heat exchanger pinch

39
Chen CL  72 Heat Exchanger Network Design: The Pinch Design Method Chen CL  73 Design of Individual Processes for Maximum Energy Recovery Divide the process at the pinch

Upload: antwon

Post on 01-Jun-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 1/39

Chen CL   72

Heat Exchanger Network Design:

The Pinch Design Method

Chen CL   73

Design of Individual Processesfor Maximum Energy Recovery

Divide the process at the pinch

Page 2: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 2/39

Chen CL   74

Design of Individual Processesfor Maximum Energy Recovery

The feasibility of heat transfer

Chen CL   75

Design of Individual Processesfor Maximum Energy Recovery

Cross-pinch heat transfer: Actual = Target + XP

Page 3: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 3/39

Page 4: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 4/39

Chen CL   78

Design of Individual Processesfor Maximum Energy Recovery

Design RuleDo Not Transfer Heat Across the Pinch

➢  Do not use steam below

➢  Do not use cooling water above

➢  Do not recover process heat across

Chen CL   79

Typical Grid Diagram

Page 5: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 5/39

Chen CL   80

Typical Grid DiagramRules for Construction

➢  Hot   streams run   left to right 

➢  Cold  streams run  right to left 

➢  Hot streams on top; Cold streams on bottom

➢  Hot   utility =

   

   H

 Cold  utility =

   

   C

➢  Heat exchanger between streams =

   

   —

  

  

Chen CL   81

Where Is The Pinch ?

Page 6: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 6/39

Chen CL   82

Pinch Is Easily Shown

Chen CL   83

Separate Above/Below-Pinch Regions

Page 7: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 7/39

Chen CL   84

Number of Heat Exchanger Units

➢  Graph   any collection of points in which some pairs of points are

connected by lines

➢   Path   a sequence of distinct lines which are connected to eachother

Chen CL   85

Number of Heat Exchanger Units

➢  A graph forms a single  component if any two points are joined by

a path

➢   Loop   a path which begins and ends at the same point (CGDHC)

➢   If two loops have a line in common, they can be linked to form

a third loop by deleting the common line (BGCEB + CGDHC  →BGDHCEB)

➢  The number of independent loops for a graph:

N UNITS = S + L− C 

N UNITS   =   # of matches or units (lines in graph theory)

S    =   # of streams including utilities (points in a graph)

L   =   # of independent loops

C    =   # of components

➢  A single component and loop-free:   N UNITS = S − 1

Page 8: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 8/39

Page 9: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 9/39

Chen CL   88

The Pinch Design MethodKnown

➢  No exchanger should have a temp diff.   smaller  than  ∆T min

➢  No heat transfer across the pinch by

☞   process-to-process heat transfer☞  inappropriate use of utilities

➢  Compositecurves:

Chen CL   89

The Pinch Design MethodStart at the Pinch

(∆T min  exists between all hot/cold streams, the  most constrained region)

Page 10: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 10/39

Chen CL   90

The Pinch Design MethodDivide at the pinch

Chen CL   91

The Pinch Design MethodCP Inequality for Individual Matches

Above Pinch: if   CPH >CPC    ⇒   infeasible!

T h   = 162o (suppose)

∆H h   = 0.25(162−150)

= 3  MW

T c   = 140 +   3   MW0.2   MW/oC

= 155oC

∆T min  >   T h − T c= 162− 155

= 7oC

Page 11: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 11/39

Chen CL   92

The Pinch Design MethodCP Inequality for Individual Matches

Above Pinch: if   CPH ≤CPC    ⇒   feasible

T h   = 162o (suppose)

∆H h   = 0.25(162−150)

= 3  MW

T c   = 140 +   3   MW0.3   MW/oC

= 150oC∆T min  <   T h − T c

= 162− 150

= 12oC

Chen CL   93

The Pinch Design MethodCP Inequality for Individual Matches

Below Pinch: if   CPH <CPC    ⇒   infeasible!

T c   = 125o (suppose)

∆H c   = 0.2(140−125)

= 3  MW

T h   = 150−   3   MW.15   MW/oC

= 130oC

∆T min  >   T h − T c= 130− 125

= 5oC

Page 12: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 12/39

Chen CL   94

The Pinch Design MethodCP Inequality for Individual Matches

Below Pinch: if   CPH ≥CPC    ⇒   feasible

T c   = 125o (suppose)

∆H c   = 0.2(140−125)

= 3  MW

T h   = 150−   3   MW.25   MW/oC

= 138oC∆T min  <   T h − T c

= 138− 125

= 13oC

Chen CL   95

The Pinch Design MethodCP Inequalities: Summary

for temperature differences to increase moving away from the pinch

Above Pinch:   CPH  ≤ CPC    Below Pinch:   CPH  ≥ CPC 

Page 13: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 13/39

Chen CL   96

The Pinch Design MethodThe CP Table

Cold  utility must not be used above the pinch

⇒  hot  streams must be cooled to pinch temp. by recovery

hot  utility can be used on  cold  streams above the pinch

Chen CL   97

The Pinch Design MethodThe ”Tick-Off” Heuristic (above pinch)

Now we have identified feasible matches

⇒  How big should we make them ?

Page 14: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 14/39

Chen CL   98

The Pinch Design MethodThe ”Tick-Off” Heuristic (above pinch)

Maximize loads to ”tick off” streams

⇒  to keep capital costs down

Chen CL   99

The Pinch Design MethodThe ”Tick-Off” Heuristic (above pinch)

Then fill in the rest

Page 15: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 15/39

Chen CL   100

The Pinch Design MethodThe ”Tick-Off” Heuristic (above pinch)

Then fill in the rest

Chen CL   101

The Pinch Design MethodThe ”Tick-Off” Heuristic (below pinch)

Maximize loads to ”tick off” streams

⇒  to keep capital costs down

Page 16: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 16/39

Chen CL   102

The Pinch Design MethodThe ”Tick-Off” Heuristic (below pinch)

Maximize loads to ”tick off” streams

⇒  to keep capital costs down

Chen CL   103

The Pinch Design MethodThe ”Tick-Off” Heuristic (below pinch)

Then fill in the rest

Page 17: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 17/39

Chen CL   104

The Pinch Design MethodThe ”Tick-Off” Heuristic (below pinch)

Then fill in the rest

Chen CL   105

The Pinch Design MethodThe ”Tick-Off” Heuristic (below pinch)

Note:  one match violates CP rules

But, it is away from the pinch and therefore feasible

Page 18: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 18/39

Chen CL   106

The Pinch Design MethodThe ”Tick-Off” Heuristic: Summary

To tick off a stream, individual units are made as large as possible⇒  the smaller of the two heat duties on the streams being matched

Chen CL   107

The Pinch Design MethodThe Completed Design

Page 19: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 19/39

Chen CL   108

The Pinch Design MethodNetwork Design Using Two Steam Levels

Chen CL   109

The Pinch Design MethodNetwork Design Using Two Steam Levels

Page 20: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 20/39

Chen CL   110

The Pinch Design MethodNetwork Design Using Two Steam Levels

Chen CL   111

The Pinch Design Method: Summary

➢  Divide the problem at the pinch into separate problems

➢  Design separate problems, started at the pinch, moving away

➢   Temperature feasibility requires constraints on CP values to besatisfied for matches between streams at the pinch

➢   Loads on individual units are determined using the kick-off heuristic

to minimize # of units

➢   Away from the pinch: more freedom, use judgment and process

knowledge

Page 21: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 21/39

Chen CL   112

Stream Splitting: # of Streams

Cold  utility must not be used

above the pinch

⇒  All hot streams must be cooled topinch temperature by heat recovery

⇒  Splitting cold streams

Above Pinch:   S H  ≤ S C 

Chen CL   113

Stream Splitting: # of Streams

Hot  utility must not be used

below the pinch

⇒  All cold streams must be heated to

pinch temperature by heat recovery⇒  Splitting hot streams

Below Pinch:   S H  ≥ S C 

Page 22: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 22/39

Chen CL   114

Stream Splitting: CP Inequality

Above Pinch:   CPH  ≤ CPC 

Hot  stream with larger CP values⇒  Split into smaller parallel

hot streams

(opt flow rates ?)

Chen CL   115

Stream Splitting: CP Inequality

Below Pinch:   CPH  ≥ CPC 

Cold  stream with larger CP values

⇒  Split into smaller parallelcold streams

(opt flow rates ?)

Page 23: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 23/39

Chen CL   116

Stream-Splitting AlgorithmsAbove the Pinch

Chen CL   117

Stream-Splitting AlgorithmsBelow the Pinch

Page 24: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 24/39

Chen CL   118

Design of Individual Processesfor Maximum Energy Recovery

Pinch Design RuleDo Not Transfer Heat Across the Pinch

➢  Divide at the PINCH

➢  Start at the PINCH and move away

➢  Observe the PINCH rules:

☞  Do not use steam below☞  Do not use cooling water above

☞  Do not recover process heat across

Chen CL   119

Pinch Analysis and Process Integration

Case Study

Crude Preheat Train

Page 25: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 25/39

Chen CL   120

PI Case Study: Crude Preheat TrainOriginal Process

Chen CL   121

PI Case Study: Crude Preheat TrainOriginal Process

Page 26: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 26/39

Chen CL   122

PI Case Study: Crude Preheat TrainOriginal Process

Chen CL   123

PI Case Study: Crude Preheat TrainOriginal Process

Page 27: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 27/39

Chen CL   124

PI Case Study: Crude Preheat TrainOriginal Process

Chen CL   125

PI Case Study: Crude Preheat TrainOriginal Process

Page 28: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 28/39

Chen CL   126

PI Case Study: Crude Preheat TrainOriginal Process

Chen CL   127

PI Case Study: Crude Preheat TrainOriginal Process

Page 29: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 29/39

Chen CL   128

PI Case Study: Crude Preheat TrainContractor’s Design

Chen CL   129

PI Case Study: Crude Preheat TrainHot/Cold Streams

Page 30: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 30/39

Chen CL   130

PI Case Study: Crude Preheat TrainNetwork Grid Diagram: Contractor’s Design

Chen CL   131

PI Case Study: Crude Preheat TrainNetwork Grid Diagram with Increased HEs

Page 31: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 31/39

Chen CL   132

PI Case Study: Crude Preheat TrainComparison of UA Values for Diff. Network Designs

Contractor’s Inc. area MER Evolved Evolveddesign design design design 1 design 2

Energy   81.9 68.0 61.1 68.0 68.0Max split   2 2 4 4 3

UA for N1 -   0.380(new)   0.393(new)   0.332(new)   0.380(mod 5)N2 -   0.230(new) - -   0.210(new)3   0.288 0.393(mod)   0.714(new)   0.337 0.3374   0.159 0.512(mod)   0.549(mod)   0.412(mod)   0.476(mod)5   0.152 0.150 0.286(mod)   0.147   -6   0.462 0.462 0.462 0.462 0.5067   0.196 0.195 0.293(mod)   0.198 0.1938   0.132 0.115 0.454(mod)   0.241(mod)   0.234(mod)9   0.022 0.022 0.022 0.022 0.022

10   0.111 0.165(mod)   0.180(mod)   0.111 0.111UAAll HEs   1.522 2.624 3.353 2.262 2.421UAAir cooler   0.550(mod)   0.550(mod)   0.550(mod)   0.550(mod)   0.392UATotal   2.072 3.174 3.903 2.812 2.813

Chen CL   133

PI Case Study: Crude Preheat TrainComposite Curves and Grand composite Curve

Page 32: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 32/39

Chen CL   134

PI Case Study: Crude Preheat TrainNetwork Grid Diagram: Contractor’s Design

Chen CL   135

PI Case Study: Crude Preheat TrainContractor’s Network Showing Pinch Temperature

Page 33: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 33/39

Chen CL   136

PI Case Study: Crude Preheat TrainStream Grid Above The Pinch

Chen CL   137

PI Case Study: Crude Preheat TrainComplete MER Network Above The Pinch

Page 34: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 34/39

Chen CL   138

PI Case Study: Crude Preheat TrainStream Grid Below The Pinch

Chen CL   139

PI Case Study: Crude Preheat TrainComplete MER Network Below The Pinch

Page 35: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 35/39

Page 36: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 36/39

Chen CL   142

PI Case Study: Crude Preheat TrainElimination of Four-way Stream Split

Chen CL   143

PI Case Study: Crude Preheat TrainSecond Evolution of Network Design

Page 37: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 37/39

Chen CL   144

PI Case Study: Crude Preheat TrainComparison of UA Values for Diff. Network Designs

Contractor’s Inc. area MER Evolved Evolveddesign design design design 1 design 2

Energy   81.9 68.0 61.1 68.0 68.0Max split   2 2 4 4 3

UA for N1 -   0.380(new)   0.393(new)   0.332(new)   0.380(mod 5)N2 -   0.230(new) - -   0.210(new)3   0.288 0.393(mod)   0.714(new)   0.337 0.3374   0.159 0.512(mod)   0.549(mod)   0.412(mod)   0.476(mod)5   0.152 0.150 0.286(mod)   0.147   -6   0.462 0.462 0.462 0.462 0.5067   0.196 0.195 0.293(mod)   0.198 0.1938   0.132 0.115 0.454(mod)   0.241(mod)   0.234(mod)9   0.022 0.022 0.022 0.022 0.022

10   0.111 0.165(mod)   0.180(mod)   0.111 0.111UAAll HEs   1.522 2.624 3.353 2.262 2.421UAAir cooler   0.550(mod)   0.550(mod)   0.550(mod)   0.550(mod)   0.392UATotal   2.072 3.174 3.903 2.812 2.813

Chen CL   145

PI Case Study: Crude Preheat TrainOriginal Process

Page 38: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 38/39

Chen CL   146

PI Case Study: Crude Preheat TrainContractor’s Design

Chen CL   147

PI Case Study: Crude Preheat TrainFinal Selected Design

Page 39: Heat Exchanger Pinch

8/9/2019 Heat Exchanger Pinch

http://slidepdf.com/reader/full/heat-exchanger-pinch 39/39

Chen CL   148

PI Case Study: Crude Preheat TrainConclusions

➢   The   Pinch Design Method   generated a network which was

substantially better than that obtained by any previous methods of 

heat exchanger network design.

➢   The targeting stage gives a rapid initial assessment of the scope

for change and the likely difficulties which will be encountered in

obtaining a solution.

➢  The network design method can be used systematically to produce

good “revamp” designs, even where the existing heat exchanger

network is complex.

It allows a productive interaction with the engineer’s experience

(a good example is the use of the pump-around in the preferred

solution).

Chen CL   149

PI Case Study: Crude Preheat TrainConclusions

➢   Designs produced by proper use of the method are elegant,

sometimes yielding both energy and capital savings.

➢   A higher degree of process integration does not necessarily

cause control problems. If the integration is well balanced thecontrollability can be enhanced.

➢   Parallel stream splitting is a practical tool for improving energy

recovery and operability.

➢   The Pinch Design Method can be employed to give good designs

in rapid time and with minimum data.