harnessing plant-soil interactions for the enhancement of carbon...

34
Harnessing plant-soil interactions for the enhancement of carbon sequestration in soil Richard Bardgett, Gerlinde De Deyn, Kate Orwin, Dario Fornara, Sue Ward,, Franciska De Vries,Catherine Turner, Helen Quirk, Simon Oakley & Nick Ostle

Upload: others

Post on 15-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Harnessing plant-soil interactions for the enhancement of carbon sequestration in soil Richard Bardgett, Gerlinde De Deyn, Kate Orwin, Dario Fornara, Sue Ward,, Franciska De Vries,Catherine Turner, Helen Quirk, Simon Oakley & Nick Ostle

  • 6.5 1-2

    Annual increase 3 Gt

    Land sink 1-3

    Ocean sink about 2

    6.5 1-2

    Atmosphere: +3

    Global Carbon Budget (Billions tonnes C y-1; Royal Society, 2001)

    Vegetation: 500 Pg C Soil OC: 1500 Pg C

    Rate change in atmospheric C02 = Emissions - Land sink – Ocean sink

  • Biota 560 Gt

    Atmosphere 760 Gt

    +3.3 Gt/yr

    Soils 2,500 Gt

    (i) SOC - 1,550 Gt (ii) SIC - 950 Gt

    Ocean 38,400 Gt + 2.3 Gt/yr

    (i) Surface layer: 670 Gt (ii) Deep layer: 36,730 Gt (iii) Total organic: 1,000 Gt

    Fossil Fuels 4,130 Gt

    (i) Coal: 3,510 Gt (ii) Oil: 230 Gt (iii) Gas: 140 Gt (iv) Other: 250 Gt

    120 + 2.0 Gt/yr (photosynthesis) Plant respiration

    60 + 1.6 Gt/yr

    60 Gt/yr

    6.3 Gt/yr Fossil fuel combustion

    90 Gt/yr

    0.6+0.2 Gt/yr (deposition)

    MRT = 5Yr

    MRT = 25Yr

    Mean Residence Time (MRT) = 400Yr

    1.6 + 0.8 Gt/yr Deforestation

    MRT = 6Yr

    92.3 Gt/yr

    Biofuel offset?

    Soil is the third largest global C pool (2500 Pg C)

    Lal (2008)

  • Management of grassland for carbon

    Grasslands cover approx 50% UK land surface and contain 32% of the UK soil C store (Countryside survey 2007)

    http://upload.wikimedia.org/wikipedia/commons/f/fe/North_Moor_drain.jpg

  • Grassland soil C (surface and sub-surface) sensitive to management

    Ward et al. (in preparation): National survey of 180 grassland sites in England

    http://www.bugbog.com/english_speaking_countries/united_kingdom/travel_uk_england.html

  • -200

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    Cro

    plan

    d m

    anag

    emen

    t

    Wat

    er m

    anag

    emen

    t

    Ric

    e m

    anag

    emen

    t

    Seta

    side,

    LU

    C &

    agro

    fore

    stry

    Gra

    zing

    land

    man

    agem

    ent

    Res

    tore

    cul

    tivat

    edor

    gani

    c so

    ils

    Res

    tore

    deg

    rade

    dla

    nds

    Bio

    ener

    gy (s

    oils

    com

    pone

    nt)

    Live

    stock

    Man

    ure

    man

    agem

    ent

    Mitigation measure

    Glo

    bal b

    ioph

    ysic

    al m

    itiga

    tion

    pote

    ntia

    l (M

    t CO 2-e

    q. y

    r-1)

    N2OCH4CO2

    Smith et al. (2008)

    Climate change mitigation potential farming systems

  • plant-soil-Micorbial interactions and carbon dynamics

    (1) Plant-soil-microbial interactions and carbon cycling at the individual plant level

    (2) Manipulating plant diversity for soil carbon in grassland

    (3) Impacts of climate change

  • Courtesy of Michael Bahn, University of Innsbruck

    Part 1. Plant-soil-microbial interactions and carbon dynamics

  • Landscape-scale soil C content of UK grassland primarily determined by abiotic factors

    Manning, De Vries, Bardgett & the DIGFOR team (in preparation)

    http://www.bugbog.com/english_speaking_countries/united_kingdom/travel_uk_england.html

  • De Deyn et al (2008) Ecology Letters

    Various forms & age

    CO2

    Litter

    Soil

    Organic carbon

    Shoots

    Roots

    Soil biota

    Exudates

    Respiration

    Photosynthesis

    C-in C-out

    Leaching

    Local-scale: Plant-soil-microbial interactions and carbon dynamics

  • 0

    0.5

    1

    1.5

    2

    2.5

    Ao Fr Lp Am Pl Rr Lc Tp Tr

    Tota

    l fun

    gal P

    LFA

    (nm

    ol g

    dry

    soi

    l-1)

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    Ao Fr Lp Am Pl Rr Lc Tp Tr

    F:B

    PLFA

    Individual plant species effects on soil microbial abundance, activity and community structure

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    Ao Fr Lp Am Pl Rr Lc Tp Tr

    Mic

    robi

    al b

    iom

    ass

    C (m

    g C

    dry

    soil

    -1)

    0

    1

    2

    3

    4

    5

    6

    7

    Ao Fr Lp Am Pl Rr Lc Tp Tr

    Mic

    robi

    al re

    spira

    tion

    (μl C

    O2 g

    -1h-

    1 ev

    olve

    d)

    a

    ab ab ab

    b b

    b b

    b b

    b b

    b b b

    a

    b b

    a

    ab ab

    ab

    ab

    b ab

    b b

    b b b

    b ab ab

    ab ab

    a

    F = 3.79, P = 0.0006 F = 5.67, P

  • Soil biological properties related to plant traits – across 9 species

    Orwin et al. (2010) Journal of Ecology, 98, 1074-1083.

  • Soil C stock (~ 10%)

    Plant trait based framework for promoting soil carbon sequestration

    De Deyn, Cornelissen & Bardgett. 2008 Ecology Letters 11, 516-531.

  • Rapid transfer of plant-derived photosynthetic C to soil microbes: inter-species variation in transfer C to soil and microbial communities variation

    De Deyn et al. (2011) Biogeosciences, 8, 1131-1139.

  • Species

    DG AO LP BM

    13C

    mas

    s (µ

    g 13

    C )

    0

    20

    40

    60

    80

    100

    13C in microbial biomass13C respired by microbial biomass duri

    [+N]

  • Consequences for soil carbon sequestration and loss, and N dynamics, poorly understood.

  • Increased plant diversity

    Plant resource use

    complementarity (+)

    Positive interactions

    (+)

    Root exudates

    diversity (+)

    Plant litter diversity (+)

    Net primary productivity

    (+)

    Plant nutrient

    uptake (+)

    Detrital and root exudate quantity (+)

    Decomposer diversity (+)

    Decomposer resource use

    complimentarity (+)

    Microbial biomass and soil fauna (0,+)

    Microbial biomass and soil fauna (-)

    Long-term accumulation of organic matter (-, 0,+)

    Short-term decomposition and nutrient mineralization

    (-, 0,+)

    Nutrient supply to plants (-, 0, +)

    Part 2: Does plant diversity matter for soil C dynamics? Hypothetical mechanisms by which changes in plant diversity might effect

    soil biological properties and soil organic matter dynamics

    Litter inputs

    Root inputs

  • G+F (e.g. Lp+Am)

    --1-G+G (Lp+Ao)--1-L+L (Tr+Lc)--1-F+F (Pl+Am)

    1---2--G+F+L (e.g. Lp+Pl+Tr, Ao+Am+Lc)3

    --1-F+L (e.g. Pl+Tr)--1-G+L (e.g. Ao+Lc)--1-2

    ---2F (Pl, Am)---2L (Tr, Lc)---2G (Lp, Ao)1

    6321Functional Group richness (composition)

    Species richness Total/soil fertility (4blocks)

    36

    12

    12

    64482424Total/soil fertility (4blocks)G+F+L (Lp+Ao+Pl+Am+Tr+Lc)

    ---

    -----

    ---

    0

    4

    0 ----1 4

    G+F (e.g. Lp+Am)

    --1-G+G (Lp+Ao)--1-L+L (Tr+Lc)--1-F+F (Pl+Am)

    1---2--G+F+L (e.g. Lp+Pl+Tr, Ao+Am+Lc)3

    --1-F+L (e.g. Pl+Tr)--1-G+L (e.g. Ao+Lc)--1-2

    ---2F (Pl, Am)---2L (Tr, Lc)---2G (Lp, Ao)1

    6321Functional Group richness (composition)

    Species richness Total/soil fertility (4blocks)

    36

    12

    12

    64482424Total/soil fertility (4blocks)G+F+L (Lp+Ao+Pl+Am+Tr+Lc)

    ---

    -----

    ---

    0

    4

    0 ----1 4

    De Deyn et al. (2009) Journal of Ecology, 97, 864-875

    Does plant species diversity promote carbon sequestration?

  • a

    a ab

    b

    a

    b

    a

    c

    0

    40

    80

    120

    160

    200

    1 2 3 6 Species richness

    Tota

    l roo

    t C (g

    .m-2

    )

    Root C content

    Grassland plant species and functional group diversity (legumes) enhance root C and AM fungi, and hence C allocation belowground

    De Deyn et al. (2009) J Ecol 97, 864-875.

  • a

    a ab

    b

    a

    b

    a

    c

    0

    40

    80

    120

    160

    200

    1 2 3 6 Species richness

    Tota

    l roo

    t C (g

    .m-2

    )

    Root C content

    Grassland plant species and functional group diversity (legumes) enhance root C and AM fungi, and hence C allocation belowground

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0 1 2 3 6

    Plant species richnessA

    MF

    (ug/

    g)

    F4,114= 2.73 P< 0.05

    b

    ab ab a a

    AM fungal biomass (16:1ω5)

    De Deyn et al. (2011) Biology Letters, 7, 75-78. De Deyn et al. (2009) J Ecol 97, 864-875.

  • GG FF LL GF GL FL

    Soil Carbon Content after 2 years (%)

    Fornara and Tilman (2008) J. Ecol. 96: 314-322

    Soil C accumulation related to root biomass

    Soil Carbon Content

  • *

    -0.60

    -0.50

    -0.40

    -0.30

    -0.20

    -0.10

    0.00

    Feb March April May June N

    et C

    O2-

    C e

    xcha

    nge

    rate

    (g C

    .m-2

    h-1 )

    1 6 species

    A

    B

    -0.60

    -0.50

    -0.40

    -0.30

    -0.20

    -0.10

    0.00

    6 species Lc Tr Am Pl Ao Lp Net

    eco

    syst

    em C

    O2-

    c ex

    chan

    ge ra

    te (g

    C.m

    -2.h

    -1)

    a a a

    ab

    ab

    b b

    Influence of species diversity and identity of net CO2 exchange

    Potential to manage plant diversity for soil C storage?

  • Total soil carbon storage: benefits of legumes in long-term biodiversity restoration experiment

    Soil C stock (~ 10%)

    **

    0.40

    0.44

    0.48

    0.52

    0.56

    No seed T. pratense Seed treatment 2004

    Tota

    l soi

    l N (k

    g.m

    -2) **

    4.2

    4.4

    4.6

    4.8

    5.0

    5.2

    5.4

    No seed T. pratense Seed treatment 2004

    Tota

    l soi

    l C (k

    g.m

    -2) *

    0.0

    0.4

    0.8

    1.2

    1.6

    2.0

    2.4

    No seed T. pratense

    Seed treatment 2004

    T. p

    rate

    nce

    abun

    danc

    e

    (% c

    over

    )

    Cover Trifolium Soil N stock (~ 10%)

    De Deyn et al. (2011) Additional benefits for carbon sequestration of grassland biodiversity restoration. Journal of Applied Ecology 48, 600-608

  • Time

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0.60

    0.70

    0.80

    Jan

    mid

    Jan

    end

    Feb

    mid

    Feb

    end

    Mch

    mid

    Mch

    end

    Apr m

    id

    Apr e

    nd

    May

    mid

    May

    end

    Jun

    mid

    Jun

    end

    Aug

    mid

    Aug

    end

    Sept

    strt

    Oct

    strt

    Oct

    mid

    Nov

    strt

    Nov

    mid

    Nov

    end

    Dec

    mid

    Gro

    ss C

    O2-

    C e

    xcha

    nge

    rate

    (g C

    O2-

    C m

    -2h-

    1 )

    no T. pratensewith T. pratense

    Time

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0.60

    0.70

    0.80

    Jan

    mid

    Jan

    end

    Feb

    mid

    Feb

    end

    Mch

    mid

    Mch

    end

    Apr m

    id

    Apr e

    nd

    May

    mid

    May

    end

    Jun

    mid

    Jun

    end

    Aug

    mid

    Aug

    end

    Sept

    strt

    Oct

    strt

    Oct

    mid

    Nov

    strt

    Nov

    mid

    Nov

    end

    Dec

    mid

    Gro

    ss C

    O2-

    C e

    xcha

    nge

    rate

    (g C

    O2-

    C m

    -2h-

    1 )

    no T. pratensewith T. pratenseno T. pratense

    with T. pratense

    Reduced C loss through respiration

    De Deyn et al. (2011) Potential to manage plant diversity for soil C storage?

  • SOIL ORGANIC MATTER

    Litter Rhizodeposits

    Microbial biomass Soil fauna

    Net Primary Production

    Direct feedback Temperature

    Extreme events

    Indirect feedback Elevated CO2

    Temperature/precipitation CO2

    Nutrient cycle feedback

    Heterotrophic respiration

    Autotrophic respiration

    CLIMATE CHANGE

    DOC

    3. Impacts of climate change

    Bardgett et al. (2008) The ISME Journal, 2, 805-814.

  • Elevated atmospheric CO2

    Plant production Plant community composition

    + when nutrient replete

    Quantity/quality C inputs to soil

    Soil biota (microbes and their predators

    Soil C storage

    Soil C mineralization

    CO2

    Schematic of indirect responses to elevated CO2

    + root derived carbon

  • • 6 tree species • 4 CO2 concentrations • 2 levels of soil nutrients • grown in 12 Solardomes for 2 years

  • • Konza Prairie, Kansas(12 tons!) • Dominated by C4 grasses • δ13C of soil: -14.7‰ • δ13C of (C3) tree roots: -27‰ (ambient air) -40‰ (ambient +300ppm CO2)

  • 90

    100

    110

    120

    130

    140

    150

    160

    170

    0 100 200 300

    [CO2 ] (μmol mol-1 added to ambient)

    Net

    pho

    tosy

    nthe

    tic r

    ate

    (% o

    f co

    ntro

    l)

    80

    100

    120

    140

    160

    180

    200

    220

    0 100 200 300

    [CO2] (μmol mol-1 added to ambient)

    To

    tal

    bio

    ma

    ss(%

    of

    con

    tro

    l) no added nutrients, added nutrients

    Net photosynthesis (mean 6 species expressed as % control)

    5-month, 10-month and 15-month harvests, no added nutrients; 15-month harvest, added nutrients.

    Total tree biomass (mean 6 species

    expressed as % control)

  • Conclusions

    1. Soil carbon dynamics influenced by range of global change factors, including land use, climate change and nutrient enrichment

    Challenge: Determine the relative and interactive effects of global change drivers on plant-soil interactions and C dynamics

    2. Plant-soil-microbial interactions major drivers of ecosystem C dynamics via a variety of mechanisms, but much to be learned

    Challenge: Relative importance of different routes by which changes in plant communities influence soil communities and C dynamics, especially role recent photoassimilate C (priming effect)

    3. Potential to manage plant composition/diversity for soil C sequestration, and opportunities for crop improvement based on root traits (deeper and broader roots)

    Challenge: How plant traits (especially roots) select for soil biotic communities and consequences for C dynamics in agricultural systems under climate change

  • Potential for the improvement of agricultural and ecological traits by breeding crop plants with large root systems.

    Kell, 2011. Ann Bot, 108:407-418 © The Author 2011. Published by Oxford University Press on behalf of the Annals of Botany

    Company. All rights reserved. For Permissions, please email: [email protected]

    1. Potential to increase soil C?

    2. But, also potential to cause C loss via priming effects on old C?

    3. Research effort required to realize the potential for crop improvement based on root traits that favour carbon sequestration whilst also producing food

    PresentatorPresentatienotitiesCartoon illustration of the potential for the improvement of agricultural and ecological traits by breeding crop plants with large root systems. The root morphologies are to be considered as illustrative only, and all details of bidirectional fluxes to and from litter and the many soil carbon pools (and including leaching and erosion) are omitted for clarity. For a summary of the various terms used to describe the most important carbon fluxes and stocks see, for example, Chapin et al. (2006) and Smith et al. (2010b).

    Dianummer 1Dianummer 2Dianummer 3Dianummer 4Dianummer 5Dianummer 6Dianummer 7Dianummer 8Dianummer 9Dianummer 10Individual plant species effects on soil microbial abundance, activity and community structure Dianummer 12Dianummer 13Dianummer 14Dianummer 15Dianummer 16Dianummer 17Dianummer 18Dianummer 19Dianummer 20Dianummer 21Dianummer 22Dianummer 23Reduced C loss through respirationDianummer 25Dianummer 26Dianummer 27Dianummer 28Dianummer 29Dianummer 30Dianummer 31Dianummer 32Dianummer 33Dianummer 34