high-pressure kinetic mechanisms for hydrogen and …yju/1st-workshop summary and...

22
High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas Michael P. Burke Chemical Sciences and Engineering Division, Argonne National Laboratory Frederick L. Dryer Department of Mechanical and Aerospace Engineering, Princeton University 1 st International Workshop on Flame Chemistry Warsaw, Poland July 28, 2012 Other collaborators: Yiguang Ju, Marcos Chaos, Jeffrey Santner, Francis M. Haas Stephen Klippenstein, Lawrence Harding

Upload: others

Post on 20-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: High-Pressure Kinetic Mechanisms for Hydrogen and …yju/1st-workshop summary and presentations/Burke_FlameWorkshop...High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

High-Pressure Kinetic Mechanisms for

Hydrogen and Hydrogen Syngas

Michael P. Burke

Chemical Sciences and Engineering Division, Argonne National Laboratory

Frederick L. Dryer

Department of Mechanical and Aerospace Engineering, Princeton University

1st International Workshop on Flame Chemistry

Warsaw, Poland

July 28, 2012

Other collaborators: Yiguang Ju, Marcos Chaos, Jeffrey Santner, Francis M. Haas

Stephen Klippenstein, Lawrence Harding

Page 2: High-Pressure Kinetic Mechanisms for Hydrogen and …yju/1st-workshop summary and presentations/Burke_FlameWorkshop...High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

2

Motivation

2

1.

2.

3.

Y. Shi, R.D. Reitz, Fuel 89 (2010) 3416–3430.

M.P. Burke, M. Chaos, F.L. Dryer, Y. Ju, Combustion and Flame 157 (2010) 618-631.

M.P. Burke, F.L. Dryer, Y. Ju, Proceedings of the Combustion Institute 33 (2011) 905-912.

0.000

0.020

0.040

0.060

0.080

0.100

0 5 10 15 20

Pressure (atm)

Mass b

urn

ing

rate

(g

cm

-2 s

-1)

USC-MECH IIUSC-MECH II with Davis H2 SubsetUSC-MECH II with GRI 3.0 H2 Subset

C2H2/air,

φ=0.43

Tf ~ 1600K

� Growing interest in computational engine design/testing� Fluid mechanics and kinetics sub-models

� H2 and H2/CO� Synthesis gas (H2/CO/H2O/CO2) from

coal/biomass gasification

� Core sub-model for all fuels

� Advanced engine technologies� High P, low Tf

� Modeling difficulties for flames

(Shi & Reitz 2010)

(Burke et al. 2011)

Page 3: High-Pressure Kinetic Mechanisms for Hydrogen and …yju/1st-workshop summary and presentations/Burke_FlameWorkshop...High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

3

Difficulty in predicting high-pressure flames

� Large variations among models

� None of the models capture pressure dependence across all conditions

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 5 10 15 20 25 30Pressure (atm)

Ma

ss

bu

rnin

g r

ate

(g

cm

-2 s

-1)

Present experimentsTse et al. (2000)Konnov (2008)Li et al. (2007)Saxena & Williams (2006)Sun et al. (2007)O'Connaire et al. (2004)Davis et al. (2005)GRI-MECH 3.0 (1999)

H2/O2/He, φ=0.85

Tf ~1600K

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 5 10 15 20 25 30

Pressure (atm)M

as

s b

urn

ing

ra

te (

g c

m-2

s-1

)

Present experimentsLi et al. (2007)O'Connaire et al. (2004)Saxena & Williams (2006)Davis et al. (2005)Konnov (2008)Sun et al. (2007)GRI-MECH 3.0 (1999)

H2/O2/Ar, φ=2.5

Tf ~1600K

33

1.

2.M.P. Burke, M. Chaos, F.L. Dryer, Y. Ju, Combustion and Flame 157 (2010) 618-631.

M.P. Burke, F.L. Dryer, Y. Ju, Proceedings of the Combustion Institute 33 (2011) 905-912.

Page 4: High-Pressure Kinetic Mechanisms for Hydrogen and …yju/1st-workshop summary and presentations/Burke_FlameWorkshop...High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

What controls high-P/low-Tf flames?

H+O2

OH+O (R1)

+M HO2 (R2)

444

1.

2.M.P. Burke, M. Chaos, F.L. Dryer, Y. Ju, Combustion and Flame 157 (2010) 618-631.

M.P. Burke, F.L. Dryer, Y. Ju, Proceedings of the Combustion Institute 33 (2011) 905-912.

increasing P

� More HO2

� more HO2+radical flux

� Flame zone shifts� peak sensitivity at higher T’s

� collision efficiencies of products

� More R1/R2 competition� amplified sensitivity

0

0.01

0.02

0

0.002

0.004

0.006

0.008

0

0.002

0.004

0.006

H m

ole

fra

ction

0

0.2

0.4

0.6

Flu

x (

mole

/cm

3/s

)

0

0.001

0.002

0.003

300 500 700 900 1100 1300 1500 1700 19000

0.4

0.8

1.2

Temperature (K)

10 atm

20 atm

1 atm

-2.5 -1.5 -0.5 0.5 1.5

Sensitivity Coefficient

1 atm

5 atm

10 atm

HO2+O=O2+OH

HO2+HO2=H2O2+O2

O+H2=H+OH

HO2+H=OH+OH

HO2+OH=H2O+O2

H2+OH=H2O+H

H+O2=O+OH

H+O2(+M)=HO2(+M)

H2/O2/He, φ=0.30

Tf ~1400K

(Situation similar for H2/CO)

Page 5: High-Pressure Kinetic Mechanisms for Hydrogen and …yju/1st-workshop summary and presentations/Burke_FlameWorkshop...High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

5

-2.5 -1.5 -0.5 0.5 1.5

Sensitivity Coefficient

1 atm

5 atm

10 atm

HO2+O=O2+OH

HO2+HO2=H2O2+O2

O+H2=H+OH

HO2+H=OH+OH

HO2+OH=H2O+O2

H2+OH=H2O+H

H+O2=O+OH

H+O2(+M)=HO2(+M)

H2/O2/He, φ=0.30

Tf ~1400K

0.00

0.02

0.04

0.06

0 5 10 15 20

Pressure (atm)

Ma

ss

bu

rnin

g r

ate

(g

cm

-2 s

-1)

Li et al.

Li et al. w/ (R7) Fit 1

Li et al. w/ (R7) Fit 2

H2/O2/He, φ=0.5, Tf ~ 1400K

Complexity of the modeling problem

� Uncertainty in all reactions of 10%�burning rate uncertainty of 30%

� Realistic accuracy improvements for elementary reactions will not yield typical expected accuracies for global behavior

� Optimization against global targets necessary

� Functional temperature dependence of OH+HO2=H2O+O2 highly disputed/ unknown

� Parameter optimization techniques don’t work if the functional dependence is not known

5555

1. M.P. Burke, F.L. Dryer, Y. Ju, Proceedings of the Combustion Institute 33 (2011) 905-912.

OH+HO2=H2O+O2

Page 6: High-Pressure Kinetic Mechanisms for Hydrogen and …yju/1st-workshop summary and presentations/Burke_FlameWorkshop...High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

6

-2.5 -1.5 -0.5 0.5 1.5

Sensitivity Coefficient

1 atm

5 atm

10 atm

HO2+O=O2+OH

HO2+HO2=H2O2+O2

O+H2=H+OH

HO2+H=OH+OH

HO2+OH=H2O+O2

H2+OH=H2O+H

H+O2=O+OH

H+O2(+M)=HO2(+M)

H2/O2/He, φ=0.30

Tf ~1400K

0.00

0.02

0.04

0.06

0 5 10 15 20

Pressure (atm)

Ma

ss

bu

rnin

g r

ate

(g

cm

-2 s

-1)

Li et al.

Li et al. w/ (R7) Fit 1

Li et al. w/ (R7) Fit 2

H2/O2/He, φ=0.5, Tf ~ 1400K

Complexity of the modeling problem

� A rigorous modeling solution will likely require both:� Empirical adjustments to rate constants

� Improved fundamental understanding of select processes

� Neither alone appears sufficient to solve the problem.

6666

1. M.P. Burke, F.L. Dryer, Y. Ju, Proceedings of the Combustion Institute 33 (2011) 905-912.

OH+HO2=H2O+O2

Page 7: High-Pressure Kinetic Mechanisms for Hydrogen and …yju/1st-workshop summary and presentations/Burke_FlameWorkshop...High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

7

Updated kinetic-transport models

Z. Hong, D.F. Davidson, R.K. Hanson, Combust. Flame 158 (2011) 633–644.

M.P. Burke, M. Chaos, Y. Ju, F.L. Dryer, S.J. Klippenstein, Int. J. Chem. Kinet. 44 (2012) 444-474.

F.M. Haas, S. Vranckx, M. Chaos, R.X. Fernandes, F.L. Dryer (2012) in preparation.

1.

2.

3.

� H2: Hong et al. (2011) and Burke et al. (2012)*� HO2 formation/consumption

� H+O2(+M) = HO2(+M)

� HO2+radical reactions

� H2O2 reactions

� … among others

� CO: Haas et al. (2012)� CO + OH = CO2 + H, CO + HO2 = CO2 + OH

� HCO chemistry

*Uncertainties remained: adjustments of rate parameters to improve predictions

Page 8: High-Pressure Kinetic Mechanisms for Hydrogen and …yju/1st-workshop summary and presentations/Burke_FlameWorkshop...High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

8

Model performance

Z. Hong, D.F. Davidson, R.K. Hanson, Combust. Flame 158 (2011) 633–644.

M.P. Burke, M. Chaos, Y. Ju, F.L. Dryer, S.J. Klippenstein, Int. J. Chem. Kinet. 44 (2012) 444-474.

F.M. Haas, S. Vranckx, M. Chaos, R.X. Fernandes, F.L. Dryer (2012) in preparation.

J. Santner, F.L. Dryer, Y. Ju, Proc. Combust. Inst. (2012) in press, oral presentation : 5E01 on Friday.

1.

2.

3.

4.

� Hong/Burke perform similarly well against most targets

� Largest differences in flames� Burke et al. – within 20%, Hong et al. – within 40%

� Parameter adjustments not unique � uncertainties remain!

0 5 10 15 20 25 300

0.5

1

1.5

Pressure (atm)

0

0.05

0.1

0.15

0.2

0.25

Mass b

urn

ing r

ate

(g c

m-2

s-1

)

0

0.05

0.1

0.15

0.2

0.25

Burke et al. (2010, 2011)

Present model

Hong et al.

a) φφφφ = 0.7

b) φφφφ = 1.0

c) φφφφ = 2.5

0.5 0.6 0.7 0.8 0.9 110

-3

10-2

10-1

100

101

102

1000/T (K-1

)

[O2]

ττ ττig

(m

ol lite

r-1

µµ µµs)

Skinner and Ringrose (1965) - 5 atm

Schott and Kinsey (1958) - 1 atm

Petersen et al. (1995) - 33 atm

Petersen et al. (1995) - 64 atm

Petersen et al. (1995) - 57 & 87 atm

Present model

Hong et al.

0 0.2 0.4 0.6 0.8 10

5

10

15

20

Time (ms)

OH

mo

le f

racti

on

(p

pm

)

Hong et al. (2010)

Present model - 0.7ppm H

Present model - 0.7ppm H, +/- 23K

Hong et al. - 0.7ppm H

(Santer et al. 2012, 5E01 on Friday)

Haas et al. (2012)

Burke et al. (2012)

Page 9: High-Pressure Kinetic Mechanisms for Hydrogen and …yju/1st-workshop summary and presentations/Burke_FlameWorkshop...High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

9

Uncertainties remaining in 2012 (for flames)

M.P. Burke, M. Chaos, Y. Ju, F.L. Dryer, S.J. Klippenstein, Int. J. Chem. Kinet. 44 (2012) 444-474.

F.M. Haas, S. Vranckx, M. Chaos, R.X. Fernandes, F.L. Dryer (2012) in preparation.

P. Saxena, F.A. Williams, 7th US National Combustion Meeting, Atlanta, GA , 2011.

1.

2.

3.

� Parametric uncertainties� HO2 + X reactions

� HO2 + H = OH + OHH2 + O2H2O + O

� HO2 + OH = H2O + O2� HO2 + HO2 = H2O2 + O2

� H + O2 (+M) = HO2 (+M)� Pressure dependence

� 3rd body efficiencies for H2O and CO2

� CO + O + M = CO2 + M

� Model assumptions� Nonlinear mixture rules

Page 10: High-Pressure Kinetic Mechanisms for Hydrogen and …yju/1st-workshop summary and presentations/Burke_FlameWorkshop...High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

10

-2.5 -1.5 -0.5 0.5 1.5

Sensitivity Coefficient

1 atm

5 atm

10 atm

HO2+O=O2+OH

HO2+HO2=H2O2+O2

O+H2=H+OH

HO2+H=OH+OH

HO2+OH=H2O+O2

H2+OH=H2O+H

H+O2=O+OH

H+O2(+M)=HO2(+M)

H2/O2/He, φ=0.30

Tf ~1400K

0.00

0.02

0.04

0.06

0 5 10 15 20

Pressure (atm)

Ma

ss

bu

rnin

g r

ate

(g

cm

-2 s

-1)

Li et al.

Li et al. w/ (R7) Fit 1

Li et al. w/ (R7) Fit 2

H2/O2/He, φ=0.5, Tf ~ 1400K

Recall the complexity of the modeling problem

and uncertainties in OH+HO2 = H2O+O2

� A rigorous modeling solution will likely require both:� Empirical adjustments to rate constants

� Improved fundamental understanding of select processes

� Neither alone appears sufficient to solve the problem.

1010

1. M.P. Burke, F.L. Dryer, Y. Ju, Proceedings of the Combustion Institute 33 (2011) 905-912.

OH+HO2=H2O+O2

Page 11: High-Pressure Kinetic Mechanisms for Hydrogen and …yju/1st-workshop summary and presentations/Burke_FlameWorkshop...High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

Modeling strategies� Current kinetic models: sets of rate parameters

� Hierarchical, comprehensive modeling� Westbrook & Dryer (1984)

� Optimization and Uncertainty Quantification� Frenklach (1984), Frenklach,Wang,Rabinowitz (1992):Solution-mapping + optimization of A-factors

� Frenklach et al. (2004), Sheen & Wang (2009): Uncertainty Quantification of A-factors

� Turányi et al. (2012), Sheen et al. (2012): Uncertainty quantification of A-n-Ea

� Require massive amounts of data to constrain full T/P/M-dependence of all k’s� Extrapolation outside the dataset very challenging

� Direct incorporation of theory useful� Replaces fitting formulas with physical theories

� Common for extrapolation of data for a single reaction

� Imposes constraints spanning all T/P/M

� Multi-scale models: sets of molecular parameters� Optimal use of information from ab initio calculations, k measurements,

combustion measurements

� Theory fills in the gaps across all T/P/M

11

1. M.P. Burke, S.J. Klippenstein, L.B. Harding, Proceedings of the Combustion Institute (2012) in press.

Page 12: High-Pressure Kinetic Mechanisms for Hydrogen and …yju/1st-workshop summary and presentations/Burke_FlameWorkshop...High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

0.5 1 1.5 2 2.5 3 3.5 4

1013

1014

1000/T (K-1

)

k (

cm

3 m

ol-1

s-1

)

Peeters and Mahnen (1973)

DeMore (1979)

Lii et al. (1980)

Cox et al. (1981)

Kurylo et al. (1981)

Braun et al. (1982)

DeMore (1982)

Goodings & Hayhurst (1988)

Keyser (1988)

Hippler & Troe (1992)

Hippler et al. (1995)

Kappel et al. (2002)

Srinivasan et al. (2006)

Hong et al. (2010)

Keyser (1988)

Sivaramakarishnan et al. (2007)

Chaos & Dryer (2008) - Hippler

Chaos & Dryer (2008) - Kappel

Rasmussen et al. (2008)

OH + HO2 = H2O + O2

12

(R1) H2O2(+M) = OH+OH(+M)

(R2) H2O2+OH = HO2+H2O

(R3) HO2+HO2 = H2O2+O2

(R4) HO2+OH = H2O+O2

(R5) OH+OH = O+H2OOH + HO2 = H2O + O2

0.00

0.02

0.04

0.06

0 5 10 15 20

Pressure (atm)M

as

s b

urn

ing

ra

te (

g c

m-2

s-1

)

Li et al.

Li et al. w/ (R7) Fit 1

Li et al. w/ (R7) Fit 2

H2/O2/He, φ=0.5, Tf ~ 1400K

Page 13: High-Pressure Kinetic Mechanisms for Hydrogen and …yju/1st-workshop summary and presentations/Burke_FlameWorkshop...High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

Multi-scale informaticsset of molecular parameters informed by data across all scales

13

I. Molecular

data

II. Rate constant

measurements

III. Combustion

measurements

kn(T,P,M) [OH] vs. t,su, …TST,

RRKM-ME,…

0-D reactor,

1-D flame,…

iitji ZYXF ±= ,)(

E†, v’s, vimag, …

iijj

j

ij ZYXXS ±=−∑ )~

(

ijijS δ=

j

iiinp

ijX

MPTkS

∂=

),,(ln ,

∑∂

∂=

n j

iiinp

iiinp

i

ijX

MPTk

MPTk

FS

),,(ln

),,(ln

,

,

X = Optimization parameters:

Molecular parameters + experimental conditions

E†, v’s, vimag, … + T, P, [Mi],…

(I) + (IV)

(II)

(III)

Xj,opt and CX

Mathematical implementation� Local “surrogate model”

� Least-squares error minimization

� Iterated until converged

Page 14: High-Pressure Kinetic Mechanisms for Hydrogen and …yju/1st-workshop summary and presentations/Burke_FlameWorkshop...High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

Implementation for H2O2 systemOptimization variables

14

Optimization Targets

I. Molecular data:ab initio calculations (Klippenstein/Harding)

II. Rate constant measurements: see paper

III. Combustion measurements:

OH(t), H2O(t) Shock-heated H2O2/Ar (Hong et al. 2009,2010)

OH(t) Shock-heated H2O/O2/Ar (Hong et al. 2010)

abs215nm(t) Shock-heated H2O2/Ar (Kappel et al. 2002)

0 500 1000 1500 2000 2500

1013

1014

T (K)

k (

cm

3 m

ol-1

s-1

)

DeMore (1980)

DeMore (1982)

Keyser (1988)

Lii et al. (1980)

Cox et al. (1981)

Kurylo et al. (1981)

Braun et al. (1982)

Kappel et al. (2002)

Srinivasan et al. (2006)

Hong et al. (2010)

,

,

1. M.P. Burke, S.J. Klippenstein, L.B. Harding, Proceedings of the Combustion Institute (2012) in press.

H2O2(+M) = OH+OH(+M) A'(1) , n(1) , E(1)

H2O2+OH = HO2+H2O E†(2)

, v'all(2) , v'tr(2) , v'ss(2) , v'imag(2) , Ew(2) , η'H2O2 , η'TS(2)

HO2+HO2 = H2O2+O2 E†(3)

, v'all(3) , v'tr(3) , v'ss(3) , v'imag(3) , Ew(3) , η'TS(3)

HO2+OH = H2O+O2 E†(4g)

, v'all(4) , v'tr(4g), v'ss(4g) , v'imag(4g) , Ew(4g) , η'TS(4g)

E†(4e)

, v'TS(4e) , v'tr(4e) , v'ss(4e) , η'TS(4e) , f 'VRCTST,c(4)

OH+OH = O+H2O E†(5g)

, v'all(5) , v'tr(5g) , v'ss(5g) , v'imag(5g) , Ew(5g)

E†(5e)

, v'TS(5e) , v'tr(5e) , v'ss(5e)

Shock-heated H2O2/H2O/O2/Ar T'i, P'i, M'H2O2,o,i , M'H2O,o,i , M'O2,o,i

Shock-heated H2O/O2/Ar T'i, P'i, M'H2O,o,i , M'O2,o,i , M'H,o,i

Shock-heated H2O2/Ar T'i, P'i, M'H2O2,o,i , σ'1,H2O2 , σ'2,H2O2 , σ'1,HO2 , σ'2,HO2

OH + HO2 = H2O + O2

Page 15: High-Pressure Kinetic Mechanisms for Hydrogen and …yju/1st-workshop summary and presentations/Burke_FlameWorkshop...High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

15

0 0.2 0.4 0.6 0.8 10

5

10

15

Time (ms)

Mo

le f

racti

on

(p

pm

)

Hong et al. experiments

Hong et al. predictions

A priori model

Constrained model

0 0.2 0.4 0.6 0.8 10

5

10

15

Time (ms)

Mo

le f

racti

on

(p

pm

)

Hong et al. experiments

Hong et al. predictions

A priori model

Constrained model

0 0.05 0.1 0.15 0.2 0.250

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Constrained model

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Constrained model

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Constrained model

(a)

(b)

(c)

1. M.P. Burke, S.J. Klippenstein, L.B. Harding, Proceedings of the Combustion Institute (2012) in press.

Kappel et al. (2002)

Hong et al. (2010)

Different interpretations for OH+HO2

Much weaker T-dependence

(Secondary reactions)

Lower magnitude

(Arbitrary H atom doping)

Page 16: High-Pressure Kinetic Mechanisms for Hydrogen and …yju/1st-workshop summary and presentations/Burke_FlameWorkshop...High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

0 500 1000 1500 2000 2500

1013

1014

T (K)

k (

cm

3 m

ol-1

s-1

)

DeMore (1980)

DeMore (1982)

Keyser (1988)

Lii et al. (1980)

Cox et al. (1981)

Kurylo et al. (1981)

Braun et al. (1982)

Kappel et al. (2002)

Srinivasan et al. (2006)

Hong et al. (2010)

A priori model

Constrained model

16

Consistent description of OH+HO2 = H2O+O2

0 0.2 0.4 0.6 0.8 10

5

10

15

Time (ms)

Mo

le f

racti

on

(p

pm

)

Hong et al. experiments

Hong et al. predictions

A priori model

Constrained model

0 0.2 0.4 0.6 0.8 10

5

10

15

Time (ms)

Mo

le f

racti

on

(p

pm

)

Hong et al. experiments

Hong et al. predictions

A priori model

Constrained model

0 0.05 0.1 0.15 0.2 0.250

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Constrained model

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Constrained model

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Constrained model

(a)

(b)

(c)

� Single description consistent with:1. Ab initio calculations

2. Low-T k measurements

3. High-T raw global data

� Milder T-dependence� Minimum near 1200 K

1. M.P. Burke, S.J. Klippenstein, L.B. Harding, Proceedings of the Combustion Institute (2012) in press.

Kappel et al. (2002)

Hong et al. (2010)

Page 17: High-Pressure Kinetic Mechanisms for Hydrogen and …yju/1st-workshop summary and presentations/Burke_FlameWorkshop...High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

17

Consistent description of OH+HO2 = H2O+O2

0 0.2 0.4 0.6 0.8 10

5

10

15

Time (ms)

Mo

le f

racti

on

(p

pm

)

Hong et al. experiments

Hong et al. predictions

A priori model

Constrained model

0 0.2 0.4 0.6 0.8 10

5

10

15

Time (ms)

Mo

le f

racti

on

(p

pm

)

Hong et al. experiments

Hong et al. predictions

A priori model

Constrained model

0 0.05 0.1 0.15 0.2 0.250

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Constrained model

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Constrained model

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Constrained model

(a)

(b)

(c)

� Simultaneous weighting of diverse data types

� Theory guides experimental interpretations

� Raw data and careful documentation

extremely powerful

0 500 1000 1500 2000 2500

1013

1014

T (K)

k (

cm

3 m

ol-1

s-1

)

DeMore (1980)

DeMore (1982)

Keyser (1988)

Lii et al. (1980)

Cox et al. (1981)

Kurylo et al. (1981)

Braun et al. (1982)

Kappel et al. (2002)

Srinivasan et al. (2006)

Hong et al. (2010)

A priori model

Constrained model

1. M.P. Burke, S.J. Klippenstein, L.B. Harding, Proceedings of the Combustion Institute (2012) in press.

Kappel et al. (2002)

Hong et al. (2010)

Page 18: High-Pressure Kinetic Mechanisms for Hydrogen and …yju/1st-workshop summary and presentations/Burke_FlameWorkshop...High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

0 500 1000 1500 2000 2500

1013

1014

T (K)

k (

cm

3 m

ol-1

s-1

)

DeMore (1980)

DeMore (1982)

Keyser (1988)

Lii et al. (1980)

Cox et al. (1981)

Kurylo et al. (1981)

Braun et al. (1982)

Kappel et al. (2002)

Srinivasan et al. (2006)

Hong et al. (2010)

A priori model

Constrained model

Hong et al. (2012),

,

18

Consistent description of OH+HO2 = H2O+O2

0 0.2 0.4 0.6 0.8 10

5

10

15

Time (ms)

Mo

le f

racti

on

(p

pm

)

Hong et al. experiments

Hong et al. predictions

A priori model

Constrained model

0 0.2 0.4 0.6 0.8 10

5

10

15

Time (ms)

Mo

le f

racti

on

(p

pm

)

Hong et al. experiments

Hong et al. predictions

A priori model

Constrained model

0 0.05 0.1 0.15 0.2 0.250

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

Time (ms)

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

Ab

so

rba

nc

e

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Optimized model

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Constrained model

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Constrained model

0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

0.4

0.5

Kappel et al. experiments

Kappel et al. predictions

A priori model

Constrained model

(a)

(b)

(c)

Z. Hong, K.-Y. Lam, R. Sur, S. Wang, D.F. Davidson, R.K. Hanson

“On the rate constants of OH + HO2 and HO2 + HO2: A comprehensive study of H2O2 thermal

decomposition using multi-species laser absorption.”

Combustion Symposium: 5D11

M.P. Burke, S.J. Klippenstein, L.B. Harding

“A quantitative explanation for the apparent anomalous temperature dependence of

OH + HO2 = H2O + O2 through multi-scale modeling.”

Combustion Symposium: 4D09

1.

2.M.P. Burke, S.J. Klippenstein, L.B. Harding, Proceedings of the Combustion Institute (2012) in press.

Z. Hong, K.-Y. Lam, R. Sur, S. Wang, D.F. Davidson, R.K. Hanson, Proc Combust Inst (2012) in press.

Kappel et al. (2002)

Hong et al. (2010)

Page 19: High-Pressure Kinetic Mechanisms for Hydrogen and …yju/1st-workshop summary and presentations/Burke_FlameWorkshop...High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

19

Conclusions� High-pressure syngas flames

� Emphasize HO2 pathways + collision efficiencies of CO2/H2O

� Inherently difficult to model

� Rigorous modeling solutions� Empirical adjustments based on global targets

� Improved fundamental characterization

� Uncertainties remain in both 1) model parameters and 2) model assumptions

� Moving forward� Incorporation of theory to fill in the gaps

� Raw data and careful documentation

� Characterization of non-idealities/uncertainties in experiments and theory

Page 20: High-Pressure Kinetic Mechanisms for Hydrogen and …yju/1st-workshop summary and presentations/Burke_FlameWorkshop...High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

20

Acknowledgements

� This work was supported by:� Director’s Postdoctoral Fellowship from

Argonne National Laboratory (MPB)

� U. S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357 (SJK, LBH)

� U. S. Department of Energy, University Turbine Systems Research Programunder Contract No. DE-NT0000752 (FLD,YJ)

� U.S. Department of Energy, Office of Basic Energy Sciences, Energy Frontier Research Center under Contract No. DE-SC0001198 (FLD,YJ)

Page 21: High-Pressure Kinetic Mechanisms for Hydrogen and …yju/1st-workshop summary and presentations/Burke_FlameWorkshop...High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

21

Thank you.

Questions?

Page 22: High-Pressure Kinetic Mechanisms for Hydrogen and …yju/1st-workshop summary and presentations/Burke_FlameWorkshop...High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

22

End