high energy neutrino astronomy

65
High Energy Neutrino Astronomy Christian Spiering DESY Zeuthen TAUP 2001

Upload: diane

Post on 20-Feb-2016

44 views

Category:

Documents


1 download

DESCRIPTION

High Energy Neutrino Astronomy. Christian Spiering DESY Zeuthen TAUP 2001. Predictions and Bounds. Classes of Models. log(E 2  Flux). pp core AGN. p  blazar jet. Top-Bottom model. Various recent models for transient sources. GRB (W&B). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: High Energy Neutrino Astronomy

High Energy Neutrino Astronomy

Christian SpieringDESY Zeuthen

TAUP 2001

Page 2: High Energy Neutrino Astronomy

Predictions and Bounds

Page 3: High Energy Neutrino Astronomy

log(E2 Flux)

log(E/GeV)TeV PeV EeV

3 6 9

pp core AGN p blazar jetTop-Bottom model

GRB (W&B)

Various recentmodels for transient sources

Classes of Models

Page 4: High Energy Neutrino Astronomy

Bounds to diffuse fluxes: WB

Waxman & Bahcall, 1999

sources optically thin to primary cosmic rays

fix the spectral index to 2

normalize to cosmic rays at 1019 -1020 eV

atmospheric flux

bound without evolution

bound with evolution *

* moderately dependent on cosmology

Page 5: High Energy Neutrino Astronomy

Bounds to diffuse fluxes: MPR

Mannheim, Protheroe,Rachen, 2000

do not assume a specific CR spectrum, use available upper limit on extragalactic proton contribution

allow also for optically thick sources (no neutrons escape)

atmospheric flux

W & B

MPR

optically thick for neutrons

optically thin

Page 6: High Energy Neutrino Astronomy

MPR limit for optically thin sources

109

1012

Emax=106

3 1013

3 1010

3 107

source spectra of neutronsQn(En) En

-1 exp(-En / Emax) cosmic ray spectrum after propagation through Universe

neutrino spectrum after propagation through Universe

red: limit without GZK shiftblue: renormaliztion after GZK shift

Page 7: High Energy Neutrino Astronomy

More bounds ....

E-2 , one source type

E-1 exp (-E/Emax )optically thick optically thin

with evolution

without evolution

generic blazar

EGRET blazar BL Lac

Bound construction parallels that for optically thin sources.Energy dependent opacities. Averaging over luminosity functions and z-distributions of EGRET blazars and BL Lac objects.

Page 8: High Energy Neutrino Astronomy

1 pp core AGN (Nellen)2 p core AGN Stecker & Salomon)3 p „maximum model“ (Mannheim et al.)4 p blazar jets (Mannh)5 p AGN (Rachen & Biermann)6 pp AGN (Mannheim)7 GRB (Waxman & Bahcall)8 TD (Sigl)

Diffuse Fluxes: Predictions and Limits

Mannheim & Learned,2000

MacroBaikal

IceCube

Amanda

Page 9: High Energy Neutrino Astronomy

Hidden SourcesYoung SN shells, binary submerged in red giant, coooned MBH, ...

Pre-AGN (prior to formation of massive black hole) Berezinsky & Dokuchaev, 2000

Collision & destruction o normal starsin a contracting central cluster Massive gas

envelope

NS & BH survive, furthercontraction and collisions

Repeating fireballs,particle acceleration inrarified cavity

Page 10: High Energy Neutrino Astronomy

Interactions in envelopeHE neutrinos

Muon events per source with E > 1 TeV, in 1 km2 detector:

N ~ 70

(assuming Lp = 1048 erg s-1 and distance = 103 Mpc)

Duration of pre-AGN hidden source phase ~ 10 years

Average number of galaxies just in hidden source phase: ~ 10-100

Hidden sources (2)

Page 11: High Energy Neutrino Astronomy

Alvarez-Muniz, Halzen, Hooper, 2000

z = 1 z distribution expect up to = 300 thousands of events/yrkm2

Also multiple events from -faint-bursts !

GRB“Reference” model: Waxman & Bahcall, 1997 emission from protons accelerated at internal & external shocks in fireball, ~ 300 normalization to CR

E2 dN/dE ~ 310-9 cm-2 s-1 sr-1 GeV between 100 TeV and 10 PeV

100 300 1000

-faint,high flux

Low flux,high energy

Page 12: High Energy Neutrino Astronomy

GRBMeszaros & Waxman, 2001Core collapse of massive stars relativistic fireball jet may either penetrate stellar envelope or may be choked

N ~ 0.2 (E /1053 erg) km-2 for z =1 (E 5 TeV)

103 events correlated with -bursts + more from -dark bursts

Paolis et al., 2001Shock-accelerated protons from GRB interact with external protons in dense cloud

neutrinos with few GeV to ~ 1 PeV single GRB at z=1 yields 0.1-1 event per km2 (E > 1 TeV)

Page 13: High Energy Neutrino Astronomy

GRB (quasi-thermal) from 0 decay

neutrinos

Cannon Balls

SN shell

242

2

1010)0(

zEkmd

dn inCB

‘s extremely forward collimated - the stronger the higher their energy

Cannon Ball Model of GRB

(Dar, De Rujula, Plaga)

Page 14: High Energy Neutrino Astronomy

Neutrinos from MicroquasarsWaxman, Loeb, 2001

Accreting stellar-mass BH or neutron star ejecting jets Radio outbursts with L ~ 1043 erg of order 1-10 Shock acceleration in electron proton plasma

Neutrino burst of several hours, preceding radio outburst

1-100 TeV neutrinos from proton–X-ray interactions

N (1km2) ~ 10-2 -1 3 (for distance 10 kpc) 8 for source along line of sight

several neutrino events per outburst

Page 15: High Energy Neutrino Astronomy

Experiments under ground

Page 16: High Energy Neutrino Astronomy

MACRO

Limit on flux from point sources Limit on diffuse flux

Limit on neutrino emission from GRB

Since 1989:1356 upward going

Page 17: High Energy Neutrino Astronomy

MACRO point source searchMACRO sky-map in equatorial coordinates

90% c.l. upper limits for 42 selected sources (red dots)

Page 18: High Energy Neutrino Astronomy

Selection of HE neutrinos:1. timing cut (upward)2. energy deposition in scintillators Rate of survived

events in 5.8 yr

ATMMC 1.1±0.5stat

AGNMC 0.54±0.03stat

DATA 2

E2 < 4.5 10-6 cm -2 s -1 sr –1

GeV

MACRO: limit on diffuse E-2 flux

Page 19: High Energy Neutrino Astronomy

MACRO: Neutrinos from GRB

Search for space-time correlationWith 2527 BATSE GRB between1991 and 1999

Flux < 0.8 x 10-9 cm-2

per average burst

about 10 times above optimisticpredictions (Paolis et al., Halzen & Hooper), about 100 times above Waxman & Bahcall)

Page 20: High Energy Neutrino Astronomy

1761 upward going muons(through-going and stopping)from 1264 live days (April 96-May 00)

1200 m2 acceptance area

Superkamiokande

Page 21: High Energy Neutrino Astronomy

Super-K: point source search

Page 22: High Energy Neutrino Astronomy

Upward muons undergroundSuper-Kamiokande 2.0 k eventsMACRO 1.4 k eventsBaksan 1.0 k events

IMB + K-II + KGF + Soudan + ... ~ 1.5 k events (?)

~ 6000 events sets scale for underwater/ice experiments

Page 23: High Energy Neutrino Astronomy

Experiments under water

Page 24: High Energy Neutrino Astronomy

3600 m

1366 m

Lake Baikal, NT-200: The Site

Page 25: High Energy Neutrino Astronomy

pair of 37 cm Quasar PMTs

NT-200: the detector

Page 26: High Energy Neutrino Astronomy

„Gold plated“ neutrino event, 4-string stage (1996)

NT-200: zenith angledistribution 234 days in 1998/99

19 hits

Lake Baikal: atmospheric neutrinos

Page 27: High Energy Neutrino Astronomy

Request upward moving light front (like from e.m. shower below detector) Then cut on # hits

Vertex distribution for E-2 e

Blue dots: time cutRed squares: # hit > 45

E2 < 1.9 10-6 cm-2 s-1 sr-1 GeV

Upper limit on diffuse flux of HE e

Page 28: High Energy Neutrino Astronomy

Reach upper limit in E2 3.5 10-7 cm-2 s-1 sr-1 GeV !

0.1 1 10 100 1000 PeV

NT-214

Page 29: High Energy Neutrino Astronomy

The Mediterranean Projects

Antares

Nestor Nemo test site

Page 30: High Energy Neutrino Astronomy

NESTOR

First Mediterranean project (founded 1991) Site: Pylos (Greece), 3800m depth

towers of 12 titanium floors each supporting 12 PMTs

Page 31: High Energy Neutrino Astronomy

Nestor Tower

Page 32: High Energy Neutrino Astronomy

Deployment plans

Schedule:2001:re-lay cable to siteand deploy 2 floors2003:full tower

Page 33: High Energy Neutrino Astronomy

ANTARES

-2400m

40 km

Submarine cable

Page 34: High Energy Neutrino Astronomy

Demonstrator Site 42°59 N, 5°17 E Depth 1200 m

ANTARES Site42°50 N, 6°10 E Depth 2400 m

Demonstrator Line: 8 OMs Nov 1999 - June 2000

Existing cableMarseille-Corsica

New Cable (2001)La Seyne-ANTARES

Marseille

ToulonLa Seyne sur Mer

0.05 km2 Detector: 900 OMs , Deploy 2002- 2004

Site, History, Schedule

Page 35: High Energy Neutrino Astronomy

The Detector

2500m2500m

300m300mactiveactive

Electro-opticElectro-opticsubmarine cablesubmarine cable ~40km~40km

Junction boxJunction box

Readout cablesReadout cables

Shore stationShore station

anchoranchor

floatfloat

Electronics containersElectronics containers

~60m~60mCompass,Compass,tilt metertilt meter

hydrophonehydrophone

Optical moduleOptical module

Acoustic beaconAcoustic beacon

~100m

10 strings12 m between storeys

Page 36: High Energy Neutrino Astronomy

ANTARES Performance

Very good angular accuracybelow 3 TeV angular error is dominatedby kinematics, above 3 TeV by recon-struction error (~ 0.4°)

Effective area: ~ 10 000 m2 at 1 TeV ~ 50 000 m2 at 100 TeV

E/E ~ 3 (1-10 TeV) 2 (> 10 TeV)

Page 37: High Energy Neutrino Astronomy

ANTARESNorthern Hemisphere

AMANDASouthern Hemisphere

Galactic Centre seen 80% of time

Galactic Centre not visible

Fraction of time sky visible

View of Sky: Complementary to AMANDA

Page 38: High Energy Neutrino Astronomy

NEMO

Page 39: High Energy Neutrino Astronomy

Nemo-2

Page 40: High Energy Neutrino Astronomy

Nemo3

Page 41: High Energy Neutrino Astronomy

Experiments under ice

Page 42: High Energy Neutrino Astronomy

AMANDA

Location:Geographic South Pole

Amanda –II:677 PMTs at 19 strings

Page 43: High Energy Neutrino Astronomy

AMANDA: Atmospheric neutrinos

~ 300 neutrinos from 130 days in 1997 (Amanda-B10)

Systematic still error ~ 50% (prediction atm. ~ 30%, experiment ~ 40% (ice properties, OM sensitivity)

Page 44: High Energy Neutrino Astronomy

AMANDA: limit on diffuse flux

E2 F < 0.9 10-6 GeV-1 cm-2 s-1 sr-1

„AGN“ with 10-5 E-2 GeV-1 cm-2 s-1 sr-1

Full: Experiment

Dots: Atmos.

Search for excess of high energy neutrinos

Optimize analysis for HE neutrinos

Use number of hit PMT as energy estimator.

Place cut according to Feldman-Cousins (using only MC)

Page 45: High Energy Neutrino Astronomy

Search for point sources

Optimize analysis on HE neutrinos and good angular resolution

Accept large background contribution

Systematic uncertainties

Page 46: High Energy Neutrino Astronomy

Other limits from AMANDA and BAIKAL

AMANDA, 78 BATSE bursts in 1997

WIMPs from center of Earth

RelativisticMagnetic MonopolesBaikal

Page 47: High Energy Neutrino Astronomy

AMANDA-II

TriggerLevel

After BGrejection

up horizon

A-II

B-10

dramatically increased acceptancetowards horizon

Nearly horizontal event

(experiment)

Page 48: High Energy Neutrino Astronomy

Physics Reach of AMANDA-II

0

50

100

150

200

-1 -0.8 -0.6 -0.4 -0.2 0

Aef

f [ x

103 m

2 ]

Cos(theta)

E = 10 TeV

Am-II Trigger

Am-II Point Cuts

Am-B10 Point Cuts

Am-II GRB Cuts

10-10

10-8

10-6

10-4

102 103 104 105 106

E2 (d

N/d

E )

[

GeV

cm-2s-1

]

E(GeV)

AMANDA-II (3 yr)

AMANDA-B10 ('97)

IceCube3C273

Crab

AGN Core

Mk501 (=)

Atm.

Mk-501

Search for from TeV sources

Milagrito all-sky search sets limit at > 1 TeV: 7-30 10-7 m-2 s-1, ( E-2.5)

Amanda probes similar flux if/ > 1

Sensitivity to diffuse flux E2 F ~ 5 10-8 GeV cm-2 s-1 sr-1

Page 49: High Energy Neutrino Astronomy

AMANDA-II and EeV searchTransmission of Earth for Neutrinos as a function of zenith angle and energy

Earth opaque above a few PeV

PeV acceptance around horizon

EeV acceptance above horizon

Downward- background athigh energies is small.

Page 50: High Energy Neutrino Astronomy

AMANDA-II and EeV search

10-4

10-3

10-2

10-1

100

101

102

-1 -0.5 0 0.5 1cos()

AGN (Protheroe)GZK*100

• Look for bright tracks passing inside and outside array• Background rejection “straightforward”

–Total energy and “energy flow” variables–SPASE vetoes large DW at relevant ECR

• Calibration possible using in-situ N2 laser–Equivalent to 200 TeV cascade in energy

Improve sensitivity above 10-100 PeV to

E2 F ~ 2 10-8 GeV cm-2 s-1 sr-1

Sensitive to some trans-GZK models !

Page 51: High Energy Neutrino Astronomy

80 strings,each with 60 PMTs

AMANDA-II

SPASE

South Pole

IceCube

02468

1012141618

s3/4 s4/5 s5/6 s6/7 s7/8 s8/9

Number ofstrings

Page 52: High Energy Neutrino Astronomy

IceCube: Search for diffuse -fluxes “AGN” dN/dE = 10-7 ·E-2 cm-2 sec-1 GeV-1

2.300 events / year

Atm. neutrinos (after quality cuts): 130.000 events / year

Atmospheric

AGN

Sensitivity after 3 years:E2 dN/dE (in cm-2 sec-1 GeV)

2.7 · 10-9 (limit expectation) 8.0 · 10-9 (5 detectable flux) (assuming a model with low

prompt neutrinop flux and galactic neutrinos as „signal“)

Page 53: High Energy Neutrino Astronomy

IceCube: Point Source Search

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

0 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

muon energy 0.1 to 1.0 TeVmuon energy 1.0 to 10.0 TeVmuon energy 10.0 to 100.0 TeV

cos(zenith angle)

Angular resolution:Expect improvement at high energies from WLS &use of waveform information

Sensitivity of IceCube after 3 years of operation (average for zenith angles > 90º):

dN/dE ~ 3.5 · 10 -9 · E-2 cm-2 sec-1 GeV-1

Improve limit by a factor of 2 ?

Within predictionsof many recent models

(1-100 TeV)

Page 54: High Energy Neutrino Astronomy

Energy spectra

Diffuse search

Point source search

Colored: standard reconstruction and cuts against fake eventsBlack: ultimate Nhit cuts to get the lowest limit

Page 55: High Energy Neutrino Astronomy

IceCube:Neutrinos from Gamma Ray Bursts

Only 200 GRB needed to detect/rule out WB99 flux

• Test signal: 1000 GRB a la Waxman/Bahcall 1999 • Expected no. of events: 11 upgoing muon events• Expected background: 0.05 events

• Sensitivity (1000 bursts): 0.2 dN/dE (Waxman/Bahcall 99)

Page 56: High Energy Neutrino Astronomy

The high energy frontier

Page 57: High Energy Neutrino Astronomy

Acoustic Detection

10 m

hydrophones

Improve S/N : many hydrophones (close to each other as well as at several strings)

Maximum of emission at ~ MHz

Page 58: High Energy Neutrino Astronomy

Renewed efforts along acoustic method for GZK neutrino detection

AUTEC: US Navy array in Atlantic:existing sonar array for submarine detection

Russia: AGAM antennas near Kamchatka:existing sonar array for submarine detection Russia: MG-10M antennas: withdrawn sonar array for submarine detection Greece: SADCO Mediterannean, NESTOR site, 3 strings with hydrophones

Baikal: first signals from air showers?

Sea-based

Acoustical

Detector of

Cosmic Objects

Page 59: High Energy Neutrino Astronomy

RICERadio Ice Cherenkov Experiment (1)

20 receivers+ transmitters

Triggers: 4 RICE 1 RICE + Amanda A 1 RICE + SPASE

firn layer (to 120 m depth)

UHE NEUTRINO DIRECTION

300 METER DEPTH

Page 60: High Energy Neutrino Astronomy

RICERadio Ice Cherenkov Experiment (2)

90% C.L.Upper Limits

10 TeV 1 PeV 100 PeV Neutrino Energy

D.Besson, 2000(preliminary)

Flux

dN/d(lnE)~ 10-6 cm-2 sr-1 yr-1

Page 61: High Energy Neutrino Astronomy

Horizontal or upward air showers at EeV

el.-magn.cascade

from e

hardmuons

from CR

for E 1018 - 1020 eV:

mass = 1-20 Giga-tonssensitivity 3·10-7 GeV·cm-2·s-1·sr-

1

Horizontal showers in AUGER

500 km

60 °

Horizontal showers seen by EUSO / OWL

E > 1019 GeV

Area upto 106 km2

Mass upto 10Tera-tons

AGASA 2001: < 10-5 GeV·cm-2·s-1·sr-1

Page 62: High Energy Neutrino Astronomy

GLUE (1)

E2·dN/dE < 10-4 GeV·cm-2·s-1·sr-1

Lunar Radio Emissions from Inter-actions of and CR with > 1019 eV

1 nsec

moon

Earth

Gorham et al. (1999), 30 hr NASA Goldstone70 m antenna + DSS 34 m antenna

at 1020 eV

Goldstone LunarUltra-high energyneutrino Experiment

Effective target volume~ antenna beam (0.3°) 10 m layer

105 km3

Page 63: High Energy Neutrino Astronomy

GLUE (2)

method is going to challengetopological defect models !

Limited by live time. Only a small portionof antenna time devoted to one project

Page 64: High Energy Neutrino Astronomy

Outlook

Page 65: High Energy Neutrino Astronomy

Amanda and Baikal challenge model predictions, Amanda is below “soft” theoretical bound Soon: 10 - 20.000 m2 arrays in Mediterranean Amanda-II (Antares, Nestor): discovery potential IceCube and km3-underwater array will come to the limits of discovery potential for diffuse sources below EeV. Main focus: point sources, transient sources. Acoustic and radio in ice still (or again) alive Trans-GZK events revived interest in EeV physics

Promising limits from AGASA, GLUE. Further improvement by AUGER, EUSO, OWL, ..

“Signal” at TAUP-2003 ?