gw150914: the advanced ligo detectors in the era of first...

12
GW150914: The Advanced LIGO Detectors in the Era of First Discoveries B. P. Abbott et al. * (LIGO Scientific Collaboration and Virgo Collaboration) (Received 15 February 2016; published 31 March 2016) Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of 10 -23 = ffiffiffiffiffiffi Hz p at 100 Hz, the product of observable volume and measurement time exceeded that of all previous runs within the first 16 days of coincident observation. On September 14, 2015, the Advanced LIGO detectors observed a transient gravitational-wave signal determined to be the coalescence of two black holes [B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)], launching the era of gravitational-wave astronomy. The event, GW150914, was observed with a combined signal-to-noise ratio of 24 in coincidence by the two detectors. Here, we present the main features of the detectors that enabled this observation. At full sensitivity, the Advanced LIGO detectors are designed to deliver another factor of 3 improvement in the signal-to-noise ratio for binary black hole systems similar in mass to GW150914. DOI: 10.1103/PhysRevLett.116.131103 Introduction.On September 14, 2015, both Advanced LIGO detectors in the USA, H1 in Hanford, Washington and L1 in Livingston, Lousiana, made the first direct measurement of gravitational waves [1]. The event, GW150914, was determined to be the merger of two black holes, with masses of 36 and 29M , into a black hole of approximately 62M [2]. 3.0 solar masses of energy (5.4 × 10 47 J) were radiated in gravitational waves. The gravitational waves from this event, which occurred at a distance of 410 Mpc 1.3 × 10 9 light years, changed the separation between the test masses by 4 × 10 -18 m, about one 200th of a proton radius. The Advanced LIGO detectors, multikilometer Michelson-based interferometers [3], came online in September 2015, after a major upgrade targeting a factor of 10 sensitivity improvement over initial detectors [4,5]. While not yet at design sensitivity during their first observation run, they have already exceeded the strain sensitivity of the initial detectors across the entire fre- quency band, significantly surpassing the past discovery potential. This Letter describes the Advanced LIGO detec- tors, as well as their current and final design sensitivity, at the inception of gravitational-wave astronomy [610]. Astrophysical reach.In general relativity, a gravita- tional wave far from the source can be approximated as a time-dependent perturbation of the space-time metric, expressed as a pair of dimensionless strain polarizations, h þ and h × [11]. An interferometric gravitational-wave detector acts as a transducer to convert these space-time perturbations into a measurable signal [12]. The interfer- ometer mirrors act as freely fallingtest masses. Advanced LIGO measures linear differential displacement along the arms which is proportional to the gravitational-wave strain amplitude. We define the differential displacement as ΔL ¼ δL x - δL y , where L x ¼ L y ¼ L are the lengths of two orthogonal interferometer arms. The gravitational- wave strain and the interferometer displacement are related through the simple equation ΔL ¼ hL, where h is a linear combination of h þ and h × . The tiny displacements induced by astrophysical events demand that the interferometer mirrors be free from environmental disturbances and require a highly sensitive interferometric transducerdesigned to be limited only by disturbances arising from fundamental physics consider- ations. Since the interferometer response to displacement, or equivalently gravitational-wave strain, is frequency dependent, it is necessary to represent the limiting detector noises as functions of frequency normalized by the inter- ferometer response. The left panel of Fig. 1 shows the amplitude spectral density of the total strain noise in units of strain per ffiffiffiffiffiffi Hz p during the first observation run (O1 run) and, for com- parison, during the final science run of the initial LIGO detectors (S6 run). In the detectorsmost sensitive fre- quency band between 100 and 300 Hz, the O1 strain noise is 3 to 4 times lower than that achieved in the S6 run. At 50 Hz, the improvement is about a factor of 30. The right panel of Fig. 1 shows the single detector signal- to-noise ratio (SNR) for an optimally oriented compact binary system consisting of two 30M black holes as a function of redshift z and for different interferometer configurations. The observed strain amplitude is largest for a source whose orbital plane is parallel to the plane of the detector and is located straight above or below; we refer to such a source as optimally oriented. The SNR is computed in the frequency domain [14] using standard cosmology [15] and phenomenological waveforms which account for inspi- ral, merger, and ringdown, but not spins [16]. * Full author list given at the end of the article. PRL 116, 131103 (2016) PHYSICAL REVIEW LETTERS week ending 1 APRIL 2016 0031-9007=16=116(13)=131103(12) 131103-1 © 2016 American Physical Society

Upload: others

Post on 23-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GW150914: The Advanced LIGO Detectors in the Era of First ...tanner/PDFS/Abbott16prl-DetectorsFirstDiscoveries.pdfFIG. 2. Interferometer configuration and test mass setup. Each arm

GW150914: The Advanced LIGO Detectors in the Era of First Discoveries

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration)(Received 15 February 2016; published 31 March 2016)

Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-waveObservatory (LIGO) held their first observation run between September 2015 and January 2016. With astrain sensitivity of 10−23=

ffiffiffiffiffiffi

Hzp

at 100 Hz, the product of observable volume and measurement timeexceeded that of all previous runs within the first 16 days of coincident observation. On September 14,2015, the Advanced LIGO detectors observed a transient gravitational-wave signal determined to be thecoalescence of two black holes [B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)], launching the eraof gravitational-wave astronomy. The event, GW150914, was observed with a combined signal-to-noiseratio of 24 in coincidence by the two detectors. Here, we present the main features of the detectors thatenabled this observation. At full sensitivity, the Advanced LIGO detectors are designed to deliver anotherfactor of 3 improvement in the signal-to-noise ratio for binary black hole systems similar in mass toGW150914.

DOI: 10.1103/PhysRevLett.116.131103

Introduction.—On September 14, 2015, both AdvancedLIGO detectors in the USA, H1 in Hanford, Washingtonand L1 in Livingston, Lousiana, made the first directmeasurement of gravitational waves [1]. The event,GW150914, was determined to be the merger of two blackholes, with masses of 36 and 29M⊙, into a black hole ofapproximately 62M⊙ [2]. 3.0 solar masses of energy(≃5.4 × 1047 J) were radiated in gravitational waves.The gravitational waves from this event, which occurredat a distance of ≃410 Mpc≃ 1.3 × 109 light years,changed the separation between the test masses by≃4 × 10−18 m, about one 200th of a proton radius.The Advanced LIGO detectors, multikilometer

Michelson-based interferometers [3], came online inSeptember 2015, after a major upgrade targeting a factorof 10 sensitivity improvement over initial detectors [4,5].While not yet at design sensitivity during their firstobservation run, they have already exceeded the strainsensitivity of the initial detectors across the entire fre-quency band, significantly surpassing the past discoverypotential. This Letter describes the Advanced LIGO detec-tors, as well as their current and final design sensitivity, atthe inception of gravitational-wave astronomy [6–10].Astrophysical reach.—In general relativity, a gravita-

tional wave far from the source can be approximated as atime-dependent perturbation of the space-time metric,expressed as a pair of dimensionless strain polarizations,hþ and h× [11]. An interferometric gravitational-wavedetector acts as a transducer to convert these space-timeperturbations into a measurable signal [12]. The interfer-ometer mirrors act as “freely falling” test masses. AdvancedLIGO measures linear differential displacement alongthe arms which is proportional to the gravitational-wave

strain amplitude. We define the differential displacementas ΔL ¼ δLx − δLy, where Lx ¼ Ly ¼ L are the lengthsof two orthogonal interferometer arms. The gravitational-wave strain and the interferometer displacement are relatedthrough the simple equation ΔL ¼ hL, where h is a linearcombination of hþ and h×.The tiny displacements induced by astrophysical events

demand that the interferometer mirrors be free fromenvironmental disturbances and require a highly sensitiveinterferometric transducer—designed to be limited only bydisturbances arising from fundamental physics consider-ations. Since the interferometer response to displacement,or equivalently gravitational-wave strain, is frequencydependent, it is necessary to represent the limiting detectornoises as functions of frequency normalized by the inter-ferometer response.The left panel of Fig. 1 shows the amplitude spectral

density of the total strain noise in units of strain perffiffiffiffiffiffi

Hzp

during the first observation run (O1 run) and, for com-parison, during the final science run of the initial LIGOdetectors (S6 run). In the detectors’ most sensitive fre-quency band between 100 and 300 Hz, the O1 strain noiseis 3 to 4 times lower than that achieved in the S6 run. At50 Hz, the improvement is about a factor of 30.The right panel of Fig. 1 shows the single detector signal-

to-noise ratio (SNR) for an optimally oriented compactbinary system consisting of two 30M⊙ black holes as afunction of redshift z and for different interferometerconfigurations. The observed strain amplitude is largestfor a source whose orbital plane is parallel to the plane ofthe detector and is located straight above or below; we referto such a source as optimally oriented. The SNR is computedin the frequency domain [14] using standard cosmology [15]and phenomenological waveforms which account for inspi-ral, merger, and ringdown, but not spins [16].*Full author list given at the end of the article.

PRL 116, 131103 (2016) P HY S I CA L R EV I EW LE T T ER Sweek ending1 APRIL 2016

0031-9007=16=116(13)=131103(12) 131103-1 © 2016 American Physical Society

Page 2: GW150914: The Advanced LIGO Detectors in the Era of First ...tanner/PDFS/Abbott16prl-DetectorsFirstDiscoveries.pdfFIG. 2. Interferometer configuration and test mass setup. Each arm

A Michelson interferometer lacks good directionalsensitivity to gravitational waves. The antenna patterncovers approximately half the sky, both above and beneaththe plane of the detector. Moreover, the antenna patterns ofthe two LIGO detectors are aligned to maximize the coin-cident detection of gravitational-wave signals, constrainedto the 10 ms intersite propagation time. The coincidenceconstraint substantially rejects non-Gaussian noise andvetoes local transients.The observed strain amplitude is inversely proportional

to the luminosity distance. For small redshifts, z < 1, theobservable volume, and, thus, the detection rate, grows asthe cube of the detector sensitivity. The number of detectedevents is expected to scale with the product of observingvolume and observing time. Between September 12, 2015and October 20, 2015, the H1 and L1 detectors had a dutycycle of 70% and 55%, respectively, while the observingtime in coincidence was 48%. After data quality processing[17], 16 days of data were analyzed around GW150914,resulting in a time-volume product of 0.1 Gpc3 yr for binaryblack hole systems with masses similar to GW150914 [18].The displacement measurement.—The current genera-

tion of advanced detectors uses two pairs of test masses ascoordinate reference points to precisely measure the dis-tortion of the space-time between them. A pair of inputand end test masses is located in each of the two armsof a Michelson laser interferometer, as shown in Fig. 2.The Advanced LIGO test masses are very pure andhomogeneous fused silica mirrors of 34 cm diameter,20 cm thickness, and 40 kg mass.It is critical that the test masses be free from sources

of displacement noise, such as environmental disturbancesfrom seismic noise, or thermally driven motion. Thesenoise sources are most relevant at frequencies below100 Hz, while shot noise of the optical readout is dominantat high frequencies. Figure 3 shows the measured displace-ment noise of Advanced LIGO during the first observing

run, together with the major individual contributions, asdiscussed below.To reduce the effects of ground vibrations, the test

masses are suspended by multistage pendulums [20], thus,

FIG. 1. The left plot shows the strain sensitivity during the first observation run (O1) of the Advanced LIGO detectors and during thelast science run (S6) of the initial LIGO detectors. The O1 strain noise curve is shown for H1 (dark red) and L1 (light red); the twodetectors have similar performance. The Advanced LIGO design sensitivity, as well as a possible future upgrade [13], are shown tohighlight the discovery potential in the coming years. The right plot shows the single detector signal-to-noise ratio (SNR) under optimalorientation as a function of redshift z—for two merging black holes with mass 30M⊙ each. GW150914 was not optimally orientated andwas detected with a single detector SNR of 13 to 20 at z ¼ 0.09; this event would not have been seen in S6.

Input test mass

End test mass

Lx = 4 km

mraraluci

dneprep

nosle

hciM

Laser

Output port

L y=

4 k

m

Suspension System

Stage 1

Stage 2

Stage 3

1.6

m

Stage 4

Metal masses

Fused silica masses

Steel wire

Fused silica fibers

Electrostatic actuator

FIG. 2. Interferometer configuration and test mass setup. Eacharm of the Michelson interferometer includes two suspended testmasses. The two test masses are placed 4 km apart and form anoptical resonator with a gain of 300. The suspension system isshown on the right, each test mass is at the bottom of a quadruplependulum. It provides high isolation above the resonancefrequencies which range from 0.4 to 13 Hz. The test mass isattached to the penultimate mass through fused silica fibersproviding a high mechanical quality factor which lowers thethermal noise. The other stages use steel wire. The attachmentpoint to the seismic isolation system as well as stages 1 and 2implement cantilever springs for vertical isolation. Each testmass is accompanied by its own reaction chain to minimizeactuation noise. Coil actuators are mounted to the upper stages ofthe reaction chain, and an electrostatic actuator is implementedat the bottom stage. Shown on the left are the other optics ofthe Michelson interferometer with the beam splitter and theperpendicular arm. The two optics at the interferometer inputand output port comprise the coupled resonator system whichamplifies the response of the optical transducer.

PRL 116, 131103 (2016) P HY S I CA L R EV I EW LE T T ER Sweek ending1 APRIL 2016

131103-2

Page 3: GW150914: The Advanced LIGO Detectors in the Era of First ...tanner/PDFS/Abbott16prl-DetectorsFirstDiscoveries.pdfFIG. 2. Interferometer configuration and test mass setup. Each arm

acting as free masses well above the lowest pendulumresonance frequency of 0.4 Hz. Monolithic fused silicafibers [21] are incorporated at the bottom stage to decreasesuspension thermal noise [22], which limits the usefulfrequencies to 10 Hz and above. The Advanced LIGO testmasses require about 10 orders of magnitude suppressionof ground motion above 10 Hz. The multistage pendulumsystem attenuates the ground motion by 7 orders ofmagnitude. It is mounted on an actively controlled seismicisolation platform which provides 3 orders of magnitudeof isolation of its own [23,24]. Moreover, these platformsare used to reduce the very large displacements producedby tidal motion and microseismic activity. Tidal forcescan produce displacements up to several hundred μm overa multikilometer baseline on time scales of hours. Thedominant microseismic activity is driven by ocean waves.The resulting ground motion can be as large as several μmat frequencies around 0.15 Hz—even far inland.The entire test mass assembly including the suspension

system and part of the seismic isolation system residesinside an ultrahigh vacuum system, with pressures typically

below 1 μPa over the 10 000 m3 volume, to preventacoustic shorting of the seismic isolation systems and toreduce Rayleigh scattering in the optical readout.The test masses are also susceptible to changes in the

local gravitational field caused by changing mass distribu-tions in their vicinity. While not limiting presently, atdesign sensitivity, this time-dependent Newtonian noisesource possibly becomes relevant below 20 Hz, and mightrequire active cancellation [25,26].Thermally driven motion is another important source of

displacement noise. It includes the Brownian motion ofthe suspension system [27] as well as the test masses [28]and mechanical loss in the mirror optical coatings [29].The mirror coatings, a dielectric multilayer of silica andtitania-doped tantala [30,31], were developed to providethe required high reflectivity while minimizing coatingthermal noise [32–34]; at design, it will eventually limit thesensitivity around 60 Hz [3].The predicted levels for seismic, thermal, and Newtonian

noise sources are summarized in Fig. 3 and compared tothe total measured displacement noise. They are currentlynot limiting the sensitivity due to the presence of othertechnical noise sources, summarized in the next section anddetailed in Ref. [19].Quantum noise in the interferometer arises from the

discrete nature of photons and their Poisson-distributedarrival rate [35–37]. The momentum transfer of individualphotons hitting a test mass gives rise to radiation pressurenoise. Quantum radiation pressure noise scales as 1=mf2,where m is the mass of the mirror and f the frequency, andtherefore, it is most significant at lower frequencies.Photon shot noise arises from statistical fluctuations in

the photon arrival time at the interferometer output, andit is a fundamental limit of the transducer in sensingchanges of the differential arm length. The importanceof shot noise decreases as the inverse square root of thelaser power circulating in the interferometer arms. Duringthe first observing run, Advanced LIGO was operating with100 kW of circulating laser power. The correspondingquantum noise curve, comprising both low frequencyradiation pressure noise and high frequency shot noise,is shown in Fig. 3; it is limiting at frequencies above 70 Hz.In the upcoming years, we plan to increase the circulatinglaser power up to 750 kW and, thus, reduce the shot noisecontribution.Coincident detection between the two LIGO observato-

ries is used to reject transient environmental disturbances.Both observatory sites deploy seismometers, accelerome-ters, microphones, magnetometers, radio receivers, weathersensors, ac-power line monitors, and a cosmic ray detectorfor vetoes and characterization of couplings [38].Interferometric transducer.—The Advanced LIGO

detector uses a modified Michelson laser interferometerto translate strain into an optical phase shift [3]. Similar toan electromagnetic receiver, the optimal antenna length for

FIG. 3. The displacement sensitivity of the Advanced LIGOdetector in Hanford during the first observation run O1; theLivingston detector has a similar sensitivity, as shown in Fig. 1.The sum of all known noise sources accounts for most of theobserved noise with the exception of the frequency band between20 and 100 Hz. This will be the focus of future commissioning tofull sensitivity. The quantum noise includes both shot noise andradiation pressure noise. Thermal noise includes terms due to thesuspensions, the test masses, and the coatings. Seismic noise isthe ground displacement attenuated through the seismic isolationsystem and the suspensions. Cross couplings from the autoalign-ment system and from the auxiliary lengths are combined intothe trace labeled “other DOF” (degrees of freedom). Newtoniangravitational noise is estimated from density perturbations dueto surface ground motion. The strong line features are due to theviolin modes of the suspension wires, the roll and bounce modesof the suspensions, the AC power line and its harmonics, and thecalibration lines. Not shown are numerous noise sources that donot contribute significantly—such as laser frequency, intensityand beam jitter noise, sensor and actuation noise, and Rayleighscattering by the residual gas [19].

PRL 116, 131103 (2016) P HY S I CA L R EV I EW LE T T ER Sweek ending1 APRIL 2016

131103-3

Page 4: GW150914: The Advanced LIGO Detectors in the Era of First ...tanner/PDFS/Abbott16prl-DetectorsFirstDiscoveries.pdfFIG. 2. Interferometer configuration and test mass setup. Each arm

a gravitational-wave detector is a quarter wavelength. For agravitational wave at 100 Hz, this is 750 km. The AdvancedLIGO interferometer arms are 4 km long and employan optical resonator between the input and end test massesthat multiplies the physical length by the effective numberof round-trips of the light. However, the physical lengthcannot be arbitrarily short because test mass displacementnoises are multiplied by the same factor.The output port of the Michelson interferometer is held

at an offset from a dark fringe, resulting in a small amountof light leaving the output port [39]. A differential opticalphase shift will then decrease or increase the amount oflight, depending on which interferometer arm is momen-tarily stretched or squeezed by a passing gravitationalwave. This light signal is measured by a photodetector,digitized, and calibrated [40] before being sent to theanalysis pipelines [41,42].The calibration factor that converts detected laser light

power to mirror displacement is measured by applyinga known force to a test mass [43]. An auxiliary 1047-nmwavelength laser is reflected off the end test mass andmodulated in intensity to generate a varying force. Theresponse of the optical transducer is measured by sweepingthe modulation frequency through the entire detection band.It is also tracked by a set of fixed frequency lines. Thisway, the calibrated strain readout is computed in real timewith less than 10% uncertainty in amplitude. The overallvariability of the sensitivity of the detector was about�10%.The main light source is a prestabilized 1064-nm wave-

length Nd:YAG laser. It is followed by a high poweramplifier stage, capable of generating a maximum outputpower of 180 W [44]. During the first observation run, only20 W were injected into the interferometer. A triangularoptical resonator of 32.9 m round-trip length is placedbetween the laser source and the interferometer to rejecthigher order transverse optical modes and to stabilize thelaser frequency further [45]. At the output port, a bow-tieoptical resonator of 1.3 m round-trip length is used to rejectunwanted spatial and frequency components on the light.Optical curvature mismatch of the interferometer mirrors iscaused by manufacturing imperfections and by thermallensing due to heating from the main laser beam. A thermalcompensation system provides active correction by meansof ring heaters arranged around the test masses and a set ofCO2 lasers for central heating [46].The Advanced LIGO detector uses coupled optical

resonators to maximize the sensitivity of the interferometrictransducer. These optical resonators enhance the lightpower circulating in each arm while simultaneously opti-mizing the effective antenna length and the gravitational-wave signal bandwidth [47–51]. As the interferometer isheld near a dark fringe, most of the light is reflected back tothe laser source. Adding a partially transmissive mirror atthe interferometer input forms an optical resonator, leadingto a power gain of 35 to 40 at the beam splitter. The optical

resonator in the interferometer arms enhances the circulat-ing power by another factor of 300. Thus, 20 W of laserpower entering the interferometer results in nearly 100 kWcirculating in each arm. A partially reflective mirror is alsoplaced at the output port to enhance the signal extractionand to increase the detector bandwidth. The resultingdifferential pole frequency or detector bandwidth is≃335 Hz (H1) and ≃390 Hz (L1) [19]. The optical modematching in the output resonator is worse for H1.All of these coupled optical resonators require servo

controls to be brought and held on resonance [52]. Thelengths of the optical resonators in the interferometer armsare stabilized to less than 100 fm, whereas the lengths of theother coupled resonators are kept within 1 to 10 pm [19].Similarly, the interferometer test masses are aligned withintens of nanoradians relative to the optical axis for optimalperformance. The noise arising from sensing and control ofthese extra degrees of freedom are combined together in thecurve labeled other DOF in Fig. 3. The Pound-Drever-Hallreflection locking technique is used to sense the auxiliarylongitudinal degrees of freedom [53,54], while an inter-ferometric wavefront sensing scheme is deployed for thealignment system [55,56]. The differential arm length iscontrolled by the same technique during lock acquisition,but switched to the offset locking technique describedabove when observing. Digital servo systems are used tofeed control signals back to actuators which steer therelative longitudinal positions and orientations of theinterferometer mirrors. To prevent reintroducing groundmotion onto the test masses, electrostatic actuators [57] aremounted to a second quadruple pendulum known as thereaction chain. Only test masses use reaction chains; allother interferometer mirrors use coil actuators mounted ona rigid structure surrounding the suspensions.Servo controls are also necessary for damping the

plethora of normal modes of the pendular suspensionsand for stabilizing the seismic isolation system to an inertialreference frame. Moreover, at high laser power, opticalsprings introduce angular instabilities due to photonradiation pressure-induced torques acting on the mirrors[58,59], while the mirror acoustic modes introduce para-metric instabilities [60,61]. At the current laser power, onlyone acoustic mode is unstable which can be tuned awayby the ring heaters. Together with thermal heating, angularoptical springs and multiple parametric instabilities are themain challenges that need to be overcome to increase thecirculating laser power; both will require active dampingfor stable operations.Overall, more than 300 digital control loops with

bandwidths spanning from sub-Hz to hundreds of kHzare employed to keep each Advanced LIGO interferometeroperating optimally during observation. The digital controlcomputers also serve as the data acquisition system thatcontinuously writes on the order of 105 channels of timeseries data to disk, at a rate of ≃12 Mbytes=s. It is

PRL 116, 131103 (2016) P HY S I CA L R EV I EW LE T T ER Sweek ending1 APRIL 2016

131103-4

Page 5: GW150914: The Advanced LIGO Detectors in the Era of First ...tanner/PDFS/Abbott16prl-DetectorsFirstDiscoveries.pdfFIG. 2. Interferometer configuration and test mass setup. Each arm

synchronized to GPS to better than 10 μs [40]. A state-based automation controller provides hands-free runningduring operations.Outlook.—The global gravitational-wave network will

be significantly enhanced in the upcoming years. In 2016,Advanced LIGO will be joined by Advanced Virgo, the3 km detector located near Pisa, Italy [62]. The JapaneseKAGRA interferometer [63] and a possible third LIGOdetector in India [64] will provide a global network thatallows for improved parameter estimation and sky locali-zation [65]. Achieving design sensitivity with the networkof current detectors will define earthbound gravitational-wave astrophysics in the near future. Looking furtherahead, we can envision current technologies leading to afactor of 2 improvement over the Advanced LIGO designsensitivity [13], so that events such as GW150914 could bedetected with SNRs up to 200. More dramatic improve-ments will require significant technology development andnew facilities.

The authors gratefully acknowledge the support of theUnited States National Science Foundation (NSF) for theconstruction and operation of the LIGO Laboratory andAdvanced LIGO as well as the Science and TechnologyFacilities Council (STFC) of the United Kingdom, theMax-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGOand construction and operation of the GEO600 detector.Additional support for Advanced LIGO was provided bythe Australian Research Council. The authors gratefullyacknowledge the Italian IstitutoNazionale di FisicaNucleare(INFN), the French Centre National de la RechercheScientifique (CNRS) and the Foundation for FundamentalResearch on Matter supported by the NetherlandsOrganisation for Scientific Research, for the constructionand operation of the Virgo detector and the creation andsupport of the EGO consortium. The authors also gratefullyacknowledge research support from these agencies as wellas by the Council of Scientific and Industrial Research ofIndia,Department of Science andTechnology, India, Science& Engineering Research Board (SERB), India, Ministryof Human Resource Development, India, the SpanishMinisterio de Economía y Competitividad, the Conselleriad’Economia i Competitivitat and Conselleria d’Educació,Cultura i Universitats of the Govern de les Illes Balears,the National Science Centre of Poland, the EuropeanCommission, the Royal Society, the Scottish FundingCouncil, the Scottish Universities Physics Alliance, theHungarian Scientific Research Fund (OTKA), the LyonInstitute of Origins (LIO), the National ResearchFoundation of Korea, Industry Canada and the Province ofOntario through the Ministry of Economic Development andInnovation, the Natural Science and Engineering ResearchCouncil Canada, Canadian Institute for Advanced Research,the Brazilian Ministry of Science, Technology, andInnovation, Russian Foundation for Basic Research, the

Leverhulme Trust, the Research Corporation, Ministry ofScience and Technology (MOST), Taiwan and the KavliFoundation. The authors gratefully acknowledge the supportof the NSF, STFC, MPS, INFN, CNRS and the State ofNiedersachsen/Germany for provision of computationalresources. This document has been assigned the LIGOLaboratory Document No. LIGO-P1500237.

[1] B. P. Abbott et al. (LIGO Scientific Collaboration and VirgoCollaboration), Observation of Gravitational Waves from aBinary Black Hole Merger, Phys. Rev. Lett. 116, 061102(2016).

[2] B. P. Abbott et al. (LIGO Scientific Collaboration and VirgoCollaboration), Properties of the binary black hole mergerGW150914, arXiv:1602.03840.

[3] J. Aasi et al. (LIGO Scientific Collaboration), AdvancedLIGO, Classical Quantum Gravity 32, 074001 (2015).

[4] B. P. Abbott et al. (LIGO Scientific Collaboration), LIGO:The laser interferometer gravitational-wave observatory,Rep. Prog. Phys. 72, 076901 (2009).

[5] T. Accadia et al. (Virgo Collaboration), Virgo: A laserinterferometer to detect gravitational waves, J. Instrum. 7,P03012 (2012).

[6] B. P. Abbott et al. (LIGO Scientific Collaboration and VirgoCollaboration), Astrophysical implications of the binaryblack hole merger GW150914, Astrophys. J. Lett. 818, L22(2016).

[7] B. P. Abbott et al. (LIGO Scientific Collaboration and VirgoCollaboration), Tests of general relativity with GW150914,arXiv:1602.03841.

[8] B. P. Abbott et al. (LIGO Scientific Collaboration and VirgoCollaboration), preceding Letter, GW150914: Implicationsfor the Stochastic Gravitational-Wave Background fromBinary Black Holes, Phys. Rev. Lett. 116, 131102 (2016).

[9] B. P. Abbott et al. (LIGO Scientific Collaboration, VirgoCollaboration, Australian Square Kilometer Array Path-finder (ASKAP) Collaboration, BOOTES Collaboration,Dark Energy Survey and the Dark Energy Camera GW-EM Collaborations, Fermi GBM Collaboration, Fermi LATCollaboration, GRAvitational Wave Inaf TeAm (GRA-WITA), INTEGRAL Collaboration, Intermediate PalomarTransient Factory (iPTF) Collaboration, The InterPlanetaryNetwork, J-GEM Collaboration, La Silla-QUEST Survey,Liverpool Telescope Collaboration, Low Frequency Array(LOFAR) Collaboration, MASTER Collaboration, MAXICollaboration, Murchison Wide-field Array (MWA)Collaboration, PanSTARRS Collaboration, PESSTOCollaboration, Pi of the Sky Collaboration, SkyMapperCollaboration, Swift Collaboration, TAROT, Zadko,Algerian National Observatory, and C2PU Collaboration,TOROS Collaboration and VISTA Collaboration), Locali-zation and broadband follow-up of the gravitational-wavetransient GW150914, arXiv:1602.08492.

[10] S. Adrián-Martínez et al. (ANTARES Collaboration,IceCube Collaboration, LIGO Scientific Collaboration,and Virgo Collaboration), High-energy neutrino follow-upsearch of gravitational wave event GW150914 withANTARES and IceCube, arXiv:1602.05411.

PRL 116, 131103 (2016) P HY S I CA L R EV I EW LE T T ER Sweek ending1 APRIL 2016

131103-5

Page 6: GW150914: The Advanced LIGO Detectors in the Era of First ...tanner/PDFS/Abbott16prl-DetectorsFirstDiscoveries.pdfFIG. 2. Interferometer configuration and test mass setup. Each arm

[11] K. S. Thorne, in 300 Years of Gravitation, edited byS. Hawking and W. Israel (Cambridge University Press,Cambridge, England, 1987), pp. 330–458.

[12] R. Weiss, Electromagnetically coupled broadband gravita-tional antenna, LIGO Report No. LIGO-P720002, https://dcc.ligo.org/LIGO‑P720002/public/main.

[13] J. Miller, L. Barsotti, S. Vitale, P. Fritschel, M. Evans, andD. Sigg, Prospects for doubling the range of AdvancedLIGO, Phys. Rev. D 91, 062005 (2015).

[14] L. S. Finn, Binary inspiral, gravitational radiation, andcosmology, Phys. Rev. D 53, 2878 (1996).

[15] P. A. R. Ade et al. (Planck Collaboration), Planck 2013results. XVI. Cosmological parameters, Astron. Astrophys.571, A16 (2014).

[16] P. Ajith et al., Inspiral-Merger-Ringdown Waveforms forBlack-Hole Binaries with Nonprecessing Spins, Phys. Rev.Lett. 106, 241101 (2011).

[17] B. P. Abbott et al. (LIGO Scientific Collaboration andVirgo Collaboration), Characterization of transient noise inAdvanced LIGO relevant to gravitational wave signalGW150914, arXiv:1602.03844.

[18] B. P. Abbott et al. (LIGO Scientific Collaboration and VirgoCollaboration), The rate of binary black hole mergersinferred from Advanced LIGO observations surroundingGW150914, arXiv:1602.03842.

[19] B. P. Abbott et al. (LIGO Scientific Collaboration), Thesensitivity of the Advanced LIGO detectors at the beginningof gravitational wave astronomy, LIGO Report No. LIGO-P1500260 2016, https://dcc.ligo.org/LIGO‑P1500260/public/main.

[20] S. M. Aston et al., Update on quadruple suspension designfor Advanced LIGO, Classical Quantum Gravity 29,235004 (2012).

[21] V. B. Braginskiı̌, V. P. Mitrofanov, and O. A. Okhrimenko,Oscillators for free-mass gravitational antennas, JETP Lett.55, 432 (1992).

[22] A. V. Cumming et al., Design and development of theadvanced LIGO monolithic fused silica suspension,Classical Quantum Gravity 29, 035003 (2012).

[23] F. Matichard et al., Seismic isolation of Advanced LIGO:Review of strategy, instrumentation and performance,Classical Quantum Gravity 32, 185003 (2015).

[24] S. Wen et al., Hydraulic external pre-isolator systemfor LIGO, Classical Quantum Gravity 31, 235001 (2014).

[25] G. Cella, in Recent Developments in General Relativity,edited by B. Casciaro, D. Fortunato, M. Francaviglia, andA. Masiello (Springer, Milan, 2000), pp. 495–503.

[26] J. C. Driggers, J. Harms, and R. X. Adhikari, Subtraction ofNewtonian noise using optimized sensor arrays, Phys. Rev.D 86, 102001 (2012).

[27] P. R. Saulson, Thermal noise in mechanical experiments,Phys. Rev. D 42, 2437 (1990).

[28] Y. Levin, Internal thermal noise in the LIGO test masses: Adirect approach, Phys. Rev. D 57, 659 (1998).

[29] G. Harry, T. P. Bodiya, and R. DeSalvo, Optical Coatingsand Thermal Noise in Precision Measurement (CambridgeUniversity Press, Cambridge, England, 2012).

[30] G. M. Harry et al., Titania-doped tantala/silica coatings forgravitational-wave detection, Classical Quantum Gravity24, 405 (2007).

[31] M. Granata et al., Mechanical loss in state-of-the-artamorphous optical coatings, Phys. Rev. D 93, 012007(2016).

[32] R. Flaminio, J. Franc, C. Michel, N. Morgado, L. Pinard,and B. Sassolas, A study of coating mechanical and opticallosses in view of reducing mirror thermal noise in gravi-tational wave detectors, Classical Quantum Gravity 27,084030 (2010).

[33] J. Agresti, G. Castaldi, R. DeSalvo, V. Galdi, V. Pierro, andI. M. Pinto, Optimized multilayer dielectric mirror coatingsfor gravitational wave interferometers, Proc. SPIE Int. Soc.Opt. Eng. 6286, 628608 (2006).

[34] A. E. Villar et al., Measurement of thermal noise in multi-layer coatings with optimized layer thickness, Phys. Rev. D81, 122001 (2010).

[35] C. M. Caves, Quantum-Mechanical Radiation-PressureFluctuations in an Interferometer, Phys. Rev. Lett. 45, 75(1980); Quantum-mechanical noise in an interferometer,Phys. Rev. D 23, 1693 (1981).

[36] V. B. Braginsky, F. Y. Khalili, and K. S. Thorne, QuantumMeasurement (Cambridge University Press, Cambridge,England, 1992).

[37] D. E. McClelland, N. Mavalvala, Y. Chen, and R. Schnabel,Advanced interferometry, quantum optics and optome-chanics in gravitational wave detectors, Laser PhotonicsRev. 5, 677 (2011).

[38] A. Effler, R. M. S. Schofield, V. V. Frolov, G. González, K.Kawabe, J. R. Smith, J. Birch, and R. McCarthy, Environ-mental influences on the LIGO gravitational wave detectorsduring the 6th science run, Classical Quantum Gravity 32,035017 (2015).

[39] T. T. Fricke et al., DC readout experiment in EnhancedLIGO, Classical Quantum Gravity 29, 065005 (2012).

[40] B. P. Abbott et al. (LIGO Scientific Collaboration),Calibration of the Advanced LIGO detectors for thediscovery of the binary black-hole merger GW150914,arXiv:1602.03845.

[41] B. P. Abbott et al. (LIGO Scientific Collaboration and VirgoCollaboration), Observing gravitational-wave transientGW150914 with minimal assumptions, arXiv:1602.03843.

[42] B. P. Abbott et al. (LIGO Scientific Collaboration and VirgoCollaboration), GW150914: First results from the searchfor binary black hole coalescence with Advanced LIGO,arXiv:1602.03839.

[43] E. Goetz et al., Precise calibration of LIGO test massactuators using photon radiation pressure, Classical Quan-tum Gravity 26, 245011 (2009).

[44] P. Kwee et al., Stabilized high-power laser system for thegravitational wave detector Advanced LIGO, Opt. Express20, 10617 (2012).

[45] C. L. Mueller et al., The Advanced LIGO input optics, Rev.Sci. Instrum. 87, 014502 (2016).

[46] A. F. Brooks et al., Direct measurement of absorption-induced wavefront distortion in high optical power systems,Appl. Opt. 48, 355 (2009).

[47] R. W. P. Drever, The Detection of Gravitational Waves,edited by D. G. Blair (Cambridge University Press,Cambridge, England, 1991) pp. 306.

[48] R. W. P. Drever et al., in Quantum Optics, ExperimentalGravity, and Measurement Theory, NATO ASI Series B,

PRL 116, 131103 (2016) P HY S I CA L R EV I EW LE T T ER Sweek ending1 APRIL 2016

131103-6

Page 7: GW150914: The Advanced LIGO Detectors in the Era of First ...tanner/PDFS/Abbott16prl-DetectorsFirstDiscoveries.pdfFIG. 2. Interferometer configuration and test mass setup. Each arm

Vol. 94, edited by P. Meystre and M. O. Scully (PlenumPress, New York, 1983), pp. 503–514.

[49] R. Schilling (private communication).[50] B. J. Meers, Recycling in laser-interferometric gravitational-

wave detectors, Phys. Rev. D 38, 2317 (1988).[51] J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R.

Schilling, A. Rüdiger, W. Winkler, and K. Danzmann,Resonant sideband extraction: A new configuration forinterferometric gravitational wave detectors, Phys. Lett. A175, 273 (1993).

[52] A. Staley, D. Martynov et al., Achieving resonance in theAdvanced LIGO gravitational-wave interferometer,Classical Quantum Gravity 31, 245010 (2014).

[53] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M.Ford, A. J. Munley, and H. Ward, Laser phase and frequencystabilization using an optical resonator, Appl. Phys. B 31, 97(1983).

[54] P. Fritschel, R. Bork, G. González, N. Mavalvala,D. Ouimette, H. Rong, D. Sigg, and M. Zucker,Readout and control of a power-recycled interferometricgravitational-wave antenna, Appl. Opt. 40, 4988 (2001).

[55] E. Morrison, B. J. Meers, D. I. Robertson, and H. Ward,Automatic alignment of optical interferometers, Appl. Opt.33, 5041 (1994).

[56] L. Barsotti, M. Evans, and P. Fritschel, Alignment sensingand control in Advanced LIGO, Classical Quantum Gravity27, 084026 (2010).

[57] C. Affeldt et al., Advanced techniques in GEO 600,Classical Quantum Gravity 31, 224002 (2014).

[58] J. A. Sidles and D. Sigg, Optical torques in suspendedFabry-Perot interferometers, Phys. Lett. A 354, 167(2006).

[59] K. L. Dooley, L. Barsotti, R. X. Adhikari, M. Evans,T. T. Fricke, P. Fritschel, V. Frolov, K. Kawabe, and N.Smith-Lefebvre, Angular control of optical cavities in aradiation-pressure-dominated regime: The Enhanced LIGOcase, J. Opt. Soc. Am. A 30, 2618 (2013).

[60] V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, Analy-sis of parametric oscillatory instability in power recycledLIGO interferometer, Phys. Lett. A 305, 111 (2002).

[61] M. Evans et al., Observation of Parametric Instabilityin Advanced LIGO, Phys. Rev. Lett. 114, 161102(2015).

[62] F. Acernese et al. (Virgo Collaboration), Advanced Virgo:A second-generation interferometric gravitational wavedetector, Classical Quantum Gravity 32, 024001 (2015).

[63] Y. Aso, Y. Michimura, K. Somiya, M. Ando, O. Miyakawa,T. Sekiguchi, D. Tatsumi, and H. Yamamoto (KAGRACollaboration), Interferometer design of the KAGRAgravitational wave detector, Phys. Rev. D 88, 043007(2013).

[64] B. Iyer et al., LIGO-India Report No. LIGO-M1100296,2011, https://dcc.ligo.org/LIGO‑M1100296/public/main.

[65] B. P. Abbott et al. (LIGO Scientific Collaboration andVirgo Collaboration), Prospects for observing and loca-lizing gravitational-wave transients with AdvancedLIGO and Advanced Virgo, Living Rev. Relativity 19, 1(2016).

B. P. Abbott,1 R. Abbott,1 T. D. Abbott,2 M. R. Abernathy,1 F. Acernese,3,43,4 K. Ackley,5 C. Adams,6 T. Adams,7

P. Addesso,3 R. X. Adhikari,1 V. B. Adya,8 C. Affeldt,8 M. Agathos,9 K. Agatsuma,9 N. Aggarwal,10 O. D. Aguiar,11

L. Aiello,12,13 A. Ain,14 P. Ajith,15 B. Allen,8,16,17 A. Allocca,18,19 P. A. Altin,20 S. B. Anderson,1 W. G. Anderson,16 K. Arai,1

M. C. Araya,1 C. C. Arceneaux,21 J. S. Areeda,22 N. Arnaud,23 K. G. Arun,24 S. Ascenzi,25,13 G. Ashton,26 M. Ast,27

S. M. Aston,6 P. Astone,28 P. Aufmuth,8 C. Aulbert,8 S. Babak,29 P. Bacon,30 M. K. M. Bader,9 P. T. Baker,31

F. Baldaccini,32,33 G. Ballardin,34 S.W. Ballmer,35 J. C. Barayoga,1 S. E. Barclay,36 B. C. Barish,1 D. Barker,37 F. Barone,3,4

B. Barr,36 L. Barsotti,10 M. Barsuglia,30 D. Barta,38 J. Bartlett,37 I. Bartos,39 R. Bassiri,40 A. Basti,18,19 J. C. Batch,37

C. Baune,8 V. Bavigadda,34 M. Bazzan,41,42 B. Behnke,29 M. Bejger,43 A. S. Bell,36 C. J. Bell,36 B. K. Berger,1 J. Bergman,37

G. Bergmann,8 C. P. L. Berry,44 D. Bersanetti,45,46 A. Bertolini,9 J. Betzwieser,6 S. Bhagwat,35 R. Bhandare,47

I. A. Bilenko,48 G. Billingsley,1 J. Birch,6 R. Birney,49 S. Biscans,10 A. Bisht,8,17 M. Bitossi,34 C. Biwer,35 M. A. Bizouard,23

J. K. Blackburn,1 C. D. Blair,50 D. G. Blair,50 R. M. Blair,37 S. Bloemen,51 O. Bock,8 T. P. Bodiya,10 M. Boer,52 G. Bogaert,52

C. Bogan,8 A. Bohe,29 P. Bojtos,53 C. Bond,44 F. Bondu,54 R. Bonnand,7 B. A. Boom,9 R. Bork,1 V. Boschi,18,19 S. Bose,55,14

Y. Bouffanais,30 A. Bozzi,34 C. Bradaschia,19 P. R. Brady,16 V. B. Braginsky,48 M. Branchesi,56,57 J. E. Brau,58 T. Briant,59

A. Brillet,52 M. Brinkmann,8 V. Brisson,23 P. Brockill,16 A. F. Brooks,1 D. A. Brown,35 D. D. Brown,44 N. M. Brown,10

C. C. Buchanan,2 A. Buikema,10 T. Bulik,60 H. J. Bulten,61,9 A. Buonanno,29,62 D. Buskulic,7 C. Buy,30 R. L. Byer,40

L. Cadonati,63 G. Cagnoli,64,65 C. Cahillane,1 J. Calderón Bustillo,66,63 T. Callister,1 E. Calloni,67,4 J. B. Camp,68

K. C. Cannon,69 J. Cao,70 C. D. Capano,8 E. Capocasa,30 F. Carbognani,34 S. Caride,71 J. Casanueva Diaz,23

C. Casentini,25,13 S. Caudill,16 M. Cavaglià,21 F. Cavalier,23 R. Cavalieri,34 G. Cella,19 C. B. Cepeda,1

L. Cerboni Baiardi,56,57 G. Cerretani,18,19 E. Cesarini,25,13 R. Chakraborty,1 T. Chalermsongsak,1 S. J. Chamberlin,72

M. Chan,36 S. Chao,73 P. Charlton,74 E. Chassande-Mottin,30 H. Y. Chen,75 Y. Chen,76 C. Cheng,73 A. Chincarini,46

A. Chiummo,34 H. S. Cho,77 M. Cho,62 J. H. Chow,20 N. Christensen,78 Q. Chu,50 S. Chua,59 S. Chung,50 G. Ciani,5

F. Clara,37 J. A. Clark,63 F. Cleva,52 E. Coccia,25,12,13 P.-F. Cohadon,59 A. Colla,79,28 C. G. Collette,80 L. Cominsky,81

PRL 116, 131103 (2016) P HY S I CA L R EV I EW LE T T ER Sweek ending1 APRIL 2016

131103-7

Page 8: GW150914: The Advanced LIGO Detectors in the Era of First ...tanner/PDFS/Abbott16prl-DetectorsFirstDiscoveries.pdfFIG. 2. Interferometer configuration and test mass setup. Each arm

M. Constancio Jr.,11 A. Conte,79,28 L. Conti,42 D. Cook,37 T. R. Corbitt,2 N. Cornish,31 A. Corsi,71 S. Cortese,34

C. A. Costa,11 M.W. Coughlin,78 S. B. Coughlin,82 J.-P. Coulon,52 S. T. Countryman,39 P. Couvares,1 E. E. Cowan,63

D. M. Coward,50 M. J. Cowart,6 D. C. Coyne,1 R. Coyne,71 K. Craig,36 J. D. E. Creighton,16 J. Cripe,2 S. G. Crowder,83

A. Cumming,36 L. Cunningham,36 E. Cuoco,34 T. Dal Canton,8 S. L. Danilishin,36 S. D’Antonio,13 K. Danzmann,17,8

N. S. Darman,84 V. Dattilo,34 I. Dave,47 H. P. Daveloza,85 M. Davier,23 G. S. Davies,36 E. J. Daw,86 R. Day,34 D. DeBra,40

G. Debreczeni,38 J. Degallaix,65 M. De Laurentis,67,4 S. Deléglise,59 W. Del Pozzo,44 T. Denker,8,17 T. Dent,8 H. Dereli,52

V. Dergachev,1 R. T. DeRosa,6 R. De Rosa,67,4 R. DeSalvo,87 S. Dhurandhar,14 M. C. Díaz,85 L. Di Fiore,4

M. Di Giovanni,79,28 A. Di Lieto,18,19 S. Di Pace,79,28 I. Di Palma,29,8 A. Di Virgilio,19 G. Dojcinoski,88 V. Dolique,65

F. Donovan,10 K. L. Dooley,21 S. Doravari,6,8 R. Douglas,36 T. P. Downes,16 M. Drago,8,89,90 R. W. P. Drever,1

J. C. Driggers,37 Z. Du,70 M. Ducrot,7 S. E. Dwyer,37 T. B. Edo,86 M. C. Edwards,78 A. Effler,6 H.-B. Eggenstein,8

P. Ehrens,1 J. Eichholz,5 S. S. Eikenberry,5 W. Engels,76 R. C. Essick,10 T. Etzel,1 M. Evans,10 T. M. Evans,6 R. Everett,72

M. Factourovich,39 V. Fafone,25,13,12 H. Fair,35 S. Fairhurst,91 X. Fan,70 Q. Fang,50 S. Farinon,46 B. Farr,75 W.M. Farr,44

M. Favata,88 M. Fays,91 H. Fehrmann,8 M.M. Fejer,40 I. Ferrante,18,19 E. C. Ferreira,11 F. Ferrini,34 F. Fidecaro,18,19 I. Fiori,34

D. Fiorucci,30 R. P. Fisher,35 R. Flaminio,65,92 M. Fletcher,36 J.-D. Fournier,52 S. Franco,23 S. Frasca,79,28 F. Frasconi,19

Z. Frei,53 A. Freise,44 R. Frey,58 V. Frey,23 T. T. Fricke,8 P. Fritschel,10 V. V. Frolov,6 P. Fulda,5 M. Fyffe,6

H. A. G. Gabbard,21 J. R. Gair,93 L. Gammaitoni,32,33 S. G. Gaonkar,14 F. Garufi,67,4 A. Gatto,30 G. Gaur,94,95 N. Gehrels,68

G. Gemme,46 B. Gendre,52 E. Genin,34 A. Gennai,19 J. George,47 L. Gergely,96 V. Germain,7 Archisman Ghosh,15

S. Ghosh,51,9 J. A. Giaime,2,6 K. D. Giardina,6 A. Giazotto,19 K. Gill,97 A. Glaefke,36 E. Goetz,98 R. Goetz,5 L. Gondan,53

G. González,2 J. M. Gonzalez Castro,18,19 A. Gopakumar,99 N. A. Gordon,36 M. L. Gorodetsky,48 S. E. Gossan,1

M. Gosselin,34 R. Gouaty,7 C. Graef,36 P. B. Graff,62 M. Granata,65 A. Grant,36 S. Gras,10 C. Gray,37 G. Greco,56,57

A. C. Green,44 P. Groot,51 H. Grote,8 S. Grunewald,29 G. M. Guidi,56,57 X. Guo,70 A. Gupta,14 M. K. Gupta,95

K. E. Gushwa,1 E. K. Gustafson,1 R. Gustafson,98 J. J. Hacker,22 B. R. Hall,55 E. D. Hall,1 G. Hammond,36 M. Haney,99

M.M. Hanke,8 J. Hanks,37 C. Hanna,72 M. D. Hannam,91 J. Hanson,6 T. Hardwick,2 K. Haris,106 J. Harms,56,57

G. M. Harry,100 I. W. Harry,29 M. J. Hart,36 M. T. Hartman,5 C.-J. Haster,44 K. Haughian,36 A. Heidmann,59 M. C. Heintze,5,6

H. Heitmann,52 P. Hello,23 G. Hemming,34 M. Hendry,36 I. S. Heng,36 J. Hennig,36 A.W. Heptonstall,1 M. Heurs,8,17

S. Hild,36 D. Hoak,101 K. A. Hodge,1 D. Hofman,65 S. E. Hollitt,102 K. Holt,6 D. E. Holz,75 P. Hopkins,91 D. J. Hosken,102

J. Hough,36 E. A. Houston,36 E. J. Howell,50 Y. M. Hu,36 S. Huang,73 E. A. Huerta,103,82 D. Huet,23 B. Hughey,97 S. Husa,66

S. H. Huttner,36 T. Huynh-Dinh,6 A. Idrisy,72 N. Indik,8 D. R. Ingram,37 R. Inta,71 H. N. Isa,36 J.-M. Isac,59 M. Isi,1 G. Islas,22

T. Isogai,10 B. R. Iyer,15 K. Izumi,37 T. Jacqmin,59 H. Jang,77 K. Jani,63 P. Jaranowski,104 S. Jawahar,105 F. Jiménez-Forteza,66

W.W. Johnson,2 D. I. Jones,26 R. Jones,36 R. J. G. Jonker,9 L. Ju,50 C. V. Kalaghatgi,24,91 V. Kalogera,82 S. Kandhasamy,21

G. Kang,77 J. B. Kanner,1 S. Karki,58 M. Kasprzack,2,23,34 E. Katsavounidis,10 W. Katzman,6 S. Kaufer,17 T. Kaur,50

K. Kawabe,37 F. Kawazoe,8,17 F. Kéfélian,52 M. S. Kehl,69 D. Keitel,8,66 D. B. Kelley,35 W. Kells,1 R. Kennedy,86 J. S. Key,85

A. Khalaidovski,8 F. Y. Khalili,48 I. Khan,12 S. Khan,91 Z. Khan,95 E. A. Khazanov,107 N. Kijbunchoo,37 C. Kim,77 J. Kim,108

K. Kim,109 Nam-Gyu Kim,77 Namjun Kim,40 Y.-M. Kim,108 E. J. King,102 P. J. King,37 D. L. Kinzel,6 J. S. Kissel,37

L. Kleybolte,27 S. Klimenko,5 S. M. Koehlenbeck,8 K. Kokeyama,2 S. Koley,9 V. Kondrashov,1 A. Kontos,10 M. Korobko,27

W. Z. Korth,1 I. Kowalska,60 D. B. Kozak,1 V. Kringel,8 A. Królak,110,111 C. Krueger,17 G. Kuehn,8 P. Kumar,69 L. Kuo,73

A. Kutynia,110 B. D. Lackey,35 M. Landry,37 J. Lange,112 B. Lantz,40 P. D. Lasky,113 A. Lazzarini,1 C. Lazzaro,63,42

P. Leaci,29,79,28 S. Leavey,36 E. O. Lebigot,30,70 C. H. Lee,108 H. K. Lee,109 H. M. Lee,114 K. Lee,36 A. Lenon,35

M. Leonardi,89,90 J. R. Leong,8 N. Leroy,23 N. Letendre,7 Y. Levin,113 B. M. Levine,37 T. G. F. Li,1 A. Libson,10

T. B. Littenberg,115 N. A. Lockerbie,105 J. Logue,36 A. L. Lombardi,101 J. E. Lord,35 M. Lorenzini,12,13 V. Loriette,116

M. Lormand,6 G. Losurdo,57 J. D. Lough,8,17 H. Lück,17,8 A. P. Lundgren,8 J. Luo,78 R. Lynch,10 Y. Ma,50 T. MacDonald,40

B. Machenschalk,8 M. MacInnis,10 D. M. Macleod,2 F. Magaña-Sandoval,35 R. M. Magee,55 M. Mageswaran,1

E. Majorana,28 I. Maksimovic,116 V. Malvezzi,25,13 N. Man,52 I. Mandel,44 V. Mandic,83 V. Mangano,36 G. L. Mansell,20

M. Manske,16 M. Mantovani,34 F. Marchesoni,117,33 F. Marion,7 S. Márka,39 Z. Márka,39 A. S. Markosyan,40 E. Maros,1

F. Martelli,56,57 L. Martellini,52 I. W. Martin,36 R. M. Martin,5 D. V. Martynov,1 J. N. Marx,1 K. Mason,10 A. Masserot,7

T. J. Massinger,35 M. Masso-Reid,36 F. Matichard,10 L. Matone,39 N. Mavalvala,10 N. Mazumder,55 G. Mazzolo,8

R. McCarthy,37 D. E. McClelland,20 S. McCormick,6 S. C. McGuire,118 G. McIntyre,1 J. McIver,1 D. J. McManus,20

S. T. McWilliams,103 D. Meacher,72 G. D. Meadors,29,8 J. Meidam,9 A. Melatos,84 G. Mendell,37 D. Mendoza-Gandara,8

R. A. Mercer,16 E. Merilh,37 M. Merzougui,52 S. Meshkov,1 C. Messenger,36 C. Messick,72 P. M. Meyers,83 F. Mezzani,28,79

PRL 116, 131103 (2016) P HY S I CA L R EV I EW LE T T ER Sweek ending1 APRIL 2016

131103-8

Page 9: GW150914: The Advanced LIGO Detectors in the Era of First ...tanner/PDFS/Abbott16prl-DetectorsFirstDiscoveries.pdfFIG. 2. Interferometer configuration and test mass setup. Each arm

H. Miao,44 C. Michel,65 H. Middleton,44 E. E. Mikhailov,119 L. Milano,67,4 J. Miller,10 M. Millhouse,31 Y. Minenkov,13

J. Ming,29,8 S. Mirshekari,120 C. Mishra,15 S. Mitra,14 V. P. Mitrofanov,48 G. Mitselmakher,5 R. Mittleman,10 A. Moggi,19

M. Mohan,34 S. R. P. Mohapatra,10 M. Montani,56,57 B. C. Moore,88 C. J. Moore,121 D. Moraru,37 G. Moreno,37

S. R. Morriss,85 K. Mossavi,8 B. Mours,7 C. M. Mow-Lowry,44 C. L. Mueller,5 G. Mueller,5 A. W. Muir,91

Arunava Mukherjee,15 D. Mukherjee,16 S. Mukherjee,85 N. Mukund,14 A. Mullavey,6 J. Munch,102 D. J. Murphy,39

P. G. Murray,36 A. Mytidis,5 I. Nardecchia,25,13 L. Naticchioni,79,28 R. K. Nayak,122 V. Necula,5 K. Nedkova,101

G. Nelemans,51,9 M. Neri,45,46 A. Neunzert,98 G. Newton,36 T. T. Nguyen,20 A. B. Nielsen,8 S. Nissanke,51,9 A. Nitz,8

F. Nocera,34 D. Nolting,6 M. E. Normandin,85 L. K. Nuttall,35 J. Oberling,37 E. Ochsner,16 J. O’Dell,123 E. Oelker,10

G. H. Ogin,124 J. J. Oh,125 S. H. Oh,125 F. Ohme,91 M. Oliver,66 P. Oppermann,8 Richard J. Oram,6 B. O’Reilly,6

R. O’Shaughnessy,112 D. J. Ottaway,102 R. S. Ottens,5 H. Overmier,6 B. J. Owen,71 A. Pai,106 S. A. Pai,47 J. R. Palamos,58

O. Palashov,107 C. Palomba,28 A. Pal-Singh,27 H. Pan,73 C. Pankow,82 F. Pannarale,91 B. C. Pant,47 F. Paoletti,34,19 A. Paoli,34

M. A. Papa,29,16,8 H. R. Paris,40 W. Parker,6 D. Pascucci,36 A. Pasqualetti,34 R. Passaquieti,18,19 D. Passuello,19

B. Patricelli,18,19 Z. Patrick,40 B. L. Pearlstone,36 M. Pedraza,1 R. Pedurand,65 L. Pekowsky,35 A. Pele,6 S. Penn,126

A. Perreca,1 M. Phelps,36 O. Piccinni,79,28 M. Pichot,52 F. Piergiovanni,56,57 V. Pierro,87 G. Pillant,34 L. Pinard,65

I. M. Pinto,87 M. Pitkin,36 R. Poggiani,18,19 P. Popolizio,34 A. Post,8 J. Powell,36 J. Prasad,14 V. Predoi,91

S. S. Premachandra,113 T. Prestegard,83 L. R. Price,1 M. Prijatelj,34 M. Principe,87 S. Privitera,29 G. A. Prodi,89,90

L. Prokhorov,48 O. Puncken,8 M. Punturo,33 P. Puppo,28 M. Pürrer,29 H. Qi,16 J. Qin,50 V. Quetschke,85 E. A. Quintero,1

R. Quitzow-James,58 F. J. Raab,37 D. S. Rabeling,20 H. Radkins,37 P. Raffai,53 S. Raja,47 M. Rakhmanov,85 P. Rapagnani,79,28

V. Raymond,29 M. Razzano,18,19 V. Re,25 J. Read,22 C. M. Reed,37 T. Regimbau,52 L. Rei,46 S. Reid,49 D. H. Reitze,1,5

H. Rew,119 S. D. Reyes,35 F. Ricci,79,28 K. Riles,98 N. A. Robertson,1,36 R. Robie,36 F. Robinet,23 A. Rocchi,13 L. Rolland,7

J. G. Rollins,1 V. J. Roma,58 R. Romano,3,4 G. Romanov,119 J. H. Romie,6 D. Rosińska,127,43 S. Rowan,36 A. Rüdiger,8

P. Ruggi,34 K. Ryan,37 S. Sachdev,1 T. Sadecki,37 L. Sadeghian,16 L. Salconi,34 M. Saleem,106 F. Salemi,8 A. Samajdar,122

L. Sammut,84,113 E. J. Sanchez,1 V. Sandberg,37 B. Sandeen,82 J. R. Sanders,98,35 B. Sassolas,65 B. S. Sathyaprakash,91

P. R. Saulson,35 O. Sauter,98 R. L. Savage,37 A. Sawadsky,17 P. Schale,58 R. Schilling,8,† J. Schmidt,8 P. Schmidt,1,76

R. Schnabel,27 R. M. S. Schofield,58 A. Schönbeck,27 E. Schreiber,8 D. Schuette,8,17 B. F. Schutz,91,29 J. Scott,36

S. M. Scott,20 D. Sellers,6 A. S. Sengupta,94 D. Sentenac,34 V. Sequino,25,13 A. Sergeev,107 G. Serna,22 Y. Setyawati,51,9

A. Sevigny,37 D. A. Shaddock,20 S. Shah,51,9 M. S. Shahriar,82 M. Shaltev,8 Z. Shao,1 B. Shapiro,40 P. Shawhan,62

A. Sheperd,16 D. H. Shoemaker,10 D. M. Shoemaker,63 K. Siellez,52,63 X. Siemens,16 D. Sigg,37 A. D. Silva,11 D. Simakov,8

A. Singer,1 L. P. Singer,68 A. Singh,29,8 R. Singh,2 A. Singhal,12 A. M. Sintes,66 B. J. J. Slagmolen,20 J. R. Smith,22

N. D. Smith,1 R. J. E. Smith,1 E. J. Son,125 B. Sorazu,36 F. Sorrentino,46 T. Souradeep,14 A. K. Srivastava,95 A. Staley,39

M. Steinke,8 J. Steinlechner,36 S. Steinlechner,36 D. Steinmeyer,8,17 B. C. Stephens,16 R. Stone,85 K. A. Strain,36

N. Straniero,65 G. Stratta,56,57 N. A. Strauss,78 S. Strigin,48 R. Sturani,120 A. L. Stuver,6 T. Z. Summerscales,128 L. Sun,84

P. J. Sutton,91 B. L. Swinkels,34 M. J. Szczepańczyk,97 M. Tacca,30 D. Talukder,58 D. B. Tanner,5 M. Tápai,96 S. P. Tarabrin,8

A. Taracchini,29 R. Taylor,1 T. Theeg,8 M. P. Thirugnanasambandam,1 E. G. Thomas,44 M. Thomas,6 P. Thomas,37

K. A. Thorne,6 K. S. Thorne,76 E. Thrane,113 S. Tiwari,12 V. Tiwari,91 K. V. Tokmakov,105 C. Tomlinson,86 M. Tonelli,18,19

C. V. Torres,85,‡ C. I. Torrie,1 D. Töyrä,44 F. Travasso,32,33 G. Traylor,6 D. Trifirò,21 M. C. Tringali,89,90 L. Trozzo,129,19

M. Tse,10 M. Turconi,52 D. Tuyenbayev,85 D. Ugolini,130 C. S. Unnikrishnan,99 A. L. Urban,16 S. A. Usman,35

H. Vahlbruch,17 G. Vajente,1 G. Valdes,85 N. van Bakel,9 M. van Beuzekom,9 J. F. J. van den Brand,61,9 C. Van Den Broeck,9

D. C. Vander-Hyde,35,22 L. van der Schaaf,9 J. V. van Heijningen,9 A. A. van Veggel,36 M. Vardaro,41,42 S. Vass,1

M. Vasúth,38 R. Vaulin,10 A. Vecchio,44 G. Vedovato,42 J. Veitch,44 P. J. Veitch,102 K. Venkateswara,131 D. Verkindt,7

F. Vetrano,56,57 A. Viceré,56,57 S. Vinciguerra,44 D. J. Vine,49 J.-Y. Vinet,52 S. Vitale,10 T. Vo,35 H. Vocca,32,33 C. Vorvick,37

D. Voss,5 W. D. Vousden,44 S. P. Vyatchanin,48 A. R. Wade,20 L. E. Wade,132 M. Wade,132 M. Walker,2 L. Wallace,1

S. Walsh,16,8,29 G. Wang,12 H. Wang,44 M. Wang,44 X. Wang,70 Y. Wang,50 R. L. Ward,20 J. Warner,37 M. Was,7 B. Weaver,37

L.-W. Wei,52 M. Weinert,8 A. J. Weinstein,1 R. Weiss,10 T. Welborn,6 L. Wen,50 P. Weßels,8 T. Westphal,8 K. Wette,8

J. T. Whelan,112,8 S. E. Whitcomb,1 D. J. White,86 B. F. Whiting,5 R. D. Williams,1 A. R. Williamson,91 J. L. Willis,133

B. Willke,17,8 M. H. Wimmer,8,17 W. Winkler,8 C. C. Wipf,1 H. Wittel,8,17 G. Woan,36 J. Worden,37 J. L. Wright,36 G. Wu,6

J. Yablon,82 W. Yam,10 H. Yamamoto,1 C. C. Yancey,62 M. J. Yap,20 H. Yu,10 M. Yvert,7 A. Zadrożny,110 L. Zangrando,42

PRL 116, 131103 (2016) P HY S I CA L R EV I EW LE T T ER Sweek ending1 APRIL 2016

131103-9

Page 10: GW150914: The Advanced LIGO Detectors in the Era of First ...tanner/PDFS/Abbott16prl-DetectorsFirstDiscoveries.pdfFIG. 2. Interferometer configuration and test mass setup. Each arm

M. Zanolin,97 J.-P. Zendri,42 M. Zevin,82 F. Zhang,10 L. Zhang,1 M. Zhang,119 Y. Zhang,112 C. Zhao,50 M. Zhou,82 Z. Zhou,82

X. J. Zhu,50 M. E. Zucker,1,10 S. E. Zuraw,101 and J. Zweizig1

(LIGO Scientific Collaboration and Virgo Collaboration)

1LIGO, California Institute of Technology, Pasadena, California 91125, USA2Louisiana State University, Baton Rouge, Louisiana 70803, USA

3Università di Salerno, Fisciano, I-84084 Salerno, Italy4INFN, Sezione di Napoli, Complesso Universitario di Monte Sant’Angelo, I-80126 Napoli, Italy

5University of Florida, Gainesville, Florida 32611, USA6LIGO Livingston Observatory, Livingston, Louisiana 70754, USA

7Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université Savoie Mont Blanc, CNRS/IN2P3,F-74941 Annecy-le-Vieux, France

8Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover, Germany9Nikhef, Science Park, 1098 XG Amsterdam, The Netherlands

10LIGO, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA11Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, São Paulo, Brazil

12INFN, Gran Sasso Science Institute, I-67100 L’Aquila, Italy13INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy

14Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India15International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560012, India

16University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA17Leibniz Universität Hannover, D-30167 Hannover, Germany

18Università di Pisa, I-56127 Pisa, Italy19INFN, Sezione di Pisa, I-56127 Pisa, Italy

20Australian National University, Canberra, Australian Capital Territory 0200, Australia21The University of Mississippi, University, Mississippi 38677, USA

22California State University Fullerton, Fullerton, California 92831, USA23LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91400 Orsay, France

24Chennai Mathematical Institute, Siruseri 603103, India25Università di Roma Tor Vergata, I-00133 Roma, Italy

26University of Southampton, Southampton SO17 1BJ, United Kingdom27Universität Hamburg, D-22761 Hamburg, Germany

28INFN, Sezione di Roma, I-00185 Roma, Italy29Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-14476 Potsdam-Golm, Germany

30APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris,Sorbonne Paris Cité, F-75205 Paris Cedex 13, France

31Montana State University, Bozeman, Montana 59717, USA32Università di Perugia, I-06123 Perugia, Italy

33INFN, Sezione di Perugia, I-06123 Perugia, Italy34European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy

35Syracuse University, Syracuse, New York 13244, USA36SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom

37LIGO Hanford Observatory, Richland, Washington 99352, USA38Wigner RCP, RMKI, H-1121 Budapest, Konkoly Thege Miklós út 29-33, Hungary

39Columbia University, New York, New York 10027, USA40Stanford University, Stanford, California 94305, USA

41Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy42INFN, Sezione di Padova, I-35131 Padova, Italy

43CAMK-PAN, 00-716 Warsaw, Poland44University of Birmingham, Birmingham B15 2TT, United Kingdom

45Università degli Studi di Genova, I-16146 Genova, Italy46INFN, Sezione di Genova, I-16146 Genova, Italy47RRCAT, Indore, Madhya Pradesh 452013, India

48Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia49SUPA, University of the West of Scotland, Paisley PA1 2BE, United Kingdom50University of Western Australia, Crawley, Western Australia 6009, Australia

51Department of Astrophysics/IMAPP, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands52Artemis, Université Côte d’Azur, CNRS, Observatoire Côte d’Azur, CS 34229, Nice cedex 4, France

PRL 116, 131103 (2016) P HY S I CA L R EV I EW LE T T ER Sweek ending1 APRIL 2016

131103-10

Page 11: GW150914: The Advanced LIGO Detectors in the Era of First ...tanner/PDFS/Abbott16prl-DetectorsFirstDiscoveries.pdfFIG. 2. Interferometer configuration and test mass setup. Each arm

53MTA Eötvös University, “Lendulet” Astrophysics Research Group, Budapest 1117, Hungary54Institut de Physique de Rennes, CNRS, Université de Rennes 1, F-35042 Rennes, France

55Washington State University, Pullman, Washington 99164, USA56Università degli Studi di Urbino “Carlo Bo,” I-61029 Urbino, Italy57INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy

58University of Oregon, Eugene, Oregon 97403, USA59Laboratoire Kastler Brossel, UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University,

Collège de France, F-75005 Paris, France60Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland

61VU University Amsterdam, 1081 HV Amsterdam, The Netherlands62University of Maryland, College Park, Maryland 20742, USA

63Center for Relativistic Astrophysics and School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA64Institut Lumière Matière, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5306, 69622 Villeurbanne, France

65Laboratoire des Matériaux Avancés (LMA), IN2P3/CNRS, Université de Lyon, F-69622 Villeurbanne Lyon, France66Universitat de les Illes Balears, IAC3—IEEC, E-07122 Palma de Mallorca, Spain

67Università di Napoli “Federico II,” Complesso Universitario di Monte Sant’Angelo, I-80126 Napoli, Italy68NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771, USA

69Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario M5S 3H8, Canada70Tsinghua University, Beijing 100084, China

71Texas Tech University, Lubbock, Texas 79409, USA72The Pennsylvania State University, University Park, Pennsylvania 16802, USA

73National Tsing Hua University, Hsinchu City, Taiwan 30013, Republic of China74Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia

75University of Chicago, Chicago, Illinois 60637, USA76Caltech CaRT, Pasadena, California 91125, USA

77Korea Institute of Science and Technology Information, Daejeon 305-806, Korea78Carleton College, Northfield, Minnesota 55057, USA

79Università di Roma “La Sapienza,” I-00185 Roma, Italy80University of Brussels, Brussels 1050, Belgium

81Sonoma State University, Rohnert Park, California 94928, USA82Northwestern University, Evanston, Illinois 60208, USA

83University of Minnesota, Minneapolis, Minnesota 55455, USA84The University of Melbourne, Parkville, Victoria 3010, Australia

85The University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA86The University of Sheffield, Sheffield S10 2TN, United Kingdom

87University of Sannio at Benevento, I-82100 Benevento, Italy and INFN, Sezione di Napoli, I-80100 Napoli, Italy88Montclair State University, Montclair, New Jersey 07043, USA

89Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy90INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy

91Cardiff University, Cardiff CF24 3AA, United Kingdom92National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

93School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom94Indian Institute of Technology, Gandhinagar Ahmedabad, Gujarat 382424, India

95Institute for Plasma Research, Bhat, Gandhinagar 382428, India96University of Szeged, Dóm tér 9, Szeged 6720, Hungary

97Embry-Riddle Aeronautical University, Prescott, Arizona 86301, USA98University of Michigan, Ann Arbor, Michigan 48109, USA

99Tata Institute of Fundamental Research, Mumbai 400005, India100American University, Washington, D.C. 20016, USA

101University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA102University of Adelaide, Adelaide, South Australia 5005, Australia103West Virginia University, Morgantown, West Virginia 26506, USA

104University of Biał ystok, 15-424 Biał ystok, Poland105SUPA, University of Strathclyde, Glasgow G1 1XQ, United Kingdom

106IISER-TVM, CET Campus, Trivandrum, Kerala 695016, India107Institute of Applied Physics, Nizhny Novgorod, 603950, Russia

108Pusan National University, Busan 609-735, Korea109Hanyang University, Seoul 133-791, Korea

110NCBJ, 05-400 Świerk-Otwock, Poland111IM-PAN, 00-956 Warsaw, Poland

PRL 116, 131103 (2016) P HY S I CA L R EV I EW LE T T ER Sweek ending1 APRIL 2016

131103-11

Page 12: GW150914: The Advanced LIGO Detectors in the Era of First ...tanner/PDFS/Abbott16prl-DetectorsFirstDiscoveries.pdfFIG. 2. Interferometer configuration and test mass setup. Each arm

112Rochester Institute of Technology, Rochester, New York 14623, USA113Monash University, Victoria 3800, Australia

114Seoul National University, Seoul 151-742, Korea115University of Alabama in Huntsville, Huntsville, Alabama 35899, USA

116ESPCI, CNRS, F-75005 Paris, France117Università di Camerino, Dipartimento di Fisica, I-62032 Camerino, Italy

118Southern University and A&M College, Baton Rouge, Louisiana 70813, USA119College of William and Mary, Williamsburg, Virginia 23187, USA

120Instituto de Física Teórica, University Estadual Paulista/ICTP South American Institute for Fundamental Research,São Paulo, São Paulo 01140-070, Brazil

121University of Cambridge, Cambridge CB2 1TN, United Kingdom122IISER-Kolkata, Mohanpur, West Bengal 741252, India

123Rutherford Appleton Laboratory, HSIC, Chilton, Didcot, Oxon OX11 0QX, United Kingdom124Whitman College, 345 Boyer Avenue, Walla Walla, Washington 99362 USA

125National Institute for Mathematical Sciences, Daejeon 305-390, Korea126Hobart and William Smith Colleges, Geneva, New York 14456, USA

127Janusz Gil Institute of Astronomy, University of Zielona Góra, 65-265 Zielona Góra, Poland128Andrews University, Berrien Springs, Michigan 49104, USA

129Università di Siena, I-53100 Siena, Italy130Trinity University, San Antonio, Texas 78212, USA

131University of Washington, Seattle, Washington 98195, USA132Kenyon College, Gambier, Ohio 43022, USA

133Abilene Christian University, Abilene, Texas 79699, USA

†Deceased, May 2015.‡Deceased, March 2015.

PRL 116, 131103 (2016) P HY S I CA L R EV I EW LE T T ER Sweek ending1 APRIL 2016

131103-12