hadronic b decays to double-charm final states

79
Hadronic B Decays To Double-Charm Final States SERGIO GRANCAGNOLO L.Lanceri – J.P.Lees BINP Novosibirsk Particle Physics Seminar

Upload: anoush

Post on 16-Jan-2016

30 views

Category:

Documents


0 download

DESCRIPTION

Hadronic B Decays To Double-Charm Final States. SERGIO GRANCAGNOLO L.Lanceri – J.P.Lees BINP Novosibirsk Particle Physics Seminar. Outline. Introduction The BaBar Detector at PEP-II The D sJ observations Theoretical Interpretations of D sJ Analysis of B D (*) D sJ decays - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Hadronic B Decays To Double-Charm Final States

Hadronic B DecaysTo Double-Charm Final States

SERGIO GRANCAGNOLOL.Lanceri – J.P.Lees

BINP Novosibirsk

Particle Physics Seminar

Page 2: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 2

Outline

• Introduction

• The BaBar Detector at PEP-II

• The DsJ observations

• Theoretical Interpretations of DsJ

• Analysis of BD(*)DsJ decays

• Results: branching fractions and angular distributions

• Comparison with models and conclusions

Page 3: Hadronic B Decays To Double-Charm Final States

Introduction

Page 4: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 4

The Standard Model

• Fundamental particles:– 6 quark , 6 leptons– 4 interactions

• The model works well but there are several issues to be understood, for instance:– Higgs boson– Supersymmetry– Strong interactions

b

t

s

c

d

u

e

e

W,Z bosons

Page 5: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 5

Quantum Numbers Of The Quarks

d u s c b t

Q – electric charge -1/3 +2/3 -1/3 +2/3 -1/3 +2/3

Iz – isospin -1/2 +1/2 0 0 0 0

S - strangeness 0 0 -1 0 0 0

C - charm 0 0 0 +1 0 0

B - bottomness 0 0 0 0 -1 0

T - topness 0 0 0 0 0 +1

PropertyQuark

Page 6: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 6

CKM Matrix and Unitary Triangle

Unitary relationship VudVub*+VcdVcb

*+VtdVtb*=0

W+

Vijqj=d,s,b

qi=u,c,t

VcdVcb

*

Vtd V

tb *

V udV ub

*Unitary triangle

tbtstd

cbcscd

ubusud

VVV

VVV

VVV

V

A complex phase in the V matrix can be a source of CP violation in B decays

049.0736.0)2sin(

VV†=I

CKM

Page 7: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 7

Mesons in the Quark Model

• Quarks exist only in baryons and mesons

• Mesons are made of a quark-antiquark pair

• As an example:

• Mesons are not stable– Mass, charge and lifetime are main characteristics– Meson width ~ 1/lifetime

depends on the allowed decay modes

K+ D0 B- Sud us cu bu bb

__ _ _ _

Page 8: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 8

Heavy Quark Approximation

q

Q_

In the heavy quark approximation

mq<<mQ,, mQ

sQ, j conserved

However J, P good quantum numbers

sQsq

sQ ,sq =+½,-½

Heavy and light quark spins

ℓ=0,1,… Orbital momentum

j=ℓ+sq

Light quark total angular momentum

P=(-1)ℓ+1 Parity

J=j+sQMeson total angular

momentum

Page 9: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 9

Charmed Mesons Spectroscopy

JP cu csExpected

width

(0,1) D,D* D,D*s narrow

(0+,1+) D*0,D´1 D*

s0,D´s1 broad

(1+,2+) D1,D*2 Ds1,D*

s2 narrow

• States with ℓ=1 can decay strongly with emission of a pseudoscalar meson– j=1/2 emission in s-wave– j=3/2 emission in d-wave

• D*0,D´1 observed by CLEO, Focus and Belle

– Broad resonances as expected

ℓ=0

ℓ=1 )21(Pj )23(Pj

_ _

broad ~100 MeV

narrow ~10 MeV

Page 10: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 10

The expected cs Meson Spectra

States expected but not observed

• Masses over threshold DK(*)

• Broad states (large widths)

*

_

2.51 GeV

2.36 GeV

M.Di Pierro, E.EichtenPhys. Rev. D64, 114004 (2001)

Page 11: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 11

• Spectator quark model

the other u,d quark enters the final state without participating to the interaction

• In hadronic decays, could be tested the factorization hypothesis:

the final hadrons are produced independently

B Meson Decay

Since mb >>mu,d

bcW* whereW* ℓ

W* qiqj

_semileptonic

hadronic

the B meson decay dominantly through

W* virtual boson

the disintegration of the b quark. The main transition

is the weak decay

Page 12: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 12

_ ___

_

Exclusive Hadronic B decays

• In exclusive decays all particles in final state are reconstructed

• Double charm decays contains two mesons with charm quarks

• Examples:

B,B0 D(*)0,D

Ds

B,B0 D(*)0,D

D(*)0

K(*)

_BDsD

B DDK

Page 13: Hadronic B Decays To Double-Charm Final States

The BaBar Experiment

Page 14: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 14

The PEP-II B-factory at SLACPEP-II is a high luminosity, asymmetric, e+e collider

Lint=254 fb-1

Ldesign = 3 x 1033 cm-2s-1

Lpeak = 9.21 x 1033 cm-2s-1

Integrated luminosity

year

113fb-1

Page 15: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 15

B-factory Cross Sections

e+e cross-section (nb)

bb 1.05

cc 1.30

uu, dd, ss

2.09

0.94

1.16

e+e ~40

The boost allows a separation of the two B vertices.

E(e+) = 3.1 GeV E(e) = 9.0 GeV

_

_

_

_ _[

e+e

h

adro

ns](

nb)

√s(GeV)

Ecm=10.58 GeV

boost: =0.56

(4S) BB_

e+e bb on-resonance BB

“coontinuum” e+e cc high momentum charmed particles

_

_ _

Page 16: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 16

Cerenkov Detector (DIRC)

1.5 T solenoid Electromagnetic Calorimeter

Drift Chamber

Instrumented Flux ReturnSilicon Vertex

Tracker

e+ (3.1 GeV)

e- (9 GeV)

BABAR Detector%85.1%32.2 4/1 E

EE

%45.0%13.0)(

TT

T pp

p

Page 17: Hadronic B Decays To Double-Charm Final States

The DsJ observations

Page 18: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 18

• BaBar discovered a new particle decaying into Ds0

– c and s quarks– Mass < DK threshold– Width < 10 MeV

• Seen by Belle and CLEO• Is this the expected Ds0 ?

DsJ(2317) Discovery*

BaBar collaborationPhys.Rev.Lett.

90, 242001 (2003)

_

*+

+

+

Ds0 Invariant mass

GeV

m=2.317GeV

+

Inclusive selection of high momentum charmed meson from coontinuum e+e cc

_

Page 19: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 19

DsJ(2460) Discovery

• CLEO observed another state decaying to Ds 0!

– c and s quarks– Mass < (DK)* threshold– Width < 10 MeV

• Observed also decay modes:– Ds, Ds+

• Is this the expected Ds1?

+

2.25 2.5 2.75

Eve

nts/

7 M

eV/c

2

*+

++

+

CLEO collaborationPhys. Rev. D68, 032002 (2003)

Seen by BaBar and Belle

m=2.460 GeV

Ds 0 Invariant mass *+_

GeV

80

60

40

20

0

Page 20: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 20

The Observed cs Meson Spectra

New states observed

• Masses below threshold DK(*)

• Narrow states

*

_

2.51 GeV

2.36 GeV

Page 21: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 21

• Isospin symmetry is not exact

• Violation already observed in Ds* Ds0 decay

Isospin Violation in These Decaysmeson Ds,Ds

*,DsJ D0 K+ 0

qq cs cu us uu+dd

Isospin (I,Iz) (0,0) (½,-½) (½,+½) (1,0)

Invoked oscillation

DK Ds0

Energy forbidden

Energy conserving

Isospin allowed

Isospin violating

DsJ Ds0

_ __ _ _ __

P.L.Cho, M.B.Wise

Phys.Rev.D49: 6228-6231,1994

ss

(0,0)

Page 22: Hadronic B Decays To Double-Charm Final States

Theoretical Interpretations of DsJ

Standard interpretations

Exotic interpretations

Page 23: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 23

• Quark models– Potential: coulombian

• (0-,1-),(0+,1+) chiral partners– doublets mass splitting via chiral symmetry breaking

– transitions via scalar meson

Standard interpretationsEntia non sunt multiplicanda praeter necessitatem (G.Occam)

Cahn, Jackson

need to adjust a posteriori input parameters, predict mass higher than observed or not reproduce non-strange charmed mesons spectra

hyperfine splitting for charmed mesons (D, D*, etc.) marginally compatible with experiments

Bardeen, Eichten, Hill

Lucha, Schoberl

+ linear

+ spherical not linear

Page 24: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 24

• Unitarized chiral models– generalization replacing a light quark with an

heavy quark

• Non-perturbative methods– lattice QCD

– QCD sum rules

Standard interpretations

several new mesons predicted not observed

initial difficulties to reproduces masses, reproduces mass splitting

low accuracy

Dai, Huang, Liu, Zhu

Bali

Beveren, Rupp

Page 25: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 25

Exotic Interpretations

cs DK 4-qmixing

di-quark pairs

Ds molecule

Ds

DK molecule

D

K

qq qqqq

D

K

qq

qq_

_

_ __

_

Maiani, Piccinini, Polosa, Riquer

Barnes, Close, Lipkin

Szczepaniak

Browder, Pakvasa, Petrov

Page 26: Hadronic B Decays To Double-Charm Final States

Analysis of BD(*)DsJ decays

Branching ratios: Method

Event selection

Signal and Backgrounds

Efficiency and “cross-feed”

Page 27: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 27

BD(*)DsJ Decays• Exclusive DsJ production: expected to be dominant

• Allow to measure DsJ quantum numbers

• In principle, allow to discriminate between conventional and multi-quark scenarios compared with other B decays such as BD(*)Ds and BD(*)D(*)K

• If the DsJ is the conventional cs state should be produced in the following graph:

Weak external W emission

_ _

_

B,B0 D(*)0,D

DsJ

___

Same graph as BD(*)Ds similar branching ratios could be expected

_

Page 28: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 28

• We search for DsJ particles looking at the 12 combinations:

• With DsJ decays:

• We measure branching ratios, quantum numbers JP

BD(*)DsJ Decays (II)

ssJ

ssJ

DD

DD

)2460(

)2460( 0*0* )2317( ssJ DD

sJsJ

sJsJ

DDBDDB

DDBDDB0*0

*00

Page 29: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 29

Subdecay Modes

Intermediate particles are reconstructed in the following modes:

ss DD*

KD

0* DD

K

sD

0 K K

KD0

KK KK 0*

)892(

Total: 60 different submodes combined to

give the 12 combinations

0D

000* DD Green::clean modes

Page 30: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 30

Analysis Goal and Method• We aim to measure branching ratios Bri (i=1…12) of

the exclusive double charm two body production of DsJ(2317)+

and DsJ(2460)+ in B0 and B+

• nisig number of signal candidates for mode i

– after combinatorial background subtraction

• nixfd number of crossfeed events for mode i

– contains background from other signal modes

• ireconstruction efficiency from simulation• NBB = [122.0 ± 0.6(stat) ± 1.3(syst)] 106 (113 fb-1)

BBi

ixfd

isigi

N

nnBr

*

_

Page 31: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 31

• Reconstruct the chain:

• Reconstruct tracks (K,) and photons ()

• Select D0, Ds , , 0 computing invariant masses

• Use beam energy kinematic constraint

• Fit nisig in Ds invariant mass distribution

A specific example: B0D*DsJ(2460)+

B0

K+

D0_

DsJ(2460)+*

Ds

+

K+

K

*

D*

Page 32: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 32

Event Selection: Invariant MassesInvariant mass: 2

212

21 ||)( ppEEm

D0 K Ds

D* D0 KK

0.99 1.02 1.04

40000

20000

0

m(GeV/c2)

Particles masses are set to their nominal values (mass constraint)

Page 33: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 33

Event Selection: B candidates• Compute p*

B and E*B

from selected D*, Ds,

• Use the B-factory constraint E*beam to compute:

5.272<mES<5.288 GeV

E|<32MeV

better resolution

uncorrelation

Sidebands to estimate background outside signal box

mES

ΔE

**beamB EEE 2*2* )()( BbeamES pEm

Use of beam kinematic variables

“Signal box”:

Page 34: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 34

E resolution

• Same resolution for all the submodes

• A systematic error will take in account differences between data and simulation

Missing energy effect

Simulation of signal events

Data candidates in mES signal region

(E)=16.1 (E)=18.9

Cross-hatched background from sidebands

Page 35: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 35

E resolution (II)

(E) simulation data

0 12 16

16 20

Final values used in selection

(MeV)

Better resolution for modes with a 0 (mass

constraint)

Page 36: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 36

Background Rejection

• Reduction of the combinatorial background• Simulated signal events selected in signal region• Background from data events selected in DsJ mass

sideband region• Curves represent

fraction of events cut bym(D0)> mcut(D0)

• Optimal cut set at themaximum separationbetween two samples

Gev/c2

Events rejected:

25% signal

75% backgrd

m(D*) cut

m(D*)>2.4GeV/c2

Page 37: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 37

Optimization• Maximized the significance ratio:

S = simulated signal events in signal region

B = background from data in m(DsJ) sidebands

BS

S

Tried different cut levels for D and Ds using PID, vertexing and helicity cut

Tried different numbers of cut for variables: E, m(Ds), m(D)

1.94 2.0m()

5000

200002500

40000

cos(hel)-1 1

cos(hel) mass

Cleaner modes require less stringent cuts

Page 38: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 38

Fit nisig in DsJ(2460)+ Ds

+

• Finally, in selected candidates: m(Ds)

• Fit the background shape with a polynomial

• Fit the signal peak with a Gaussian of fixed width– =12 MeV

– estimated in data

• Events in the signal peak: ni

sig = 53.0±7.7

Ent

ries

/10

Mev

/c2

GeV/c2

m(Ds)

significance=11.7

Page 39: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 39

Efficiency and Cross-feed

• From gi=60k simulated signal events for each mode i

– Efficiency:

nisim = number of B0D*DsJ(2460)+ events reconstructed in

the corresponding simulated sample

– Total cross-feed:

nijsim = number of B0D*DsJ(2460)+ events reconstructed in

the simulated sample (mode j)

fij = cross-feed from the mode j to the mode i

i

isimi

g

n

j

j

ijev

ixfd BrfNn

j

ijsimij

g

nf ;

Typical efficiency range: 1-10%

depending on the presence of photons, soft tracks, stringent cuts, etc.

Page 40: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 40

m(DsJ)

GeV/c2

Efficiency

i=(4.63±0.08)%

fij=(0.82±0.04)%

nisim = 2778

gi=60000

nijsim = 24

gj=60000

Cross-feed

Generated mode: B0D*Ds1

Ds

Generated mode: B0D*Ds1

Ds+

Narrow Cross-feed

Narrow:xfdsig

Reconstructed mode: B0D*Ds1

Ds

Page 41: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 41

Cross-feed

m(DsJ)

GeV/c2

Efficiency

i=(2.25±0.07)%

Generated mode: B0DDs1

Ds*

Cross-feed

fij=(0.24±0.02)%

Generated mode: B0DDs0

Ds

fij=(0.27±0.02)%

Generated mode: B0DDs0

Ds

Wide Cross-feed

nisim = 1350

gi=60000

nisim = 144

gi=60000

nisim = 162

gi=60000

Wide:xfd 2.5 sig

Reconstructed mode: B0DDs1

Ds

Page 42: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 42

Branching Ratios and Cross-feedAn iterative procedure is needed:

• Compute for each mode i without considering cross-feed

• Estimate nixfd using Brj and the cross-feed fij

from all the modes• Subtract the number of cross-feed events• Compute the corrected branching ratio

• Recompute the cross-feed iterating point 2-4 until convergence.

iev

isigi

N

nBr

iev

ixfd

isigi

N

nnBr

__

ixfd

isig nn

Page 43: Hadronic B Decays To Double-Charm Final States

Results

Page 44: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 44

s=3.1

s=5.5

s=5.2

s=2.5

s=5.1

s=4.2

s=7.4

s=7.7

s=4.3

s=5.0

s=11.7

s=6.0

Fit Results And Significance

Page 45: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 45

Main Systematic Errors• Tracking efficiency 9%• /0 efficiency 5%• Background fitting model 5%

– Tried exponential instead of polynomial to fit background

• E width 5%– Changed the width of the E

signal region by ±3 MeV

• DsJ width 3%– Varied by ±1 MeV the of the

Gaussian (12 MeV) that fit the signal

Depends on the tracks or photons number

Modes with D*0 more affected

Page 46: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 46

Branching Ratios Results

NEW!

NEW!

NEW!

NEW!

NEW!

NEW!

Phys.Rev.Lett.93:181801,2004

Measurements with significance>5

Page 47: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 47

DsJ(2460)+ Angular Analysis (I)

• Use B0DsJ+D and B+ DsJ

+D0 with DsJ+Ds

• B DDsJ+ is a transition 0 0 JP so DsJ is polarized

• Compute the helicity angle h of DsJ+Dsand compare

with the predictions for JP=1+ and JP=2+ (0+ forbidden)

_

Page 48: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 48

DsJ(2460)+ Angular Analysis (II)

Simulation is used to correct for detector acceptance

DsJ events are fitted separately in 5 cos(h) bins

not used cut m(D)>2.3

Page 49: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 49

DsJ(2460)+ Angular Analysis (III)

• Expected distribution for JP=1+ is:

1-cos2(h)• Distribution compatible

with this case– 2/d.o.f.=3.9/4– Supporting the Ds1

+ hypothesis for this state

• Comparison with JP=2+ hypothesis is also provided– 2/d.o.f.=34.5/4

Page 50: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 50

Some Comparisons With Models

• Branching ratios smaller than the corresponding BD(*)Ds

(*)

– Factorization effects could be important and could not cancel in the ratios RD0,1

– support a multiquark hypothesis

• Observation of electromagnetic DsJ(2460)+ decay– supports a conventional cs picture

• In agreement with prediction from chiral multiplets we measure:

Colangelo, De Fazio, Ferrandes: Mod.Phys.Lett.

A19:2083,2004

Godfrey Phys.Lett.

B568:254,2003

Bardeen, Eichten, Hill: Phys.Rev.

D68:054024,2003

_

Page 51: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 51

Conclusions

• We combine 60 different final states to obtain 12 branching ratios BD(*)DsJ measurement with

– The modes BD*DsJ with a D* or a D*0 are first observations

– Extraction of JP=1+ quantum numbers of DsJ(2460)+

sssJ DDD ,)2460( 0*

0* )2317( ssJ DD

Page 52: Hadronic B Decays To Double-Charm Final States

Backup

Page 53: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 53

BaBar run 5

Page 54: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 54

Inner Tracking and Vertexing: SVT

• Extrapolation of secondary vertex

• Standalone tracking capability for low pt tracks

Double side silicon microstrips

layers resolution (m)

1-3 10-15

4-5 40

High pT track

Low pT track

Page 55: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 55

The Detector of Internal Reflected Cherenkov light

)βn1(cos)( 1Ec

A charged particle traversing the DIRC produces Cherenkov

light if n>1

Page 56: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 56

Particle IDentification:dE/dx, DIRC

For tracks with p<700MeV: dE/dx from

DCH and SVT

For tracks with p>700MeV:

Cerenkov angle from DIRC

Page 57: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 57

Photons: EMC

• Projective geometry

• Discriminate between hadron and electromagnetic showers

• Contribute to triggerm=134.5MeV

=6.4MeV

m (MeV)

Page 58: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 58

Theoretical DsJ Interpretation References

• Cahn, Jackson: Phys.Rev.D68, 037502 (2003) • Lucha, Schoberl: Mod.Phys.Lett. A18, 2837 (2003)• Bardeen, Eichten, Hill: Phys.Rev.D68,054024 (2003)• Beveren, Rupp: Phys.Rev.Lett.91, 012003 (2003)• Bali: Phys.Rev.D68, 071501 (2003)• Dai, Huang, Liu, Zhu: Phys.Rev.D68,114011 (2003)• Szczepaniak: Phys.Lett.B567, 23(2003)• Browder, Pakvasa, Petrov: Phys.Lett.B578, 365 (2004)• Barnes, Close, Lipkin: Phys.Rev.D68,054006(2003)• Maiani, Piccinini, Polosa, Riquer: Phys.Rev.D71.014028

(2005)

Page 59: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 59

Low energytrack efficiency

from slow

Page 60: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 60

Reconstruction of Soft Pions• Fundamental to understand our capability of

reconstruct D*

• Estimate tracking efficiency from data itself

We reconstruct: D*+ D0 +

m = m(D*+)-m(D0)=140.6 MeV

m()=139.6 MeV Energy available for the is

very low

Expected symmetric angular distribution of the events in

the D* frameD* direction

of flight

Helicity angle

1 00

Angular analysis

JP K

Page 61: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 61

Soft Pion studies

Separation of pion sample based on D* momentum

p(D*) GeV/c

)cosβ(γ *** ssspEE

For a given D* momentum:

linear relationship

Slow

er D*

Critical regions

p(D*) bins

Page 62: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 62

Background subtraction• Use of two kinematic

variables: m(D0), m

• Four categories of events:

1. Signal

2. Real-D0+bad-s

3. Bad-D0+real-s

4. Combinatoric background

• Use of kaon and pion PID to distinguish between different contributions m

m(D

0 )

Background removal within each p(D*) bin, that cover the same soft pion kinematic range of the signal

Page 63: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 63

Efficiency of Soft Pion

-1.0 1.00

Convolute the helicity distributions with an efficiency function parameterized as:

0

00

01)(

11

)(pp

ppppp

Low p(D*)

High p(D*)

cos(*)

)cos1(cos

*2*

Nd

d

Efficiency estimate from asymmetries in the helicity angle distributions

Asymmetric distribution

Expected distribution (symmetric)

Low cos()

Page 64: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 64

Soft Pion Efficiency Results

• Convoluting function parameters obtained minimizing a 2

• Relative efficiency raise over 90% already at 100Mev/c

• From the differences between data and simulation: a systematic uncertainty of 1.4% per track in the efficiency

SimulationData

DataSimulatio

n

170 ± 7 148 ± 16

p0 65.5 ± 0.2 65.0 ± 0.4

p() GeV/c

Efficiency

Page 65: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 65

Event Selection (I): tracks

“very loose” 50MeV<p<10GeV d0<1.5cm |z0|<10cm

Tracks:

Kaon PID:

Photons and 0:

“loose”E()>30Me

VLAT<0.8

115<m()<150MeV

Invariant mass:

“not a pion” PID and p(K)>250MeV

use dE/dxefficiency

95%mis-id<20%

“loose” 1005<m()<1020 MeV helicity cut |cos(h)|>0.3

221

221 ||)( ppEEm

Page 66: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 66

Event Selection (II): D0, Ds

m0 (MeV) (MeV) n cut other modes

D0 1863.1 6.3 3 K0,KDs 1966.1 5.3 3 K*K

Measure invariant mass m, and resolution in data:

Apply the request: - n < m-m0 < n

Page 67: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 67

Another example

• B0->D*-DsJ(2460)+, DsJ->Ds*pi0– We have D*->D0pi

(soft +)

– Ds*->Dsgamma

– D0,Ds as before

• Pi0 veto on gamma

tight PIDand p>250MeV

use DIRC for p>0.6GeV

efficiency 85% mis-id<5%

Page 68: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 68

Gev/c2

Background from BD(*)Ds(*)

• Identical D(*),Ds(*) selection

• B candidates selected in mES, E signal region

Events rejected

Eve

nts/

10 M

eV/c

2

200

02.0 2.7

m(Ds)

2.35

Reject events with at least a candidate

compatible with BD(*)Ds

(*)

Background events that enter marginally in the DsJ signal region

easily combine with low energy or 0 to

give a DsJ

350

Page 69: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 69

Gev/c2

Ent

ries

/10

Mev

/c2

Background Events

• Simulated ~220 fb-1 of generic events– No peaking background

observed

m(Ds0)

Gev/c2 2.62.2 2.4

Ent

ries

/10

Mev

/c2

50

100

m(Ds0)

2.62.2 2.4

200

400• Simulated ~60k events

for each mode BD(*)Ds(*)

– No peaking background observed

Page 70: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 70

Reconstruct B candidates

B candidates must enter in the signal box: mES, E

Determine selection criteria using a simulation60k signal

events for each submode

Resolution:=16 MeV

If more than one B candidate is found, the one with the smaller difference E-E0 is retained

E

GeV

Eve

nts/

5 M

eV/c

2

10000

5000

Page 71: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 71

nisig = 32.7±10.8

nisig = 34.8±7.9

nisig = 15.3±6.8

nisig = 23.6±6.1

s=3.1

s=5.5

s=5.2

s=2.5

Page 72: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 72

nisig = 28.0±5.8

nisig = 17.4±5.1

nisig = 30.5±6.4

nisig = 26.5±5.6

s=5.1

s=4.2

s=7.4

s=7.7

Page 73: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 73

nisig = 32.0±8.2

nisig = 24.8±6.5

nisig = 34.6±7.5

nisig = 53.0±7.7

s=4.3

s=5.0

s=11.7

s=6.0

Page 74: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 74

Other Efficiency and Cross-feed

• In B+D0DsJ(2317)+ cross-feed is dominated by DK D0K0

D0 K0

D K reconstructed as D0 K0

m(DsJ)m(DsJ)

GeV/c2 GeV/c2

250

10

Efficiency Cross-feed

i=(1.93±0.06)% fij=(0.04±0.01)%

nisim = 1160 , gi=60000 nij

sim = 24 , gj=60000

Page 75: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 75

Isospin averaged branching ratios

• Combine D+ and D0 and D*+ and D*0

measurements

• Average with statistical weight w=1/i2

• To compare two measurements x1 and x2 with variance 1 and 2 we use the variable z:

n

iii Bw

1

1

22

21

21

xxz

Page 76: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 76

Ratios of Branching Ratios

• Compare BD(*)Ds and BD(*)DsJ measurements is possible through ratios:

• Neglecting phase space we expect:

• We know BD(*)Ds from PDG (1-5%)

• Final results to be revised

)(

)( 00

s

sD DDBBr

DDBBrR

)(

)(*1

1s

sD DDBBr

DDBBrR

)(

)(*

0*

0*s

sD DDBBr

DDBBrR

)(

)(**1

*

1*s

sD DDBBr

DDBBrR

Datta, O’donnell

Phys.Lett. B568:254,2003

110 DD RR and similarly for RD*0 and RD*1

Page 77: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 77

Comparison with Belle

Decay channel BaBar Br(10-4) Belle Br(10-4) z

8.08.37.129.25.26.18][)2460(

1.09.18.04.69.03.17.6][)2460(

0.26.87.283.128.97.61][)2460(

2.14.48.146.43.56.27][)2460(

)5.8(1.32.22.39.12][)2317(

6.00.35.11.108.17.25.13][)2317(

2.20.2

4.69.3

**

4.24.1

*

4.74.6

9.209.12

0***

8.25.2

4.98.5

0**

1.27.1

4.47.2

0**

7.49.2

0*

ssJ

ssJ

ssJ

ssJ

ssJ

ssJ

DDDB

DDDB

DDDB

DDDB

DDDB

DDDB

Phys.Rev.Lett.93, 181801 (2004)

J.Phys.Conf.Ser.9:115-118,2005

Page 78: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 78

Comparison with old Belle resultsPhys.Rev.Lett.91:

262002,2003

Experimental results

compatible within errors

Page 79: Hadronic B Decays To Double-Charm Final States

10 Feb 2006 Sergio Grancagnolo 79

Conclusions

“no compelling evidence that a non-standard scenario is required … neverthless unanswered questions remain …” (Review by P.Colangelo, F.De Fazio, R.Ferrandes, hep-ph/0407137)