hurley final report - marine biological laboratory ·...

24
Shifts in the relative abundance of ammoniaoxidizing bacteria and archaea in the water column of a stratified marine environment, Salt Pond Sarah Hurley July 27, 2011 Department of Earth and Planetary Sciences, Harvard University 2011 Microbial Diversity Course, MBL Abstract: Salt Pond, a seasonally stratified kettle pond in Falmouth, Massachusetts, provides an ideal analogue for the Black Sea and other stratified marine environments. Nitrification in stratified water columns and oxygen minimum zones (OMZs) connects organic matter remineralization to the anammox and denitrification, the two known mechanisms of nitrogen loss in marine systems. We determined the effect of physiochemical gradients through the chemocline in Salt Pond on ammoniaoxidizing archaea and bacteria using amoA, the functional gene encoding ammonia monooxygenase subunit A. Ammonia oxidizing archaea (AOA) dominated the fresh, oxic surface water with low ammonium concentrations. Ammonia oxidizing bacteria (AOB) abundance increased through the chemocline into the euxinic, but potentially micoraerophilic deep water. Within the AOA community, sequences were most related to cultured and uncultured putative AOA and grouped into surface, shallow, and deep clusters. The results of this study offer insights into the ecology of AOA and AOB by comparing the environmental conditions in which these groups are numerically dominant.

Upload: others

Post on 24-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  •  

     

     

    Shifts  in  the  relative  abundance  of  ammonia-oxidizing  bacteria  and  archaea  in  

    the  water  column  of  a  stratified  marine  environment,  Salt  Pond  

     

     

    Sarah  Hurley  

    July  27,  2011  

    Department  of  Earth  and  Planetary  Sciences,  Harvard  University  

    2011  Microbial  Diversity  Course,  MBL  

     

     

    Abstract:  

    Salt  Pond,  a  seasonally  stratified  kettle  pond  in  Falmouth,  Massachusetts,  provides  

    an  ideal  analogue  for  the  Black  Sea  and  other  stratified  marine  environments.  

    Nitrification  in  stratified  water  columns  and  oxygen  minimum  zones  (OMZs)  

    connects  organic  matter  remineralization  to  the  anammox  and  denitrification,  the  

    two  known  mechanisms  of  nitrogen  loss  in  marine  systems.  We  determined  the  

    effect  of  physiochemical  gradients  through  the  chemocline  in  Salt  Pond  on  

    ammonia-‐oxidizing  archaea  and  bacteria  using  amoA,  the  functional  gene  encoding  

    ammonia  monooxygenase  subunit  A.  Ammonia  oxidizing  archaea  (AOA)  dominated  

    the  fresh,  oxic  surface  water  with  low  ammonium  concentrations.  Ammonia-‐

    oxidizing  bacteria  (AOB)  abundance  increased  through  the  chemocline  into  the  

    euxinic,  but  potentially  micoraerophilic  deep  water.  Within  the  AOA  community,  

    sequences  were  most  related  to  cultured  and  uncultured  putative  AOA  and  grouped  

    into  surface,  shallow,  and  deep  clusters.  The  results  of  this  study  offer  insights  into  

    the  ecology  of  AOA  and  AOB  by  comparing  the  environmental  conditions  in  which  

    these  groups  are  numerically  dominant.

  • Introduction  

    Nitrogen  is  an  essential  and  often  limiting  nutrient  fundamental  to  the  

    structure  and  biochemistry  of  life.  Nitrogen  is  readily  oxidized  or  reduced  and  

    serves  as  both  an  electron  donor  and  accepter  in  energy  metabolisms  of  

    microorganisms.  Microbial  metabolisms  drive  the  formation  and  consumption  of  

    different  chemical  form  of  nitrogen  and  therefore  drive  marine  nitrogen  

    biogeochemical  cycling.  

    Nitrification,  the  stepwise  oxidation  of  ammonium  to  nitrite  and  nitrate,  is  a  

    key  process  the  marine  nitrogen  cycle  responsible  for  the  formation  of  the  large  

    deep-‐sea  nitrate  reservoir  (Figure  1).  Nitrification  is  a  microbially  mediated  process,  

    performed  mostly  by  chemolithotrophic  microbes  who  glean  energy  and  electrons  

    from  this  oxidation.  Ammonia  released  from  the  remineralization  of  particulate  

    organic  nitrogen  (PON  or  PN)  is  oxidized  to  substrates  for  denitrification  and  

    anammox.  Nitrification  therefore  connects  the  recycling  of  organic  nitrogen  to  the  

    only  two  presently  known  nitrogen  loss  processes.    

      In  productive  equatorial  and  coastal  upwelling  zones,  high  fluxes  of  organic  

    matter  and  remineralization  create  oxygen  minimum  zones  (OMZs),  enabling  

    denitrification  (Hogslund  et  al.,  2008)  and  anammox  (Hamersley  et  al.,  2007).  

    Remineralization  releases  large  amounts  of  ammonium,  driving  the  high  

    nitrification  rates  often  associated  with  OMZs.  Nitrogen  loss  from  OMZs  are  

    estimated  to  account  for  30-‐50%  of  total  nitrogen  loss  from  the  oceans  (Gruber  &  

    Sarmiento,  1997).    

      The  seasonally  meromictic  kettle  pond,  Salt  Pond,  in  Falmouth  Massachusetts  

    provides  an  ideal  model  system  to  study  nitrogen  cycling  processes  through  an  

    oxygen  gradient.  The  water  column  in  Salt  Pond  closely  resembles  the  chemical  and  

    oxygen  gradients  typically  associated  with  large  marine  anoxic  basins  such  as  the  

    Black  Sea  (Damste  et  al.,  1993).  The  water  column  in  these  systems  consists  of  an  

    oxic  surface  layer,  sulfidic  and  anoxic  deep  waters,  and  consistent  concentrations  of  

    chemical  species  along  isopycnals  through  the  transition  zone,  or  chemocline.  

    Studies  of  nitrification  processes,  such  as  ammonia  oxidation,  in  Salt  Pond  can  there  

    be  translated  to  OMZs  and  larger  stratified  marine  systems.    

  • Ammonia  oxidation,  the  first  step  in  nitrification,  is  considered  rate-‐limiting  

    and  nitrite  rarely  accumulates  in  natural  environments  (Schleper  &  Nicol,  2010).  

    Traditionally,  ammonia  oxidation  was  thought  to  be  catalyzed  by  Nitrosomona  and  

    Nitrospira  in  the  betaproteobacteria  (Head  et  al.,  1993),  and  Nitrosococcus  in  the  

    gammaproteobacteria  (Purkhold  et  al.,  2000;  Ward  &  O'Mullan,  2002).  Metagenomic  

    studies  provided  the  first  evidence  for  the  metabolic  capacity  to  oxidize  ammonia  in  

    marine  group  1  Crenarchaeota  (Venter  2004,  Treusch).  The  first  successful  isolation  

    of  an  autotrophic  ammonia-‐oxidizing  marine  archaeon,  Nitrosopumilus  maritiums  

    (Könneke  et  al.,  2005),  led  to  the  discovery  that  mesophilic  ammonia-‐oxidizing  

    archaea  (AOA)  are  ubiquitous  in  the  global  oceans  (Francis  et  al.,  2005b).  In  the  

    open  ocean  and  suboxic  basins,  AOA  outnumber  AOB  in  the  water  column  (Coolen  et  

    al.,  2007;  Lam  et  al.,  2007).  

      The  first  step  in  ammonia  oxidation,  the  oxidation  of  ammonia  to  

    hydroxylamine,  is  catalyzed  by  the  membrane  bound  ammonia  monooxygenase  

    (AMO)  enzyme  (Könneke  et  al.,  2005).    AMO  is  encoded  by  the  amoA,  amoB,  and  

    amoC  genes.  Putative  crenarchaeal  homologues  to  all  three  subunits  have  been  

    identified  (Hallam  et  al.,  2006;  Treusch  et  al.,  2005).  Due  to  its  functional  

    significance  and  conserved  phylogeny,  the  amoA  gene  can  be  used  as  a  molecular  

    marker  to  study  the  diversity  and  abundance  of  AOA  and  AOB  (Coolen  et  al.,  2007;  

    Lam  et  al.,  2007).  

      This  study  attempts  to  address  the  following  questions  on  the  abundance  and  

    diversity  of  AOA  and  AOB  in  the  stratified,  marine  analog  Salt  Pond:  

    1. Who  is  the  ammonia  oxidizing  community?  

    2. Where  does  this  community  occur  in  the  water  column?  

    3. How  to  physiochemical  parameters  affect  the  distribution  of  ammonia  

    oxidizing  archaea  vs.  ammonia  oxidizing  bacteria?  

    The  following  approaches  were  taken  to  address  these  questions:  

    1. 454  16S  sequncing  and  community  analysis  at  9  depths  

    2. Functional  gene  (amoA)  clone  libraries  

    3. qPCR  targeting  archaeal  and  bacterial  amoA  

    4. CARD-‐FISH  and  DAPI  cell  counts  

  •  

     

    Materials  and  Methods  

    Site  description:  

    Salt  Pond  is  a  brackish,  shallow,  seasonally  stratified  pond  located  in  

    Falmouth,  Massachusetts  (Figure  2).  It  is  a  glacially  formed  kettle  pond  ranging  4.6  

    to  5.8  meters  deep,  with  a  surface  area  of  0.29  km2  (Simmons  et  al.,  2004),  and  is  

    surrounded  by  0.02  km2  of  upstream  salt  marsh  

    (http://www.capecodcommission.org/tidalatlas/).  The  pond  exhibits  density  

    stratification  due  to  permanent  tidal  exchange  with  Vineyard  Sound  and  freshwater  

    inputs  from  runoff,  precipitation,  and  groundwater.  The  average  daily  tidal  

    amplitude  is  ~0.6  m.    

     

    Sampling:  

    Sampling  was  conducted  from  an  inflatable  rowboat  on  July  8,  2011.  A  YSI  

    600R  Water  Quality  Sampling  Sonde  (Yellow  Springs,  Inc.,  Yellow  Springs,  Ohio)  was  

    used  to  collect  salinity  (ppt),  temperature  (°C),  oxygen  (%  DO,  mg/L)  and  pH  data.  A  

    profile  was  taken  in  two  locations  ~10  meters  apart  to  determine  the  water  depth  

    and  location  of  the  chemocline.  The  YSI  probe  was  then  attached  to  the  intake  of  a  

    portable  peristaltic  pump  to  allow  for  simultaneous  water  collection  and  profiling  

    (Figure  3).    

    Water  samples  were  collected  from  9  depths  spanning  0-‐4.0m.  Water  

    samples  for  molecular  work  and  FISH  analysis  were  collected  in  acid  rinsed  2L  

    polycarbonate  bottles.  In  an  attempt  to  measure  sulfide  concentrations  1  ml  of  

    water  was  taken  from  the  full  2  L  with  a  tipless  syringe  and  transferred  into  25  ml  of  

    zinc  acetate  solution  (25  ml  Milli-‐Q  water  +  1  ml  20%  by  volume  zinc  acetate).  This  

    procedure  did  not  adequately  fix  the  sulfide  or  was  too  large  a  dilution  as  no  sulfide  

    was  detected  using  the  Cline  assay  (Cline,  1969).  

     

    FISH:  

  • Immediately  on  return  to  lab,  water  samples  for  FISH  analysis  were  fixed  

    using  1%  formaldehyde  in  50  ml  conical  tubes.  2  and  5  ml  aliquots  were  filtered  

    onto  0.2  µm  membrane  filters  (Millipore  GTTP,  25  mm).  CARD-‐FISH  was  performed  

    using  the  following  probes:  

     

    Eub338  

    Eub338  II  

     

    Bacterial  

    Eub338  III  

    Cren537  

    Cren554  

     

    Crenarchaeal  

    Eury806  

     

    Nutrient  Analyses:  

      50  ml  of  water  was  sterile  filtered  and  frozen  for  nutrient  analysis.  Ammonia  

    measurements  were  performed  by  Chris  Algar  at  the  MBL  Ecosystem  Center  

    according  to  (Scheiner,  1976).  Nitrite  measurements  were  performed  

    spectrophotometrically  according  to  (Strickland  J,  1968).  

     

    Community  16s  RNA  analysis:  

    Between  200-‐300  ml  of  water  from  each  sampling  depth  was  filtered  onto  0.2  µm  

    membrane  filters  (Millipore  GTTP,  47  mm)  for  DNA  extraction.  DNA  for  454  

    sequencing  was  extracted  using  a  PowerSoil  DNA  Isolation  Kit  and  quantified  using  

    a  NanoDrop  spectrophotometer  (Thermo  Scientific).  SSU  rRNA  genes  were  

    amplified  with  barcoded  primers  that  also  incorporated  the  Roche  454  Ti  adapter  

    sequences.    The  barcode  was  on  the  forward  primer.    Each  barcode  was  9  nt  long  

    and  all  the  barcodes  we  used  are  in  the  mapping  file  for  the  454  data.The  primer  

    targets  are  515F  and  907R  on  the  E.  Coli  16S  gene.  

     

    Forward  primer  (X  denotes  barcode,  lowercase  is  the  linker  between  barcode  and  

    16S  primer),  

  • 5'-‐CGTATCGCCTCCCTCGCGCCATCAGXXXXXXXXgaGTGYCAGCMGCCGCGGTAA-‐3'  

     

    Reverse  primer  (lowercase  denotes  linker  between  adapter  and  16S  primer),  

    5'-‐CTATGCGCCTTGCCAGCCCGCTCAGggCCGYCAATTCMTTTRAGTTT-‐3'  

    In  the  "AmplificationPlate"  in  the  mapping  file  "plate1"  was  amplified  for  32  cycles  

    and    "plate4"  in  the  "AmplificationPlate"  field  was  amplified  for  36  cycles.    The  PCR  

    program  utilized  a  touchdown  annealing  temp  for  the  first  10  cycles  from  68-‐58C.  

    Then  there  were  12  cycles  of  three-‐step  PCR  (denaturation,  annealing,  elongation)  

    followed  y  10-‐14  cycles  of  tow-‐step  PCR  (annealing  and  elongation  at  same  temp).  A  

    Phusion  HF  polymerase  (2X  mastermix)  was  used  to  amplify  the  gene  with  8%  

    DMSO  and  0.5  uM  primers  in  the  final  reaction  volume.    The  template  was  

    normalized  to  15  ng/uL  (for  DNA  above  15  ng/uL)  and  2  uL  of  each  template  was  

    used  forPCR.  Post  amplification  DNA  was  quantified  using  the  PicoGreen  assay  and  

    then  pooled  ~125  ng  of  each  PCR  product.    This  pool  was  concentrated  down  to  100  

    uL  using  the  vacufuge  and  gel  purifed  using  the  Montage  Kit  (Millipore).    The  gel-‐

    purified  pool  was  then  shipped  to  Penn  St.  for  sequencing.  

    The  RDP  classifier  as  implemented  in  the  Qiime  pipeline  for  community  

    microbial  analysis  tool  was  used  to  assign  taxa  to  all  sequences.  Trees  were  built  

    using  the  GreenGenes  NAST  aligner  tool  to  align  sequnces  with  the  core  set  of  16s  

    alignment  templates.  Sequences  were  aligned  using  the  filter_alignment.py  protocol  

    in  Qiime  with  lane  masking  enabled  (as  described  and  referenced  by  Libusha  Kelly,  

    course  report,  2010).    

     

    Clone  Libraries  and  qPCR:  

      DNA  for  all  other  molecular  analyses  was  extracted  using  a  phenol-‐

    chloroform,  freeze-‐thaw  procedure  in  the  Coolen  Lab  at  WHOI.  Total  nucleic  acid  

    extract  was  with  a  ladder  in  a  1%  agarose  and  visualized  with  ethidium  bromide  

    (Figure  4).  DNA  extracts  were  quantified  using  fluorometry  and  yielded  the  

    following  concentrations:  

     

    Sample Depth

    ng/µl

    DNA

  •  

     

    PCR  for  archaeal  and  bacterial  amoA  clone  libraries  and  qPCR  were  

    performed  using  primers  and  thermocycling  conditions  previously  described  for  

    bacterial  amoA  (AmoA-‐1F*/AmoA-‐2R)  specifically  targeting  the  β-‐AOB  (Rotthauwe  

    et  al.,  1997),  and  archaeal  amoA  (Arch-‐amoAF/Arch-‐amoAR)  (Beman  et  al.,  2008;  

    Francis  et  al.,  2005a).  An  inhibition  test  was  performed  to  check  for  inhibition  due  to  

    remaining  extraction  solvents,  etc.  Significant  inhibition  was  not  demonstrated  in  

    any  of  the  samples.    

    Clone  libraries  using  archaeal  primers  as  described  above  were  constructed  

    for  depths  0  m,  0.5  m,  1.5  m,  and  4.0  m.  PCR  products  were  cloned  into  the  TOPO2  

    TA  Cloning  Kit  (Invitrogen).  Sequences  in  the  clone  libraries  were  aligned  against  

    each  other  using  Muscle.  Sequences  in  each  library  were  locally  BLASTed  against  the  

    a  FunGene  amoA  database.  A  tree  was  constructed  using  FastTree  and  visualized  in  

    iTOL.  

     

    Results  and  Discussion:  

    Salt  Pond  Depth  Profile:  

    Seasonal  density  stratification  in  Salt  Pond  occurs  during  the  summer  

    months–  late  June  through  September–  and  prevents  vertical  mixing  (Simmons  et  

    al.,  2004).  Sampling  on  July  8  revealed  a  distinct  chemocline  from  1.5  to  3  meters  

    (Figure  5),  as  reported  in  previous  years  (Saenz,  2008).  The  surface  of  the  pond  is  

    oxygenated  freshwater  with  a  salinity  of  11.37  ppt,  dissolved  oxygen  concentration  

    of  6.4-‐6.7,  and  a  pH  of  8.8.    Respiratory  oxygen  consumption  drives  down  dissolved  

    SP-A 0.0 m 178.5

    SP-B 0.5 m 309.6

    SP-C 1.0 m 239.6

    SP-D 1.5 m 12.5

    SP-E 2.0 m 168.3

    SP-F 2.5 m 148.9

    SP-G 3.0 m 121.6

    SP-H 3.5 m 62.2

    SP-I 4.0 m 116.7

  • oxygen  that  cannot  be  replenished  by  mixing  and  creates  a  chemocline.  Below  the  

    chemocline  the  salinity  increases  to  19  ppt,  the  dissolved  oxygen  drops  to  4.1  mg/L,  

    and  the  pH  decreases  to  7.  Sulfide  concentrations  likely  increase  to  below  the  

    oxycline  to  millimolar  concentrations  (Saenz,  2008).    

     

    16S  Community  Analysis  by  454  sequencing:  

    The  major  phyla  represented  by  16S  rRNA  454  sequencing  are  

    Actinobacteria,  Bacteroidetes,  Chlorobi,  Cyanobacteria,  and  Proteobacteria.  

    Cyanobacteria  are  the  dominant  phyla  in  water  column  down  to  2.5  meters  with  the  

    exception  of  0.5m  where  Proteobacteria  (Figure  6).  While  photosynthetically  active  

    radiation  (PAR)  was  not  measured,  this  abundance  pattern  reflects  photosynthetic  

    activity  in  Cyanobacteria  and  Proteobacteria  through  the  photic  zone.  At  3  meters  

    there  is  a  slight  relative  increase  in  the  abundance  of  Bacteroidetes  followed  by  a  

    complete  dominance  of  Chlorobi  (97%  of  relative  phyla  counts  at  4  meters).  The  

    increase  in  Chlorobi  at  3.5-‐4  meters  reveals  the  spatial  niche  of  low-‐light  adapted  

    green  sulfur  bacteria  in  the  euxinic  bottom  waters  of  Salt  Pond.  The  time  constraints  

    of  this  course  did  not  allow  for  a  very  in-‐depth  analysis  of  this  dataset.  For  example,  

    breaking  down  the  proteobacteria  could  provide  information  on  the  spatial  niche  

    and  relative  representation  of  purple  sulfur  bacteria  and  ammonia  oxidizing  

    bacteria.    

      In  order  to  assess  the  difference  in  microbial  communities  at  each  depth,  

    weighted  and  unweighted  dendrograms  were  produced  using  UniFrac  (Figure  7).  

    The  UniFrac  method  measures  the  phylogenetic  distance  between  sets  of  taxa  in  a  

    phylogenetic  tree  as  the  fraction  of  the  branch  length  of  the  tree  that  leads  to  

    individual  descendants  from  each  water  column  depth  (Lozupone  &  Knight,  2005).  

    Given  the  gradient  of  physiochemical  conditions  in  Salt  Pond,  a  logical  hypothesis  

    would  be  that  microbial  communities  at  each  depth  would  be  the  similar  to  the  

    communities  at  adjacent  water  depths.  To  a  coarse  degree  this  appears  to  be  true  in  

    the  dendrograms.  Samples,  especially  in  the  more  closely  chemically  related  surface  

    and  deep  water  tend  to  cluster  by  depth,  while  samples  in  the  more  rapidly  

    changing  chemocline  are  more  spread  out.  In  this  case  the  0.5  m  sample  may  be  

  • reflecting  a  photosynthetic  community  different  from  the  otherwise  dominant  

    cyanobacteria.  

      Rarefaction  curves  for  the  16S  community  analysis  do  not  show  saturation  at  

    any  depth  (Figure  8).  This  is  unsurprising  as  each  depth  was  only  sampled  once.  

    More  notably,  the  grouping  of  the  rarefaction  curves  mirrors  patterns  found  in  the  

    relative  representation  of  phyla  and  the  UniFrac  dendograms,  largely  that  the  

    sample  from  0.5  meters  was  the  only  sample  approaching  a  plateau.    

     

    qPCR:    

      qPCR  was  performed  on  the  total  nucleic  acid  extracts  at  each  depth  to  look  

    at  the  relative  abundance  of  putative  ammonia-‐oxidizing  archaea  (AOA)  and  

    bacteria  (AOB)  across  the  physiochemical  gradient  of  the  chemocline  in  Salt  Pond.  

    Shifts  in  the  relative  abundance  of  AOA  and  AOB  correlate  closely  with  both  

    dissolved  oxygen  and  ammonium  concentration  through  the  water  column.  In  the  

    first  ½  meter  of  the  water  column  AOB  dominate  ~70%  of  amoA  community.  

    Between  ½  and  2  meters,  in  the  oxic  to  suboxic  water  just  above  the  chemocline,  

    AOA  make  up  over  95%  of  the  amoA  community.  Through  the  chemocline  and  into  

    the  anoxic  deep  water,  the  abundance  of  AOB  increases  steadily  to  66%.  In  the  lower  

    3  meters  of  the  water  column  the  increase  in  the  abundance  of  the  AOB  community  

    covaries  with  the  increase  in  ammonium  concentration.    

      In  the  surface  water  of  Salt  Pond,  the  high  percentage  of  AOB  may  be  due  to  

    nutrient  run  off  of  surface  water.  In  past  years,  high  ammonium  concentrations  have  

    been  observed  in  the  upper  meter  of  Salt  Pond,  so  this  may  be  a  temporal  variation  

    that  was  missed  on  the  one  sampling  expedition.  The  location  of  a  peak  abundance  

    of  AOA  in  the  oxic  to  suboxic  nitrification  zone  just  above  the  chemocline  has  been  

    similarly  observed  in  the  Black  Sea  (Lam  et  al.,  2007)  associated  with  maximum  

    nitrification  activity.  In  and  below  the  chemocline  with  the  decrease  of  dissolved  

    oxygen,  the  remineralization  of  organic  matter  and  grodundwater  inputs  provide  a  

    source  of  ammonium.  As  ammonium  concentrations  increase  and  dissolved  oxygen  

    concentrations  decrease,  AOB  become  more  prevalent  than  AOA.  This  suggests  that  

    AOB  outcompete  AOA  at  high  ammonia  concentrations  in  a  potentially  

  • microaerophilic  environment  created  by  an  influx  of  ground  water  from  the  

    sediments.  

    Functional  Gene  Clone  Libraries:    

      Clone  libraries  targeting  the  archaeal  amoA  gene  were  locally  BLASTed  

    against  the  FunGene  amoA  database.  While  the  results  were  not  particularly  

    illuminating,  they  were  the  similar  to  uncultured  and  enrichment  cultures  of  

    ammonia  oxidizing  archaea  and  Crenarchaeota  (Table  1).    

    Trees  constructed  from  archaeal  amoA  clone  libraries  showed  roughly  three  

    clustering  groups  (Figure  10).  There  is  a  ‘very  shallow’  depth  (0-‐0.5m)  cluster,  a  

    ‘shallow’  depth  cluster,  and  a  very  distinct  ‘deep’  cluster.  This  pattern  appears  in  

    both  the  tree  ignoring  branch  lengths  and  the  tree  incorporating  branch  lengths.  In  

    the  tree  incorporating  branch  lengths,  the  ‘deep’  clustering  is  more  readily  apparent  

    as  the  branch  length  of  the  cluster  is  distinct  from  both  the  ‘very  shallow  ‘  and  

    ‘shallow’  clusters  on  either  side.      

     

    CARD-FISH  and  DAPI  Counts:  

      CARD-‐FISH  counts  with  crenarchaeal  and  general  bacterial  probes  revealed  a  

    consistent  ratio  of  bacteria  to  crenarchaea  throughout  the  water  column.    The  

    crenarchaea  generally  make  up  ~1%  of  the  total  DAPI  counts  and  the  bacteria  make  

    up  between  70-‐80%  of  the  counts.  20-‐30%  of  the  DAPI  counts  were  not  

    fluorescently  labeled  with  either  probe.  Morphology  in  the  crenarchaeal  probe  

    resembled  the  peanut  shape  observed  in  (Könneke  et  al.,  2005).  

     

    Conclusions:  

    • Ammonia-‐oxidizing  crenarchaea  and  bacteria  are  both  present  in  Salt  Pond.  

    AOA  are  dominant  in  the  oxic  surface  waters  with  low  ammonia  

    concentrations  while  AOB  increase  through  the  chemocline  and  into  the  

    suboxic,  ammonia  rich  waters  

    • The  putative  ammonia-‐oxidizing  archaea  are  closely  related  to  cultured  and  

    uncultured  environmental  ammonia-‐oxidizers  in  the  FunGene  amoA  

    database.    

  • • CARD-‐FISH  revealed  a  low  overall  abundance  of  crenarchaea  compared  to  

    bacteria  throughout  the  water  column.  

    • The  microbial  community  changes  significantly  through  water  column  in  Salt  

    Pond,  highlighting  different  ecological  niches  in  a  stratified  marine  system.    

     

    Future  Directions  and  Remaining  Questions:  

    • Phylogenetic  comparison  to  known  ammonia-‐oxidizing  organisms:  Given  the  

    lack  of  specificity  in  the  BLAST  results  from  the  FunGene  amoA  database,  the  

    next  step  would  be  to  build  a  tree  with  the  clone  libraries  from  Salt  Pond  to  

    compare  to  known  organisms  of  interest  such  as  Nitrosopumilus  maritiums  

    and  Crenarchaeota  found  in  the  Black  Sea  (Coolen  et  al.,  2007).  

    • Nitrification  rates:  Rate  measurements  for  ammonia  oxidation  and  nitrite  

    oxidation  would  allow  us  to  look  at  where  in  the  water  column,  nitrification  

    is  occurring  relative  to  the  numerical  abundance  of  either  AOA  or  AOB.    

    • Temporal  variation:  Salt  Pond  is  a  seasonally  stratified  pond.  The  chemocline  

    develops  around  late  June,  so  sampling  on  July  8,  2011  is  representative  of  an  

    early  summer  chemocline.  The  ammonia-‐oxidizing  community  may  shift  with  

    the  evolution  of  the  chemocline  throughout  the  summer,  and  likely  

    redistributes  with  the  vertical  mixing  in  winter.  

    • Anammox:  Below  the  chemocline  Salt  Pond  becomes  euxinic  and  could  

    potentially  support  an  active  anammox  community.  This  could  be  

    accomplished  through  similar  methods  used  in  this  report  or  ladderane  

    lipids  unique  to  anammox  bacteria.    

    • Further  16S  analysis:  The  454  sequencing  provided  a  depth  of  data,  which  

    could  not  be  fully  explored  during  the  limited  time  in  this  course.  Further  

    probing  of  community  structure  at  each  depth  would  likely  further  our  

    understanding  of  spatial  niches  in  the  stratified  marine  environment  of  Salt  

    Pond.    

     

    Acknowledgements:  

  • Thank  you  to  course  directors  Dan  Buckley  and  Steve  Zinder  for  providing  this  truly  

    unique  and  fulfilling  opportunity.  Thank  you  to  the  course  TAs  (especially  Chuck  

    and  Lizzy)  for  your  help  and  patience.  Thank  you  to  Cornelia  Wuchter  and  Marco  

    Coolen  for  primers,  probes,  lab  space,  and  scientific  guidance.  Thank  you  to  the  

    waterbears  for  rocking  the  hole.    

     Funding  provided  by  the  Milston  L.  Shifman  Endowed  Scholarship.    References:  Beman,  J.M.,  Popp,  B.N.,  Francis,  C.A.,  (2008)  Molecular  and  biogeochemical  evidence  

    for  ammonia  oxidation  by  marine  Crenarchaeota  in  the  Gulf  of  California.  Isme  Journal,  2(4),  429-‐441.  

    Cline,  J.D.,  (1969)  SPECTROPHOTOMETRIC  DETERMINATION  OF  HYDROGEN  SULFIDE  IN  NATURAL  WATERS.  Limnology  and  Oceanography,  14(3),  454-‐&.  

    Coolen,  M.J.L.,  Abbas,  B.,  van  Bleijswijk,  J.,  Hopmans,  E.C.,  Kuypers,  M.M.M.,  Wakeham,  S.G.,  Damste,  J.S.S.,  (2007)  Putative  ammonia-‐oxidizing  Crenarchaeota  in  suboxic  waters  of  the  Black  Sea:  a  basin-‐wide  ecological  study  using  16S  ribosomal  and  functional  genes  and  membrane  lipids.  Environmental  Microbiology,  9(4),  1001-‐1016.  

    Damste,  J.S.S.,  Wakeham,  S.G.,  Kohnen,  M.E.L.,  Hayes,  J.M.,  Deleeuw,  J.W.,  (1993)  A  6,000-‐YEAR  SEDIMENTARY  MOLECULAR  RECORD  OF  CHEMOCLINE  EXCURSIONS  IN  THE  BLACK-‐SEA.  Nature,  362(6423),  827-‐829.  

    Francis,  C.,  Roberts,  K.,  Beman…,  J.,  (2005a)  Ubiquity  and  diversity  of  ammonia-‐oxidizing  archaea  in  water  columns  and  sediments  of  the  ocean.  In:  Proceedings  of  the  ….  

    Francis,  C.A.,  Beman,  J.M.,  Kuypers,  M.M.M.,  (2007)  New  processes  and  players  in  the  nitrogen  cycle:  the  microbial  ecology  of  anaerobic  and  archaeal  ammonia  oxidation.  Isme  Journal,  1(1),  19-‐27.  

    Francis,  C.A.,  Roberts,  K.J.,  Beman,  J.M.,  Santoro,  A.E.,  Oakley,  B.B.,  (2005b)  Ubiquity  and  diversity  of  ammonia-‐oxidizing  archaea  in  water  columns  and  sediments  of  the  ocean.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America,  102(41),  14683-‐14688.  

    Gruber,  N.,  Sarmiento,  J.L.,  (1997)  Global  patterns  of  marine  nitrogen  fixation  and  denitrification.  Global  Biogeochemical  Cycles,  11(2),  235-‐266.  

    Hallam,  S.J.,  Mincer,  T.J.,  Schleper,  C.,  Preston,  C.M.,  Roberts,  K.,  Richardson,  P.M.,  DeLong,  E.F.,  (2006)  Pathways  of  carbon  assimilation  and  ammonia  oxidation  suggested  by  environmental  genomic  analyses  of  marine  Crenarchaeota.  Plos  Biology,  4(4),  520-‐536.  

    Hamersley,  M.R.,  Lavik,  G.,  Woebken,  D.,  Rattray,  J.E.,  Lam,  P.,  Hopmans,  E.C.,  Sinninghe  Damste,  J.S.,  Krueger,  S.,  Graco,  M.,  Gutierrez,  D.,  Kuypers,  M.M.M.,  (2007)  Anaerobic  ammonium  oxidation  in  the  Peruvian  oxygen  minimum  zone.  Limnology  and  Oceanography,  52(3),  923-‐933.  

  • Head,  I.M.,  Hiorns,  W.D.,  Embley,  T.M.,  McCarthy,  A.J.,  Saunders,  J.R.,  (1993)  THE  PHYLOGENY  OF  AUTOTROPHIC  AMMONIA-‐OXIDIZING  BACTERIA  AS  DETERMINED  BY  ANALYSIS  OF  16S  RIBOSOMAL-‐RNA  GENE-‐SEQUENCES.  Journal  of  General  Microbiology,  139,  1147-‐1153.  

    Hogslund,  S.,  Revsbech,  N.P.,  Cedhagen,  T.,  Nielsen,  L.P.,  Gallardo,  V.A.,  (2008)  Denitrification,  nitrate  turnover,  and  aerobic  respiration  by  benthic  foraminiferans  in  the  oxygen  minimum  zone  off  Chile.  Journal  of  Experimental  Marine  Biology  and  Ecology,  359(2),  85-‐91.  

    Könneke,  M.,  Bernhard,  A.,  José,  R.,  Walker,  C.,  (2005)  Isolation  of  an  autotrophic  ammonia-‐oxidizing  marine  archaeon.  In:  Nature.  

    Lam,  P.,  Jensen,  M.M.,  Lavik,  G.,  McGinnis,  D.F.,  Mueller,  B.,  Schubert,  C.J.,  Amann,  R.,  Thamdrup,  B.,  Kuypers,  M.M.M.,  (2007)  Linking  crenarchaeal  and  bacterial  nitrification  to  anammox  in  the  Black  Sea.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America,  104(17),  7104-‐7109.  

    Lozupone,  C.,  Knight,  R.,  (2005)  UniFrac:  a  new  phylogenetic  method  for  comparing  microbial  communities.  Applied  and  Environmental  Microbiology,  71(12),  8228-‐8235.  

    Purkhold,  U.,  Pommerening-‐Roser,  A.,  Juretschko,  S.,  Schmid,  M.C.,  Koops,  H.P.,  Wagner,  M.,  (2000)  Phylogeny  of  all  recognized  species  of  ammonia  oxidizers  based  on  comparative  16S  rRNA  and  amoA  sequence  analysis:  Implications  for  molecular  diversity  surveys.  Applied  and  Environmental  Microbiology,  66(12),  5368-‐5382.  

    Rotthauwe,  J.H.,  Witzel,  K.P.,  Liesack,  W.,  (1997)  The  ammonia  monooxygenase  structural  gene  amoA  as  a  functional  marker:  Molecular  fine-‐scale  analysis  of  natural  ammonia-‐oxidizing  populations.  Applied  and  Environmental  Microbiology,  63(12),  4704-‐4712.  

    Scheiner,  D.,  (1976)  DETERMINATION  OF  AMMONIA  AND  KJELDAHL  NITROGEN  BY  INDOPHENOL  METHOD.  Water  Research,  10(1),  31-‐36.  

    Schleper,  C.,  Nicol,  G.W.,  (2010)  Ammonia-‐Oxidising  Archaea  -‐  Physiology,  Ecology  and  Evolution.  In:  R.K.  Poole  (Ed.),  Advances  in  Microbial  Physiology,  Vol  57,  57,  Advances  in  Microbial  Physiology  (Ed.  by  R.K.  Poole),  pp.  1-‐41.  

    Simmons,  S.L.,  Sievert,  S.M.,  Frankel,  R.B.,  Bazylinski,  D.A.,  Edwards,  K.J.,  (2004)  Spatiotemporal  distribution  of  marine  magnetotactic  bacteria  in  a  seasonally  stratified  coastal  salt  pond.  Applied  and  Environmental  Microbiology,  70(10),  6230-‐6239.  

    Strickland J, P.T.,  (1968)  A Practical Handbook of Seawater Analysis.  Treusch,  A.H.,  Leininger,  S.,  Kletzin,  A.,  Schuster,  S.C.,  Klenk,  H.P.,  Schleper,  C.,  (2005)  

    Novel  genes  for  nitrite  reductase  and  Amo-‐related  proteins  indicate  a  role  of  uncultivated  mesophilic  crenarchaeota  in  nitrogen  cycling.  Environmental  Microbiology,  7(12),  1985-‐1995.  

    Ward,  B.B.,  O'Mullan,  G.D.,  (2002)  Worldwide  distribution  of  Nitrosococcus  oceani,  a  marine  ammonia-‐oxidizing  gamma-‐proteobacterium,  detected  by  PCR  and  sequencing  of  16S  rRNA  and  amoA  genes.  Applied  and  Environmental  Microbiology,  68(8),  4153-‐4157.  

       

  • Figures:

     Figure  1.    The  marine  nitrogen  cycle  highlighting  the  role  of  nitrification  in  connecting  the  remineraliztion  of  particulate  organic  nitrogren  and  nitrogen  loss  from  the  ocean.  Modified  from  (Francis  et  al.,  2007).       discovered over 100 years ago (Winogradsky, 1890),

    underlining just how rapidly these two majordiscoveries have taken place. In this review, wefocus on recent developments related to the micro-bial ecology of anaerobic and archaeal ammoniaoxidation. We expand upon existing reviews thatcover various aspects of the microbial N cycle(Kowalchuk and Stephen, 2001; Zehr and Ward,2002; Strous and Jetten, 2004; Arrigo, 2005; Kuyperset al., 2006; Nicol and Schleper, 2006; Revsbechet al., 2006), and focus particularly on archaealammonia oxidation, because this very recent dis-covery is an area of remarkably active research.

    Anammox

    Since the mid-1960s, oceanographers have recog-nized pervasive ammonium deficits in anoxic basinsthat hinted at the possible removal of ammonium byanaerobic microbial activity (Richards, 1965). Never-theless, for the remainder of the century, hetero-trophic denitrification was considered the only sinkfor fixed nitrogen under anoxic conditions innatural systems. The first evidence for anaerobicammonium oxidation (anammox) to N2 gas was

    obtained from anoxic (denitrifying) bioreactors ofwastewater treatment plants (WWTPs) (Mulderet al., 1995), where it was eventually determinedthat novel organisms related to Planctomycetaleswere capable of oxidizing ammonium using nitrite(rather than O2) as the electron acceptor (Strouset al., 1999). Befitting micro-organisms capable ofsuch a novel metabolism, these ‘anammox’ bacteriahave a number of truly unique features, includingthe use of hydrazine (N2H4, i.e., rocket fuel) as a freecatabolic intermediate, the biosynthesis of ladder-ane lipids and the presence of an anammoxosome(intracytoplasmic compartment). All four currentlyrecognized genera of anammox bacteria – Candida-tus ‘Brocadia’, ‘Kuenenia’, ‘Scalindula’, and ‘Ana-mmoxoglobus’ – share these unique physiologicaland morphological features.

    Owing to their distinct metabolism and physiol-ogy, anammox bacteria received considerable atten-tion in engineered systems, but were assumed to beminor players in the N cycle within naturalecosystems. However, in 2002, Thamdrup andDalsgaard found anammox to be responsible for24–67% of N loss in marine sediments (Thamdrupand Dalsgaard, 2002), and in 2003, two parallelstudies demonstrated that anammox was directly

    Figure 1 Microbial nitrogen transformations above, below and across an oxic/anoxic interface in the marine environment (based in parton Arrigo, 2005). Nitrite is highlighted in red to emphasize the central role of this metabolic intermediate/product within and between N-cycling pathways. Key functional genes discussed in the text are shown in yellow: amo, ammonia mono-oxygenase; hao, bacterialhydroxylamine oxidoreductase (?¼unknown gene/enzyme in AOA); nir, nitrite reductase; and nor, nitric oxide reductase. For clarity,other functional genes and the process of nitrate/nitrite assimilation are not shown.

    New processes and players in the nitrogen cycleCA Francis et al

    20

    The ISME Journal

    !"##$

    %&'$()*+,'$-$./01'$

    23*),0+4!"#!$%&5$67789$$

    !"##$

  •  Figure  2.  A)  Location  of  Salt  Pond  in  Falmouth,  Massachusetts  on  Cape  Cod.  B)  Location  of  depth  profile  taken  in  Salt  Pond.            

     Figure  3.  Water  samples  collect  from  ½  meters  depths  in  Salt  Pond      

    !"#$%&'()%

    !" #"

    !"#" $"#"!%&"#" '"#" '%&"#" ("#" (%&"#" )"#" )%&"#"

  •  Figure  4.  Total  nucleic  acid  extract  from  each  sampling  depth.      

    !"#$%&'()%*+)&,)+-&./#0$)#&

    !"# !$%"# &$!"# &$%"# '$!"# '$%"# ($!"# ($%"# )$!"#

  •      Figure  5.  Water  column  chemistry  and  dissolved  oxygen  in  the  Salt  Pond  water  column.    

    0  

    0.5  

    1  

    1.5  

    2  

    2.5  

    3  

    3.5  

    4  

    0   5   10   15   20   25   30  

    Depth  (m)  

    Salt  Pond  Depth  ProNile  

    pH  

    T  (°C)  

    Salinity  (ppt)  

    DO  (mg/L)  

  •  Figure  6.  16S  454  sequence  data  normalized  to  sequence  reads.      

    !"# $!"# %!"# &!"# '!"# (!!"#

    !#)#

    !*+#)#

    (*!#)#

    (*+#)#

    $*!#)#

    $*+#)#

    ,*!#)#

    ,*+#)#

    %*!#)#

    !"#$%&'('

    )*+

    %,'-.

    /'

    0*1234*'0*+5*&*$%23"$'"6'7,812'

    -./0123.45673#

    83.456179545:#

    ;30123.45673#

    ?6145123.45673#

    !#

    !*+#

    (#

    (*+#

    $#

    $*+#

    ,#

    ,*+#

    %#

    !# (!# $!# ,!#

    )*+

    %,'-.

    /'

    921%'7"$:')*+%,'75";1*'

    @A#

    B#CD;E#

    F3=7074>#C@@4E#

    GH#C)IJKE#

    %+%#F5LM50.5#G343#

  •  Figure  7.  A)  Weighted  dendrogram  created  through  UNIFRAC  analysis  B)  unweighted  dendrogram.    

    0.04

    SH9

    SH1

    SH4

    SH6

    SH2

    SH5

    SH7

    SH3

    SH8

    !"#$%&"'()"*'+,$+-.( /*0"#$%&"'()"*'+,$+-.(

    0.05

    SH2

    SH6

    SH8

    SH3

    SH9

    SH4

    SH1

    SH5

    SH7

    !"!#$#

    !"%#$#

    &"!#$#

    &"%#$#

    '"!#$#

    '"%#$#

    ("!#$#

    ("%#$#

    )"!#$#

    !"!#$#

    !"%#$#

    &"!#$#

    &"%#$#

    '"!#$#

    '"%#$#

    ("!#$#

    ("%#$#

    )"!#$#

    1( 2(

  •  Figure  8.  16S  454  Sequencing  rarefaction  curves  at  each  sampling  depth.    

    !"#" $"#"

    !%&"#"

    '"#"("#"

    $&$")*+,*-.*"/010"203*40.56-"7,38*9"

  •  Figure  9.  Nitrogen  species  in  the  water  column  (left)  and  quantification  of  archaeal  and  bacterial  amoA  copy  number.      

     Table  1.  Top  BLAST  hits  when  from  the  FunGene  amoA  database.  

    !"# $!"# %!"# &!"# '!"# (!!"#

    !#

    !)*#

    (#

    ()*#

    $#

    $)*#

    +#

    +)*#

    %#

    !"#$!"#$$%&'()!

    ,-,# ,-.#

    !#

    !)*#

    (#

    ()*#

    $#

    $)*#

    +#

    +)*#

    %#

    !# *# (!#

    *+,

    (-!.$

    /!*+,(-!01#23+!

    /-#012345# 67%#0895#

    6-$#0895#

    !"#$%&'()*& +&(,-./)0&& 1&23&'()*&&

    !"#$%&$'()*+,,-".+*-/.).0."1*+'#2+(-"** 34544** 67**

    8'("+'#2+(-&(*("'.#2,("&*#$%&$'(*#%-"(*9+"*:'+"#.;#-*5?6** @**

    !"#$%&$'()*#'("+'#2+(-&(** ?@5>A** 6?4**

    !"#$%&$'()*+'#2+(-"* B3536** 4**

    8'("+'#2+(-&(*("'.#2,("&*#$%&$'(*#%-"(** 3?564C?A5@D** 63@**

  •      Figure  10.  Trees  of  archaeal  amoA  functional  gene  clone  libraries  created  in  FastTree  and  visualized  in  iTOL.      

    Legend:

    Sample

    SH B archaeal 26

    SH B archaeal 52SH B archaeal 70

    SH D archaeal 26SH B archaeal 59

    SH D archaeal 32SH B archaeal 49

    SH D archaeal 13

    SH D archaeal 33

    SH D archaeal 34

    SH D archaeal 40

    SH D archaeal 47

    SH D archaeal 67

    SH B archaeal 38

    SH D archaeal 5

    SH B archaeal 5

    SH B archaeal 28

    SH B archaeal 78

    SH D archaeal 20

    SH D archaeal 23

    SH A archaeal 6SH D archaeal 22 SH

    B arch

    aeal 64

    SH B a

    rchaea

    l 32

    SH D arch

    aeal 48

    SH D arch

    aeal 58

    SH B arch

    aeal 42

    SH B archa

    eal 65

    SH D ar

    chaeal 2

    SH B a

    rchaeal

    74

    SH D ar

    chaeal

    35

    SH A

    archae

    al 13

    SH A a

    rchaea

    l 2SH A

    archa

    eal 30

    SH B

    archa

    eal 81

    SH D

    archa

    eal 4

    9

    SH A

    arch

    aeal

    47

    SH D

    arch

    aeal

    69

    SH D

    arch

    aeal

    7

    SH D

    archa

    eal 4

    5

    SH D archaea

    l 24

    SH D archaea

    l 11

    SH D archaeal 6

    SH D archaeal 39

    SH D archaeal 5

    1

    SH D archaeal 1

    SH D archaeal 55

    SH D archaeal 17

    SH D archaeal 70

    SH D archaeal 71

    SH D archaeal 8

    SH B archaeal 19SH B archaeal 60

    SH D archaeal 15

    SH A archaeal 37

    SH A archaeal 36

    SH A archaeal 38

    SH A archaeal 39

    SH A archaeal 48

    SH D archaeal 64SH D archaeal 21

    SH D archaeal 36

    SH A archaeal 34

    SH A archaeal 9

    SH I archaeal 12SH I archaeal 26

    SH I archaeal 3SH I archaeal 29

    SH I archaeal 69SH I archaeal 34

    SH I archaeal 25

    SH B archaeal 85

    SH D

    archaeal 61

    SH D

    archaeal 56

    SH D

    archaeal 62

    SH A

    arc

    haea

    l 19

    SH A

    arc

    haea

    l 42

    SH A

    arc

    haea

    l 17

    SH A

    arc

    haea

    l 49

    SH B

    arc

    haea

    l 79

    SH B

    arc

    haea

    l 3

    SH A

    arc

    haea

    l 1

    SH B

    arc

    haea

    l 15

    SH B

    arc

    haea

    l 18

    SH D

    arc

    haea

    l 37

    SH B

    arc

    haea

    l 25

    SH D

    arc

    haea

    l 25

    SH A

    arc

    haea

    l 31

    SH A

    arc

    haea

    l 7

    SH A

    arc

    haea

    l 35

    SH A

    arch

    aeal

    28

    SH B

    arch

    aeal

    10

    SH B

    arch

    aeal

    83

    SH D

    arch

    aeal

    42

    SH A

    archa

    eal 1

    2SH B

    archae

    al 62

    SH A

    archae

    al 18

    SH B a

    rchaea

    l 7

    SH B a

    rchaea

    l 56SH

    B arch

    aeal 2

    SH B a

    rchaeal

    9SH

    D archa

    eal 30SH

    D archae

    al 66

    SH B

    archa

    eal 27

    SH B

    archa

    eal 6

    6

    SH B archaeal 29

    SH B archaeal 40

    SH B archaeal 36

    SH A archaeal 32

    SH B archaeal 44

    SH B archaeal 34

    SH B archaeal 47

    SH A archaeal 20

    SH B archaeal 37

    SH A archaeal 22

    SH A archaeal 11

    SH A archaeal 26

    SH B archaeal 43

    SH B archaeal 4

    SH B arch

    aeal 41

    SH A archaeal 24

    SH A archaeal 16

    SH B archaeal 39

    SH B archae

    al 54SH B a

    rchaeal 46

    SH B archa

    eal 13

    SH B arch

    aeal 6

    SH B arch

    aeal 12

    SH A

    arch

    aeal

    8

    SH B

    archa

    eal 1

    1

    SH B

    arc

    haea

    l 86

    SH A

    arc

    haea

    l 43

    SH A

    arc

    haea

    l 45

    SH B archaeal 55

    SH B archaeal 76

    SH B archaeal 69

    SH B archaeal 35

    SH A archaeal 41

    SH B archaeal 20SH

    B a

    rcha

    eal 5

    1

    SH B

    arc

    haea

    l 57

    SH B archaeal 8

    SH B archaeal 77

    SH B archaeal 48

    SH A archaeal 10

    SH B archaeal 63

    SH D archaeal 43

    SH D archaeal 50SH A archaeal 15

    SH D archaeal 57

    SH D archaeal 54

    SH B archaeal 17SH A archaeal 3

    SH A archaeal 46SH D archaeal 3

    SH D archaeal 9

    SH D archaeal 52

    SH D archaeal 60

    SH D

    arc

    haea

    l 63

    SH A

    arc

    haea

    l 44

    SH A

    arc

    haea

    l 21

    SH A

    arc

    haea

    l 4

    SH A

    arc

    haea

    l 40

    SH D

    arch

    aeal

    44

    SH D

    arch

    aeal

    53

    SH D

    arch

    aeal

    65SH D

    arc

    haea

    l 31

    SH D

    arc

    haea

    l 27

    SH A

    arc

    haea

    l 14S

    H B

    arc

    haea

    l 53

    SH B archaeal 80

    SH B archaeal 45 SH

    B a

    rcha

    eal 7

    3

    SH B

    arc

    haea

    l 61

    SH B

    arc

    haea

    l 71

    SH D

    archaeal 18

    SH D

    arc

    haea

    l 4SH

    A a

    rcha

    eal 2

    3SH

    D a

    rcha

    eal 2

    9

    SH A

    arc

    haea

    l 5SH

    A a

    rcha

    eal 3

    3SH

    A a

    rcha

    eal 2

    7SH

    B a

    rcha

    eal 8

    7

    SH D

    arc

    haea

    l 41

    SH B archaeal 68

    SH D

    archaeal 16SH

    D archaeal 12

    SH A archaeal 25

    SH D

    archaeal 46

    SH D

    archaeal 14SH

    B archaeal 1

    SH D

    archaeal 19

    SH D

    archaeal 10

    !"#$%$

    &"'$%$

    #"'$%$

    #$%$

    ()*+,-,.!"#$%$/.01-$234),)5$6)--$

    0.01

    Legend:

    SampleSH B archaeal 26

    SH B archaeal 52SH B archaeal 70

    SH D archaeal 26SH B archaeal 59

    SH D archaeal 32SH B archaeal 49

    SH D archaeal 13

    SH D archaeal 33

    SH D archaeal 34

    SH D archaeal 40

    SH D archaeal 47

    SH D archaeal 67

    SH B archaeal 38

    SH D archaeal 5

    SH B archaeal 5

    SH B archaeal 28

    SH B archaeal 78

    SH D archaeal 20

    SH D archaeal 23

    SH A archaeal 6SH D archaeal 22 SH

    B arch

    aeal 64

    SH B a

    rchaea

    l 32

    SH D arch

    aeal 48

    SH D arch

    aeal 58

    SH B arch

    aeal 42

    SH B archa

    eal 65

    SH D ar

    chaeal 2

    SH B a

    rchaeal

    74

    SH D ar

    chaeal

    35

    SH A

    archae

    al 13

    SH A a

    rchaea

    l 2SH A

    archa

    eal 30

    SH B

    archa

    eal 81

    SH D

    archa

    eal 4

    9

    SH A

    arch

    aeal

    47

    SH D

    arch

    aeal

    69

    SH D

    arch

    aeal

    7

    SH D

    archa

    eal 4

    5

    SH D archaea

    l 24

    SH D archaea

    l 11

    SH D archaeal 6

    SH D archaeal 39

    SH D archaeal 5

    1

    SH D archaeal 1

    SH D archaeal 55

    SH D archaeal 17

    SH D archaeal 70

    SH D archaeal 71

    SH D archaeal 8

    SH B archaeal 19SH B archaeal 60

    SH D archaeal 15

    SH A archaeal 37

    SH A archaeal 36

    SH A archaeal 38

    SH A archaeal 39

    SH A archaeal 48

    SH D archaeal 64SH D archaeal 21

    SH D archaeal 36

    SH A archaeal 34

    SH A archaeal 9

    SH I archaeal 12SH I archaeal 26SH I archaeal 3SH I archaeal 29

    SH I archaeal 69SH I archaeal 34

    SH I archaeal 25

    SH B archaeal 85

    SH D

    archaeal 61

    SH D

    archaeal 56

    SH D

    archaeal 62

    SH A

    arc

    haea

    l 19

    SH A

    arc

    haea

    l 42

    SH A

    arc

    haea

    l 17

    SH A

    arc

    haea

    l 49

    SH B

    arc

    haea

    l 79

    SH B

    arc

    haea

    l 3

    SH A

    arc

    haea

    l 1

    SH B

    arc

    haea

    l 15

    SH B

    arc

    haea

    l 18

    SH D

    arc

    haea

    l 37

    SH B

    arc

    haea

    l 25

    SH D

    arc

    haea

    l 25

    SH A

    arc

    haea

    l 31

    SH A

    arc

    haea

    l 7

    SH A

    arc

    haea

    l 35

    SH A

    arch

    aeal

    28

    SH B

    arch

    aeal

    10

    SH B

    arch

    aeal

    83

    SH D

    arch

    aeal

    42

    SH A

    archa

    eal 1

    2SH

    B arc

    haeal 6

    2

    SH A

    archae

    al 18

    SH B a

    rchaea

    l 7

    SH B a

    rchaea

    l 56SH

    B arch

    aeal 2

    SH B a

    rchaeal

    9SH

    D archa

    eal 30SH

    D archae

    al 66

    SH B

    archa

    eal 27

    SH B

    archa

    eal 6

    6

    SH B archaeal 29

    SH B archaeal 40

    SH B archaeal 36

    SH A archaeal 32

    SH B archaeal 44

    SH B archaeal 34

    SH B archaeal 47

    SH A archaeal 20

    SH B archaeal 37

    SH A archaeal 22

    SH A archaeal 11

    SH A archaeal 26

    SH B archaeal 43

    SH B archaeal 4

    SH B arch

    aeal 41

    SH A archaeal 24

    SH A archaeal 16

    SH B archaeal 39

    SH B archae

    al 54SH B a

    rchaeal 46

    SH B archa

    eal 13

    SH B arch

    aeal 6

    SH B arch

    aeal 12

    SH A

    arch

    aeal

    8

    SH B

    archa

    eal 1

    1

    SH B

    arc

    haea

    l 86

    SH A

    arc

    haea

    l 43

    SH A

    arc

    haea

    l 45

    SH B archaeal 55

    SH B archaeal 76

    SH B archaeal 69

    SH B archaeal 35

    SH A archaeal 41

    SH B archaeal 20SH

    B a

    rcha

    eal 5

    1

    SH B

    arc

    haea

    l 57

    SH B archaeal 8

    SH B archaeal 77

    SH B archaeal 48

    SH A archaeal 10

    SH B archaeal 63

    SH D archaeal 43

    SH D archaeal 50SH A archaeal 15

    SH D archaeal 57

    SH D archaeal 54

    SH B archaeal 17SH A archaeal 3

    SH A archaeal 46SH D archaeal 3

    SH D archaeal 9

    SH D archaeal 52

    SH D archaeal 60

    SH D

    arc

    haea

    l 63

    SH A

    arc

    haea

    l 44

    SH A

    arc

    haea

    l 21

    SH A

    arc

    haea

    l 4

    SH A

    arc

    haea

    l 40

    SH D

    arch

    aeal

    44

    SH D

    arch

    aeal

    53

    SH D

    arch

    aeal

    65

    SH D

    arc

    haea

    l 31

    SH D

    arc

    haea

    l 27

    SH A

    arc

    haea

    l 14S

    H B

    arc

    haea

    l 53

    SH B archaeal 80

    SH B archaeal 45 SH

    B a

    rcha

    eal 7

    3

    SH B

    arc

    haea

    l 61

    SH B

    arc

    haea

    l 71

    SH D

    archaeal 18

    SH D

    arc

    haea

    l 4SH

    A a

    rcha

    eal 2

    3SH

    D a

    rcha

    eal 2

    9

    SH A

    arc

    haea

    l 5SH

    A a

    rcha

    eal 3

    3SH

    A a

    rcha

    eal 2

    7SH

    B a

    rcha

    eal 8

    7

    SH D

    arc

    haea

    l 41

    SH B archaeal 68

    SH D

    archaeal 16SH

    D archaeal 12

    SH A archaeal 25

    SH D

    archaeal 46

    SH D

    archaeal 14SH

    B archaeal 1

    SH D

    archaeal 19

    SH D

    archaeal 10

  •  Figure  11.  CARD-‐FISH  counts  with  bacterial  and  crenarchaeal  probes.    

    0%   20%   40%   60%   80%   100%  

    0.5  m  

    1.5m  

    3.0  m  

    3.5  m  

    %  of  DAPI  Counts  

    CARD-FISH  Counts  

    %  Cren  

    %  Bacteria  

    %  Other  

  •  Figure  12.  Flourescence  imgage  of  cells  displaying  peanut-‐like  morphology  of  marine  Crenarchaeota.