high efficiency power sources

16
CLIC Project meting #16. June 2014 I. Syratche High efficiency power sources I. Syratchev, CERN

Upload: anila

Post on 24-Feb-2016

79 views

Category:

Documents


0 download

DESCRIPTION

High efficiency power sources. I. Syratchev, CERN. ā€˜Classicalā€™ way of designing the klystron. AJDisk 9.0 (1-beam klystron optimised by C. Marrelli). šœ‡Perveance = 0.21 P out ā‰ˆ 2.3 MW Efficiency 78. %. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: High efficiency power sources

CLIC Project meting #16. June 2014 I. Syratchev

High efficiency power sources

I. Syratchev, CERN

Page 2: High efficiency power sources

CLIC Project meting #16. June 2014 I. Syratchev

šœ‡Perveance = 0.21Pout ā‰ˆ 2.3 MWEfficiency 78. %

ā€˜Classicalā€™ way of designing the klystronAJDisk 9.0 (1-beam klystron optimised by C. Marrelli)

During optimisation, the tuning of all parameters is done to provide the highest bunched current harmonics at the entrance of the input cavity. The obtained solution is not unique and does not give enough information about the inner structure of the bunch, which also must be optimal in terms change density and electron velocities distributions to get highest efficiency.

Page 3: High efficiency power sources

CLIC Project meting #16. June 2014 I. Syratchev

Dedicated campaign to make parametric study of the high efficiency klystrons was conducted by Chiara Marrelli (Manchester/CERN) using 1D klystron computer code AJDisk:

Scaling of the klystron parameters

Perveance can be considered as well as a measure of space charge forces. Lower perveance beam with weaker space-charge forces enables stronger bunching and thus consequently higher efficiency.

š¾=š¼ /š‘‰ 3 /2Perveance indicates how much beam current comes out of the cathode when the voltage V is applied between the cathode and the anode.

Companieschoice

Page 4: High efficiency power sources

CLIC Project meting #16. June 2014 I. Syratchev

90% efficient klystron.

To achieve very high efficiency, peripheral electrons should receive much stronger relative phase shift than the core electrons and this could happens only, if the core of the bunch experiences oscillations due to the space charge forces, whilst the peripherals approach the bunch centre monotonously.

Page 5: High efficiency power sources

CLIC Project meting #16. June 2014 I. Syratchev

Elec

tron

vel

ocity

/den

sity

Personal recollection of the processes in the high efficiency klystron (for illustration only)

The ā€˜idealā€™ bunching (the core oscillations are switched off to simplify illustration).

Final compression and bunch rotation prepare ā€˜perfectā€™ congregating bunch.

After deceleration all the electrons have identical velocities.

Mission accomplished

Page 6: High efficiency power sources

CLIC Project meting #16. June 2014 I. Syratchev

20 MW, 8 beams 5 cavities MBK originally simulated by Chiara Marrelli

20 MW, 8 beams 5 cavities MBK with ā€˜core oscillationsā€™ simulated by Andrey Baikov

Page 7: High efficiency power sources

CLIC Project meting #16. June 2014 I. Syratchev

Red colour: 20 MW, 8 beams MBK originally simulated by Chiara Marrelli. The perveance was changed by changing both the current and voltage (fixed number of beams).Blue colour: 20 MW, 180 kV MBK simulated by Andrey Baikov (ā€˜globalā€™ optimum with core oscillations). The perveance was change by changing the number of beams (fixed voltage).

The klystron performance curves

5 cavities

6 cavities

When going towards bigger number of the cavities (from 5 to 6 on our case), the klystron efficiency shows some saturation features. Technically, it allows to choose reasonably high perveance as an operating point without considerable reduction in efficiency. However the 1D code simulations results for the tubes with high perveance are less confident (overestimated).

šœ‡š‘ƒ=š¼

([1+ š‘‰2š‘ˆš‘’ ]š‘‰ )

3 /2

Ultimate performance?

Page 8: High efficiency power sources

CLIC Project meting #16. June 2014 I. Syratchev

Recipe#1 for 20 MW. 80% efficient L-band MBK for CLIC

1. Stay at a low micro-perveance.2. Choose as many beams as you comfortable with: - Reduces the operating voltage (tube length) - Reduces the beam compression (beam dynamics) - Reduces current/beam, weaker magnetic focusing3. Use all the tricks explained previously

Collecting outside electrons

Bunch core oscillations

Tube length 3.0 m; 162kV; 80.3%

Example of the CLIC MBK designed using ā€˜conventionalā€™ MBK gun technology (8 beams).Simulated by I. Guzilov

K=0.2

K=0.2K=0.3

K=0.3

Page 9: High efficiency power sources

CLIC Project meting #16. June 2014 I. Syratchev

This method of spatial enhancing of the core oscillations frequency allows reducing at least by factor of 2 the length of the interaction space for high efficiency klystrons.

BAC method. I. Guzilov In order to intensify the process of the core oscillations, one can use the external forces delivered by additional specially tuned idle cavitiesā€“ this is the base of BAC method

Each oscillation in BAC method is prepared in 3 stages:- first cavity gap ā€“ traditional bunching;- second cavity gap - alignment velocity spread of electrons;- third cavity gap ā€“ collecting the peripherals.

Page 10: High efficiency power sources

CLIC Project meting #16. June 2014 I. Syratchev

Recipe#2 for 20 MW. 80% efficient L-band MBK for CLIC 1. Stay at a low micro-perveance.2. Choose as many beams as you comfortable with: - Reduces the operating voltage (tube length) - Reduces the beam compression (beam dynamics) - Reduces current/beam, weaker magnetic focusing3. Use all the tricks explained previously4. Employ BAC method to reduce the tube length.

Bunch core oscillations

Example of the CLIC MBK designed using advanced MBK gun technology (30 beams).Simulated by I. Guzilov

K=0.2

K=0.2K=0.3

K=0.3

Tube length reduced to 1.2 m (2.5 times); 116 kV; 80.3%

Page 11: High efficiency power sources

CLIC Project meting #16. June 2014 I. Syratchev

20 cavities Efficiency 78 %Length 285 mmperveance of 1.4 ĀµA/V1.5 (170 kV ā€“ 100 A)

12 MW X-band klystron High efficiency with high perveance! New idea from Franck Peauger opens path into high frequency single beam tubes.

Kl-adi(adiabatic)-stron = Ā« KLADISTRON Ā»

Page 12: High efficiency power sources

CLIC Project meting #16. June 2014 I. Syratchev12

The 12 GHz - 12 MW klystron prototype planning(CEA/CERN/Industry)

Preliminary design

2014 2015 2016 2017

Fabrication

Tests

Detailed design and drawings

Choice of the number of cavities

Convergence on simulation codes

Design Review

Superconducting solenoid

Commissioning preparation (advanced simulations)

PhD student

Page 13: High efficiency power sources

CLIC Project meting #16. June 2014 I. Syratchev

S-band Demonstrator40 beams; <60 kV

L-band ILC6 beams; 116 kV

L-band CLIC6-8 beams; 164 kV

L-band. CLIC.30 beams; 116 kV<60 beams; 60 kV

L-band CLIC/Double C. Gun12 beams; 164 kV

L-band, Long pulse (TLEP, proton linac)>30 beams; <30 kV?

Strategy for high-efficiency high RF power klystron development

Exploring X-band MBK

1.5 year

4 years

2/gun+3years

2 yearsExists

??? years

20 4062

SC solenoid

Optionally ā€“ gun with controlled electrode (2.5 kV)

Page 14: High efficiency power sources

CLIC Project meting #16. June 2014 I. Syratchev

Technology demonstrator tube.To be built in 1 year (Low risk approach)

KIU-147. 40 beams, S-band, 6 MW, 52 kV, 50% with PPM reversed focusing

1. Keep the gun, focusing system and collector2. Replace the klystron body (the same length).

Expected efficiency 74.2% :

The PPM reversed focusing drawback:At each reverse of magnetic field there are ~5-7% of beam losses. With two periods, the expected efficiency will be dropped down to ~60 % . At a positive side ā€“ klystron will be very light , only 90 kg (0.8 m long).

Considering that 60 kV is safe limit for operation at air (discharge along the gun insulator), klystron will be able to deliver up to 8 MW peak RF power. With 40 kW average power, it will be able to operate at 1 kHz and 5 microsecond long pulses.

simulated

expected

Page 15: High efficiency power sources

CLIC Project meting #16. June 2014 I. Syratchev

Special thanks to:

Andrey BaikovIgor GuzilovChiara MarrelliFranck Peauger

Page 16: High efficiency power sources

CLIC Project meting #16. June 2014 I. Syratchev

https://indico.cern.ch/event/297025/