high doppler resolution x-band wake-vortex radar : cdg airport

42
Air Systems Division High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport Trials F. BARBARESCO

Upload: trantuyen

Post on 01-Jan-2017

221 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division

High Doppler Resolution X-bandWake-Vortex Radar : CDG Airport Trials F. BARBARESCO

Page 2: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division

Brieve History of Wake Vortex Radar Campaigns

Page 3: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division3

GEC MARCONI EXPERIMENT (UK) : 1992GEC-MARCONI DX 04 Radar (S Band)Wake Vortex have been clearly detected (measured RCS : -80 dBsm to –90 dBsm) at 2.8 Km by radar (radar beam perpendicular to the aircraft’s flight path)DX Radar Figures :3 GHz (λ=9 cm)PRI = 100 μsτc= 4 μs (B=0.25 MHz, 600 m) to 13 ns (B=77 MHz, 2 m)τ< 400 . τcPc = 10 KWτ/PRI < 2.5 %GEmGRec= 33 dB

Radar Beam Position

HS-748 Plane :

Width : 30.02 m

Weight : 40000 LBS

Speed : 138 kts (69 m/s)

Weather conditions :

Cloud base : 2500 feet

Humidity : 85%Doppler Spectrum(range cells : 15 m)

Page 4: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division4

CNRS/CRPE, CNET & STNA (France) : 1992PROUST RadarFrequency : 961 MHzWavelength : 31.2 cmPRI = 156.4 μsτ = 1 μsPc = 4.5 KWResrange = 150 m (withoutpulse compression)τ/PRI < 2.5 %Beamwidth : 5°Gant = 29 dBRangeamb = 23.4 Km

Doppler Spectrum(range cells : 30 m)

Page 5: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division5

CLEAR AIR RADAR REFLECTIVITY OF WAKE VORTEXTests have revealed radar echoes in clear air.

Two mechanisms causing refractive index gradients are :Radial Pressure (and therefore density) gradient in a columnar vortex arising from the rotational flow :

Adiabatic transport of atmospheric fluid within a descending oval surrounding a vortex pair :

Particulates were not involved (not f4 Rayleigh scattering) .The frequency dependence was not the Kolmogorov f1/3

The role of Engine Exhaust :RCS doesn’t change when the engine run at idle or full powerExhaust diameter yields a partial pressure of vapour and a contribution which is much smaller than that due to temperature.

⎪⎩

⎪⎨

=

⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛=−

∞ K(K) , Tmperature T : the tepourf water vaure (mb) otial press : the par; Pf dry air ure (mb) otial press : the parP

GHzbelow equencies air for fr of humid tive indexn : refracwith

TP..

TP.

TP.).(n

va

vva

288

20

107763864677101 256

[ ]

⎪⎩

⎪⎨

+===

⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛++−=−

va

--

zsat

PPe, and Pnd AltitudΔz : Desceer) (in Ws.-s.r) N (in Summes.el : Nat Sea Lev

ter)ion parametratificatequency (sVäisälä FrN : Brünt-with

(z)T...

(z)P)(T(z)PRHΔz

g(z)Nρ.(z)n(z)n

int0300200140

1049377622310~

111

626

Page 6: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division

THALES RADAR WAKE VORTEX PROCESSING CHAIN

Page 7: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division7

CHARACTERISTICS OF THALES X-BAND BOR-A550 RADAR

Main FiguresFrequency : X Band (9.6 GHz for ORLY Campaign)Minimal Range : 400 mMaximal Range : 40 KmRange Resolution : 40 mMechanical Tilt : +/- 24°Beam Width (elevation/azimut): 4°/2.7°Radial Velocity Range : +/- 26 m/sDoppler Resolution (& High Resolution) : 0.2 m/s

(0.04m/s)Mechanical Scan Rate : 8°/s (sur 45° pour ORLY)Peak transmit power: 75 WData Link : RS232 (x2), RS432 (x2), EthernetRecording System : All range cellsexternal link Ethernet 20 Gb/s

PRF = 3348 HzF=9.6 GHz

Vamb = λ.PRF/2Vamb = 52.31 m/s

(+/-26 m/s)

λ=c/F=3.125 cm

Page 8: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division8

Wake Vortex Detection in All weather Conditions

No Rain

Minimum Temperature 8 °

Maximum Temperature 14 °

Rain Rate 0 mmWind Speed 22 km/hWind Direction : South

Rain

Minimum Temperature 9 °

Maximum Temperature 12 °

Rain Rate 1.19 mmWind Speed 20 km/h

Wind Direction South-East

RCS of Medium Aircraft Wake Vortex : 0.01 m2 S/N ≈ 15 dB (Range = 600 m)

NO RAIN RAIN

Page 9: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division9

Speed Variance of Rain can measure

EDR & TKE(air turbulence)

Time (s)

0 m/s

+/-26 m/s

0 m/s

Tangential SpeedVersus Radius

SpiralGeometry

Cross-Wind Speed

⎟⎠⎞

⎜⎝⎛ +=⇒=⇒=

VVbbr

ddraer rb δ

πθθ 1log

21

WAKE VORTEX PROFILING : RADAR DOPPLER ANALYSIS

Page 10: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division10

WAKE VORTEX PROFILING : WAKE VORTEX AGEPositive

Time/Dopplerslopes

ZeroTime/Doppler

slopes

NegativeTime/Doppler

slopesLow speedNegative

Time/Dopplerslopes

Page 11: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division11

Wake Vortex Circulation Computation

[ ] 323 2. /

i )S(Vmomentndk=Γ

[ ]

[ ]∫

∫∝Γ

max

min

max

min

3/2

3/22

)(

)(2

V

Vii

V

Viii

dVVS

dVVSV

Wake Vortex Doppler Frequencies Extraction(Pre-Processing : CFAR on Doppler axis)

Page 12: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division12

Wake-Vortex Detection based on Doppler Entropy criteriaIn the framework of Affine Information Geometry, Kähler metric is given by Hessian of Entropy, considered as Kähler Potential Function :

Entropy of Multivariate Gaussian Law of Zero Mean :

Entropy can be parametrized by reflection coefficients of complex AR model

( ) ( ) ( )enRRΦ πlogdetlog~ −−=

-RHΗΗΦg

jiij =

∂∂∂

≡ et ~2

[ ] [ ]0

1

1

2 ..ln.1ln).(~ Penkn)(RΦn

kkn πμ +−−= ∑

=

[ ]∑

=

−−

==

−=n

kk

nnn

zn

P1

20

10

11

21

1 avec

.1

α

αμα ( ) [ ]∏∏−

=

−−−

=

− −==1

1

20

1

0

1 1detn

k

kn

kn

n

kknR μαα

[ ]

( )( )[ ] nn

nnnnn

RRTrn

nnn

RRE

mZmZR

eRRZp nn

=

−−=

=+

−−− −

ˆet

.ˆwith

..)()/(1.ˆ1π

Doppler Spectrum

shape

Doppler Spectrum

Power

Page 13: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division13

Thales Advanced Processing Chain: 3 Patents

Implemented in C language :3 times faster

than real time by“off-line” tests on 4 Threadswith Quadri-

Core PC

PRF = 3348 Hz

Implemented in Matlablanguage

Page 14: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division14

“Off-Line” Tests on 4-threads quadri-Core PCC-Code Code has been parallelizedon 4 threads by divided 31 Range cells in 4 Domains (1.2 km)Each Range Domain is processed on 1 threadRange Cell resolution : 40 m

C-Code implemented on 4 Threads is 3 time faster

than real time :

1 second processed in 300 ms

Page 15: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division15

Real-Time Implementation of THALES “Wake Vortex”Algorithms (e.g. : General-Purpose computing on Graphics Processing Units)

In Progress : Real-Time THALES Processing Chain

General PurposeGPU

Ethernet 20Gb/sDATLINK

THALES Processing chain (3 patents)THALES radar

HMI

PRF = 3348 Hz

Multi-CorePC

Page 16: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division16

LIDAR & RADAR WAKE VORTEX DOPPLER SPECTRUM

AngularRadar resolution

Doppler radarsignature

Doppler Lidarsignature

LIDAR WAKE VORTEX DETECTION

Post-processingNeeded for Wind

Inversion detection

Page 17: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division

Paris Airport Radar Trials

Page 18: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division18

Radar Sensor Campaigns funded by THALES

2006 : Paris Orly AirportFrom Mode S site (500 m from runway)Wake Vortex Monitoring during departuresWeather conditions : Winter (clear air, rain)

2007 : Paris Orly AirportFrom Thales Limours Testbed TowerWake Vortex Monitoring during arrivals (ILS Interception)Weather Conditions : Autumn (highly turbulent atmosphere)

2008 : Paris CDG AirportFrom Kbis Tower co-localized with Eurocontrol Lidar (2 mm Windtracer)Wake Vortex Monitoring during arrivals/departures on Closely Spaced Parallel runwaysWeather Conditions : Summer (very hot, rain)

Orly 2006

Orly 2007

CDG 2008

Page 19: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division19

BOR-A550 Radar View at Paris ORLY Airport Site

Page 20: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division20

PARIS ORLY WAKE VORTEX RADAR CAMPAIGN (2006)

Page 21: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division21

Orly Airport 2006 (runway monitoring for departure)

Page 22: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division22

Orly Airport 2007 (ILS Interception monitoring for arrival)

Page 23: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division23

Wake Vortex Monitoring based on HR Doppler

Vertical ScanningFrom Limours Tesbed

Tower (Orly ILS Interception : 1500 m)

Highly Turbulent Atmosphere !!

Wake VortexRollups Wake Vortex

Rollups

Color = Doppler Entropy E = - log det(R) (R : covariance matrice)

Page 24: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division24

CDG Airport 2008 (runway monitoring : departure/arrival)

08L

08R

26L

26R

27L

27R

HorizontalScanning

VerticalScanning

Page 25: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division25

Scanning strategies

Vertical Scanning

Horizontal Scanning

360° scanning

Page 26: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division26

Vertical Scanning: Monitoring of Arrival (2nd runway)

Wake Vortex Roll-up(Arrival)

DepartureArrival

East Configuration

Page 27: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division27

Vertical Scan: Monitoring of Departure (1rst runway)

Wake Vortex Roll-up(Departure)

DepartureArrival

West Configuration

Page 28: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division28

West Config. Procedure

From scan to scan : Departure

Page 29: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division29

Vertical Scanning

Page 30: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division30

Horizontal scanning

Page 31: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division31

Wake Vortex Position & Circulation (strength in m2/s) along runwayPosition des vortex au cours du temps

1200

1300

1400

1500

1600

1700

1 2 3 4 5 6 7

Numéro de balayage

Cas

e di

stan

ce

vortex 1 position

vortex 2 position

Circulation des vortex au cours du temps en m²/s

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7

N uméro d e b alayag e

vortex1 circulat ionvortex2 circulat ion

5 s per scan (35 s)Position at 1500 m

Position des vortex au cours du temps

600

700800

9001000

11001200

1300

1 2 3 4 5 6

Numéro de balayage

Cas

e di

stan

ce

vortex 1 position

vortex 2 position

Circulation des vortex au cours du temps en m²/s

0

50

100

150

200

250

300

350

1 2 3 4 5 6

N uméro d e balayage

vortex1 circulat ionvortex2 circulat ion

5 s per scan (30 s)Position at 1000 m

With Cross-Wind Without Cross-Wind

Page 32: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division32

Thales Radar Trials SynthesisParis ORLY AIRPORT Campaign has proved that X-band Radar can :

Detect Wake Vortex (RCS of 0.01 m2 on medium aircraft) :In all weather conditions (wet & dry at short range < 2 Km)In Staring & Scanning ModeIn real Time / Update Rate of 11 s on 60° scan sector

Localize Wake Vortexin range/azimuthWith resolution : 40 m x 1°

Characterize Wake VortexGeometry (Spiral)Age (Young, mature, old, decaying)Strength : Circulation (m2/s)

Characterize ambient air (in Rain Conditions)Wind (based on Doppler & post-processing)Ambient Air Turbulence (EDR & TKE)

Page 33: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division33

X-band Radar PerformancesWake Vortex Monitoring in All Weather Conditions (light to heavy

rain, fog, turbulent atmosphere,…)Operational Use to track Wake Vortex (transport, decay, rebound) in extreme weather conditions :

Wind burst (wind under Cb, turbulent atmosphere, wind shear…)No Wind (foggy weather,…)

Non Operational Use for « Safety Case » by Data Collection :Risks Assessment according to extreme wind conditions and not only on mean wind conditions (extreme values statistics)Need for Wake Vortex Data in exhaustive cases of airport climatology(good/bad weather)

Fast Monitoring of very large volume (radar scanning) with high update rate (e.g. : 8°/s with mechanical scanning of BOR-A radar and faster with Electronic scanning)

Highly sensitivity of Radar : monitoring of Wake Vortex for « medium » (high % of A320) aircrafts and not only « heavy / super heavy » (requested for traffic mix of « very light jets »)

Page 34: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division34

Radar/Lidar Sensors

Radar & Lidar are complementary sensors in all weather operationsTHALES has proved by derisking campaign (Paris CDG-2008) that X-band Radar & Lidar are complementary for Wake Vortex Monitoring :

Lockheed Martin has proved by derisking Campaign (Westheimer Aiport) that X-band & Lidar are compementary for Wind Monitoring (& Wind-shear)

Page 35: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division

WAKE-VORTEX & WIND SENSORS BENCHMARK

Page 36: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division36

Suite of Sensors benchmarking THALES will supervise benchmarking of :

Wake Vortex Monitoring Sensors

Wind Monitoring Sensors

Others

In All Weather Conditions

EUROCONTROL

M-Scan & E-scan X-band Radars

2 μm Lidar

Polar X-band Radar

1.5 μm LidarWind Profiler

UHF Radar Wind Profiler

Ultrasonic Anemometers

Sodar

Page 37: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division37

Threshold

Touch-Down Area

Runway 3000 m / 60 m (typically)

Wind

Final Approach Fix (FAF)

ILS Interception Area

Altitude between 2000 and 6000 ft (typically)

H = 400 ft

400 m2500 m

25 000 m (13.6 NM)

ILS Glide Slope

ILS Glide Slope : 3° (5.2%) – 4°

Max course deviation : 2° Ie horizontal deviation at FAF : +/- 800m

5 500 m (3 NM)

Final Approach

Landing

Lidar Windprofiler

Sodar/RassT° Profiler

UHF Windprofiler

Anemometers

Lidar 3D Wind Tracer

X-bandRadar 3D

Wind Mnitoring

One Instance of Weather Sensors Deployment

Wind info

Fusion

Page 38: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division38

CDG : Surveillance Area

Page 39: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division39

WV Predictor

Approach/Departure : Ground wake detection, tracking & alert

WIMS(in TMA)

Data Broadcast

Data Broadcast

Pilot

WV Alarm

Approach & TowerController

WV controller HMI

Ground RadarHorizontal/Vertical scanning

of Runways

Ground RadarVertical scanning

of ILS interception Area(Entering of glide slope)

Data-Link(WV Alerts)

Limours trials 2007

Orly trials 2006 & CDG 2008

crosswind

crosswind

Page 40: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division40

Wake Vortex Alerts in THALES EUROCAT-T

WVAS enables Air Traffic Control to:Separate all aircraft down to radar separation minima without jeopardizing flight safetyIncrease the airports/runways capacityAddress Arrivals and/or Departures

WVAS will ingest Wake Vortex Monitoring Sensors data for Safety Net

Page 41: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division41

Acknowledgements

ADP Radar Team Jean-Paul LecorreJean-Marc ReceveauDaniel DuongGilbert Herbulot

DSNA Radar TeamAndré SimonettiAlfred HarterJean Jezequel

Direction des Aires Aéronautiques (ADP CDG) : Gérard BatistellaGuillaume Auquier

Page 42: High Doppler Resolution X-band Wake-Vortex Radar : CDG Airport

Air Systems Division42

Questions

HORIZONTAL SCANNING VERTICAL SCANNING