Peso de cada variable por factor

En la Tabla 15, se muestran los valores de los componentes para los factores 1 y 2,

que fueron los seleccionados para nuestro caso de estudio y explicado anteriormente.

Además con el mismo se puede calcular el valor de la componente o estación.

Tabla 15. Valores de los componentes por factores seleccionados (Caso presente

Factor 1 Vs 2)

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 37

Figura 13. Componentes principales por estación

A partir de la Tabla 15 y Figura 13, las cargas factoriales puede calcular la

comunidad de cada una de las variables, por ejemplo, para la estación Cuatro Ciénagas:

Estación Cuatro Ciénagas= 0,985*(-0,996119)2+0.129*(-0,027095)

2

Con la Figura 13, se puede concluir que las estaciones meteorológicas tienen un

comportamiento similar (circulo rojo), debido que sus componentes están agrupadas en el

mismo sentido y muy cerca entre ellas mismas, por lo tanto las estaciones corresponden a

una región homogénea y sirve para para determinar la variable de precipitación en el

presente estudio.

También se utilizó el análisis cluster o análisis de conglomerados, que es un método

de reconocimiento de patrones que encuentra agrupamientos naturales de muestras a partir

de una serie de variables (Precipitación, Longitud, Latitud y ASNM). De forma a priori se

pueden agrupar las estaciones. La Figura 14 muestra las estaciones “Chupadero del Indio”

y “Las Comitas” como las más próximas entre sí y las primeras que se unen formando un

cluster, las anteriores se unen con la estación “Cuatro Ciénagas”, formando el segundo

cluster, y las estaciones “Matehuala” y “La Cruz” forma el tercero con la mayor distancia

euclidiana en sus datos, y así hasta que todos se unan en un solo cluster. Si nos fijamos en

el dendograma, de la Figura 14, que a una distancia de 150, se agrupan tres estaciones de

comportamiento similar, y por último a una distancia de 650 se encuentran dos estaciones

de comportamiento semejante, que es debido a su relación entre la variable de Altura Sobre

el Nivel del Mar y la Precipitación, mismo que explica la Tabla 11.

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 38

Figura 14. Agrupación de estaciones por análisis cluster

5.1.3 DESTRIBUCIÓN ESPACIAL DE LA PRECIPITACIÓN

En el presente capitulo, se muestra la Tabla 16 de forma simple con los valores

obtenidos de precipitación, asociado a diferentes períodos de retorno, que fueron analizados

por medio de la Distribución Gumbel.

Tabla 16. Precipitación asociada a los períodos de retorno para cada estación

Estación Meteorológica Precipitación (mm)./ Período de retorno (años)

5 20 50 100 1000

Cuatro Ciénegas. 65.40 74.12 86.89 96.55 128.64

La Cruz. 104.00 140.44 170.25 192.80 267.71

Las Comitas. 103.00 173.56 214.47 245.41 348.20

Chupaderos del Indio. 60.00 129.58 160.05 183.10 259.66

Matehuala. 93.50 109.77 130.91 146.90 200.02

Con los valores de la Tabla 16, se procedió a introducir los mismos en el software

de ArcGis, para aplicar el método de interpolación Kriging de tipo esférico para así obtener

el valor de precipitación cerca del centroide de las subcuencas para diferentes períodos de

retorno en las Figura Figura 15, Figura 16,Figura 17Figura 18, Figura 19 y Figura 20.

Además los resultados de la interpolación fueron cotejados con las cartas de isoyetas

realizada por la Secretaria de Comunicaciones y Transporte (SCT, 2004), de cual se puede

concluir que coinciden con dicha información.

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 39

Figura 15. Isoyetas para una precipitación máxima de 24 h, y un período de retorno

de 5 años.

Figura 16. Isoyetas para una precipitación máxima de 24 h, y un período de retorno

de 20 años.

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 40

Figura 17. Isoyetas para una precipitación máxima de 24 h, y un período de retorno

de 50 años.

Figura 18. Isoyetas para una precipitación máxima de 24 h, y un período de retorno

de 100 años.

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 41

Figura 19. Isoyetas para una precipitación máxima de 24 h, y un período de retorno

de 1000 años.

5.2 CÁLCULO DE GASTO MÁXIMO

5.2.1 MÉTODO RACIONAL AMERICANO.

Para el presente estudio, se utilizó el método Racional Americano modificado para

calcular el caudal máximo empleando la siguiente ecuación:

Dónde:

Q = Caudal máximo (m3/seg)

A = Área de la cuenca (Km2)

C = Coeficiente de escurrimiento (adimensional)

I = Intensidad de precipitación (mm/h).

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 42

5.2.1.1 Determinación de los parámetros de diseño.

Se recomienda observar las CARACTERÍSTICAS DEL SITIO del presente

estudio, debido que los parámetros de Coeficiente de escurrimiento y precipitación se

tomaron de allí.

Determinación del coeficiente de escurrimiento (C). 5.2.1.1.1

El presente, considera la Tabla 2. Uso de suelo, y su porcentaje de participación en

función del área. Y en esta misma se introducen los valores de coeficiente de escurrimiento

que son utilizados en Austin, Texas, debido que las condiciones fisiográficas son similares

a la zona de estudio y además de su cercanía a Estados Unidos (Ver Anexo Digital 2).

Tabla 17. Determinación del coeficiente de escurrimiento

Tipo de suelo % Área Área C A*C

Adim (ha) Adim (ha)

Agricultura de Riego 6.49% 10310.02 0.40 4124.01

Agricultura de Temporal 11.03% 17521.26 0.40 7008.50

Área sin vegetación 0.13% 209.73 0.44 92.28

Área Urbana 5.37% 8528.10 0.92 7845.85

Bosque de Encino 0.47% 743.26 0.43 319.60

Bosque de Oyamel 1.49% 2363.88 0.43 1016.47

Bosque de Pino 12.39% 19680.41 0.43 8462.58

Bosque de Pino-Encino 0.16% 257.05 0.43 110.53

Chaparral 4.01% 6369.82 0.49 3121.21

Matorral Desértico Microfilo 11.35% 18023.78 0.49 8831.65

Matorral Desértico Rosetofilo 34.49% 54794.40 0.49 26849.26

Pastizal Inducido 7.11% 11295.58 0.37 4179.37

Pastizal Natural 3.81% 6059.97 0.37 2242.19

Vegetación Halófila 1.70% 2703.25 0.40 1081.30

TOTAL 100.00% 158860.52 0.47 75284.80

Tabla de valores utilizados en Austin, Texas. Que son similares a Coahuila para un Tr=50 años

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 43

Tiempo de Concentración de la Cuenca (TC). 5.2.1.1.2

El tiempo de concentración, se puede definir como el tiempo que tarda una gota de

agua, en llegar desde la parte más alejada de la subcuenca al sitio de interés (Salida CFRS-

M); es uno de los parámetros más importantes en los modelos de precipitación-escorrentía,

dado que la duración de la tormenta de diseño se define en base a éste.

Existen numerosas expresiones para determinar el tiempo de concentración,

desarrolladas en países con clima y morfología totalmente diferente a la de México; sin

embargo se hacen ajustes, para que permitan su empleo. Las expresiones utilizadas en el

presente se muestran a continuación:

Fórmula de Kirpich (1990)

(1)

Donde

: Tiempo de concentración, (h)

L: Longitud del cauce principal, (m)

S: Pendiente promedio del cauce (%)

Fórmula californiana (de siglas en Inglés U.S.B.R)

(

)

(2)

Donde

: Tiempo de concentración en (h)

L: Longitud del cauce principal, (Km).

J: Pendiente promedio del cauce (%)

Fórmula de Témez (1948)

(

)

(3)

Donde

: Tiempo de concentración en (h)

L: Longitud del cauce principal, (Km).

J: Pendiente promedio del cauce (%)

Fórmula Giandotti (1990)

√ (4)

Donde

: Tiempo de concentración, (h)

Ac: Superficie de la cuenca, (Km2)

L: Longitud del cauce principal, (Km).

J: Pendiente promedio del cauce (%)

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 44

En la Tabla 18, se muestra los resultados del tiempo de concentración aplicado por

diferentes métodos, y por tal razón, se considera un valor medio que corresponde a la

Kirpich de 12.57 h.

Tabla 18. Resultados del tiempo de concentración por diferentes métodos.

Microcuenca Δh

(m)

Longitud Pendiente

del cauce

Tiempo de concentración (Tc=hr)

Cauce (m) Rowe Kirpich Chow Califor

CFRS-M 1426 105660 1.349% 25.5895 12.574 54.799 12.293

Intensidad de lluvia 5.2.1.1.3

En la Tabla 4. Serie de datos de precipitación máxima en 24 h, desde 1950 a 2010.

Se observó tener una serie de datos registrados de un período de 61 años, y el cual, por

medio de la aplicación de la Distribución Gumbel Tipo 1, se obtuvo diferentes

precipitaciones por estación y período de retorno (Véase la Figura 10 y Tabla 11).

Con los valores de precipitación máxima en 24 h de la Tabla 11, por estación y

período de retorno, y además conocido el tiempo de Concentración (Tc), que se muestra en

la tabla anterior, del cual se consideró un Tc=12,57 h. y Aplicando la siguiente ecuación, se

obtiene los valores de Intensidad que se ilustran en la Figura 20 en escala logarítmica.

(5)

Figura 20. Intensidades de diseño para diferentes estaciones y períodos de retorno.

(Determinar en las isoyetas el valor que está próximo al centroide).

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 45

5.2.1.2 Resultados

Gasto máximo 5.2.1.2.1

Los resultados se obtuvieron con la siguiente ecuación, realizada a diferentes

intensidades de lluvia que corresponden a los períodos de retorno de 5, 20, 50, 100 y 1000

años:

Lo anterior conllevo a obtener la precipitación en el centroíde de las subcuencas,

que son extraídas de la Figura 15, Figura 16, Figura 17, Figura 18 y Figura 19. Aunado a lo

anterior, se obtuvo la intensidad de lluvia de una forma similar, y finalmente los resultados

de Gasto Máximo en el punto de salida del “CFRS-M” es:

Tabla 19. Parámetros para determinar el Gasto Máximo

Tr C (adim) A (km2) P (mm) I (mm/h) Gastos (m

3/seg)

5 0.47 1588.60 80 6.36 1320.08

20 0.47 1588.60 136 10.82 2244.13

50 0.47 1588.60 164 13.05 2706.16

100 0.47 1588.60 193 15.35 3184.69

1000 0.47 1588.60 274 21.80 4521.26

Gráfica del Gasto Máximo de salida a diferentes períodos de retornos, para su 5.2.1.2.2

posterior uso en el análisis hidráulico del cauce “La Encantada”.

En la Figura 21, se obtiene de forma sencilla el Gastos Máximo para el análisis

hidráulico.

Figura 21. Gasto máximo en el punto de salida “CFRS-M”, para diferentes períodos

de retorno.

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 46

5.2.2 MÉTODO GRÁFICO DE LA SCS

En muchos métodos de estimación de descarga máxima, la entrada incluye variables

que reflejan el tamaño del área contribuyente, como la cantidad de lluvia, almacenamiento

de cuencas potenciales, y la distribución del tiempo de la zona estudio de la cuenca, que en

nuestro caso son subcuencas. Esto se traduce a menudo en variables de entrada como el

área de drenaje, lámina de lluvia, índice que refleja el uso del suelo y tipo de suelo, y el

tiempo de concentración. El método grafico de descargar máxima SCS es típico en muchos

métodos de pico de descarga, que se basan en la información histórica, como se describe a

continuación.

5.2.2.1 Condiciones

El método SCS se debe utilizar sólo cuando el CN es mayor de 50, y el Tc es

superior a 0,1 horas y menos de 10 horas. Además, el valor calculado de Ia / P debe estar

entre 0,1 y 0,5 (Esta restricción es debido a la limitante de la gráfica, pero es permitido

trabajar por debajo o por encima de estos valores si se conocen la función de tendencia de

Tc y Ia/P). Además debe usarse sólo cuando la cuenca tiene un canal principal o cuando

hay dos canales principales que tienen tiempos casi iguales de concentración.

5.2.2.2 Estimación de la lámina de escurrimiento.

El volumen de salida de la tormenta, puede depender de una serie de factores: El

volumen de lluvia será un factor importante para las cuencas de gran tamaño, el volumen de

escurrimiento de una tormenta puede depender de las lluvias que se produjeron durante las

tormentas anteriores. Sin embargo, cuando se utiliza el enfoque de tormenta de diseño, la

suposición de independencia de tormenta es bastante común (Como en el caso del Método

Racional Americano, que no considera la humedad antecedente). Además de las lluvias,

otros factores que afectan el volumen de escurrimiento.

Una suposición común en modelos hidrológicos, es que la precipitación disponible

para el escurrimiento se divide en tres partes: lluvia o tormenta de diseño que genera el

escurrimiento, abstracción inicial, y las pérdidas.

La cubierta vegetal y el uso, tipo de suelo y condiciones de humedad antecedente,

determinará el importe de la depresión y el almacenamiento de interceptación.

En el desarrollo de la relación lluvia-escurrimiento, la precipitación total fue

separada en tres componentes: Escorrentía directa (Q), Retención real (F), y la abstracción

inicial (Ia). La retención de F fue asumida como una función de la profundidad de las

precipitaciones y la escorrentía y la abstracción inicial. El desarrollo de la ecuación generó

lo siguiente:

(6)

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 47

Donde,

P = profundidad o lamina de la precipitación, (mm)

Ia = abstracción inicial, (mm)

S = potencial máximo de retención, (mm)

Q = profundidad de la escorrentía directa, (mm)

Teniendo en cuenta la ecuación 6, dos incógnitas deben estimarse, S y Ia. La

retención de S debe estar en función de los siguientes cinco factores: uso del suelo,

intercepción, infiltración, almacenamiento depresión, y la humedad antecedente La

evidencia empírica como resultado la siguiente ecuación para estimar la abstracción inicial:

(7)

Si los cinco factores anteriores afectan S, que también afectan a Ia. Al sustituir la

ecuación 7 en la ecuación 6, se obtiene la siguiente ecuación, que contiene S desconocido:

(8)

La ecuación 8, representa la ecuación básica para calcular la profundidad de la

escorrentía, Q, para una lámina de precipitación dada, P. Vale la pena señalar que mientras

Q y P tienen unidades de profundidad, Q y P reflejan los volúmenes y se refieren a menudo

como los volúmenes, ya que suele darse por sentado que la misma profundidad que se

produjo en toda la cuenca, adicionalmente se realizaron análisis empíricos para estimar el

valor de S, los estudios encontraron que el S estaba relacionado con el tipo de suelo,

cubierta vegetal, y la condición hidrológica de la cuenca. Estos están representados por el

número de curva de escorrentía (CN), que se utiliza para estimar S por:

[

] (9)

Donde.

CN = índice que representa la combinación de un grupo de suelos hidrológicos y un

uso de la tierra y la clase de tratamiento.

α = unidad constante igual a 25,4 en unidades del SI y 1,0 en unidades de

conversión CU

Los análisis empíricos sugieren que la CN es una función de tres factores: grupo de

suelos, el complejo de cubierta, y las condiciones antecedentes de humedad.

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 48

5.2.2.3 Clasificación de grupo de uso de suelo y valor de CN

Grupo de uso de suelo 5.2.2.3.1

SCS desarrolló un sistema de clasificación del suelo que consta de cuatro grupos,

identificados por las letras A, B, C y D. Las anteriores representan las características del

suelo, que se asocian con cada grupo (Véase la Tabla 20):

Tabla 20. Grupo de uso de suelo

Grupo Descripción

A arena profunda, limo profunda ; limos agregados

B Migajón o poco limo, franco arenoso.

C Franco arcilloso, poco migajón arenoso, suelo con bajo contenido de materia orgánica

D Suelos que se expande de forma considerable cuando esta mojado, arcillas plásticas

pesadas, algunos suelos salinos

La zona de estudio presenta una gran diversidad de Tipo de Suelo, y de las misma,

su área de influencia o de superficie sobre el total, tales como y además véase la Tabla 1:

Feozem (1.45%), Litosol (52.32%), Regosol (9.00%), Solonchak (4.98%) y Xerosol

(32.25%), todos lo anteriores en textura media (Véase la Figura 6). En lo anterior describen

los suelos como, muy delgados, pedregosos, y poco desarrollados, los cuales pueden

contener una gran cantidad de material calcáreo, y además son suelos de amplia

distribución mundial y sobre todo en México. Por consiguiente se toma el Grupo C de la

Tabla 20.

Uso de Suelo actual y Valor de la CN 5.2.2.3.2

En la siguiente Tabla 21, se presenta el valor de la CN asociada al uso de suelo

actual que fue obtenido del artículo de TR-55 de la USDA (United States Department of

Agriculture, por sus siglas en inglés) (USDA, 1986). Además la información del Uso de

Suelo proviene de la Tabla 2 con su respectiva área de influencia, que fue analizada

anteriormente en la plataforma de ArcGis versión 10.

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 49

Tabla 21. Valores de CN asociados al uso de Suelo (Ver Anexo Digital 3)

Descripción ÁREA (ha) % del Área CN

Agricultura de Riego 10310.02 6.49% 84

Agricultura de Temporal 17521.26 11.03% 84

Area sin vegetacion 209.73 0.13% 91

Area Urbana 8528.10 5.37% 94

Bosque de Encino 743.26 0.47% 78

Bosque de Oyamel 2363.88 1.49% 78

Bosque de Pino 19680.41 12.39% 78

Bosque de Pino-Encino 257.05 0.16% 78

Chaparral 6369.82 4.01% 77

Matorral Desertico Microfilo 18023.78 11.35% 77

Matorral Desertico Rosetofilo 54794.40 34.49% 77

Pastizal Inducido 11295.58 7.11% 79

Pastizal Natural 6059.97 3.81% 79

Vegetacion Halofila 2703.25 1.70% 76

Total 158860.517 100% 79.50

Estimación de descarga pico 5.2.2.3.3

La siguiente ecuación se puede utilizar para calcular el caudal pico con el método

SCS:

(10)

Dónde:

qp = Descarga pico, en (m3/s)

qu = Unidad de descarga pico, (m3/s/km

2/mm )

A = área de drenaje, (km2)

Q = profundidad de la escorrentía, (mm)

La unidad de caudal pico se obtiene de la siguiente ecuación, que depende del

tiempo de concentración (tc) en horas y la abstracción inicial / lluvia (Ia / P) como entrada:

[ ] (11)

Dónde:

C0, C1 y C2 = Coeficientes de regresión que se muestran en la Tabla 22 para

diversos Ia / P.

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 50

Coeficientes de distribución de la lluvia tipo por la SCS 5.2.2.3.4

El Servicio de Conservación de Suelos (SCS), desarrollo varias distribuciones

temporales generalizadas y aplicables a los Estados Unidos, entre ellas las de 24 h Tipos I,

IA, II, y III y las 48 h Tipos I y II. Las 24 h tipos I de distribución temporal son

representativas del clima marítimo del Pacífico, con inviernos húmedos y veranos secos

(Costa de California, aproximadamente al sur de San Francisco). El tipo de distribución

Tipo IA es representativo de la precipitación de baja intensidad normalmente asociada con

tormentas frontales hacia el oeste de las Montañas Cascada (Washington y Oregon) y Sierra

Nevada (California). La distribución Tipo III es representativa de las áreas costeras

Atlánticas y del Golfo donde las tormentas tropicales son responsables para cantidades

grandes de precipitaciones de 24 horas. La distribución Tipo II es la más intensa de las

cuatro distribuciones del SCS y es representativa de las tormentas dominantes que ocurren

al este de las Montañas Cascada (Washington y Oregon) y Sierra Nevada (California),

excluyendo las áreas donde la distribución.

Considerando lo anterior, y guardando las similitudes en cuanto la distribución de

las tormentas en la zona estudio y sus características fisiográficas, se estima que la tormenta

Tipo IA para las 24 h, es la que se asemeja a nuestro caso en particular y por lo tanto es

aplicable para nuestro procedimiento (Véase la Tabla 22).

Tabla 22. Coeficientes de regresión de distribución de tormenta Tipo I A

Tipo de lluvia Ia/P Co C1 C2

IA

0.1 2.0325 -0.31583 -0.13748

0.2 1.91978 -0.28215 -0.0702

0.25 1.83842 -0.25543 -0.02597

0.3 1.72657 -0.19826 0.02633

0.5 1.63417 -0.091 0

Estos coeficientes indican la distribución del tiempo de la tormenta en toda su etapa

que corresponde a tormentas que se desarrollan en límites con Estados Unidos, como fue

indicado anteriormente en el estado de California.

α = constante igual a la unidad 0.000431 en unidades del SI y 1,0 en unidades de

conversión de CU.

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 51

5.2.2.4 Resultados

Gasto máximo 5.2.2.4.1

Debido a lo extenso de los resultados del presente método, se procedió a mostrar las

tablas de cálculos, con relación a cada período de retorno.

Tabla 23. Gasto máximo para un período de retorno de 5 años.

Área de la Cuenca (Ac) 1588.61 km2 158,860.52 ha

Longitud el cauce principal (Lc) 105.660 km 105,660.00 m 158860.52 ha

Desnivel de la Cuenca (Hc) 1426 m 1.426 km 1588.6052 Km

Grupo Textuta

A Media

B

C

D

CN ponderado 79.50

DATOS: Cota Máxima Minima Desnivel Pendiente

Ac = 1588.6052 km2msnm msnm msnm m - m

CN = 79.50 adim 2250 824 1426 1.350%

Lc= 105660.00 m

Subcuenca Δh L % Pend. Kirpich SCS Tc promedio

m m m - m min min min

CFRS-M 1426 105,660.00 1.350% 754.48 737.6 746.0

746.0

hr 12.57

10

P (mm) e I (mm/h) 80 6.362

Ia/P Co C1 C2 Ia Ia/P

0.1 2.0325 -0.31583 -0.13748 13.10 0.1637

0.2 1.91978 -0.28215 -0.07020.25 1.83842 -0.25543 -0.02597 Co C1 C2

0.3 1.72657 -0.19826 0.02633 1.9607 -0.2944 -0.0946

0.5 1.63417 -0.091 0

Q qu A Tributaria qp

mm m3/s/km2/mm Km2 m3/s Q (m3/s) 771.26

33.81 0.0144 1588.61 771.26 Q (m3/s)

MEMORIA DE CÁLCULO HIDROLÓGICO

1.- CARACTERÍSTICAS FiSIOGRÁFICAS DE LA UNIDAD DE ESCURRIMIENTO

SUBCUENCAS AL PTO. DE SALIDA AL CFRS-MÁrea tributaria

2.- GRUPO DE USO DE SUELO, TIPO DE SUELO Y CONDICIÓN HIDROLÓGICA , CN DE LA SCS Y LÁMINA DE ESCORRENTÍA DIRECTA (Q) DEL MÉTODO GRÁFICO

Franco arcilloso, poco migajón arenoso, suelo con bajo

Suelos que se expande de forma considerable cuando

Grupo de uso de suelo Hidrológico Suelo de la zona de estudio

Descripción Descripción

Arena profunda, limo profunda ; limos agregados Litosol (I)

Migajón o poco limo, franco arenoso.

Unidad de descarga pico y descarga pico

Caudal máximo cálculado

Coeficientes de regresión según la Relación Ia/p

3. CÁLCULO DEL GASTO MÁXIMO POR EL MÉTODO GRÁFICO DE LA SCS

CÁLCULO DEL TIEMPO DE CONCENTRACIÓN (Tc), POR EL MÉTODO DE VELOCIDAD O DE SEGMENTOS

VIDA ÚTIL DE LA CONSTRUCCIÓN

CFRS-MLa precipitación de diseño en una tormenta de 24 h, se encontro por medio de la

interpolación de 3 estaciones cercanas con un período de 5 años

Relación de infiltración inical con respecto

la precipitaciónTormenta Tipo I A--COEFICIENTES DE REGRESIÓN PARA DIVERSAS RELACIONES Ia/P

m

25 * AQ

5 A

0.75

m 6.9* AQ = 0.6710.106Q A

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 52

Tabla 24. Gasto máximo para un período de retorno de 20 años.

Área de la Cuenca (Ac) 1588.61 km2 158,860.52 ha

Longitud el cauce principal (Lc) 105.660 km 105,660.00 m 158860.52 ha

Desnivel de la Cuenca (Hc) 1426 m 1.426 km 1588.6052 Km

Grupo Textuta

A Media

B

C

D

CN ponderado 79.50

DATOS: Cota Máxima Minima Desnivel Pendiente

Ac = 1588.6052 km2msnm msnm msnm m - m

CN = 79.50 adim 2250 824 1426 1.350%

Lc= 105660.00 m

Subcuenca Δh L % Pend. Kirpich SCS Tc promedio

m m m - m min min min

CFRS-M 1426 105,660.00 1.350% 754.48 737.6 746.0

746.0

hr 12.57

10

P (mm) e I (mm/h) 136 10.815

Ia/P Co C1 C2 Ia Ia/P

0.1 2.0325 -0.31583 -0.13748 13.10 0.0963

0.2 1.91978 -0.28215 -0.07020.25 1.83842 -0.25543 -0.02597 Co C1 C2

0.3 1.72657 -0.19826 0.02633 2.0367 -0.3171 -0.1400

0.5 1.63417 -0.091 0

Q qu A Tributaria qp

mm m3/s/km2/mm Km2 m3/s Q (m3/s) 1813.08

80.18 0.0142 1588.61 1813.08 Q (m3/s)

MEMORIA DE CÁLCULO HIDROLÓGICO

1.- CARACTERÍSTICAS FiSIOGRÁFICAS DE LA UNIDAD DE ESCURRIMIENTO

SUBCUENCAS AL PTO. DE SALIDA AL CFRS-MÁrea tributaria

2.- GRUPO DE USO DE SUELO, TIPO DE SUELO Y CONDICIÓN HIDROLÓGICA , CN DE LA SCS Y LÁMINA DE ESCORRENTÍA DIRECTA (Q) DEL MÉTODO GRÁFICO

Franco arcilloso, poco migajón arenoso, suelo con bajo

Suelos que se expande de forma considerable cuando

Grupo de uso de suelo Hidrológico Suelo de la zona de estudio

Descripción Descripción

Arena profunda, limo profunda ; limos agregados Litosol (I)

Migajón o poco limo, franco arenoso.

Unidad de descarga pico y descarga pico

Caudal máximo cálculado

Coeficientes de regresión según la Relación Ia/p

3. CÁLCULO DEL GASTO MÁXIMO POR EL MÉTODO GRÁFICO DE LA SCS

CÁLCULO DEL TIEMPO DE CONCENTRACIÓN (Tc), POR EL MÉTODO DE VELOCIDAD O DE SEGMENTOS

VIDA ÚTIL DE LA CONSTRUCCIÓN

CFRS-MLa precipitación de diseño en una tormenta de 24 h, se encontro por medio de la

interpolación de 3 estaciones cercanas con un período de 20 años

Relación de infiltración inical con respecto

la precipitaciónTormenta Tipo I A--COEFICIENTES DE REGRESIÓN PARA DIVERSAS RELACIONES Ia/P

m

25 * AQ

5 A

0.75

m 6.9* AQ = 0.6710.106Q A

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 53

Tabla 25. Gasto máximo para un período de retorno de 50 años.

Área de la Cuenca (Ac) 1588.61 km2 158,860.52 ha

Longitud el cauce principal (Lc) 105.660 km 105,660.00 m 158860.52 ha

Desnivel de la Cuenca (Hc) 1426 m 1.426 km 1588.6052 Km

Grupo Textuta

A Media

B

C

D

CN ponderado 79.50

DATOS: Cota Máxima Minima Desnivel Pendiente

Ac = 1588.6052 km2msnm msnm msnm m - m

CN = 79.50 adim 2250 824 1426 1.350%

Lc= 105660.00 m

Subcuenca Δh L % Pend. Kirpich SCS Tc promedio

m m m - m min min min

CFRS-M 1426 105,660.00 1.350% 754.48 737.6 746.0

746.0

hr 12.57

10

P (mm) e I (mm/h) 164 13.042

Ia/P Co C1 C2 Ia Ia/P

0.1 2.0325 -0.31583 -0.13748 13.10 0.0799

0.2 1.91978 -0.28215 -0.07020.25 1.83842 -0.25543 -0.02597 Co C1 C2

0.3 1.72657 -0.19826 0.02633 2.0552 -0.3226 -0.1510

0.5 1.63417 -0.091 0

Q qu A Tributaria qp

mm m3/s/km2/mm Km2 m3/s Q (m3/s) 2374.53

105.24 0.0142 1588.61 2374.53 Q (m3/s)

MEMORIA DE CÁLCULO HIDROLÓGICO

1.- CARACTERÍSTICAS FiSIOGRÁFICAS DE LA UNIDAD DE ESCURRIMIENTO

SUBCUENCAS AL PTO. DE SALIDA AL CFRS-MÁrea tributaria

2.- GRUPO DE USO DE SUELO, TIPO DE SUELO Y CONDICIÓN HIDROLÓGICA , CN DE LA SCS Y LÁMINA DE ESCORRENTÍA DIRECTA (Q) DEL MÉTODO GRÁFICO

Franco arcilloso, poco migajón arenoso, suelo con bajo

Suelos que se expande de forma considerable cuando

Grupo de uso de suelo Hidrológico Suelo de la zona de estudio

Descripción Descripción

Arena profunda, limo profunda ; limos agregados Litosol (I)

Migajón o poco limo, franco arenoso.

Unidad de descarga pico y descarga pico

Caudal máximo cálculado

Coeficientes de regresión según la Relación Ia/p

3. CÁLCULO DEL GASTO MÁXIMO POR EL MÉTODO GRÁFICO DE LA SCS

CÁLCULO DEL TIEMPO DE CONCENTRACIÓN (Tc), POR EL MÉTODO DE VELOCIDAD O DE SEGMENTOS

VIDA ÚTIL DE LA CONSTRUCCIÓN

CFRS-MLa precipitación de diseño en una tormenta de 24 h, se encontro por medio de la

interpolación de 3 estaciones cercanas con un período de 50 años

Relación de infiltración inical con respecto

la precipitaciónTormenta Tipo I A--COEFICIENTES DE REGRESIÓN PARA DIVERSAS RELACIONES Ia/P

m

25 * AQ

5 A

0.75

m 6.9* AQ = 0.6710.106Q A

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 54

Tabla 26. Gasto máximo para un período de retorno de 100 años.

Área de la Cuenca (Ac) 1588.61 km2 158,860.52 ha

Longitud el cauce principal (Lc) 105.660 km 105,660.00 m 158860.52 ha

Desnivel de la Cuenca (Hc) 1426 m 1.426 km 1588.6052 Km

Grupo Textuta

A Media

B

C

D

CN ponderado 79.50

DATOS: Cota Máxima Minima Desnivel Pendiente

Ac = 1588.6052 km2msnm msnm msnm m - m

CN = 79.50 adim 2250 824 1426 1.350%

Lc= 105660.00 m

Subcuenca Δh L % Pend. Kirpich SCS Tc promedio

m m m - m min min min

CFRS-M 1426 105,660.00 1.350% 754.48 737.6 746.0

746.0

hr 12.57

10

P (mm) e I (mm/h) 193 15.348

Ia/P Co C1 C2 Ia Ia/P

0.1 2.0325 -0.31583 -0.13748 13.10 0.0679

0.2 1.91978 -0.28215 -0.07020.25 1.83842 -0.25543 -0.02597 Co C1 C2

0.3 1.72657 -0.19826 0.02633 2.0687 -0.3267 -0.1591

0.5 1.63417 -0.091 0

Q qu A Tributaria qp

mm m3/s/km2/mm Km2 m3/s Q (m3/s) 2971.39

131.90 0.0142 1588.61 2971.39 Q (m3/s)

MEMORIA DE CÁLCULO HIDROLÓGICO

1.- CARACTERÍSTICAS FiSIOGRÁFICAS DE LA UNIDAD DE ESCURRIMIENTO

SUBCUENCAS AL PTO. DE SALIDA AL CFRS-MÁrea tributaria

2.- GRUPO DE USO DE SUELO, TIPO DE SUELO Y CONDICIÓN HIDROLÓGICA , CN DE LA SCS Y LÁMINA DE ESCORRENTÍA DIRECTA (Q) DEL MÉTODO GRÁFICO

Franco arcilloso, poco migajón arenoso, suelo con bajo

Suelos que se expande de forma considerable cuando

Grupo de uso de suelo Hidrológico Suelo de la zona de estudio

Descripción Descripción

Arena profunda, limo profunda ; limos agregados Litosol (I)

Migajón o poco limo, franco arenoso.

Unidad de descarga pico y descarga pico

Caudal máximo cálculado

Coeficientes de regresión según la Relación Ia/p

3. CÁLCULO DEL GASTO MÁXIMO POR EL MÉTODO GRÁFICO DE LA SCS

CÁLCULO DEL TIEMPO DE CONCENTRACIÓN (Tc), POR EL MÉTODO DE VELOCIDAD O DE SEGMENTOS

VIDA ÚTIL DE LA CONSTRUCCIÓN

CFRS-MLa precipitación de diseño en una tormenta de 24 h, se encontro por medio de la

interpolación de 3 estaciones cercanas con un período de 100 años

Relación de infiltración inical con respecto

la precipitaciónTormenta Tipo I A--COEFICIENTES DE REGRESIÓN PARA DIVERSAS RELACIONES Ia/P

m

25 * AQ

5 A

0.75

m 6.9* AQ = 0.6710.106Q A

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 55

Tabla 27. Gasto máximo para un período de retorno de 1000 años.

Área de la Cuenca (Ac) 1588.61 km2 158,860.52 ha

Longitud el cauce principal (Lc) 105.660 km 105,660.00 m 158860.52 ha

Desnivel de la Cuenca (Hc) 1426 m 1.426 km 1588.6052 Km

Grupo Textuta

A Media

B

C

D

CN ponderado 79.50

DATOS: Cota Máxima Minima Desnivel Pendiente

Ac = 1588.6052 km2msnm msnm msnm m - m

CN = 79.50 adim 2250 824 1426 1.350%

Lc= 105660.00 m

Subcuenca Δh L % Pend. Kirpich SCS Tc promedio

m m m - m min min min

CFRS-M 1426 105,660.00 1.350% 754.48 737.6 746.0

746.0

hr 12.57

10

P (mm) e I (mm/h) 274 21.790

Ia/P Co C1 C2 Ia Ia/P

0.1 2.0325 -0.31583 -0.13748 13.10 0.0478

0.2 1.91978 -0.28215 -0.07020.25 1.83842 -0.25543 -0.02597 Co C1 C2

0.3 1.72657 -0.19826 0.02633 2.0913 -0.3334 -0.1726

0.5 1.63417 -0.091 0

Q qu A Tributaria qp

mm m3/s/km2/mm Km2 m3/s Q (m3/s) 4686.25

208.56 0.0141 1588.61 4686.25 Q (m3/s)

MEMORIA DE CÁLCULO HIDROLÓGICO

1.- CARACTERÍSTICAS FiSIOGRÁFICAS DE LA UNIDAD DE ESCURRIMIENTO

SUBCUENCAS AL PTO. DE SALIDA AL CFRS-MÁrea tributaria

2.- GRUPO DE USO DE SUELO, TIPO DE SUELO Y CONDICIÓN HIDROLÓGICA , CN DE LA SCS Y LÁMINA DE ESCORRENTÍA DIRECTA (Q) DEL MÉTODO GRÁFICO

Franco arcilloso, poco migajón arenoso, suelo con bajo

Suelos que se expande de forma considerable cuando

Grupo de uso de suelo Hidrológico Suelo de la zona de estudio

Descripción Descripción

Arena profunda, limo profunda ; limos agregados Litosol (I)

Migajón o poco limo, franco arenoso.

Unidad de descarga pico y descarga pico

Caudal máximo cálculado

Coeficientes de regresión según la Relación Ia/p

3. CÁLCULO DEL GASTO MÁXIMO POR EL MÉTODO GRÁFICO DE LA SCS

CÁLCULO DEL TIEMPO DE CONCENTRACIÓN (Tc), POR EL MÉTODO DE VELOCIDAD O DE SEGMENTOS

VIDA ÚTIL DE LA CONSTRUCCIÓN

CFRS-MLa precipitación de diseño en una tormenta de 24 h, se encontro por medio de la

interpolación de 3 estaciones cercanas con un período de 1000 años

Relación de infiltración inical con respecto

la precipitaciónTormenta Tipo I A--COEFICIENTES DE REGRESIÓN PARA DIVERSAS RELACIONES Ia/P

m

25 * AQ

5 A

0.75

m 6.9* AQ = 0.6710.106Q A

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 56

Lo anterior conllevo a obtener la precipitación en el centroíde de las subcuencas,

que son extraídas de la Figura 15, Figura 16, Figura 17, Figura 18 y Figura 19. Aunado a lo

anterior, se obtuvo la intensidad de lluvia de una forma similar, y finalmente los resultados

de Gasto Máximo en el punto de salida del “CFRS-M”.

Tabla 28. Parámetros para determinar el Gasto Máximo

Tr CN (adim) A (km2) P (mm) I (mm/h) Gastos (m

3/seg)

5 79.50 1588.60 80 6.36 771.26

20 79.50 1588.60 136 10.82 1813.08

50 79.50 1588.60 164 13.05 2374.53

100 79.50 1588.60 193 15.35 2971.39

1000 79.50 1588.60 274 21.80 4686.25

Gráfica del Gasto Máximo de salida a diferentes períodos de retornos, para su 5.2.2.4.2

posterior uso en el análisis hidráulico del cauce “La Encantada”.

La Figura 21, se obtiene de forma sencilla el Gastos Máximo para el análisis

hidráulico.

Figura 22. Gasto máximo en el punto de salida “CFRS-M”, para diferentes períodos

de retorno.

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 57

5.2.3 DIFERENCIA DE RESULTADOS POR MÉTODOS UTILIZADOS

Gasto máximo 5.2.3.1.1

Se simplifica el presente capítulo, mostrando la tabla con los resultados obtenidos

por cada método para calcular el Gasto Máximo (Véase la Tabla 29).

Tabla 29. Gasto Máximo por método de estimación.

Tr Gasto Máximo (m3/seg)

(años) Racional SCS

5 1320.08 771.26

20 2244.13 1813.08

50 2706.16 2374.53

100 3184.69 2971.39

1000 4521.26 4686.25

Gráfica del Gasto Máximo de salida a diferentes períodos de retornos y 5.2.3.1.2

métodos de estimación, para su posterior uso en el análisis hidráulico del

cauce “La Encantada”.

En la Figura 23, se obtiene de forma sencilla el Gastos Máximo para el análisis

hidráulico.

Figura 23. Gasto máximo en el punto de salida “CFRS-M”, para diferentes períodos

de retorno y métodos de estimación.

Método seleccionado. 5.2.3.1.3

Se concluye desde el punto de vista estadístico, para determinar el método de mejor

comportamiento del Gasto, en función de la correlación que se muestra en la Figura 23.

Donde se observa un R2 de 0.999 para un nivel de p< 0.001, y significa que el método SCS

predice estadísticamente mejor que el Racional americano, aunque éste último tiene un R2

alto, pero en términos de comparación, se seleccionó al R2 más próximo a 1.

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 58

5.3 SIMULACIÓN HIDROLÓGICA, ESTIMADA POR EL MÉTODO SCS.

5.3.1 DESCRIPCIÓN DEL SOFTWARE HEC-HMS

El Centro de Ingeniería Hidrológica (HEC, por sus siglas en inglés) del Cuerpo de

Ingenieros del Ejército de los Estados Unidos, desarrolló un software de aplicación

hidrológica específica, al cual han denominado Sistema de Modelación Hidrológica (HMS,

por sus siglas en inglés). HEC-HMS, como comúnmente se conoce a este paquete de

cómputo, se ha estandarizado en Estados Unidos y en muchas otras partes del mundo

(México), como la herramienta para la modelación hidrológica de cuencas.

El sistema HMS fue desarrollado para simular el proceso lluvia – escurrimiento en

sistemas de cuencas de tipo dendrítico, es decir cuencas cuyo drenaje se realiza a través de

una red de cauces con un solo punto de salida y está diseñado para aplicarse en condiciones

geográficas diversas tratando de resolver el mayor número de problemas posibles. Para la

simulación del proceso lluvia–escurrimiento en el HMS es necesario acoplar tres módulos:

modelo de cuenca, modelo meteorológico y especificaciones de control. En el primero de

ellos se define cada uno de los elementos que componen a la cuenca; en el más sencillo de

los casos este modelo puede estar constituido por una sola cuenca sobre la cual se realizan

todos los cálculos. Sin embargo, en la mayoría de los casos los modelos de cuenca están

compuestos por varias subcuencas en donde además de calcular el escurrimiento directo se

realiza el tránsito de avenidas de una subcuenca a otra hasta llegar a la salida del sistema de

cuencas. Aquí mismo se eligen los submodelos para simular el flujo base, la transformación

lluvia – escurrimiento y el tránsito de las avenidas. En el modelo meteorológico se

establecen las entradas al modelo, es decir las precipitaciones para las cuales se simulará el

escurrimiento. Finalmente en las especificaciones de control se establecen los tiempos de

simulación correspondientes al inicio y fin del periodo así como el intervalo de tiempo

(paso) de simulación (Véase la Figura 24, que son los resultados de la modelación de la

subcuenca “CFRS-M”).

5.3.2 DATOS DE ENTRADA A LA SIMULACIÓN POR DIFERENTES PERÍODOS DE RETORNO.

Para el presente se consideraron las siguientes variables de entrada.

Tabla 30. Datos de entrada al HEC-HMS.

Tr P

(mm) CN

(adim)

Ia (mm)

Lluvia Tipo

Área (km2)

Longitud del Cauce (km)

Tc (h) Tlag(min)

=0.6*tc

5 80 79.50 13.10

IA 1588.60 105.66 12.57 452.7

20 136 79.50 13.10

50 164 79.50 13.10

100 193 79.50 13.10

1000 274 79.50 13.10

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 59

5.3.3 RESULTADOS DE LA SIMULACIÓN, POR EL MÉTODO SCS.

5.3.3.1 Representación gráfica de las subcuencas ingresadas al simulador HEC-

HMS.

Figura 24. Representación gráfica del área tributaria de las subcuencas.

5.3.3.2 Hidrograma de salida para diferentes períodos de retorno

En el presente se muestra la Figura 25, donde se ilustra el comportamiento temporal

del gasto en el punto de salida, a diferentes períodos de retorno. Además el valor de Gasto

Máximo estimado por el Método SCS, y el Simulado para apreciar su diferencia. En el

Anexo Digital 4, se puede observar los resultados capturados en el HEC-HMS.

Figura 25. Hidrograma simulado en el Pto. CFRS-M, a diferentes períodos de retorno.

Tabla 31. Gasto Máximo por método de estimación.

Tr Gasto Máximo (m3/seg)

(años) SCS (simulado) SCS (estimado)

5 770.3 771.26

20 1870.5 1813.08

50 2477.0 2374.53

100 3125.5 2971.39

1000 4981.5 4686.25

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 61

7 REFERENCIAS CONAPO, 2010. Consejo Nacional de Población, Índice de marginación por entidad

Federativa y Municipio 2010. México, D.F.

GCOS, 2010. Global Climate Observing System, Guía de la red de estaciones de

observación en superficie del SMOC (GSN) y de la red de estaciones de

observación en altitud del SMOC (GUAN). GCOS-144, Ginebra, Suiza.

IMTA, 2005. Instituto Mexicano de Tecnología del Agua, ERIC-III, Extractor Rápido de

Información Climática. México, D.F.

INEGI, 2011. Información digital de la fisiografía de Coahuila de Zaragoza. México, D.F.

INEGI, INE y CONAGUA, 2007. Delimitación de las Cuencas Hidrográficas de México

a Escala 1:250 000. México, D.F.

Organización Meteorológica Mundial, 1994: Guía de Prácticas Hidrológicas. Quinta

Edición, OMM-Nº 168, Ginebra, Suiza.

SCT, 2004, Isoyetas de Intensidad y Precipitación de los Estados Unidos Mexicanos.

Dirección General de Servicios Técnicos-DGST, México D.F.

SMN-CNA, 2013. Servicio Nacional Meteorológico de la Comisión de COANGUA,

Valores Climatológicos Estadístico. México, D.F.

United States Department of Agriculture, 1986. Technical Release-55: Urban Hydrology

for Small Watersheds. Conservation Engineering Division, US Department of

Agriculture, Washington. DC Tech. Rep. 55. USA.

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 62

ANEXOS DIGITALES

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 63

ANEXO DIGITAL 1

ESTACIÓN CUATRO CIÉNAGAS

ESTADÍSTICA DESCRIPTIVA.

Datos de precipitación observada

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 64

DATOS DE PRECIPITACIÓN OBSERVADA

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 65

ESTACIÓN LAS COMITAS

ESTADÍSTICA DESCRIPTIVA.

Datos de precipitación observada

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 66

ESTACIÓN CHUPADEROS DEL INDIO

ESTADÍSTICA DESCRIPTIVA.

Datos de precipitación observada

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 67

DATOS EXTRAÍDOS DEL ERIC-III

Clave 19165 lat= 25.82 long=-100.80 Año 198219031 lat= 25.47 long=-100.45Año 1960 Año P máx

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov DicEne Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic 1960 33.00

1 NO_D 0.0 0.0 0.0 2.5 NO_D NO_D NO_D NO_D NO_D NO_D 0.01 0 0 0 0 0 0 NO_D 18 0 0 0 0 18 1961 51.5

2 NO_D 0.0 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 0.02 0 0 0 0 0 0 0 0 10 0 0 0 10 1962 29

3 NO_D 0.0 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 6.03 0 0 0 0 0 0 0 0 12 0 0 0 12 1963 74

4 NO_D 0.0 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 0.04 0 0 0 0 0 0 0 0 28 0 0 0 28 1964 21

5 NO_D 0.0 1.0 0.0 4.5 NO_D NO_D NO_D NO_D NO_D NO_D 0.05 2.5 0 0 0 0 10 0 0 6 0 2.5 0 10 1965 45

6 NO_D 0.0 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 0.06 0 0 0 0 0 3.5 0 0 0 2.5 0 0 3.5 1966 28

7 NO_D 0.0 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 0.07 0 0 0 0 0 0 0 7 3 0 0 0 7 1967 132

8 NO_D 0.0 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 5.08 0 0 0 0 0 0 0 10 0 0 0 0 10 1968 50

9 NO_D 0.0 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 0.09 3.5 0 0 0 0 0 0 20 10 0 4 0 20 1969 60

10 NO_D 0.0 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 0.010 0 0 0 0 0 0 0 5 30 0 20 0 30 1970 78

11 NO_D 0.0 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 0.011 0 12 0 0 4.5 0 3 30 10 6 0 6 30 1971 40

12 NO_D 0.0 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 0.012 0 2.5 0 0 0 6 0 22 0 0 5 5 22 1972 25

13 NO_D 0.0 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 0.013 2.5 0 0 0 0 0 0 10 0 0 0 17 17 1973 34

14 NO_D 0.0 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 0.014 0 0 0 0 0 0 0 6 0 0 0 0 6 1974 60

15 NO_D 0.0 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 0.015 0 0 0 0.9 0 0 20 0 0 0 0 0 20 1975 40

16 NO_D 0.0 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 0.016 0 0 0 0 0 0 3 0 0 0 0 0 3 1976 63

17 NO_D 0.0 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 0.017 0 0 0 0 0 0 6 0 0 4 0 0 6 1977 70

18 NO_D 0.0 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 0.018 0 0 0 0 0 0 13 0 0 8 0 0 13 1978 200

19 NO_D 0.0 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 0.019 0 0 0 0 0 0 0 0 0 6 0 0 6 1979 60

20 NO_D 0.0 0.0 0.0 3.0 NO_D NO_D NO_D NO_D NO_D NO_D 0.020 0 8 0 0 0 0 6 25 0 2.5 10 0 25 1980 75

21 NO_D 0.0 0.0 10.2 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 0.021 0 10 0 0 0 0 0 25 0 3.5 7 0 25 1981 54

22 NO_D 0.0 0.0 6.0 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 0.022 0 0 0 0 0 0 0 0 0 0 0 0 0 1982 40

23 NO_D 0.0 0.0 5.2 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 0.023 0 0 0 0 0 0 0 0 0 0 0 0 0 1983 60

24 NO_D 1.0 0.0 2.5 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 0.024 0 0 0 0 0 0 0 0 3 2.5 0 0 3 1984 24

25 NO_D 4.0 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 0.025 0 0 0 0 0 33 0 0 0 0 0 0 33 1985 40

26 NO_D 3.5 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 0.026 0 0 0 0 0 0 0 0 0 6 0 0 6 1986 0

27 NO_D 0.0 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 0.027 0 0 0 0 0 0 0 10 0 2 0 0 10 1987 0

28 NO_D 0.0 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 0.028 0 0 0 0 0 0 0 0 0 0 0 0 0 1988 0

29 NO_D ~~~~ 0.0 17.2 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 1.529 0 0 0 NO_D 0 NO_D 0 0 0 0 0 0 0 1989 0

30 NO_D ~~~~ 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D NO_D 0.030 0 ~~~~ 0 0 0 0 0 5 0 0 0 0 5 1990 0

31 NO_D ~~~~ 0.0 ~~~~ 0.0 ~~~~ NO_D NO_D ~~~~ NO_D ~~~~ 0.031 0 ~~~~ 0 ~~~~ 0 ~~~~ 0 0 ~~~~ 0 ~~~~ 0 0 1991 0

1992 0

Clave 19165 lat= 25.82 long=-100.80 Año 1983 1993 0

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic 1994 0

1 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.019031 lat= 25.47 long=-100.45Año 1961 Pmm (máx) 1995 0

2 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 NO_D 13.0 0.0 0.0 0.0Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic 1996 104

3 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 1997 80

4 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.02 0 0 0 0 0 0 0 0 0 10 0 0 10 1998 60

5 0.0 2.0 0.0 NO_D 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.03 0 8 0 0 4.5 0 0 0 4 0 0 0 8 1999 51

6 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.04 0 0 0 0 0 0 0 0 0 0 4.5 0 4.5 2000

7 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.05 0 0 0 5 0 0 9 0 0 0 0 0 9

8 0.0 0.0 0.0 NO_D 3.5 0.0 0.0 NO_D 0.0 0.0 0.0 0.06 10 0 0 0 0 0 0 14.5 0 0 0 0 14.5

9 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.07 0 0 0 0 0 0 0 0 2 0 0 0 2

10 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.08 0 0 0 0 0 0 0 2 0 5 0 0 5

11 0.0 7.5 0.0 NO_D 0.0 0.0 0.0 NO_D 6.0 30.0 0.0 0.09 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0.0 0.0 6.0 NO_D 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.010 0 0 0 0 0 0 4 0 20 51.5 0 0 51.5

13 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 NO_D 6.0 0.0 0.0 0.011 0 0 0 0 0 0 10 0 0 0 0 0 10

14 13.0 0.0 0.0 NO_D 0.0 0.0 0.0 NO_D 5.0 0.0 0.0 0.012 0 0 0 0 0 0 6 0 0 0 3 0 6

15 4.5 0.0 0.0 NO_D 0.0 27.0 0.0 NO_D 0.0 0.0 0.0 0.013 0 0 0 0 0 0 8 2.5 15.5 0 0 0 15.5

16 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.014 0 0 0 0 0 0 0 0 10 23 0 0 23

17 5.0 0.0 0.0 NO_D 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.015 0 0 0 0 0 6 13 0 3 0 0 0 13

18 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 2.016 0 0 0 0 0 0 4 20.5 0 0 0 0 20.5

19 1.0 0.0 0.0 NO_D 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.017 0 0 0 0 0 5 6 13.5 0 0 0 0 13.5

20 2.0 0.0 0.0 NO_D 0.0 0.0 0.0 NO_D 7.0 0.0 0.0 0.018 0 0 0 0 0 9 7 16 0 0 3 0 16

21 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.019 0 0 0 0 0 0 7.5 2 0 0 0 0 7.5

22 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.020 0 0 0 0 0 0 7.5 0 0 0 0 0 7.5

23 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 2.021 0 0 0 0 0 0 18 0 0 0 0 0 18

24 0.0 0.0 0.0 NO_D 0.0 3.0 0.0 NO_D 0.0 0.0 0.0 0.022 3.5 0 6 0 0 0 13 0 0 0 0 0 13

25 0.0 22.0 0.0 NO_D 5.5 0.0 0.0 NO_D 0.0 0.0 0.0 0.023 0 0 0 0 0 0 30 2 0 0 0 0 30

26 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.024 0 0 0 0 0 0 0 0 0 0 0 0 0

27 0.0 0.0 0.0 NO_D 24.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.025 5.5 0 0 0 0 0 0 0 2 0 0 0 5.5

28 0.0 0.0 0.0 NO_D 8.5 0.0 0.0 NO_D 0.0 0.0 0.0 0.026 0 0 0 0 0 0 10 0 0 0 0 0 10

29 0.0 ~~~~ 0.0 NO_D 13.5 0.0 0.0 NO_D 0.0 0.0 0.0 0.027 0 0 0 0 0 0 10 0 0 0 0 0 10

30 0.0 ~~~~ 0.0 NO_D 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.028 0 0 0 0 0 0 4 0 0 0 0 0 4

31 0.0 ~~~~ 0.0 ~~~~ 0.0 ~~~~ 0.0 NO_D ~~~~ 0.0 ~~~~ 0.029 0 ~~~~ 0 9 0 0 5 0 0 0 0 0 9

30 0 ~~~~ 0 0 0 0 10 0 0 NO_D 0 0 10

Clave 19165 lat= 25.82 long=-100.80 Año 198431 0 ~~~~ 0 ~~~~ 0 ~~~~ 0 0 ~~~~ 0 ~~~~ NO_D 0

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

1 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D19031 lat= 25.47 long=-100.45Año 1962

2 4.0 0.0 NO_D NO_D 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_DEne Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

3 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D1 0 0 0 0 0 0 12.5 0 0 0 0 0 12.5

4 5.0 0.0 NO_D NO_D 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D2 0 0 0 0 0 5.5 0 0 0 0 0 0 5.5

5 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D3 0 0 0 0 0 7 0 0 0 2.5 0 0 7

6 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D4 0 0 0 0 0 0 0 0 0 0 0 0 0

7 3.0 0.0 NO_D NO_D 10.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D5 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D6 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D7 0 0 0 0 0 0 0 0 2 0 0 0 2

10 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D8 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D9 0 0 0 0 0 29 0 0 0 0 0 0 29

12 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D10 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D11 0 0 0 0 0 0 0 0 6 0 0 0 6

14 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D12 0 0 0 0 0 0 0 0 5 0 0 0 5

15 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D13 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D14 0 0 0 0 0 0 0 20.5 6 0 0 0 20.5

17 0.0 0.0 NO_D NO_D 17.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D15 0 0 0 0 0 0 0 1.5 0 0 0 0 1.5

18 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D16 0 0 0 0 0 0 3 7 0 0 0 0 7

19 2.0 0.0 NO_D NO_D 7.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D17 0 0 0 0 0 0 0 8 5 0 0 0 8

20 1.0 0.0 NO_D NO_D 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D18 0 0 0 0 0 0 0 4 0 9 0 0 9

21 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D19 0 0 0 0 0 26 0 3.5 12 0 0 0 26

22 1.5 0.0 NO_D NO_D 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D20 0 0 0 0 0 5.5 0 0 10 0 0 0 10

23 5.0 0.0 NO_D NO_D 0.0 0.0 12.5 NO_D NO_D NO_D NO_D NO_D21 0 0 0 0 0 0 0 9 0 0 0 0 9

24 16.0 0.0 NO_D NO_D 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D22 0 0 0 8.5 0 14 23 20 0 0 0 0 23

25 9.5 0.0 NO_D NO_D 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D23 0 0 0 0 5 5 0 0 0 5 0 0 5

26 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D24 0 0 0 4 0 0 0 0 0 5.5 0 0 5.5

27 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D25 0 0 0 0 0 3 0 3 0 0 0 0 3

28 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 NO_D NO_D NO_D NO_D NO_D26 0 0 0 0 0 8 0 3 0 0 0 0 8

29 0.0 0.0 NO_D NO_D 0.0 39.5 0.0 NO_D NO_D NO_D NO_D NO_D27 0 0 0 0 0 11 0 0 5 0 0 0 11

30 46.0 ~~~~ NO_D NO_D 0.0 17.0 20.0 NO_D NO_D NO_D NO_D NO_D28 0 0 0 0 0 5 0 0 0 0 0 0 5

31 2.0 ~~~~ NO_D ~~~~ 0.0 ~~~~ 0.0 NO_D ~~~~ NO_D ~~~~ NO_D29 0 ~~~~ 0 0 0 8 0 0 0 0 0 0 8

30 0 ~~~~ 0 0 0 0 0 0 0 0 0 0 0

Clave 19165 lat= 25.82 long=-100.80 Año 198531 0 ~~~~ 0 ~~~~ 0 ~~~~ 0 0 ~~~~ 0 ~~~~ 0 0

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

1 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.019031 lat= 25.47 long=-100.45Año 1963

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.01 0 0 0 0 4.5 0 0 25 0 0 0 0 25

4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.02 0 0 0 0 0 0 26 0 0 0 2 0 26

5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 NO_D 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0.0 0.0 0.0 0.0 0.0 14.0 0.0 0.0 0.0 0.0 NO_D 0.04 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0.0 0.0 0.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.06 0 0 0 0 8 0 0 0 0 7 0 0 8

9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.07 0 0 0 0 10 10 0 0 0 4.5 0 0 10

10 0.0 0.0 0.0 0.0 0.0 0.0 8.0 0.0 0.0 0.0 NO_D 0.08 0 0 0 0 0 7.5 0 0 0 0 0 0 7.5

11 8.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 NO_D 0.09 0 0 0 0 0 0 0 11 0 0 0 0 11

12 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.010 0 0 0 0 0 0 0 0 0 0 0 0 0

13 1.0 0.0 14.5 0.0 0.0 0.0 0.0 6.0 0.0 0.0 NO_D 0.011 0 3 0 0 0 0 2 0 15.5 0 0 0 15.5

14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.012 0 0 0 0 0 0 0 0 0 0 0 12 12

15 6.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.5 NO_D 0.013 0 0 0 0 0 0 0 20 10 0 0 0 20

16 17.0 0.0 0.0 0.0 60.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.014 0 0 0 0 0 0 0 0 8 0 0 0 8

17 0.0 0.0 0.0 0.0 22.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.015 0 0 0 0 0 0 3 0 8 0 0 10 10

18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.016 0 0 0 2 0 0 0 0 7 2 0 0 7

19 0.0 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0 NO_D 0.017 0 0 0 0 11 6 0 0 2 0 0 0 11

20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.0 NO_D 0.018 0 0 0 0 0 3 0 5 0 0 0 0 5

21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.5 NO_D 0.019 0 0 0 0 0 0 0 10 5 0 0 0 10

22 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.020 0 0 0 0 0 0 0 0 74 0 0 0 74

23 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.021 0 0 0 0 0 0 0 5.5 10 2 0 0 10

24 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.022 0 0 0 0 0 0 0 0 0 0 0 0 0

25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.023 0 0 0 2 0 0 0 0 4 10 0 0 10

26 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.024 0 0 20 0 0 0 0 0 3 11 0 0 20

27 0.0 9.0 0.0 0.0 0.0 18.0 0.0 0.0 0.0 0.0 NO_D 0.025 0 0 0 0 0 0 3 0 0 9 0 0 9

28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 46.0 0.0 0.0 NO_D 0.026 0 0 0 0 0 0 4 0 0 19 7 0 19

29 0.0 ~~~~ 0.0 0.0 0.0 0.0 0.0 0.0 4.0 0.0 NO_D 0.027 0 0 0 0 0 0 0 0 0 0 12.5 0 12.5

30 0.0 ~~~~ 0.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 NO_D 0.028 0 0 0 0 0 0 0 0 0 0 0 0 0

31 0.0 ~~~~ 0.0 ~~~~ 0.0 ~~~~ 0.0 0.0 ~~~~ 0.0 ~~~~ 0.029 0 ~~~~ 0 0 0 0 0 0 0 0 0 0 0

30 0 ~~~~ 0 0 0 0 0 18 0 0 0 0 18

Clave 19165 lat= 25.82 long=-100.80 Año 198631 0 ~~~~ 0 ~~~~ 0 ~~~~ 0 0 ~~~~ 0 ~~~~ 0 0

1 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.019031 lat= 25.47 long=-100.45Año 1964

2 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

3 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 20.0 9.0 0.0 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 26.0 0.0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.04 0 0 0 0 0 0 0 0 14 3 5 0 14

7 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.06 0 0 0 0 0 0 10 0 0 0 0 0 10

9 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 33.07 0 0 0 0 0 0 0 10 0 0 0 0 10

10 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.08 0 0 0 0 0 0 0 0 0 0 0 12 12

11 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 4.0 0.0 0.09 0 0 0 0 0 0 0 0 0 0 0 10 10

12 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.010 0 0 0 0 6 0 0 0 0 0 0 4 6

13 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.011 0 0 0 0 5 0 0 0 0 0 0 0 5

14 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 5.012 0 0 0 0 0 0 5 0 21 0 0 0 21

15 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.013 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.014 0 0 0 7 0 0 0 0 3 0 0 0 7

17 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.015 0 0 3 2 0 0 0 0 15 0 0 0 15

18 0.0 0.0 0.0 0.0 0.0 20.0 NO_D 0.0 0.0 0.0 0.0 0.016 0 0 0 6 0 0 0 0 2 0 0 0 6

19 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.017 0 0 5 0 0 0 0 0 6 0 0 0 6

20 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.018 0 0 0 0 0 7 0 0 0 0 0 0 7

21 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 23.019 0 0 0 0 17 0 0 0 0 6 0 0 17

22 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 24.0 0.0 0.020 0 0 0 0 12 0 0 0 0 7 0 0 12

23 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 25.0 0.0 0.0 0.021 0 0 0 0 17 0 0 0 15.5 0 12 0 17

24 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 NO_D22 0 0 0 0 0 0 0 3 0 0 0 0 3

25 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 NO_D23 0 0 0 0 0 0 0 0 6 0 0 0 6

26 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 7.0 0.0 NO_D24 0 0 0 0 20 0 0 0 2 0 0 0 20

27 0.0 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 NO_D25 0 0 0 0 0 0 0 5 0 0 0 0 5

28 0.0 0.0 0.0 6.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 NO_D26 0 0 0 0 0 0 0 4 0 0 0 0 4

29 0.0 ~~~~ 0.0 11.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 NO_D27 0 0 0 0 0 4 0 6 8 0 0 0 8

30 0.0 ~~~~ 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 NO_D28 0 0 0 0 0 0 6 0 0 0 0 0 6

31 0.0 ~~~~ 0.0 ~~~~ 0.0 ~~~~ NO_D 0.0 ~~~~ 0.0 ~~~~ NO_D29 12.5 0 0 NO_D 0 0 10 0 0 0 0 0 12.5

30 0 ~~~~ 0 0 0 0 7 0 0 0 0 0 7

Clave 19165 lat= 25.82 long=-100.80 Año 198731 0 ~~~~ 0 ~~~~ 0 ~~~~ NO_D 0 ~~~~ 0 ~~~~ 0 0

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

1 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 30.0 0.0 0.0 0.019031 lat= 25.47 long=-100.45Año 1965

2 0.0 0.0 0.0 0.0 0.0 NO_D 27.0 0.0 0.0 0.0 0.0 0.0Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

3 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.01 0 0 0 0 0 NO_D 0 0 0 0 0 NO_D 0

4 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.02 0 0 0 0 0 NO_D 0 0 0 7 0 NO_D 7

5 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.03 0 0 0 0 0 NO_D 0 0 0 13 0 NO_D 13

6 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.04 0 16 0 0 0 NO_D 0 0 0 0 0 NO_D 16

7 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.05 0 0 0 0 15 NO_D 0 6 0 0 0 NO_D 15

8 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.06 0 0 0 0 0 NO_D 0 0 0 0 0 NO_D 0

9 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.07 0 0 0 0 0 NO_D 0 0 0 0 0 NO_D 0

10 4.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.08 0 0 0 0 0 NO_D 0 0 0 0 10 NO_D 10

11 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.09 0 0 0 0 0 NO_D 0 8 0 0 10 NO_D 10

12 16.5 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.010 0 0 0 0 0 NO_D 0 0 0 0 15 NO_D 15

13 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.011 0 0 0 0 0 NO_D 0 0 0 0 0 NO_D 0

14 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.012 0 0 0 0 0 NO_D 0 0 0 0 0 NO_D 0

15 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.013 0 0 0 30 0 NO_D 0 0 0 0 0 NO_D 30

16 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.014 0 0 0 0 0 NO_D 0 4 0 0 0 NO_D 4

17 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 27.0 0.0 0.0 0.015 0 0 0 0 0 NO_D 0 0 0 0 0 NO_D 0

18 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 25.0 0.0 0.0 12.016 0 0 0 0 0 NO_D 0 0 0 0 0 NO_D 0

19 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 7.0 0.0 0.0 0.017 0 0 0 0 0 NO_D 0 5 0 0 0 NO_D 5

20 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 10.0 0.0 0.0 0.018 0 0 0 0 45 NO_D 0 0 0 0 0 NO_D 45

21 0.0 0.0 0.0 18.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.019 0 0 0 2.5 0 NO_D 0 0 40 10 0 NO_D 40

22 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.020 0 0 0 0 0 NO_D 0 0 0 0 0 NO_D 0

23 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.021 7 0 0 0 0 NO_D 0 0 11 0 0 NO_D 11

24 0.0 12.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.022 0 0 0 0 0 NO_D 0 0 12 0 0 NO_D 12

25 0.0 16.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.023 0 0 0 0 0 NO_D 0 5 4 0 0 NO_D 5

26 0.0 0.0 0.0 0.0 0.0 NO_D 2.5 0.0 0.0 0.0 0.0 0.024 0 0 0 0 0 NO_D 0 0 12 0 0 NO_D 12

27 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.025 0 0 0 0 0 NO_D 0 0 8 0 0 NO_D 8

28 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 23.0 0.0 0.0 0.026 0 0 0 0 0 NO_D 0 0 0 0 0 NO_D 0

29 0.0 ~~~~ 0.0 0.0 0.0 NO_D 0.0 0.0 36.0 0.0 7.0 0.027 0 0 0 0 10 NO_D 0 0 0 0 0 NO_D 10

30 0.0 ~~~~ 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.028 0 0 0 0 0 NO_D 4 3 0 0 0 NO_D 4

31 0.0 ~~~~ NO_D ~~~~ 0.0 ~~~~ 0.0 20.0 ~~~~ 0.0 ~~~~ 0.029 0 ~~~~ 0 0 0 NO_D 0 0 3 0 0 NO_D 3

30 0 ~~~~ 0 0 0 NO_D 6 0 0 0 0 NO_D 6

Clave 19165 lat= 25.82 long=-100.80 Año 198831 0 ~~~~ 0 ~~~~ 0 ~~~~ 0 0 ~~~~ 0 ~~~~ NO_D 0

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

1 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.019031 lat= 25.47 long=-100.45Año 1966

2 0.0 0.0 8.0 0.0 0.0 NO_D 0.0 0.0 31.0 0.0 0.0 0.0Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

3 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.01 0 0 0 0 6 0 0 0 0 0 0 0 6

4 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 5.0 0.0 0.0 0.02 0 0 0 0 18 0 0 0 0 0 0 0 18

5 0.0 3.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.03 0 0 0 0 28 0 0 0 0 0 0 0 28

6 0.0 1.0 0.0 18.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.04 0 0 0 0 24 0 0 0 0 0 0 0 24

7 0.0 0.0 0.0 3.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.05 4 0 0 0 10 0 0 0 15 0 0 0 15

8 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.06 0 0 0 0 4 0 0 0 12 0 0 0 12

9 0.0 6.0 0.0 28.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.07 0 0 0 0 0 3 0 0 10 0 0 0 10

10 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.08 3 10 0 0 0 0 0 0 6 0 0 0 10

11 0.0 0.0 0.0 0.0 29.0 NO_D 30.0 0.0 0.0 0.0 0.0 0.09 4 12 0 0 0 0 0 0 0 0 0 0 12

12 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.010 0 0 0 0 0 0 0 0 0 16 0 0 16

13 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.011 0 0 0 0 0 0 0 0 0 13 0 0 13

14 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.012 0 0 0 0 0 5 0 0 0 9 0 0 9

15 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 21.0 0.0 0.0 0.013 6 0 0 0 0 0 4 0 0 0 0 0 6

16 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 120.0 0.0 0.0 0.014 8 10 0 7 0 0 0 4 0 10 0 0 10

17 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.015 7 0 0 4 0 0 3 3 0 0 0 0 7

18 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.016 0 0 0 0 0 0 0 0 4 0 0 0 4

19 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.017 11 5 0 0 0 4 0 0 12 0 0 0 12

20 0.0 0.0 0.0 0.0 0.0 NO_D 8.0 0.0 0.0 0.0 0.0 0.018 13 0 0 0 11 0 0 6 14 0 0 0 14

21 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.019 0 0 0 0 10 0 0 9 14 0 0 0 14

22 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.020 0 0 0 0 0 0 0 0 0 0 0 0 0

23 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.021 0 8 0 0 0 0 0 4 0 0 0 0 8

24 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.022 4 0 0 0 0 0 0 0 0 0 0 0 4

25 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.023 5 0 0 0 0 3 0 7 0 0 0 2 7

26 0.0 0.0 0.0 0.0 0.0 NO_D 11.0 0.0 0.0 0.0 0.0 0.024 6 0 0 0 0 0 0 8 0 0 0 0 8

27 0.0 0.0 0.0 0.0 0.0 NO_D 12.0 0.0 0.0 0.0 0.0 0.025 3 0 0 0 0 0 0 9 0 0 0 0 9

28 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 3.0 0.0 0.0 0.0 0.026 4 0 0 0 0 0 0 7 0 0 0 0 7

29 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 4.0 0.0 0.0 0.0 0.027 0 0 0 0 0 0 0 4 0 0 0 0 4

30 0.0 ~~~~ 0.0 0.0 0.0 NO_D 5.0 0.0 0.0 0.0 NO_D 0.028 0 0 0 0 0 0 0 6 0 0 0 0 6

31 NO_D ~~~~ 0.0 ~~~~ 0.0 ~~~~ 0.0 0.0 ~~~~ 0.0 ~~~~ 0.029 0 ~~~~ 0 0 0 0 0 10 0 0 0 0 10

30 0 ~~~~ 0 NO_D 0 0 0 11 0 0 0 0 11

Clave 19165 lat= 25.82 long=-100.80 Año 198931 0 ~~~~ 0 ~~~~ 0 ~~~~ 0 0 ~~~~ 0 ~~~~ 0 0

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

1 0.0 NO_D NO_D 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 20.019031 lat= 25.47 long=-100.45Año 1967

2 0.0 NO_D NO_D 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 20.0Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

3 0.0 NO_D NO_D 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 10.01 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0.0 NO_D NO_D 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0.0 NO_D NO_D 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0.0 NO_D NO_D 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.04 0 0 0 0 0 0 0 0 7 0 0 0 7

7 0.0 NO_D 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.05 0 0 0 0 0 0 0 0 5 0 0 0 5

8 0.0 NO_D 0.0 0.0 0.0 NO_D 0.0 20.0 0.0 0.0 0.0 0.06 5 0 0 0 0 0 0 0 0 0 0 0 5

9 0.0 NO_D 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.07 6 0 0 0 0 0 0 0 0 0 0 0 6

10 0.0 NO_D 0.0 4.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.08 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0.0 NO_D 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.09 0 0 0 0 0 0 0 4 0 0 0 0 4

12 0.0 NO_D 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.010 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0.0 NO_D 0.0 5.0 0.0 NO_D 0.0 0.0 60.0 0.0 0.0 0.011 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0.0 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.012 0 0 0 0 0 0 0 7 0 0 0 0 7

15 NO_D 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.013 0 0 0 0 0 0 0 0 0 0 0 0 0

16 NO_D 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.014 7 0 0 0 0 0 8 0 0 0 0 0 8

17 NO_D 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 15.0 0.015 0 0 0 0 0 0 0 0 0 0 0 0 0

18 NO_D 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 10.0 0.016 0 0 0 0 0 0 0 0 0 0 0 0 0

19 NO_D 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.017 0 0 4 0 0 0 0 0 0 0 0 0 4

20 NO_D 0.0 0.0 0.0 0.0 NO_D 3.0 0.0 0.0 0.0 0.0 0.018 0 0 6 0 0 0 9 5 12 0 0 0 12

21 NO_D 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.019 0 0 0 0 0 0 0 9 16 0 0 0 16

22 NO_D 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 42.0 0.0 0.0 0.020 0 0 0 0 0 0 0 0 76 0 0 0 76

23 NO_D 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.021 0 0 0 0 0 0 0 11 132 0 0 0 132

24 NO_D 0.0 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.022 0 0 9 0 0 0 4 6 23 0 0 0 23

25 NO_D 0.0 0.0 17.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.023 0 0 8 0 0 0 0 0 3 0 0 0 8

26 NO_D 0.0 0.0 16.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.024 0 0 0 0 0 0 0 9 0 0 0 0 9

27 NO_D NO_D 0.0 0.0 0.0 NO_D 0.0 0.0 0.0 0.0 0.0 0.025 0 0 0 0 0 0 10 7 0 0 0 0 10

28 NO_D NO_D 0.0 0.0 0.0 NO_D 0.0 NO_D 0.0 0.0 0.0 0.026 0 0 0 0 0 0 0 12 0 0 0 0 12

29 NO_D ~~~~ 0.0 0.0 0.0 NO_D 0.0 NO_D 0.0 0.0 0.0 0.027 0 11 0 0 0 0 0 10 0 0 0 0 11

30 NO_D ~~~~ 0.0 0.0 0.0 NO_D 0.0 NO_D NO_D 0.0 0.0 0.028 0 0 0 0 0 0 0 6 0 0 0 0 6

31 NO_D ~~~~ 0.0 ~~~~ 0.0 ~~~~ 0.0 NO_D ~~~~ 0.0 ~~~~ 3.029 0 ~~~~ 0 0 0 0 0 0 0 0 0 0 0

30 0 ~~~~ 0 0 0 0 0 0 0 0 0 0 0

Clave 19165 lat= 25.82 long=-100.80 Año 199031 0 ~~~~ 0 ~~~~ 0 ~~~~ 0 0 ~~~~ 0 ~~~~ 0 0

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

1 5.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D NO_D 0.0 0.0 0.019031 lat= 25.47 long=-100.45Año 1968

2 0.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D NO_D 0.0 0.0 0.0Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

3 0.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D NO_D 0.0 0.0 0.01 0 0 0 0 0 0 0 0 10 0 0 0 10

4 0.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D 25.0 24.0 0.0 0.02 0 0 0 0 0 0 0 0 8 0 0 0 8

5 0.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0

6 5.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 0.04 0 0 0 0 0 0 0 0 6 0 0 0 6

7 0.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 0.05 0 0 0 0 0 0 0 0 11 0 0 0 11

8 0.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 0.07 0 0 0 0 4 0 0 0 0 0 0 0 4

10 0.0 0.0 0.0 20.0 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 0.08 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D 15.0 0.0 0.0 0.09 0 0 0 0 0 0 4 0 7.5 7 0 0 7.5

12 0.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 0.010 0 0 0 0 0 0 0 0 0 8 0 0 8

13 0.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D NO_D 0.0 0.0 0.011 0 0 0 0 0 0 0 0 50 0 0 0 50

14 0.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 0.012 0 0 0 0 0 0 5 0 35 0 0 0 35

15 0.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 0.013 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D 8.0 0.0 0.0 0.014 0 0 0 0 0 0 0 0 10 0 0 2 10

17 0.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 0.015 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 0.016 0 0 0 0 0 0 0 0 0 30 0 0 30

19 0.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 0.017 0 0 0 0 0 0 0 0 0 13 0 0 13

20 0.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 0.018 0 0 0 0 0 0 0 0 0 7 0 0 7

21 0.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 0.019 0 0 0 0 0 0 0 0 0 10 0 0 10

22 0.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D 20.0 0.0 0.0 0.020 0 0 0 0 0 0 0 0 0 0 0 0 0

23 0.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 0.021 0 0 0 0 0 6 9 0 0 0 0 0 9

24 0.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 0.022 0 0 0 0 0 5 3 0 0 5 0 0 5

25 0.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 0.023 0 0 0 0 0 0 0 0 0 0 0 0 0

26 0.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 0.024 0 0 0 0 0 4 0 0 0 0 0 0 4

27 0.0 0.0 0.0 0.0 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 0.025 0 0 0 0 0 0 0 0 1.1 0 0 0 1.1

28 0.0 3.0 0.0 0.0 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 0.026 0 0 0 4 0 0 4 0 1 0 0 0 4

29 0.0 ~~~~ 0.0 0.0 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 0.027 0 0 0 3 3 3 0 6 1 0 0 0 6

30 0.0 ~~~~ 0.0 0.0 0.0 0.0 NO_D NO_D 0.0 0.0 0.0 0.028 0 0 0 0 0 4 0 3 0 0 4 0 4

31 0.0 ~~~~ 0.0 ~~~~ 0.0 ~~~~ NO_D NO_D ~~~~ 0.0 ~~~~ 0.029 0 0 0 0 0 5 0 4 0 0 10 0 10

============================================================================30 0 ~~~~ 0 0 0 0 0 0 0 0 0 0 0

Precipitación acumulada31 0 ~~~~ 0 ~~~~ 0 ~~~~ 0 0 ~~~~ 0 ~~~~ 0 0

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 68

ESTACIÓN MATEHUALA

ESTADÍSTICA DESCRIPTIVA.

Datos de precipitación observada

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 69

DATOS DE PRECIPITACIÓN OBSERVADA

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 70

ISOYETAS DE DURACIÓN 24 H Y DIFERENTES PERÍODOS DE RETORNO REALIZADO

POR LA DE LA SECRETARIA DE COMUNICACIÓN Y TRANSPORTE, (SCT, 2004)

PERÍODO DE RETORNO 50 AÑOS

PERÍODO DE RETORNO DE 100 AÑOS

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 71

PERÍODO DE RETORNO DE 1000 AÑOS

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 72

ANEXO DIGITAL 2

COEFICIENTE DE ESCURRIMIENTO.

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 73

ANEXO DIGITAL 3

TIPO DE SUPERFICIE, CON SU CORRESPONDIENTE CN

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 74

TABLA OFICIAL DEL DOCUMENTO TR-55 ORIGINAL

Traducción a idioma español, correspondiente a la última parte del documento anterior

1. Condiciones de escorrentía promedio y Ia = 0.2S.

2. El porcentaje de área impermeable promedio, se utilizó para desarrollar el compuesto de CN. Otros supuestos son los

siguientes: áreas impermeables son conectadas directamente al sistema de drenaje, áreas impermeables tienen un CN

del 98, y áreas permeables se consideran equivalentes a abrir espacio en un buen estado hidrológico. CN es para otras

combinaciones de condiciones puede ser calculadas usando la figura 2-3 o 2-4 del TR-55.

3. CN ha mostrado equivalentes a las superficies de los pastos. Puede calcularse de CN compuesto para otras

combinaciones de espacios abiertos con diferentes tipos de cobertura.

4. El CN compuesto por paisajes desérticos natural, debe ser calculado utilizando las cifras 2-3 o 2-4 (TR-55) en base al

porcentaje del área impermeable (Ponderación). (CN = 98) y la zona de CN permeable. El CN del área permeable se

supone equivalente al arbusto del desierto en malas condiciones hidrológicas.

5. El CN compuesto se utilizará para el diseño de medidas de carácter temporal durante la calificación y la construcción

se deberán calcular empleando la figura 2-3 o 2-4 en base al grado de desarrollo (porcentaje de área impermeable) y

los años de las áreas permeables recién clasificadas de CN.

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 75

LA PRESENTE TABLA, HACE REFERENCIA A LA DOS ANTERIORES

(TRADUCIDO A IDIOMA ESPAÑOL)

DESCRIPCIÓN DEL USO DE TIERRA

NÚMERO DE CURVA

POR GRUPO DE SUELO

HIDROLÓGICO

TIPO DE SUPERFICIE Y CONDICIÓN

HIDROLÓGICA

PORCENTAJE

PROMEDIO DE

ÁREA

IMPERMEABLE

A B C D

Zona Urbanas Completamente Desarrolladas (Vegetación establecida)

Espacios abiertos (Jardines, Parques, Campos de Golf, Cementerios, etc)

Malas condiciones (Superficie de pasto < 50%) 68 79 86 89 Condiciones aceptables (Superficie de pasto 50% a 75%) 49 69 79 84 Buenas condiciones (Superficie de pasto >75%) 39 61 74 80

Áreas impermeables: Lotes de estacionamientos pavimentados, cubiertas, calzadas, etc

(excluyendo el derecho de vía). 98 98 98 98

Calles y carreteras: Pavimentadas: bordillos y alcantarillas (Excluidos;

derecho de vía). 98 98 98 98

Pavimentadas: zanjas abiertas (Incluyendo; derecho de

vía). 83 89 92 93

Grava (incluyendo derecho de vía) 76 85 89 91 Basuras: (incluyendo derecho de vía) 72 82 87 89

Áreas urbanas desérticas del occidente: Paisajes desérticos naturales (solo áreas permeables) 63 77 85 88 Paisajes desérticos artificiales (obstáculo de malezas

impermeables, arbustos de desierto con 2,5 a 5,0 cm, y

fronteras de la cuenca con arena y grava abonada) 96 96 96 96

Distritos urbanos: Comercial y empresarial 85 89 92 94 95 Industrial 72 81 88 91 93

Distritos residenciales de tamaño promedio en grandes

cantidades:

0.07 ha (1/8 acres o menos), casas 65 77 85 90 92 0.1 ha (1/4 acres) 38 61 75 83 87 0.135 ha (1/3 acres) 30 57 72 81 86 0.2 ha (1/2 acres) 25 54 70 80 85 0.4 ha (1 acres) 20 51 68 79 84 0.8 ha (2 acres) 12 46 65 77 82

Desarrollo de las zonas urbanas Nuevas áreas clasificadas (solo en zonas permeables, sin vegetación) 77 77 86 91 94 Tierras baldías (El CN es determinado usando los tipos de cobertura

similares a la tabla 2-2 del documento referencia TR-55

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 76

VALORES DEL NÚMERO DE CURVA (EN ESPAÑOL).

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 77

ANEXO DIGITAL 4

RESULTADOS PARA UN TR DE 5 AÑOS. (CAPTURA DE PANTALLA)

RESULTADOS PARA UN TR DE 20 AÑOS. (CAPTURA DE PANTALLA)

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 78

RESULTADOS PARA UN TR DE 50 AÑOS. (CAPTURA DE PANTALLA)

RESULTADOS PARA UN TR DE 100 AÑOS. (CAPTURA DE PANTALLA)

No full

versi

on.

Copyri

ght T

RADECO GROUP

Estudio Hidrológico Superficial

TRADECO INFRAESTRUCTURA, S.A. de C.V.

Av. Insurgentes Sur # 1647, Local D. Col. San José de Insurgentes. Delegación Benito Juárez

C.P. 03010 México, D.F.

Tel.: (52-55) 5482 7600

Página 79

RESULTADOS PARA UN TR DE 1000 AÑOS. (CAPTURA DE PANTALLA)

No full

versi

on.

Copyri

ght T

RADECO GROUP