gs portfolio review final 3 - nsffinal 2 gs portfolio review budget implications of the prc...

148
Investments in Critical Capabilities for Geospace Science 2016 to 2025 A Portfolio Review of the Geospace Section of the Division of Atmospheric and Geospace Science Requested by the Advisory Committee for Geosciences National Science Foundation Report submitted to George M. Hornberger | Chair, Advisory Committee for Geosciences Roger Wakimoto | Assistant Director for the Directorate for Geosciences by the Portfolio Review Committee Daniel N. Baker, Jorge Chau, Christina Cohen, Sarah Gibson, Joseph Huba, Mona Kessel, Delores Knipp, Louis Lanzerotti, William Lotko (Chair), Patricia Reiff, Alan Rodger, Joshua Semeter (GEO/Advisory Committee Liaison), Howard Singer on February 5, 2016 FINAL | Accepted and publicly released by the NSF Advisory Committee for Geosciences on April 14, 2016

Upload: others

Post on 20-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  i  GS Portfolio Review  

Investments in Critical Capabilities for

Geospace Science 2016 to 2025

A Portfolio Review of the Geospace Section

of the Division of Atmospheric and Geospace Science

Requested by the Advisory Committee for Geosciences

National Science Foundation

Reportsubmittedto

GeorgeM.Hornberger|Chair,AdvisoryCommitteeforGeosciences

RogerWakimoto|AssistantDirectorfortheDirectorateforGeosciences

bythePortfolioReviewCommittee

DanielN.Baker,JorgeChau,ChristinaCohen,SarahGibson,JosephHuba,MonaKessel,DeloresKnipp,LouisLanzerotti,WilliamLotko(Chair),PatriciaReiff,AlanRodger,JoshuaSemeter(GEO/AdvisoryCommitteeLiaison),HowardSinger

onFebruary5,2016

 

FINAL | Accepted and publicly released by the NSF Advisory Committee for Geosciences on April 14, 2016

Page 2: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  ii  GS Portfolio Review  

 

Page 3: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  i  GS Portfolio Review  

Table of Contents     

Executive Summary ............................................................................................................................. 1 

1 Introduction  ..................................................................................................................................... 5 

2 Review Process and Guiding Principles .............................................................................................. 7 

2.1 Committee Charge .............................................................................................................................. 7 

2.2 Review Process  ................................................................................................................................... 8 

2.3 Community Input ................................................................................................................................ 9 

2.4 Guiding Principles  ............................................................................................................................. 11 

3 Budget Overview and Projections  ................................................................................................... 14 

3.1 Budget Summary for Current GS Investments .................................................................................. 14 

3.2 Budget Implications of DS Recommendations .................................................................................. 14 

3.3 Future Impacts of Past GS Budget Trends  ........................................................................................ 16 

3.4 Additional NSF Investments in Geospace Science  ........................................................................... 17 

4 Capabilities for a Vital Profession  ................................................................................................... 19 

4.1 Proposal Pressure.............................................................................................................................. 19 

4.2 FDSS and CAREER Awards ................................................................................................................. 24 

4.3 AGS Postdoctoral Research Fellowship Program .............................................................................. 25 

4.4 NSF Graduate Research Fellowships Program .................................................................................. 25 

4.5 Graduate Summer Schools and Workshops ..................................................................................... 25 

4.6 Research Experiences for Undergraduates Program  ....................................................................... 26 

4.7 Workforce Diversity .......................................................................................................................... 27 

4.8 PhD Employment Opportunities  ...................................................................................................... 28 

4.9 GS CubeSat Program and Education ................................................................................................. 29 

4.10 Public Outreach   ............................................................................................................................. 30 

4.11 Survey of Earned Doctorates .......................................................................................................... 30 

5 Science Goals and Capabilities for SSP ............................................................................................. 31 

5.1 Atmosphere‐Ionosphere‐Magnetosphere Interactions .................................................................... 32 

5.2 Solar Wind‐Magnetosphere‐Ionosphere Interactions ...................................................................... 37 

5.3 Solar and Heliospheric Physics .......................................................................................................... 40 

5.4 Space Weather and Prediction ......................................................................................................... 45 

5.5 Summary of Critical Capabilities ....................................................................................................... 48 

 

Page 4: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  ii  GS Portfolio Review  

6 GS Core and Strategic Grants Programs  .......................................................................................... 52 

6.1 General Aspects of GS Grants Programs ........................................................................................... 54 

6.1.1 Core Grants Programs ........................................................................................................... 55 

  6.1.2 Strategic Grants Programs .................................................................................................... 55 

6.2 Aeronomy .......................................................................................................................................... 56 

  6.2.1 AER Core Program ................................................................................................................. 57 

  6.2.2 CEDAR ................................................................................................................................... 57 

6.3 Magnetospheric Physics .................................................................................................................... 58 

   6.3.1 MAG Core Program ............................................................................................................... 58 

  6.3.2 GEM ....................................................................................................................................... 59 

6.4 Solar‐Terrestrial Research ................................................................................................................. 59 

  6.4.1 STR Core Program ................................................................................................................. 60 

  6.4.2 SHINE ..................................................................................................................................... 61 

6.5 Integrative Geospace Science ........................................................................................................... 61 

  6.5.1 Space Weather Research ...................................................................................................... 62 

  6.5.3 Grand Challenge Projects ...................................................................................................... 64 

6.6 CubeSat Program .............................................................................................................................. 66 

6.7 Senior Review of GS Grants Programs .............................................................................................. 70 

7 GS Facilities and Infrastructure ........................................................................................................ 73 

7.1 Recent History of GS Facilities .......................................................................................................... 73 

7.2 Characteristics of GS Facilities .......................................................................................................... 74 

7.2.1 Definition of a Community Facility ............................................................................................ 74 

7.2.2 Community Facility: Funding and relationship with NSF  .......................................................... 75 

7.2.3 Class 1 and Class 2 Community Facilities  .................................................................................. 75 

7.3 Current Investments and Capabilities ............................................................................................... 75 

7.3.1 Evidence Used by the PRC ......................................................................................................... 75 

7.3.2 Class 1 Facilities: Summary  ....................................................................................................... 76 

7.3.3 Class 1 Facilities: Findings and recommendations  .................................................................... 76 

7.3.4 Class 2 Facilities: Findings and recommendations  .................................................................... 80 

7.4 New Investments and Capabilities .................................................................................................... 82 

7.4.1 Innovation and Vitality Program ................................................................................................ 82 

7.4.2 EISCAT and EISCAT‐3D  ............................................................................................................... 83 

7.4.3 Distributed Arrays of Small Instruments (DASI)  ........................................................................ 84 

Page 5: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  iii  GS Portfolio Review  

7.4.4 Data Systems, Products and Management  ............................................................................... 85 

7.5 Facility Extensions ............................................................................................................................. 86 

7.5.1 Advisory/User Groups ................................................................................................................ 86 

7.5.2 Scientific Research within Facilities Awards  ............................................................................. 86 

7.6 Non‐GS Funded Instrumentation ...................................................................................................... 87 

7.7 Midscale Projects Program ............................................................................................................... 87 

7.8 Facilities Senior Review ..................................................................................................................... 88 

8 Partnerships and Opportunities  ...................................................................................................... 91 

8.1 NSF Intra‐Agency Partnerships and Opportunities ........................................................................... 91 

8.1.1 AGS Programs  ........................................................................................................................... 91 

8.1.2 Programs within Geoscience Directorate  ................................................................................. 92 

8.1.3 Cross‐Directorate Programs ....................................................................................................... 94 

8.1.4 Foundation Wide ....................................................................................................................... 95 

8.2 NSF Inter‐Agency Partnerships ......................................................................................................... 98 

8.2.1 Department of Defense  ............................................................................................................ 98 

8.2.2 Department of Energy  .............................................................................................................. 99 

8.1.3 NASA .......................................................................................................................................... 99 

8.1.4 NOAA ........................................................................................................................................ 101 

8.3 International Partnerships .............................................................................................................. 102 

9 Recommended GS Portfolio .......................................................................................................... 104 

9.1 Balance of Investments  .................................................................................................................. 104 

9.2 Core Grants Programs  .................................................................................................................... 104 

9.3 Strategic Grants Programs  ............................................................................................................. 107 

9.4 GS Facilities Program  ...................................................................................................................... 109 

9.5 Prioritizations  ................................................................................................................................. 113 

9.6 GS Management Processes ............................................................................................................ 114 

Appendices  ....................................................................................................................................... A1 

A. Committee Charge ............................................................................................................................ A1 

B. Committee Membership .................................................................................................................. A3 

C. PRC RFIs to Facilities PIs ................................................................................................................... A4 

D. PI Diversity Data for Targeted Grants Programs ............................................................................ A11 

E. Summary of GS CubeSat Missions .................................................................................................. A17 

F. Membership in EISCAT: Categories and Conditions ....................................................................... A18 

G. List of ACRONYMS .......................................................................................................................... A20 

 

Page 6: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  iv  GS Portfolio Review  

Page 7: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  1  GS Portfolio Review  

Executive Summary 

TheGeospaceSection(GS)oftheDivisionofAtmosphericandGeospaceSciences(AGS)oftheNa‐tionalScienceFoundationservesauniqueandimportantroleinadvancingthefrontiersofknowledgeofsolar‐terrestrialinteractions,theEarth’sspaceenvironmentandtheeffectsofthespaceenvironmentontheNation’stechnologies.GSinvestmentsinstate‐of‐the‐artinstrumentationandfacilitiesenablescientificdiscoveriesofthephysics,chemistryanddynamicsofEarth’supperatmosphereandexosphereandtheSun.GSfacilitiesprovidecrucialmeasurementsthatcanonlybeobtainedfromground‐basedinstrumentsandthatcomplementthosefromspace‐basedplatforms.

TheGSgrantsprogramsarerecognizedwithinthespacesciencecommunityasaprimarysourceoffundingtosupportideation,incubation,advancementandexploitationofnewmethodsandcon‐ceptsthathavethecapacitytotransformourunderstandingofgeospace,theinterplanetarymedium,theSunandsolar‐terrestrialandsolar‐planetaryinteractions.TheGScoregrantsprogramsupportscuriosity‐drivenresearchofthehighestquality.Itiscomplementedbyaninnovativetargetedgrantsprogramwhichthegeospacecommunityusestoinformandguidecollaborativeresearchstrategiesforexpandingtheenvelopeofnewknowledge.TheGSCubeSatprogramiswidelyrecognizedasbe‐inginthevanguardoffrontierscienceusinginstrumentsdeployedontinysatelliteplatforms.

GSledtheoriginalinteragencyeffortthatcreatedtheNationalSpaceWeatherProgram,apart‐nershipbetweenacademia,industryandgovernment.TheNationalSpaceWeatherActionPlanre‐leasedinOctober2015bytheOfficeofScienceandTechnologyPolicyassignsprimaryresponsibilitytoNSF,inpartnershipwithNASA,toprioritizeandidentifyopportunitiesforresearchanddevelop‐menttoenhancetheunderstandingofspaceweatheranditssources,includingdevelopingandtest‐ingmodelsofthecoupledsun‐Earthsystem.InordertomeetthischallengeGSwillneedtoaugmentitsfutureinvestmentsforresearchintothescienceofspaceweather.

ThisPortfolioReviewCommittee(PRC)oftheGeospaceSectionwaschargedbytheNSFAdvisoryCommitteeforGeosciencestoreconcilethemostpromisingandessentialsciencestrategiesandcriti‐calcapabilitieswiththesciencegoalsofthe2013DecadalSurvey(DS)forSolarandSpacePhysics(SSP),andoftheGeospaceSection.GrowthinfutureNSFbudgetsforgeospacesciencewouldcer‐tainlymakethisassignmentstraightforward,withsatisfyingoutcomesforpracticallyeverysegmentofthegeospaceresearchcommunity.However,thecommitteechargedwiththisreviewwasgivenamorefiscallydemandingconstraint:Assumeaninflation‐adjusted,flatbudgetforGSoverthenextdecade.

GSinvestmentsinfacilitiesandgrantsprograms,forthemostpart,arealreadywell‐positionedtoenablesignificantprogressinachievingthe2013DSsciencegoals.However,theSurveyanticipatedincreasingimportanceandfutureemphasisonintegrativeandcross‐disciplinaryscience,ofwhichspaceweatherisaprimeexample.Thus,thePortfolioReviewgaveparticularattentiontothealign‐mentandbalanceinGSinvestmentswiththisvectoroftheSurvey.

AfterassessingthecriticalcapabilitiesneededtomakeprogressinachievingDSgoals,thePRCexaminedindetailallGSprogramsandfacilities,theirbalanceandabilitytoprovidetherequiredca‐pabilities.ThecommitteefindsthattheSection’sprovisionofcriticalcapabilitiesforintegrativeandcross‐disciplinarysciencemustbeaugmentedifgeospaceresearchistointersectthefutureenvi‐sionedintheDecadalSurvey.Doingsowillrequirechangesinthebudgetsofsomeprogramelementsandfacilitiesasrecommendedbelow.“Freeenergy”toimplementnewprogramsandfacilitiesthatbetteraddressDSgoalsisderivedmainlyfromredirectingsupportfromsomecurrentfacilitiesintonewfacilitiesandprograms.

Page 8: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  2  GS Portfolio Review  

BudgetimplicationsofthePRCrecommendationsaregivenattwosnapshotsinthefuture(Chap‐ter9).Thefirstsnapshotat2020showsthebudgetsofnewprogramelementsandfacilities(to‐getherwithunchangedprogramelementsandfacilities)thataremadepossiblebyreprogrammingelementsofthe2015budget.The2025budgetsnapshotcarriesthe2020budgetforwardwithlessspecificity.PRCrecommendationsforvariousGSprogramsandfacilitiesfollow.

CoreGrantsPrograms.MakingprogressonDSsciencegoalswouldbeimpossiblewithoutvi‐brantresearchgrantsprogramsthatsupport,sustainandstimulateanovelscientificenterprise.To‐getherwiththespecialGSprogramforFacultyDevelopmentinSpaceSciences(FDSS),theyarealsoessentialinpromotingavitalprofession.TheGSshouldmaintaintheexistingbudgetshareforthecoreresearchprogramsinAeronomy,MagnetosphericPhysicsandSolar‐TerrestrialResearchandtheFDSSprogramwithintheassumedinflation‐adjusted2015level(orgreater)forthenextdec‐ade.Itshoulduseproposalpressureinconcertwithportfoliobalancetodetermineanoptimumdis‐tributionofinvestmentsacrossthethreeprograms.

TargetedGrantsPrograms.TheGSshouldmaintainthecombinedcurrentfundinglevelforitsthreetargetedresearchgrantsprograms–CouplingEnergeticsandDynamicsofAtmosphericRe‐gions(CEDAR),GeospaceEnvironmentModeling(GEM)andSolar,HeliosphericandInterplanetaryEnvironment(SHINE)–overthenextfiveyears.Whiledoingso,itshouldmonitorthenexusofcross‐disciplinarycollaborativeandintegrativeresearchwithintheseprograms,includingspaceweatherresearch.Beyond2020,orsoonerifadditionalfundingbecomesavailable,theGSshouldreprogramaportionofthetargetedresearchbudgetintoanewprogramelement,IntegrativeGeospaceScience(IGS).

SpaceWeatherModelingProgram.TheGSshouldcontinueitscurrentinvestmentinspaceweathermodeling(currentlyincollaborationwiththeNASALivingWithaStarprogram),atleastun‐til2020.Beyond2020,orsoonerifadditionalfundingcanbeidentified,andinconcertwiththerec‐ommendedGrandChallengeProjectsprogram(describedbelow),thecombinedbudgetforspaceweatherresearchandgrandchallengeprojectscomprisingIGSshouldbeincreasedsignificantly.Evenintheassumedflat‐budgetscenario,growthintheIGSprogramby60‐70%isexpectedbetween2020and2025withtheaforementionedreprogrammingfromtargetedgrantsprograms.

CubeSatProgram.TheGSCubeSatprogramhasattractednationalattentionbydemonstratingthefeasibilityofusingtinyandrelativelyinexpensivesatelliteplatformsfornovelmeasurementsingeospace.WiththerecentgrowinginterestfromothergovernmentagenciesinCubeSatscience,andfromindustryinthedevelopmentandprovisionofstandardCubeSatplatforms,itmaybetooearlytoassessthelong‐termvaluepropositionofconductingCubeSatsciencewithintheGSanditscurrentmodeofmissiondevelopment.TheGSCubeSatprogramhasbornesignificantcostsforCubeSatengi‐neering,whichdetractsfromtheSection’sprimaryscientificmission.However,developmentofCu‐beSatmissionsinuniversitieshasbecomeasignificantvehicleforgeneratinginterestamongunder‐graduatesinSTEMstudies.TheGSshouldcontinueitsCubeSatprogramwithincreasedemphasisonCubeSatscientificmissionconceptsandinstrumentdevelopmentandlessemphasisonengineeringofCubeSatbusesandcommunicationsystems.Withlessengineeringrequired,therecommendedbudgetfortheGSCubeSatprogramcandecreasebyonethird.InterestinCubeSatscienceisex‐pectedtoaccruemorebroadlyacrossNSFintheGeoscience,EngineeringandEducationDirectoratesandatNASAandotheragencies.TheGSshouldpursueopportunitiesforCubeSatcollaborationswiththeaimofleveragingitsinvestmentinthisemergingcapability.

FacilitiesProgram.GSfacilities,includingClass1andClass2facilities(definedinChapter7),currentlyaccountfor38%oftotalGSinvestments.ThefacilitiesinvestmentrecommendedbythePRCdecreasesto36%by2020andstabilizesatthisvaluefromthereon.Althoughthedecrementin

Page 9: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  3  GS Portfolio Review  

thefacilitiesbudgetismodest,asignificantredistributionoffundswithinthefacilitiesportfolioisrecommended.

ThecurrentlysupportedGSfacilitiesinclude:

Class1Facilities:IncoherentscatterradarfacilitiesincludeArecibo,Jicamarca,MillstoneHill,PFISR,RISR‐NandSondrestrom.TheConsortiumofResonanceandRayleighLidars(CRRL)isalsofundedbytheGSFacilitiesprogram.

Class2Facilities:Thesecommunityfacilitiesincludedataandmodelingenvironments(AM‐PERE,CCMC,SuperMag)andadistributedarrayofcoherentscatterradars(SuperDARN).Theyarecurrentlymanagedbytheprogrammanagerforspaceweatherresearch.

TheCRRLoperatesasaPI‐ledresearchprojectanddoesnotmeetthecriteriausedbythePRCforafacility.ThePRCrecommendsthatfundingfortheinnovativescienceaccomplishedbyCRRLbede‐rivedfromthecoreortargetedgrantsprogramsthroughastandardcompetitivepeerreviewpro‐cess.Theabovenoted2%reductioninthefacilitiesinvestmentismainlyduetotheredirectionofCRRLfundingtothegrantsprograms.

Amongtheotherfacilities,Jicamarca,PFISR,RISR‐N,AMPERE,CCMC(inpartnershipwithNASA),SuperMagandSuperDARNprovidecriticalcapabilitiesthataredeemedessentialformakingprogressonDSsciencegoals.AllshouldcontinuetobefundedattheirnominalFY2015level,until2020oraninterimSeniorReviewforfacilitiesisconvened(seebelow).MillstoneHillalsoprovidesacriticalcapabilityanditsfundingshouldbesimilarlycontinued,exceptfortheportionofitsbudgetdedicatedtocommunitydatamanagement.Thesmallfraction(<10%)fordatamanagementshouldbeaddedtoapooloffunds(describedbelow)forfuturecompetitiontodevelopandmanagecommu‐nitydatasystems,whicheventuallyshouldalsobecomeseparateClass2facilities.

TheSondrestromISRprovidesimportantdiagnosticsintheionosphericcuspregion,equa‐torwardofthemagneticpole.ThiscapabilityisneededtoachieveDSsciencegoals,butSon‐drestrom’smaintenanceandoperationalcosts,anditsolderKlystron‐tubeanddishtechnology,di‐minishitsvaluepropositionintheportfolio.Theimportanceofinternationalcooperationinobserv‐ingtypicallyfast‐evolving,globalgeospacedynamicswaswellestablishedevenbeforetheInterna‐tionalGeophysicalYearof1957‐58.ItisrecommendedthattheGSbeginforginganewpartnershipwiththeEuropeanIncoherentScatterScientificAssociation(EISCAT)andterminatesupportforSondrestromwhenitscurrentcontinuinggrantiscomplete.ThecostoffullUSpartnershipinEISCATislessthanhalfthecostofSondrestrom,soGSresourceswillbesignificantlyleveragedifISRobserv‐ingtimeanddataaccessforUSinvestigatorscanbeadequatelymetbyjoiningEISCAT.ThelocationoftheEISCAT‐SvalbardISRrelativetoPFISRandRISR‐Nofferssomegeographicaladvantagesrela‐tivetoSondrestromindiagnosingday‐nightflowsacrossthepolarcap.Inaddition,anewcapabilityforauroralscience,EISCAT‐3D,isexpectedtobecomeoperationalby2020.ItsvolumetricimagingwillleapfrogtheAMISRphased‐arraytechnologydevelopedwithGSsupporttwodecadesago.

Theworld’smostsensitiveISRatAreciboObservatory(AO)providescapabilitiesprimarilytoaddresstheDSsciencegoalto“discoverandcharacterizefundamentalprocessesthatoccurbothwithintheheliosphereandthroughouttheuniverse”,specificallyinEarth’sionosphereandthermo‐sphere.Provisionofthiscapabilityrequirednearly10%oftheGSbudgetin2015.Thecostofthisin‐vestmentsignificantlydistortsthebalanceintheGSportfolioandcannotbejustifiedgoingforwardifGSistosupportactivitiesthatwilloptimallyimplementtheDSrecommendations.ThePRrecom‐mendsa73%reductionintheGScontributiontoAOtobringitscostapproximatelyinlinewithpro‐posalpressureandallocationofobservingtimeforGSinvestigatorsrelativetootherAOusers.

Page 10: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  4  GS Portfolio Review  

TherecommendedchangesinGSinvestmentsinAOandSondrestrom,discountedbytheex‐pectedcostofjoiningEISCAT,open10%intheGSbudgetforimplementationofDSrecommenda‐tionsforNSF.Thiswedgefallsshortoftheestimated25%increaseintheGSbudgetrequiredforfullimplementationofDSrecommendations(Section3.2),butitdoesallowinitiationofimportantnewprogramelementsthatwillprovidecriticalcapabilities.

ThesenewprogramelementsincludeaGrandChallengeProjects(GCP)program,newpro‐gramsforDataSystemsandforDistributedArraysofScientificInstruments(DASI),andanInno‐vationandVitality(I&V)program.

– TheDSspecificallyrecommendedaGCPprogramtomakeprogressonlargecross‐disciplinaryproblems.Suchaprogramisdeemedcriticalinaddressingmanybasicscienceissuesofgeospace,theinterplanetarymediumandtheSun,aswellasintegrativesciencecuttingacrossthem.

– TheDSidentifiedtheneedforanadvanceddataenvironmentthatdrawstogethernewandar‐chivedsatelliteandground‐basedSSPdatasetsandcomputationalresults.TherecommendedGSDataSystemsprogramwillsupportdevelopmentofoneormorenewClass2facilitiesthatexploitemerginginformationtechnologiesforintegratedsoftwareanddataanalysistools,GSdatamin‐ingandassimilation.

– DASInetworksareessentialtoaddresstheDSsciencegoalto“determinethedynamicsandcou‐plingofEarth’smagnetosphere,ionosphere,andatmosphereandtheirresponsetosolarandter‐restrialinputs.”TherecommendedGSDASIprogramemphasizestheimportanceofdistributedmeasurementsystemsingeospacescience.Thepeer‐reviewedprojectsreceivingsupportfromthisprogramareexpectedtobecomeClass2facilities.

– IninterviewingPIsofGSfacilitiesthePRCheardrepeatedlythatfundsforsystemupgrades,in‐cludingsoftwareanddatasystems,havebeenstretchedthininrecentyears.Usingapeer‐reviewprocesstodetermineresourceallocations,therecommendedI&Vprogramwillmaintainthestate‐of‐the‐artinGSfacilitiesandmodels.Insodoing,thisprogramfulfillstheDSrecommenda‐tiontocompletethecurrentprogram.

Separatemid‐decadalseniorreviewsof(1)theGScoreandstrategicgrantsprogramsand(2)theGSfacilitiesprogram,includingbothClass1andClass2facilities,arerecommendedtoevaluatecon‐tinuingalignmentoftheprogramswithSurvey,SectionandDivisiongoalsandtoidentifyandpriori‐tizeemergingopportunitiesforinnovationintheprograms.

InidentifyinggapsinproposalopportunitiesandfundinglevelsthatlimittheeffectivenessofSSPresearch,theDSrecommendedtheadditionofamidscalefundingcapabilityspecificallyforNSF.TheDS‐envisionedMidscaleProjectsProgramwouldenablecompetitionandsupportforhigh‐prioritymidscaleprojectsleadingtonext‐generationground‐basedobservatorieswithindividualprojectcostsrangingfrom$4‐30M(severalcandidatesarelistedinSection7.7).ThisprogramdoesnotfitintothebudgetenvelopegiventothePRC,nordothefullcostsofDSrecommendationsforCubeSat,SpaceWeatherandGrandChallengeProjectsprograms.

ShouldfutureGSbudgetsbecomemoreoptimisticthancurrent,aMidscaleProjectsProgramwouldbecomeahighprioritytogetherwithmorecomprehensiveimplementationoftheseotherpro‐grams.TherecommendedSeniorReviewswouldbeaneffectiveprocessfordeterminingif,ortheex‐tenttowhich,additionalinvestmentsmightbeadaptedtoaccommodatemorefullyvestedcoreandstrategicgrantsprogramstogetherwithnewmidscaleprojectsandtheirfuturedemandontheGSfacilitiesbudget.

Page 11: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  5  GS Portfolio Review  

Chapter 1. Introduction

GeospacescienceunderwentaremarkabletransformationinthedecadebetweenthelasttwoDecadalSurveysforSolarandSpacePhysics(SSP).In2003,anascentthoughnotquitearticulatedconceptofgeospaceasasystemappearsasoneoftheSurvey’stoplevelsciencechallenges.Inthe2013Survey,thedomainscomprisinggeospacearenowrecognizedaselementsofacoupleddy‐namicalsystemextendingfromtheupperatmosphere,throughnear‐Earthandinterplanetaryspace,totheSun.Theoriginsofsolarvariability,thepredictabilityofspaceweatherandfundamen‐talplasmaprocessesarecommonthemes.

Todaygeospacesciencecontinuesitsarcofdiscoveryintothebasicphysicalandchemicalpro‐cessesthatgovernthedynamicsoftheSun,theinterplanetarymedium,themagnetosphereandionosphereandtheupperatmosphereofEarth.Wehavelearnedduringtherecent,unusuallyquietsolarminimumthatthethermosphereandionospherearestronglyforcednotonlyfromabovebythemagnetospherebutalsobytheatmospherefrombelow.Escapingoutflowsofionosphericions,stimulatedbyintenseelectrodynamicforcingfromthesolarwind‐magnetosphereinteraction,mod‐ifyfundamentalpropertiesofEarth’sionosphereandmagnetosphere,includingtheimportantmag‐neticreconnectionprocess.Wehavelearnedtointerpretthegeoeffectiveimpactsofdifferentinter‐planetarystructuresandcantracetheiroriginsbacktodynamiceventsandregionsattheSun.De‐spitethesesuccesses,wearestillunabletopredictoneofthemostimportantpropertiesofinter‐planetarydisturbancesthatdeterminetheirgeoeffectiveness–thenorth‐southcomponentoftheembeddedmagneticfields.Wenowrealizethatthegeospacesystembehavesdifferentlythanasim‐plesuperpositionofitsconstituentparts,andthiskeyrealizationunderpinsourfutureabilitytopredicttheimpactsofspaceweather.

TheNationalScienceFoundationhasendowedavibrantandinnovativecommunityofspacescientistswithleading‐edgetoolsforscientificinvestigation.Usingnewtechnologiesgeospacesci‐entistsaredeployingincreasinglysensitiveground‐basedinstrumentsandobservatoriestodis‐coverpreviouslyinvisiblestructuresintheupperatmosphereandSun.Widelydistributednet‐worksofground‐basedinstrumentsarehelpingtoresolvespace‐timeambiguityinsparsemeasure‐mentsofthespaceenvironment.Complexandincreasinglyrealisticnumericalsimulationsper‐formedonthemostadvancedsupercomputersandcombinedwithdataassimilationenableexplo‐rationofregionssuchastheinteriorofthesunthatarepracticallyinaccessibletodirectmeasure‐ment;andnovelnumericalexperimentsarerevealingthecausalchainofeventsresponsibleforma‐jordisturbancesingeospacesuchasgeomagneticandionosphericstorms.

Thegeospacesciencecommunity’sambitiousagendafordiscoveryandsynthesisofnewknowledgeappearstohavereachedalimitintheNation’sabilitytosustainitatanevergrowingpace.ThisPortfolioReview(PR)oftheGeospaceSection(GS)ofNSF’sDivisionofAtmosphericandGeospaceScience(AGS)reconcilesthemostpromisingandessentialsciencestrategiesandmeas‐urementcapabilitieswiththescientificaspirationsprioritizedinthe2013DecadalSurvey(DS).

Geospacephenomenaareglobalinnature,incontrastwithtroposphericdynamics,andtheyex‐hibitplanetary‐scalechangesontimescalesofanhourorless.ThuswhetherNorthAmericaisaf‐fectedbyanensuingspaceweathereventisdeterminedlargelybytheplanet’srotationandthetimeofimpactoftheinterplanetarydriver.Sincethestateofgeospacechangesquicklyandglobally,simultaneousmeasurementsareneededthroughoutitsextensivespatialdomainandovertheen‐tiresurfaceoftheplanet.Thisfundamentalfeaturehasengenderedaveryactiveandcollaborative

Page 12: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  6  GS Portfolio Review  

internationalresearchcommunityingeospacescience.Withjudiciousconsiderationofthesyner‐giesbetweenUSandinternationalinvestmentsinthegeospacescientificenterprise,theNationalScienceFoundation(NSF)cansubstantiallyleverageitsimpactinthisfield.Thisreviewrecom‐mendsabalancedportfolioofGSinvestmentsincriticalcapabilities,anditidentifiesnaturalsyner‐giesthatcanleverageNSF’scurrentinvestmentsingeospacesciencetoallownewinitiativesinthenextdecade.

TheGeospaceSection’sleadershipofthepastdecadeinitiatedinnovativeprogramsthathavedemonstratedtheirvaluetogeospacescienceandtosociety.TheSection’sSpaceWeatherResearchandCubeSatprogramsareamongthemostoutwardlyvisibleoftheseprograms.TheCubeSatpro‐gramwasinitiatedatatimewheninexpensiveCubeSatmissionsandfrontiersciencewereconsid‐eredincompatible.AndyetNSF’sGeospaceSectionledthechargeindemonstratingviabilitywhensoundengineeringpracticeisfollowed,forwhichitisnowrecognizedasapioneerinthisarea.TheSection’seffortsinforgingaNationalSpaceWeatherProgramtwodecadesago,followedmorere‐centlywithresourcestofocustheattentionofgeospacescientistsonproblemsofsignificantna‐tionalimportance,arenowculminatingwiththeOctober2015releaseofaNationalSpaceWeatherActionPlanbytheOfficeofScienceandTechnologyPolicy.Thisactionplanelaborates18actionsforNSF,onewithNSFhavingprimaryresponsibilityandseventeentobeundertakenjointlywithotheragencies.TheGeoscienceDirectorate’sGeospaceSectionispreparedtoact,butnewre‐sourcesforspaceweatherresearchareneededtomeetthechallenge.

TheGeospaceSectionhasbeentheideainnovatorandentrepreneurialincubatorforsolarandspacephysicsformanyyears.Willitcontinuetoservethisimportantrole?

Thecommitteeofthirteenprominentgeospaceandsolarscientistschargedtoconductthisportfolioreviewhasbeentaskedspecificallywithrecommendinganoptimum,zero‐sumdistribu‐tionofGSinvestmentsthatwillenablesignificantprogressinachievingthe2013DSsciencegoalsinthenextdecade.Inconcertwiththischarge,thecommitteeassertsforthegeospacesciencecom‐munitythatNSF’sGeospaceSectionmustcontinueitscrucialroleasanentrepreneurialincubatorforgeospacescience.Theharddecisionsofthisreviewrecognizetheenormousvalueofpreviousgenerationsofcutting‐edgemeasurementtechniquesthatledtomanyscientificdiscoveries.Yetthisreviewisaboutthefutureofgeospacescienceandaboutnewmeasurementtechniques,newsimulationanddataassimilationtechniques,andnewcyberinfrastructurecapabilitiesfordataex‐ploitationofthegrowingdatabaseofheterogeneous,multi‐scalemeasurements.

ThePortfolioReviewCommittee(PRC)invitestheGeosciencesAdvisoryCommittee(ACGEO)andthegeospaceresearchcommunitytosuspenditsimpressionsofthestatusquoinreadingthisreportandjointhecommitteeinenvisioningavibrant,forward‐lookingGeospaceSectionthatmeldsthebestcurrentscientificpracticewithnewprograminnovationstotransformourunder‐standingofgeospace.

   

Page 13: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  7  GS Portfolio Review  

Chapter 2.  Review Process and Guiding Principles

2.1 Committee Charge 

ThefollowingboundaryconditionsweregiventothePRCforitsreview(seeApp.A):

AlloftheGS‐fundedactivitiesshouldbeconsideredtogetherwiththeDecadalSurveyrec‐ommendations:CoreProgramsofAeronomy,MagnetosphericPhysics,andSolarTerrestrialResearch,focusedprogramsCEDAR,GEM,andSHINE,elementsofthenewSpaceWeatherResearch&InstrumentationProgram(CubeSat,spaceweathermodeling,andothermulti‐user,spaceweather‐relatedactivities),componentsoftheGeospaceFacilitiesProgram,suchastheIncoherentScatterRadar,LidarConsortium,SuperDARNHFradars,andthoseactivitiesspecificallydesignedtoenhanceeducationalopportunities,diversity,andinterna‐tionalparticipation.

Thereviewshouldbeforward‐looking,focusingonthepotentialofallfundedfacilities,pro‐grams,andactivitiesfordeliveringthedesiredscienceoutcomesandcapabilities(whiletakingintoaccountrespectivepastperformances)andconsideringthevalueoffundedac‐tivitiesintermsofbothintellectualmeritandbroaderimpacts.

Thereviewshouldassumebudgetscenarios(tobeprovidedbyGS)toencompassthepe‐riodfrom2016through2025,andconsiderthecostsof(i)continuingtheexistingobserv‐ingcapabilitiesandscience‐fundedprograms,aswellasof(ii)newfacilitiesandprograms,includingthoserecommendedintheSurveyandotherstheReviewCommitteemaywishtointroduce.

TheCommittee’sdeliberationsshouldtakeintoconsiderationthenationalandinternationalGeospaceScienceslandscapeandtheconsequencesofitsrecommendationsfordomesticandinternationalpartnerships.

Withtheseguidelines,thePRCwasaskedtoconstructitsrecommendationsaroundtwothemes:

1. Recommendthecriticalcapabilitiesneededovertheperiodfrom2016to2025thatwouldenableprogressonthescienceprogramarticulatedinChapter1ofthe2013DecadalSurveyforSolarandSpacePhysics.Therecommendationsshouldencompassnotonlyobserva‐tionalcapabilities,butalsotheoretical,computational,andlaboratorycapabilities,aswellascapabilitiesinresearchsupport,workforce,andeducation.

2. Recommendthebalanceofinvestmentsinthenewandinexistingfacilities,grantspro‐grams,andotheractivitiesthatwouldoptimallyimplementtheSurveyrecommendationsandachievethegoalsoftheGeospaceSectionasarticulatedintheAGSDraftGoalsandOb‐jectivesDocument(includingNRC/BASCReview,2014)andtheGEO/AdvisoryCommitteeDocument"DynamicEarth:GEOImperatives&Frontiers2015‐2020"(NSF,2014).Theserecommendationsmayincludeclosureordivestmentofsomefacilities,aswellastermina‐tionofprogramsandotheractivities,and/ornewinvestmentsenabledasaresult.Theover‐allportfoliomustfitwithinthebudgetaryconstraintsprovidedtotheCommittee,givenastheGSFY2015budgetof$43.5M,extendingoutto2025withinflationadjustmentbutotherwisenoaugmentation.

Page 14: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  8  GS Portfolio Review  

TheCommitteewasfurtherinstructedtoconsidernotonlywhatnewactivitiesneedtobeintro‐ducedoraccomplished,butalsowhatactivitiesandcapabilitieswillbepotentiallylostinenablingthesenewactivitiesanddiscontinuingcurrentactivities.ThePRCwasaskedtoprioritizeelementsoftherecommendedportfolioinsufficientdetailtoenableGStomakesubsequentappropriatead‐justmentsinresponsetovariationsinFederalandnon‐Federalfunding.

FinallytheCommitteewasaskedtoconsidertheeffectsofitsrecommendationsonthefuturelandscapeoftheU.S.Geospacecommunity.Therecommendedportfolioandanychangesshouldbeviableandleadtoavigorousandsustainablefuture.Inparticular,theCommitteeshouldexaminehowtherecommendedportfoliosupportsanddevelopsaworkforcewiththerequisiteabilitiesanddiversitytoexploittherecommendedresearchandeducationinvestments.

2.2 Review Process 

ThePortfolioReviewCommitteewasappointedandchargedinlateFebruary2015.Nomina‐tionsforthePRcommitteemembershipweresolicitedfromtheGSstaffand,uponidentifyingtheCommitteeChair,theGSstaffworkedwiththeChairtoidentifythemembershipwiththegoalthatthePRCommitteewillbehighlyrespectedand,tothegreatestextentpossible,regardedasequita‐bly‐constitutedandfair‐minded,bythebroadgeospacecommunity.

Theassembledcommitteeincludesabroaddiversityofknowledgeacrossgeospacesciencethe‐ory,instrumentation,observation,computationanddata.TheCommittee'sresearchexpertisein‐cludesaeronomy,magnetosphericphysics,solarandsolar‐terrestrialphysics,spaceweatherre‐searchandinstrumentation(includingCubeSats),useofGS‐supportedfacilities,aswellasbroadknowledgeofeducationalandworkforcedevelopmentactivities.TheCommitteemembersareinvariouscareerstages,balancedbygender,ethnicity,geography,andinstitutiontypes.TheyhavebeenvettedagainstNSFpolicyforconflictsofinterest.Acommitteesizeof12‐14wasviewedasmanageablewhilestillmaintainingthedesireddiversity.

ThecommitteebeganholdingregularbiweeklyteleconsonMarch4,2015initiallytoestablishprocessandtoidentifykeyinformationneededtoinformthereview.RequestforInformation(RFI)wasfirstdirectedtoGSprogramofficerstoacquireanunderstandingoftheprogramsandfacilitiesGScurrentlyfunds.EachPIofthesixClass1facilitiesandsixClass2facilities1fundedbyGSwasre‐questedbyGSprogramofficerstoprovideanarrativeorslideoverviewoftheirfacility,alongwithinformationonsciencehighlights,usersandpublications.ThisinformationwasmadeavailabletothePRcommitteeinlateMarch,2015.

Thecommitteeorganizeditselfintosixsubcommitteesalongthelinessuggestedinitscharge:1)AeronomyandCEDARprograms;2)MagnetosphericPhysicsandGEMprograms;3)Solar‐Ter‐restrialResearchandSHINEprograms;4)SpaceWeatherprogram;5)GSFacilitiesprogram;and6)EducationandWorkforce.Thesesubcommitteesweretaskedbythecommitteewithdevelopingrecommendationsforconsiderationbythefullcommitteeoncriticalcapabilitiesneededovertheperiodfrom2016to2025thatwouldenableprogressonthescienceprogramarticulatedintheDS.

ThecommitteemetinpersonatNSFonApril6‐7,2015tohearpresentationsfromGSprogramofficersonthescope,organization,administrationandbudgetsofGSprogramsandfacilities.Itbe‐cameclearatthismeetingthatadditionalinformationontheSection’sgrantsprograms,funding

                                                            1 Class 1/2 facilities are defined in Section 7.2.3 

Page 15: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  9  GS Portfolio Review  

ratesandfacilitieswouldbeneededinordertounderstandcurrentand,mostimportantly,futurecapabilitiesoftheGStomakeprogressonDSsciencegoals.AdditionalRFIsweresubmittedtoGSprogramdirectors.

Thecommitteeconsideredtheutilityofsitevisitstokeyfacilities.SincethechargeofthePRcommitteediffersfrompastGSfacilitiesreviewcommittees,itoptedforamoreefficientmodeofinformationgatheringbydevelopingtargetedRFIsdirectedtothePIforeachfacility(AppendixC).Briefwrittenreplieswererequested,followedbyaone‐hourteleconinterviewwitheachfacilityPI.Theprimaryobjectiveofthisinformationgatheringwastounderstandthevalueofeachfacilityinprovidingcriticalcapabilitiesneededovertheperiodfrom2016to2025thatwouldenablepro‐gressonthescienceprogramarticulatedintheDS.GatheringthistargetedinformationonGSfacili‐tiestookabout7weekstocomplete.

ThePRcommitteealsoseparatelyinterviewedviatelecontheDirectorsofNCAR’sHighAltitudeObservatory,theNationalSolarObservatory,theAstrophysics&GeospaceSciencesprogramofNSF’sPolarPrograms(VolodyaPapitashvili,whowasthenactingasHeadoftheGeospaceSection)andtheEISCAT.ThefirstthreeoftheseprogramsaresponsoredbyNSF.TheEISCATDirectorisre‐sponsibleforoverseeingtheEISCATincoherentradarsystemandthedevelopmentofitsnewfacil‐ity,EISCAT‐3D.Developingrecommendationsonthesciencecapabilitiesoftheseprogramsandas‐sociatedfacilitieswasnotwithinthepurviewofthePRcommittee,butduediligenceneverthelesssuggestedthatthecommitteeshouldunderstandtheextenttowhichthescientificcapabilitiesoftheseprogramsandfacilitiesmayenableprogressontheDSscienceprograms.TheseprogramsandfacilitiesaresponsoredbyresourcesseparatefromGS.Thecommitteeespeciallywantedtoun‐derstandtheextenttowhichtheseotherinterestsmightbealignedwiththoseofGS,andwhetherappropriatesynergiesmighteffectivelyleverageGSresources.

Whenthebulkofthisinformationwasinhand,asecondin‐personmeetingwasheldatNSFonAugust12‐14,2015.ThePRCmetinexecutivesessionduringmuchofthismeetingtodevelop ini‐tialrecommendations,attimesengagingtheGSprogrammanagers,amongthemactingGSHeadJanetKozyra,thenewlyappointedGSFacilitiesProgramDirector,JohnMeriwether,andtheAGSDirectorPaulShepsonforadditionalinformationandtoclarifyfutureconstraintsonrecommenda‐tions.

DevelopmentofthewrittenPRreportoccurredafterthismeeting.Subsequentweeklywebcon‐ferencesprovidedthecommitteewithopportunitiestorefineandagreeonitsrecommendationsandcoordinatereportdevelopment.GSstaffrespondedtoadditionalRFIsfromthePRCduringthisperiod,andthisinformationwasusedtoensureaccuracyofthePRC’sfindings.

AfirstdraftofthisreportwasdeliveredtoAGSDirectorPaulShepsonandGSHeadThereseMorettoonDecember10,2015for“factchecking”byGSstaff.RecommendedcorrectionsfromGSweresubmittedtothePRConJanuary9,2016.AfinaldraftwasthendevelopedbythePRCandde‐liveredtoAC/GEOonFebruary5,2016.

2.3 Community Input 

AnnouncementofthePortfolioReviewandinvitationtotheGeospaceResearchcommunitytoprovideinputtothereviewviaaspecialemailaddress2werepostedinallrelevantcommunityelectronicnewslettersandintheAGUjournalSpaceWeather.Theperiodforcommentwas

                                                            2 [email protected] 

Page 16: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  10  GS Portfolio Review  

provisionallypostedas60days,fromMarch30,2015throughMay29,20153,butasoftdeadlinewasimposed,andthecommitteeacceptedcommentsthroughoutJuneandJuly.Thesolicitationrequestedcommentsbelimitedtotwopagesorless,whichwasmostlyfollowedintheresponses.AnnouncementoftheportfolioreviewandsolicitationforcommunityinputwasalsomadebytheGSActingHead,VolodyaPapitashvili,attheannualSpaceWeatherWorkshopheldinBoulder,COonApril13‐17,2015.

ThreeTownHallmeetingswereheldattheNSF‐sponsoredGEM,CEDARandSHINEsummerworkshopstheweeksofJune14,June21andJuly6,respectively.SeveralcommitteemembersparticipatedinGEMandCEDARTownHalls.OnlyonememberofthecommitteewasabletoleadtheSHINETownHall.OneormoreoftheGSProgramsDirectors,theActingGSHeadandtheAGSDivisionDirectorwerealsopresentattheTownHalls.Spiriteddiscus‐sionsensuedattheseopenforumsandmanyviewpointswerepublicallyex‐pressedanddiscussedbymembersofthecommunity.

Thesolicitationforemailcommentsyielded47writtenresponses(with62sig‐natories)thatspannedallGSprogramele‐ments.Eachcommitteememberwasaskedtoreadallemailresponses.

Thewrittencommentswereanalyzedtofindcommonideas.Afirstreviewsearchedforcommonthreadsandconceptsineachofthe47responses.Asexpected,athreadasso‐ciatedwithDecadalSurveyrecommendationswaspervasive.Equallydominatewasathreadpro‐motingsystemscienceorasystemviewofgeospace.Spaceweather,sciencefromincoherentscat‐terradars,andeducationofthenextgenerationofgeospacescientistswerealsocommonthreads.

Becauseacommon‐ideasearchhasadegreeofsubjectivity,asecondobjectiveanalysisemploy‐ingacomputerizedsearchforcommonwordsviatheWORDLappwasdevelopedbysubmittingaconcatenationofallemailcommentsto http://www.wordle.net//.Theresultisanimpressionof

                                                            3 http://www.nsf.gov/geo/ags/geospace‐portfolio‐review‐2015/index.jsp 

Figure 2.1.Wordl cloud of the most frequently used words in the 45 email comments received from the geo‐space research community. Size of a word in the cloud is a measure of its frequency of use. Some authors use a given word many times, so frequency of use in the concatena‐tion of comments differs from the number of separate re‐sponses that use a given word at least once. 

Page 17: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  11  GS Portfolio Review  

communityinputintheformofawordcloudasshowninFigure2.1.Inthisgraphicalhistogramthemostrepeatedwordsareinthelargestfont.Fromsuchagraphic,onecouldconcludethatthewhitepaperrespondentsbelievethat:NSF[should]providenewfacilities,data,measurements[and]obser‐vations[to]supportcommunityresearchingeospace,atmosphereandsolarscience.

Thecommittee’smoredetailedreviewoftheemailcommentsgroupedtheminto4broadthemes(#indicatescount):GSmanagementandprocess(11);programmaticsotherthanfacilities(13);existingfacilities,observatoriesandinfrastructure(19)andnewfacilities,observatoriesandinfrastructure(17).Somecommentsaddressedmultiplethemes.

Themeswithineachcategoryincluded:

1. GSmanagementandprocess:GSfundingprioritiesandreviewprocess(7);advocacyforaperi‐odicseniorreviewprocess(5);advocacyforaCubeSatprogramreview(1).

2. Programmaticsotherthanfacilities:StrongadvocacyforCEDAR,GEMandSHINEprograms(4);advocacyforcross‐cutting,systemscienceandcross‐agencyscience(4);advocacyfortheFac‐ultyDevelopmentinSpaceScienceprogram(1);advocacyfortheCubeSatprogram(1).

3. Existingfacilities,observatoriesandinfrastructure:Strongadvocacyforincoherentscatterra‐dars(7),butalsoconcernsthatISRgoalsarefragmentedandintrospective(3)andsomeISRsarenolongerproducingfrontierscience(1);advocacyforexistingandnewdistributedground‐basedobservatories,synopticobservationsandtheirdataproducts(8).

4. Newfacilities,observatoriesandinfrastructure:AdvocacyforHAARP,anewCoronalMassEjec‐tionradar,magnetometerobservatoriesasacomponentoftheGSfacilitiesprogram,neutronmonitors,apole‐to‐poleFabry‐Perotinterferometerchainandaverylarge‐apertureLIDARob‐servatory(11);advocacyfortheFASRandCOSMOsolarfacilitiesmentionedintheDS(3);andadvocacyforuseofadvancedinformaticsindevelopingGSdataproducts(3).

Thesethoughtfulresponses,themanycommentsmadeatthethreeTownHallsandindividualexchangesamongPRCandcommunitymembersinformedthePRC’sconsiderationsandrecom‐mendations.

2.4 Guiding Principles 

Indevelopingrecommendationsforportfolioinvestmentsoverthenextdecade,thePRCadoptedthefollowingprinciples:

Enablediscoveriesthattransformourunderstandingofgeospace.Discoveriesinaero‐nomy,magnetosphericphysics,solar‐terrestrialphysicsandscienceapplicabletospaceweatherwillcontinueunabatedinthenextdecade,but,asindicatedinthe2012DecadalSurvey,theim‐portanceofintegrativegeospacesciencewillbecomeincreasinglyprominentandinformfuturedi‐rectionsofdisciplinaryinvestigationanddiscovery.Thustheportfoliomust1)maintainstate‐of‐the‐artinstrumentation,facilitiesandcomputationalmodelsthatenablediscoveryinnewphysicalregimesandnewunderstandingofsystem‐levelbehavior;and2)includeprogramelementsthatpromotesynthesisandintegrationofnewdisciplinaryknowledge.Geospacescienceunderpinsim‐portantapplicationsinspaceweather,anditstrajectorymustremainalignedwithnationalneedsindeterminingandpredictingtheimpactsofspaceweather.

AlignGSinvestmentswithdecadalsciencegoals.TheSurvey’stop‐levelsciencegoalsare

Page 18: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  12  GS Portfolio Review  

theprimarytouchstonesforthisreviewandthebasisforthePRC’srecommendationsforabal‐ancedGSportfolio.Throughoutitsevaluationprocess,thePRCavoidedrevisitingormodifyingtheSurvey’ssciencegoals,whichrepresentabroadconsensusofthe85solarandgeospacescientistsoftheGScommunitythatparticipatedinthereview.TheSurvey’srecommendedinvestmentsinfacili‐tiesandprogramsrelevanttoNSF,atfacevalue,exceedthecurrentoutlookforbudgetcapacityofGSforthenextdecade.Consistentwithitscharge,thisreviewstrivestoidentifyandprioritizethecriticalcapabilitiesthatwillenableprogressonthescienceprogramarticulatedinChapter1oftheSurvey.

Achievebalanceacrosstheentireportfolioofactivities.TomaximizeprogressontheSur‐vey’sscienceprogram,GSinvestmentsmuststrikeabalanceacrossitssciencethrustsandamonginvestmentsininfrastructureandfacilities,workforce,coreandtargetedgrantsprograms,anddis‐ciplinaryandintegrativeprogramelements.Theseinvestmentsmustcontinuetosupporttime‐testedandhighlyrefinedobservationalandmodelingapproacheswhilecreatingspacefornovelandsometimesunanticipatedapproachesandmeasurementtechniques.Theportfoliorecom‐mendedforthenextdecadestrivestoachieveanoptimalbalanceamongtheseprogramobjectives.

Maintainflexibilityinadaptingtonewcapabilities.Infrastructureforfacilitiesandpro‐gramsrequiresconsiderabletimeandresourcestodevelopandmaintain,anditsvalueinongoingscientificinvestigationisundeniable.However,whenthecostofmaintaininglongstandinginfra‐structureandprogramsunderminesthefield’sabilitytopursuenewopportunitiesforinnovativescience,thevaluepropositionforthestatusquomayreachdiminishingreturns.Insomecases,modestinvestmentsinexistingfacilitiesmayimprovetheperformanceandsensitivityofthemeas‐urementtechniquesorevenaddimportantnewcapabilities.Understandingthetradespacefornewinvestments,reinvestmentsorupgradesanddivestmentsisacrucialaspectofthisreview.Optimi‐zationofthistradespaceisessentialinmaintainingaflexibleportfolioinaflat‐budgetenviron‐ment.

LeverageGSinvestments.TheGeospaceSectionisoneofmanyUSsponsorsofsolarandspacephysicsresearch,butithaschosentoinvestinprogramelementsandfacilitiesthatareuniqueandcomplementarytothosesponsoredbyotherentities.Someoftheseinvestmentsarealsocomple‐mentedbysimilarinvestmentsbynon‐USsponsorsofsolarandspacephysicsresearch.Thescien‐tificreturnonGSinvestmentshasbeenandshouldcontinuetobeleveragedthroughresourceshar‐ingamongbroaderNSF,commercial,cross‐agencyandinternationalpartners.IndetermininghowtomaximizeprogressontheSurvey’sscienceprogram,thisreviewlookedfornascentorexistingsynergieswithintheextendednon‐GScommunitythatmightallowmoreeffectiveuseoflimitedGSresources.

Valuepeer‐reviewedcompetition.Peerreviewinawardinggrantsisatime‐honoredprocessforfindingthebestinvestmentsinscience.ThisprinciplewascentraltothePRC’sconsiderationsofnewprogramelementsthatwouldenableprogressonthescienceprogramarticulatedintheDeca‐dalSurveyandhowGScouldbestfundnewmodesofresearch,facilityandmodelupgrades,andnewinstrumentationandinstrumentnetworks.

Promoteopenaccesstodataanddatastandards.OpenaccesstoscientificdataderivedfromanNSFgrantisnowarequirement.However,openaccesspoliciesdonotnecessarilyspecifyre‐quirementsfortimelinessofaccessorusabilityofthedata.Raw(level0)dataarestraightforwardtoarchive,buttheyarerarelyusablewithoutadditionalprocessingbyinstrument,modeland/or

Page 19: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  13  GS Portfolio Review  

dataspecialists.Makingdataopenandreadilyusablebyanyonewithaccesstothedataservershasenormousleveragingpowerinthescientificenterprise.Scientificinvestigationssponsoredbynon‐GSresourcessignificantlyaugmentthescientificknowledgederivedfromGS‐sponsoreddata.Alt‐houghsomeGSprogramactivitieshavebeenmovinginthisdirectionforsometime,newprogramelementsthatdirectmodestGSresourcestothedevelopmentofhigherlevelandmoreuseabledataproductshavethecapacitytoaccelerateprogressonthescienceprogramoftheDS.

Provideexcellenttrainingandcareeropportunities.Thequalityofscientificachievementsdependscruciallyontheintellectualcapacity,creativityanddedicationofparticipatingscientists.Preparingthenextgenerationofgeospacescientiststodiscoverandapplynewknowledgeinthefieldandpreparingthemforabroadrangeofcareeroptionsareessentialinmaintainingthevitalityofgeospacescience.

Inspireandinformpublicinterest.Thesubtitleofthe2013DecadalSurvey,“AScienceforaTechnologicalSociety”,emphasizestheroleandimportanceofgeospacescienceinthenationalin‐terest.ToborrowrecentlypublicizedlanguagefromtheUSHouseofRepresentativesScienceCom‐mittee,“fundingprioritiesmustensurethatAmericaremainsfirstintheglobalmarketplaceofbasicresearchandtechnologicalinnovation.Investmentsinbasicresearchcanleadtodiscoveriesthatchangeourworld,expandourhorizonsandsavelives.”Publicinterestingeospacesciencedependscruciallyonourabilitytoprovideclear,non‐technicalexplanationsofresearchprojectsthatdetailhoweachprojectmeetsintellectualmeritcriteria,isconsistentwithNSF’smission,andsupportsthenationalinterest.AllGSprogramelementsmustencourageparticipatingscientiststocommuni‐cate1)theexcitementofnewdiscoveriesingeospacescience,enabledbystate‐of‐the‐artinstru‐mentationandtechnology,and2)thevaluetosocietyofapplicablegeospacescienceleadingtoad‐vancesinpredictionandunderstandingoftheimpactsofspaceweatherandinunderstandingtheinfluenceonclimateofdownwardcouplingfromgeospacetoEarth’satmosphere.

Promotetransparency.Trustandunderstandingflowfromtransparency.ThePRCstrivestobetransparentinthisreview.PortfolioreviewrecommendationsregardingmanagementofNSFre‐sourcesforgeospacescienceaimforthesametransparencyfromtheGeospaceSection.

Page 20: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot
Page 21: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  14  GS Portfolio Review  

Chapter 3.  Budget Overview and Projections 

3.1 Budget Summary for Current GS Portfolio 

TheGSportfoliohasthreeprimarysciencethrusts–Aeronomy(AER),MagnetosphericPhysics(MAG)andSolarandSolar‐TerrestrialResearch(STR)–andaSpaceWeatherResearch(SWR)pro‐gram,whichspansand,tosomeextent,integratesacrossthethreeprimarythrusts.Theprimarysciencethrustsincludeacoreresearchprogramandatargetedresearchprogramineacharea.ThetargetedprogramsincludetheCoupling,EnergeticsandDynamicsofAtmosphericRegions(CEDAR)program,theGeospaceEnvironmentModeling(GEM)programandtheSolar,HeliosphericandIn‐terplanetaryEnvironment(SHINE)program.TheNSF/DOEPartnershipinBasicPlasmaScienceandEngineeringisfundedthroughoneormoreofthecoreprograms.

TheSWRprogram,ascurrentlyconfigured,isanumbrellaadministrativestructurewithre‐sponsibilityfortheNASA/NSFCollaborativeSpaceWeatherModelingProgram(SWM),aCubeSatprogram,theFacultyDevelopmentinSpaceSciences(FDSS)programandClass2geospacefacili‐ties.Itdoesnothaveacoreresearchprogram,anditsoverallfundingissmall(13%)comparedtotheprimaryscienceandClass1facilitiesprograms.

Class1facilities(seeSection7.2.3)includesixincoherentscatterradars:Arecibo,Jicamarca,MillstoneHill,PFISR,RISR‐NandSondrestrom.Class2facilities(Section7.2.3)includeSuperDARN,AMPERE,SuperMagandtheCommunityCoordinatedModelingCenter(CCMC).AcollaborativePI‐ledresearchproject,theConsortiumofResonanceandRayleighLIDARs(CRRL),isalsofundedbytheGSFacilitiesprogram.

ThebudgetallocationsfortheseprogramelementsareshowninFigure3.1.ThetotalGSbudgetforFY15is$43.56M.ThePRCwaschargedtoassumethatGSbudgetswouldbeflatoutto2025,cappedattheFY15value,withallowanceforinflationaryincreasesinfuturebudgets.

3.2 Budget Implications of DS Rec‐

ommendations  

Chapter5oftheDSoffersspecificguidancetoNSFinimplementingrecommendationsrele‐vanttogeospacescience.DSChapter4alsoconcludesthatmaintainingandgrowingthebasicresearchprogramsatNSF(andatNASA,AFOSRandONR)areneededforamoreeffec‐tivetransitionfrombasicresearchtospaceweatherforecastingapplications,althoughnospecificbudgetguidanceisprovidedre‐gardinggrowth.TheserecommendationshavebudgetimplicationsforNSF,someex‐plicitlystated,othersimplied.Specificbudgetrecommendationsarelistedbelow,alongwithPRCestimates(denotedwith‘?’)

FACILITIES38%

STRATEGIC28%

CORE33%

GS Total$43.56M

FY15 BUDGET ALLOCATIONS

GS Reserve1%CRRL

3%

AER14%

MAG9%

STR10%

GEM6%SHINE

7%

SWM3½%

SWR

CubeSat3½%FDSS

1%

Class 25%

Class 130%

CEDAR7%

RWRRSWSWSS

Figure 3.1.  FY15 GS budget allocations for Core, 

Strategic and Facilities program elements.

Page 22: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  15  GS Portfolio Review  

forDSrecommendationsthatdidnotspecifytargetfundinglevels.

Supportkeyexistingground‐basedfacilitiesandcompleteprogramsinadvancedstagesofim‐plementation,e.g.,RISR,PFISR,Sondrestrom,MillstoneHill,AreciboObservatory,Jicamarca,Su‐perDARN|NRAO,WSO,NSOSP/KP,SFO,BBSO,MLSO,NSODKIST (formerlyATST).Thefacili‐tiesafter“|”arefundedbyNSFandotherprogramsoutsidetheGeospaceSectionandarenotincludedinitsFY2015of$43.6M.ButasdiscussedinChapter6and8,theyareimportantdatasourcesforsolarandgeospacescience.Inaflat‐budgetscenario,thisrecommendationimplies,atfacevalue,thattheGScontinueallofitsexistingprogramsandfacilities,withabudgetof$43.6Mperyearin2015dollarsifnoneofrecommendationsfornewfacilitiesorprogramslistedbelowweretobeimplemented.

DataExploitation:Maintainanddevelop,asnecessary,systemsforaccessing,archiving,andminingsynopticandlong‐termdatasets,especiallytofacilitatesynergiesbetweenground‐andspace‐basedobservations($0.5Mperyear?)

DSrecommendationsemphasizetheimportanceofNSFinprovidingtheDKISTwithbasefund‐ingsufficientforoperation,dataanalysisanddistribution,anddevelopmentofadvancedinstru‐mentationfortheDKISTinordertorealizethescientificbenefitsofthismajornationalinvest‐ment.(ItisnotclearifthisrecommendationisaddressedspecificallytotheASTortheAGSDivi‐sion.DKISTiscurrentlybeingdevelopedbyNSOandwillmanagedbyNSOwithbasefundingfromASTwhenitbecomesoperational.)

MidscaleprojectlineforSSP($4‐30M,e.g.,a$30Mprojectfundedat$5‐6Mperyearover5yearsorsmallermidscaleprojectsfundedmorefrequently).

CubeSats($2.5Mperyear,anaugmentationof$1Mperyear)

Internationalcollaborations,e.g.,EISCAT‐3D($1Mperyear?)

Multidisciplinaryresearch:EncourageresearchthatfallsbetweenNSFsections,divisions,anddirectorates.Implement“HeliophysicsScienceCenters”@$1‐3Mperyearforeachcenter(e.g.,NSFcontributionto1or2centersat$2M?peryear)

MaintainandgrowtheSWresearchprogram(+$1Mperyear?)

Education:ContinuetheGSprogramforFacultyDevelopmentinSpaceSciences(FDSS)andsupportdevelopmentofacomplementarycurriculumprogram.Four‐yearinstitutionsofhighereducationshouldbeconsideredeligibleforFDSSawardsasameanstofurtherbroadenanddi‐versifythefield.MaintainthevarioussummerschoolofferingssupportedbyNSF(ascurrentlyfunded).

GuidancetoNSFfromtheDSinimplementingGS‐relevantrecommendationsimplyanestimatedbudgetaugmentationabovethecurrentlevelofabout$11Mperyear,a25%increase.Givenitscharge,thePRCwasfacedwith2GSscenarios:Recommendastatusquoprogramat$43.6M(i.e.,completethecurrentprogram)ormaintainasubsetofthemostproductive,existingfacilitiesandprogramsandphase‐outorreducefundingforlessproductiveelementstomakeroomintheflatbudgetforneworaugmentedprogramelementsandfacilities.ThePRCchargetorecommendthecriticalcapabilitiesneededovertheperiodfrom2016to2025thatwillenableprogressonthesci‐enceprogramarticulatedintheDSwasappliedindecidingbetweenthesetwoscenarios.

Page 23: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  16  GS Portfolio Review  

3.3 Future Impacts of Past GS Budget Trends 

TeasingoutobjectiveGSbudgettrendsfrom1999forwardiscomplicatedbytheadditionofnewprogramsandfacilities(particularlyClass2)duringthisperiod.Insomecases,thefacilitiesandprogramswereinitiallyfundedeitherseparatelyorjointlybybaseprogramsandthenlaterwereadministeredbytheSpaceWeatherResearch(SWR)programcreatedin2013.In2015,about25‐33%ofthebudgetallocatedtotheSWRprogramsupportsclearlydifferentiatedspaceweatheractivities(SWM),withthisfractionbeingaugmentedbyinvestmentsinClass2facilitiesandtheCu‐beSatandFDSSprograms,someportionofwhichsupportsspaceweatherresearch.ThebudgetsforthesevariousprogramelementsarekeptintheSWRprogramprimarilyforadministrativepur‐poses.ThePRCdoesnotquestiontheadministrativeutilityofthisorganization,butitdoesnotethatthisarrangementprovideslessthanoptimumtransparency.AsdiscussedinChapter7onGSFacilities,fundingforfacilitiesandresearchisalsosomewhatblurredbythefactthatresearchfundingisembeddedwithinawardstooperateandmaintain(O&M)facilities.ThuscautionshouldbeexercisedinrigidlyinterpretingpastGSbudgettrends.Nevertheless,thePRCidentifiedseveraltrendsthat,ifcontinued,willimpactGScapabilitiestoenablefutureprogressonthesciencepro‐gramoftheDS.

1. TheGSbudgethasbeenrelativelyflatforatleastadecadewhenthebumpfromtheAmeri‐canRecoveryandReinvestmentActof2009(ARRA)issubtractedinFigure3.2.GShasaddednewprogramsandfacilitiesduringthistimewithoutterminatingexistingprograms.

Figure 3.2.  GS Budget from 1999 to 2015. Projected budgets are flat in FY 2015 dollars. The Space 

Weather Research program was created in 2013 from an amalgamation of existing program ele‐

ments, such as FDSS and CubeSats, and activities that were previously funded via base programs.  

0

10

20

30

40

50

60

GS Reserve

Aeronomy

ARRA

Flat Budget Projection $43.6M

GS Facilities

Space Weather

FY 2015 Dollars

Solar‐Terrestrial Research

Magnetospheric Physics

Page 24: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  17  GS Portfolio Review  

ThistrendsuggeststhatGShasadapteditsfundingstrategiestothegrowingaspirationsofthegeospacesciencecommunity.Thispracticetendstosqueezefundsforallprograms.

2. FundingforsciencegrantsadministeredbythecombinedcoreandtargetedprogramsofAER,MAGandSTRhasbeenprogressivelydecreasing.Inthepast,fundingstreamsforfacil‐itiesandgrantsprogramswerefairlydistinct.TheadventofClass2facilities,whichwerenotintheGSfacilitiesbudget,hasblurredthisdistinction.Educationandworkforcedevel‐opmentpreviouslyandcurrentlyareaccomplishedbysponsoringstudentsandpostdocsviathebasegrantprograms.Today,however,wholenewGSprogramelementssuchasFDSSandCubeSatsaugmentsupportforthiscoreaspectofNSF’smission.

3. ThenumberofGSfacilities(Class1and2)hasincreasedovertime.ThebudgetforGSfacili‐tieshasalsoincreasedovertimebutnotnecessarilyatarateneededtomaintainthestate‐of‐the‐artintechnicalandscientificcapabilitiesofthefacilities.Addingnewfacilitieswhilecontinuingtooperateolderfacilitiesinaflat‐budgetenvironmentrequiresreductionsinotherprogramsorsub‐optimumfundingofmaintenance,operationsandupgradesofGSfa‐cilities.Thissituationhasbeenexacerbatedbytheredistributionofcost‐sharingforM&OofAreciboObservatorybetweenASTandAGS.TheGSinvestmentinAOincreasedfrom$1.8MinFY2008to$4.1MinFY2016,amountingto32%oftotalAOfundingatthistime.

ThePRCfindsthesetrendstobeproblematicforachievingleading‐edgescienceinthenextdec‐ade.Futureimpactsincludefewerorsmallergrantsforscientificinvestigationsandalikelyinabil‐itytoadvancefacilities,instrumentsandsimulationmodelstomaintainthestate‐of‐the‐artinex‐perimental,observationalandmodelingscience.Ontheplusside,GShasimproveditscapacityforeducationandworkforcedevelopment.However,agreaternumberofemergingresearchersarenowchasingdiminishedfundingopportunities.Furthermore,GSdoesnothaveadequateresourcestoallowitsresearchcommunitytopursuenew,innovativemethodologiesandobservationaltech‐niques.TheseissuesindicatethatthestatusquointheGSprogramcannotprovidethecriticalcapa‐bilitiestoenableoptimalprogressonthescienceprogramarticulatedintheDS.

3.4 Additional NSF Investments in Geospace Science 

ThePRCreviewedNSFinvestmentsinprogramsandfacilitiesexternaltoAGSthatalsocontrib‐utetotheadvancementofgeospacescience.Theseprogramsinclude:

– NationalSolarObservatory(NSO):TheASTdivisionfundsfacilitiesadministeredbyNSOat$13Mperyear.ThesefacilitiesincludetheDunnSolarTelescopeandtheEvansSolarFacil‐itybothonSacramentoPeak(phasingoutby2019),aspecialfacilityforSynopticOpticalLong‐termInvestigationsoftheSun(SOLIS)andtheMcMath‐PierceSolarTelescope(rec‐ommendedfordivestmentin2017bythe2012ASTportfolioreview)bothonKittPeak,thedistributedGlobalOscillationNetworkGroup(GONG)andtheDanielKInouyeSolarTelescope(DKIST)withdesignandimplementationfundedbyanMREFCgrantwithopera‐tionsexpectedtobeginin2019.NSOalsohostsanumberofsmallersolarobservingpro‐jectsandprogramswithASTsupport.TheASTalsosupportstheNationalRadioAstron‐omyObservatory(NRAO),whichoperatestheVeryLargeArray(VLA),andtheGreenBankSolarRadioBurstSpectrometer.TheASTportfolioreviewnotedthatthesefacilitiesarejoinedbyfivepublic/privatesolarobservatories,ofwhichtheBigBearSolarObservatory(operatedbyNewJerseyInstituteofTechnology)possessesthelargesttelescope(theNew

Page 25: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  18  GS Portfolio Review  

SolarTelescope,orNST,a1.6‐meteroff‐axisclearaperturetelescopewithadaptiveoptics),but,asindependentobservatories,allhavesomewhatfragilefundingstreams.ThePRClearnedthatgrantstousedatafromthesefacilitiesforsolarscienceisfundedlargelybytheSTRprogramofGS.Consequently,coordinationbetweenASTandAGSprogramofficersiscrucialinachievingthesolarscienceandspaceweatherprogramsadvocatedbytheDS.

– HighAltitudeObservatory(HAO):TheAGScooperativeagreementwiththeUniversityCor‐porationforAtmosphericScience(UCAR)fundstheNationalCenterforAtmosphericRe‐search(NCAR),andNCAR’sFY2015budgetincluded$6.2Mforavarietyofscienceactivi‐tiesatHAO.HAOoperatestheMaunaLoaSolarObservatory(MLSO)andsupportsasolarinstrumentationgroup.Asubstantialportionofitsbudgetsupportsresearchintolong‐termsolarvariability,solartransientsandspaceweather,andgeospacescience(upperat‐mospheric,ionosphericandmagnetosphericscience).NCAR’sComputationalInformationSystemsLaboratory(CISL)operatestheYellowstonesupercomputingfacilityandmakesavailabletoqualifiedNSFawardeeshigh‐performancecomputingallocationsonthismajorfacility.

– DivisionofPolarPrograms:ThisseparatedivisionwiththeGeosciencesDirectoratespon‐soredAntarcticAtmosphericandGeospaceScience(AAGS)inFY2015at$2.9M.Itsup‐portsoperationsfortwooftheSuperDARNHFradarsinthesouthernhemispherealongwithinstrumentdevelopment,deployment,operationandsciencefromanarrayofground‐basedinstrumentsontheAntarcticcontinent,includingriometers,magnetome‐ters,VLF/ULFreceivers,all‐skycameras,gravitywaveimagers,aFabry‐PerotInterferome‐ter,anFe‐BoltzmannLIDARandaneutronmonitor.

– Cross‐agencyPrograms:TheGeospaceSectionhasbenefitedfromavarietyofcross‐agencyfundingopportunities.SubstantialfundingforinterdisciplinaryGeospaceresearchbeenobtainedthroughtheEarthCube,FrontiersinEarthSystemDynamics(FESD),Inter‐disciplinaryResearchandEducation(INSPIRE),andMajorResearchInstrumentation(MRI)programs.

TheseadditionalfacilitiesandprogramsaugmentthescienceaccomplishedwithAGSinvest‐ments.However,AGSdoesnotcontrolthebudgetallocationstoorwithintheseindependentpro‐grams.

Page 26: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  19  GS Portfolio Review  

Chapter 4. Capabilities for a Vital Profession 

Manyfactorsenteranassessmentofthevitalityofgeospacescienceasaprofession.Twoofthemostimportantarethequalityoftheworkforceandtheresourcesavailableforfrontierresearch.Advancingscientificknowledgerequiresinnovativethinkerswhobringabroadrangeofideasanddifferentperspectivestobearonkeyproblems.NSFhasalongstandingcommitmenttobroadeningparticipationinitsprogramsforgreaterdiversity.Manyadvantagesaccruetoorganizationswithadiverseworkforce.Inscientificendeavorsdiversityintheworkforcebringsdiversityinscientificperspectivesandapproachesand,therefore,itbroadensthepoolofideasforadvancingscience.Inassessingcapabilitiesforavitalprofession,dataondiversityhavebeenincludedwhensuchdataareavailable.Theveryactofacquiringandpostingdataondiversitywillusuallyencouragethepro‐gramdoingsotobroadenitsdemographicsofqualifiedparticipants.

4.1 Proposal Pressure 

Areviewofthevitalityoftheprofessionstartswithanassessmentofthefundsavailabletoin‐vestigatorstoconductthehighestqualityresearch.Commonmetricstypicallyincludethefractionofhighlyrankedproposalsintheannualpoolofsubmissions,thelikelihoodthatahighlyrankedproposalwillbeselectedandtheaveragebudgetofanawardrelativetotheaverageproposedbudget.Allofthesefactorsinfluencewhatiscommonlytermed“proposalpressure”.

TheGSbudgethasbeenrelativelyconstant(ininflation‐adjusteddollars)withlessthan5%variationsince2003,withtheexceptionoffiscalyears2009‐2014(Figure3.2).Thepulseoftempo‐raryfundingfromtheAmericanRecoveryandReinvestmentActof2009(ARRA)produceda46%distortioninthebudgetin2009thatdidnotfullysubsideuntil2014whenallARRA‐fundedpro‐jectswerecompleted.ThiscashinflowsignificantlyinflatedthenumberandamountofGSawards,whichcomplicatesalongitudinalanalysisoftheGSgrantsprofileintermsofnumberandsizeofawards.

TheGeospaceSectionprovidedaggregatedgrantdatafromtheNSFOfficeofBudget,FinanceandAwardManagement(OBFAM)fortheAeronomy(includingCEDAR),MagnetosphericPhysics(includingGEM)andSolar‐TerrestrialResearch(includingSHINE)programs.Thenumberofcom‐petingproposalsawardedbyfiscalyear,themeandurationoftheawards,thetotalofallobligatedawards,andtheannualizedmean$valueofawardsforproposalactionsinthefiscalyears2011‐2015aregivenforeachprograminFigure4.1.Grantsforconferencesarenotincludedinthesedata,andprojectsinvolvingtwoormoreproposalsfromparticipatingcollaboratorsarecountedasoneproposalandawardbyOBFAMinalldatainthefigure.

Theprecipitousdropin#competingproposalsawardedandintotalobligatedawardsin2013(Fig.4.1a,b)areduemainlytoaredirectionofawardsforSpaceWeatherModeling,AMPERE,Su‐perDARN,SuperMag,CCMC,CubeSatsandFDSSintoathennewlycreatedSWRprogram(seeFigure3.2)thatwerepreviouslyfundedfromthecoreplustargeted(CEDAR,GEM,SHINE)grantspro‐grams.WiththisreprogrammingtheSectionwasabletoprovideamoretransparentaccountingoftheactualfundsavailableinthegrantsprograms

Severaltrendsemergefromthesedata.

1. ThenumberofcoreplustargetedGSgrantsawardshasbeenprogressivelydecreasing,evenintheyearsaftertheredirectionofprojectsintotheSWRprogram.From2013to2015boththetotalvalueofobligatedawardsandthenumberofawardsdecreasedbyabout15%. 

Page 27: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  20  GS Portfolio Review  

   

    

Figure 4.1 GS grant funding by program and overall for 2011‐2015. All data refer to proposal actions in the fiscal 

year that resulted in an award. (a) Number of competing proposals awarded. (b) Total obligated awards is the total 

obligation value of all awards including all years of the awards in CPI inflation‐adjusted dollars x 1000.  (c) Annual‐

ized mean award size is the mean of annualized award sizes including all years for each in CPI inflation‐adjusted 

dollars. CPI factors used for inflation adjustment: 1.04 (2011), 1.02 (2012), 1.01 (2013) and 0.99 (2014) of OBFAM 

data.  

2. TheannualizedmeanawardsizeforGSoverallhasbeenessentiallyflatfrom2013onwardandislargerthanthemeansizein2011and2012.4Thisstabilityinawardsizesafter2012canbetracedtothefactthatthenumberofawardsandthetotalawardobligationshavebeendecreas‐ingintandemduringthattime.Theincreaseinmeanawardsizeafter2012isdueinparttoanincreaseinthenumberoflargecollaborativeprojectswithmultipleinvestigators.Theaward

                                                            4 In fact, the total mean obligation per award for these combined grants programs (Total obligated awards/Num‐ber competitive awards) has been essentially flat at $406k ± 3% in inflation‐adjusted dollars from 2011 to 2015. 

2011 2012 2013 2014 2015

STR 19 23 13 19 15

MAG 24 26 14 19 10

AER 29 27 26 15 20

0

10

20

30

40

50

60

70

80

# Competing Proposals Awarded

2011 2012 2013 2014 2015

STR $8,401 $8,926 $6,475 $6,895 $6,330

MAG $8,374 $9,863 $4,246 $7,146 $3,714

AER $12,436 $11,672 $10,119 $7,298 $8,798

$0

$5,000

$10,000

$15,000

$20,000

$25,000

$30,000

$35,000

Total Obligated Awards, 2015 k$

2011 2012 2013 2014 2015

AER $101,388 $144,234 $111,874 $142,908 $126,130

MAG $89,549 $85,937 $109,118 $122,504 $117,025

STR $121,012 $106,224 $165,230 $114,320 $129,696

GS $102,620 $112,787 $124,233 $125,345 $125,295

$60,000

$80,000

$100,000

$120,000

$140,000

$160,000

$180,000

Annualized Mean Award Size, 2015 $

(a)  (b)

(c) 

Page 28: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  21  GS Portfolio Review  

sizefortheseprojectsistypicallygreaterthanforasinglePIresearchgrant.ThuseventhoughtheawardtoindividualPIsorindividualCoIsincollaborativeprojectsmaybedecreasing,OB‐FAM’spracticeofcountingacollaborativeprojectasasinglegrantrecordsalargermeangrantsize.

DataforproposalsuccessratesinGSdisciplinaryprogramsaregiveninFigure4.2forFY2011‐2015.AsinFigure4.1,conferenceproposalsarenotincludedinthesedata.Indeterminingsuccessrates,separateproposalsthatarepartofcollaborativeprojectsarecountedinthenumberofproposalactionsandawards.ThusthebasisforsuccessratesinFigure4.2islargerthanthebasisOBFAMusestocalculatemeanawardsizes,duration,etc.inFigure4.1.(Compare#awardsinFig4.2tothatinFig.4.1.)ThePRCwasunabletoobtaindatafromNSFthatusesthesamebasisfornumberofcompetitiveawardsinthecalculationsofmeanawardsizesanddurationandinproposalsuccess.5ThebasisforthedatainFigure4.2isrepresentativeofthesuccessrateindividualPIscanexpectregardlessofwhethertheirproposalisasingle‐investigatorprojectoralargemulti‐investigatorcollaborativeproject.However,tothePRC’sknowledgethesuccessoflargecollaborativeproposalsrelativetosmallersingle‐PIproposalshasnotbeenstudied.

Figure 4.2. Number of GS proposal actions, awards and proposal success rates for competing proposals acted on in 

2011‐15. All data refer to proposal actions in the fiscal year that resulted in an award. (a) Number competing pro‐

posal actions is the number of decisions on competitive proposals made in the given fiscal year regardless of the 

year the proposal was submitted. This number includes carryover proposals from a previous fiscal year that are 

decided in the current fiscal year, but it does not include proposals that are submitted in the current fiscal year and 

that are decided in a future fiscal year. Number of awards is the number of actions in the fiscal year that result in a 

funded proposal. (b) Success rate is the ratio of awards to actions in the fiscal year. 

Twoobservationsaremade:

1. Theunusuallylargeuptickinsuccessratefrom2014to2015intheMAGprogram,withamodestuptickinGSoverall,wasduetoshortstaffingintheSectionin2015.AlthoughthebulkofMAGawardswereprocessedinFY15,thedeclineswerehelduntilFY16,thusdistortingthe

                                                            5 Suggestions for improving NSF’s data collection for its grants programs are included in Section 9.6 

2011 2011 2012 2012 2013 2013 2014 2014 2015 2015

STR 68 19 71 28 92 17 102 22 73 22

MAG 76 27 71 31 67 19 88 24 12 10

AER 55 37 70 46 108 36 66 22 100 30

0

50

100

150

200

250

300

# Proposal Actions and Awards

2011 2012 2013 2014 2015

AER 67 66 33 33 30

MAG 36 44 28 27 83

STR 28 39 18 22 30

GS Avg 42 50 27 27 34

10

20

30

40

50

60

70

80

90

Proposal Success Rates, %(a)  (b)

Actions 

Awards 

Page 29: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  22  GS Portfolio Review  

fiscalyearsuccessrate.(CompareproposalactionsforMAGin2015withthenumberinpreviousyears.)

2. Itisnotentirelyclearwhythesuccessratedecreasedsomuchfrom2012to2013.Theproxi‐matecauseistheincreaseinthenumberofproposalssubmitted,withtheaveragenumbersub‐mittedin2013‐2014being25%largerthantheaveragein2011‐2012.AnadditionalfactormaybeduetothetransitionofClass2facilitiesprojects(tobediscussedinChapter7)outofthecoreplustargetedprogramsintothenewSWRprogramin2013.Sincefacilitiesproposalshavelittle‐to‐nocompetition,includingtheminthebaseprogramsprobablyproducedsomein‐flation,howevermodest,insuccessratesin2011and2012.TheARRAbump(Figure3.2)mayhavealsotemporarilyreducedproposalpressureongrantprogramfundsduringtheimmediatepost‐ARRAyears,withmoretypicalproposalpressurestartingtoreturnin2012.

SuccessrateshavebeenevenlowerintheGStargetedgrantsprograms(CEDAR,GEM,SHINE),whichreceivemorethan50%ofproposalstotheGSgrantsprograms(Figure4.3).Theproposaldeadlinesimposedontargetedgrantsprogramsmayunintentionallyencourageahigherrateofsubmissions.6

Figure 4.3. Number of GS proposal actions, awards and proposal success rates for competing proposals submitted 

to the CEDAR, GEM and SHINE targeted grants programs and acted on in 2011‐15. The proposal basis and analysis 

are similar to those in Figure 4.2.

ManyfactorsareatplayininterpretingthedatainFigures4.1–4.3:Standardvscontinuingawards;linkedproposalsvssub‐awardsforcollaborativeprojects;levelofpriorcommitmentsfromawardsgrowingintheout‐years;anddelaysinproposalprocessingduestaffshortages.Largeyear‐to‐yearoscillationstendtoobscuretrends.

Astrategyforoptimizingscienceadvancementthroughthegrantsprograms,inparticular,forenhancingprogressinachievingthesciencegoalsoftheDecadalSurvey,doesnotrevealitselfinthesedataalone.ThePRCdidnotacquiredataonproposalquality(rankings).Highlyranked

                                                            6 Report to the National Science Board on the National Science Foundation’s Merit Review Process, Fiscal Year 2014 (NSB‐2015‐14) p. 48‐49, Table 16. (http://www.nsf.gov/nsb/publications/2015/nsb201514.pdf).  

2011 2011 2012 2012 2013 2013 2014 2014 2015 2015

SHINE 39 7 41 13 55 10 78 13 55 13

GEM 42 8 42 12 48 10 55 11 58 9

CEDAR 30 13 32 15 40 11 37 9 55 15

0

20

40

60

80

100

120

140

160

180

# Proposal Actions and Awards

2011 2012 2013 2014 2015

CEDAR 43 47 28 24 27

GEM 19 29 21 20 16

SHINE 18 32 18 17 24

Targ Avg 25 35 22 19 22

10

15

20

25

30

35

40

45

50

Proposal Success Rates, %(a)  (b)

Actions

Awards 

Page 30: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  23  GS Portfolio Review  

proposalsmaybethemostmeritoriousforselection,buttheproposalrankingdoesnotnecessarilytranslatetoqualityofscientificadvancement.

SeveraltensionsareatplayintheGSgrantsprogramswhenthegrantsbudgetisflatordeclin‐ingasinFY2013‐15:

1. Engagingthegreatestnumberofresearcherswhosubmithighlyrankedproposalsincreasesthediversityofscientificideasandnewresultsandthelikelihoodofscientificbreakthroughs.ThenumberofPIsfundedbytheprogramcanalwaysbeincreasedbydecreasingtheaveragegrantsize.

2. ButwhentheaveragegrantsizedoesnotfullyfundthePI’sproposedwork,oronlyaportionofthePI’savailabletimeforresearch,thePItypicallymustdevelopandsubmitadditionalpro‐posalstoNSForelsewhere.TheeffortinpreparingadditionalproposalsreducesthePI’sre‐searchproductivity.Withmoreproposalschasinglimitedfunding,theadditionaltimeresearch‐ersdevotetotheproposalpeerreviewprocessalsodiminishesaverageproductivity.7

3. PIshaveatendencytosubmit‘safe’scienceproposalswhensuccessratesarelowandreview‐ershaveatendencytorecommendthemoverhigh‐risk,high‐rewardproposals.

4. ThePIs’,CoIs’andreviewers’effortsaccountformostofthecostinpreparingandevaluatingaproposalsubmittedtoafundingagency.8Asgrantsuccessfalls,andproposalnumbersin‐crease,thecommunity’soverheadinseekingfundingincreasesmarkedly.

5. Somemisalignmentinfundingamongsub‐disciplinesmaybeatplayintheGSaggregateawardsandsuccessrates.ThenumberofscientistsaffiliatedwithSpacePhysicsandAeronomysectionsofAGUfor20159were(primary/secondaryaffiliations)262/874forAeronomy,713/2477forMagnetosphericPhysicsand745/1811forSolarandHeliosphericPhysics,yettheGShistori‐callyhasinvestedproportionallymoreresourcesinitsAeronomyandCEDARgrantsprogramthaninitsothergrantsprograms(lesssoin2014inTable4.1).Somecaremustbeexercisedininterpretingthesenumbers,however,becauseifmoresupportisavailableforMagnetosphericandSolar‐Terrestrialresearchatotheragencies,especiallyNASA,thenthecurrentnumberofscientistsconductingresearchintheseareasmaybecorrespondinglylarger.Comparablefund‐ingportfoliosfromotheragencieswerenotavailabletothePRC.

6. Findinganoptimumbalancebetweentheaveragevalueofaresearchaward,thenumberofproposalsawardedandhighestscientificreturnforagivenbudgetandpopulationofresearch‐erscertainlydeservesfurtherstudybysocialscientists.10Theproblemiscompoundedwhenmultiplefundingagenciesareinvolved,e.g.,changesingrantawardpolicyforgeospacescienceatNASAimpactssubmissionsatNSFandviceversa.

Thisanalysisofthegrantportfolioisanimportantaspectofduediligenceoftheportfolioreview.ThePRChasnorecommendationstoofferonthiscomplicatedissueandconcludesits

                                                            7 P. Cushman et al. (2015). Impact of Declining Proposal Success Rates on Scientific Productivity, draft AAAC report at http://www.nsf.gov/attachments/134636/public/proposal_success_rates_aaac_final.pdf  8 T. von Hippel and C. von Hippel (2015). To Apply or Not to Apply: A Survey Analysis of Grant Writing Costs and   Benefit,  http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0118494  9 http://spa.agu.org/spa‐section‐newsletter‐volume‐xxii‐issue‐71/  10 NSF Report on Efficiency of Grant Size and Duration at http://www.nsf.gov/pubs/2004/nsf04205/mathemat‐ica_nsfrptfinal6.pdf  

Page 31: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  24  GS Portfolio Review  

analysiswiththefollowingfinding:

Finding.Totalawardobligationsinthecoreplustargetedgrantsprogramshaveprogressivelydecreasedinthepastfiveyears,mostmarkedlyfrom2012to2013.GSprogrammanagershaveadaptedtothereducedinvestmentintheseprogramsbyacceptinglowerproposalsuccessratesonav‐eragesoastomaintainamoreorlessconstanttotalmeanobligationperaward(Totalobligatedawards/Numbercompetitiveawards)irrespectiveofawardduration.

ThePRCfindsthedecisiontomaintainhealthyawardsizesininflation‐adjusteddollars,eventhoughithastheundesirableeffectofreducingproposalsuccessrateswhentheoverallbudgetisflatordeclining,tobepreferabletoreducingawardsizessoastomaintainhigherproposalsuccessrates.Inthisregard,theGShasrecentlybeenbuckinganNSF‐widetrendwhereintheaveragenum‐berofmonthsofsalarysupportpergrantdecreasedbyroughly50%from2002to2014.11Recom‐mendationsforincreasingtherelativeinvestmentinGSstrategicgrantsprogramsareofferedinsubsequentchapter.

4.2 FDSS and CAREER Awards 

ImportantexceptionstotheerosionofgrantsizesaretheFDSSandCAREERawards,whicharedesignedtoenhance,andfullysupport,anewfacultylineinacollegeoruniversity(FDSS),orama‐jormulti‐yeargranttoanearlycareerscientist(CAREER).Theseprogramsareextremelyeffectiveinallowingtherecipientstodeveloparespectableresearchprofile(andearntenure)andsubse‐quentlytobemorecompetitiveinsecuringsponsoredresearchfunds.Thenumberofawardsintheseprogramsislimited,buttheymakeahugedifferenceinthelivesoftherecipients.Thefacultyhiringandtenureprocessinuniversitiesisusuallyveryeffectiveinensuringthatawardrecipientsmeethighprofessionalandscientificstandards.

Finding.AnFDSSannouncementofopportunityhasbeenofferedtwice,in2005and2014.EightFDSSawardshavebeenmade(Table4.5)andallbuttwoprofessorsweretenured.Oneoftheappoint‐mentsleftbeforeachievingtenurebutwasreplacedwithatenuredprofessor;anotheronedidnotpasstenureevaluation.Moreimportantly,thisprogramhashelpedtwoinstitutionsachievea“criticalmass”ofresearchers.

Table 4.5.  FDSS Awardees 

Demographic Number 

awarded 

Now 

tenured 

Women  2  1 

Hispanic  1  1 

Other Minority  0  0 

White Male  5  5 

Inadditiontofundingthecareerdevelop‐mentandresearchofearly‐careerfacultyinthespacesciences,theprogramhasthebroaderimpactofestablishingbulwarksforspacescienceinuniversitydepartments.Thisimpactincludesthetransmissionofknow‐ledgeofthespaceenvironmentoftheEarthandsolarsystemtostudentsinastronomyandgeneralsciencecourses,whichoftendonotincorporatesuchknowledge.

TheDSrecommendedexpandingtheFDSSprogramtofour‐yearcolleges,tohelpimprovethepipelineofstudentseducatedinspacephysics.Acounterargumentisthatthoseteachersarefrequentlyrequiredtodevotemuchoftheirteachingtosubjectsthatdonotincludespacephysics                                                            11 See Fig 12 in the  NSF report to the NSB on Merit Review in FY 2014 at http://www.nsf.gov/nsb/publica‐tions/2015/nsb201514.pdf  

Page 32: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  25  GS Portfolio Review  

topics.AstronomyclassesincludeasectionontheSunbutrarelyincludemorethanabriefintroductiontothemagnetospheresoraurorasoftheEarthandplanets.ThePRCfearsthatwithoutadequateinstitutionalsupportforresearchandrelieffromthelargeteachingloadtypicaloffour‐yearcolleges,thesefacultywillhavedifficultysucceedinginanincreasinglycompetitiveresearchfundingclimate.

Finding.Inthepasttenyears,80GS‐relevantCAREERproposalsweresubmittedofwhich45wereselected.

Ofthese,thirteenreported“womeninvolvement”butonlythreechecked“minorityinvolve‐ment”(Table4.6).

Recommendation4.1.TheFDSSandCAREERprogramsshouldbecontinuedasresourcesallow.

Table 4.6.  AGS CAREER Awardees 2005 ‐ 2015 

Type  AER  MAG STR Total 

Women  4  5 4 13 

Minority  1  1 1 3 

Neither  11  8 10 29 

Total  16  14 15 45 

4.3 AGS Postdoctoral Research Fellowship Program 

TheAGSPostdoctoralResearchprogramisanexcellentwaytosupportandencouragepostdoc‐toralresearchers.Withproposalwriting,teaching,andcommitteeworkinabeyanceduringtheap‐pointment,post‐docscanbroadenanddeepentheirexperienceinpreparationforthenextcareerstep.Asacompetitiveprogram,themostqualifiedandself‐directedcandidatesarefundedtopur‐suearesearchagendalargelyoftheirowndesign.

Recommendation4.2.TheAGSPostdoctoralResearchFellowshipshouldbecontinuedasre‐sourcesallow.Allsuchfundedprogramsshouldcontinuetokeepmetricsonthediversityoftheparticipantsandreportthemannually.

4.4 NSF Graduate Research Fellowships Program 

Similarly,theNSFGraduateResearchFellowshipprogramdirectlyfundstheresearchofgradu‐atestudentsinthefield.ThePRCdidnotacquiredataonthediversityofthegraduatestudentpop‐ulationinthisprogram.ThePRCcertainlyrecommendscontinuationoftheGraduateResearchFel‐lowshipsprogram,butthisprogramisfundedattheFoundationlevelratherthanSectionlevel,soarecommendationfortheGSisnotincludedhere.

4.5 Graduate Summer Schools and Workshops 

Summerschoolprogramsandworkshopsbringgraduatestudentstogetherfromavarietyofinstitutionsforcomprehensiveeducationinasinglesubjectarea.Inaddition,liketheREUsre‐viewedbelow,theyprovidestudentswithinformalopportunitiestomakeimportantresearchcon‐nectionswithfuturementorsandemployers.

Summerschoolsinsolarandspacephysicsareanexcellentwaytoprovidebreadthinbasic

Page 33: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  26  GS Portfolio Review  

sciencetopicsandresearchtechniques,especiallyforstudentsfrominstitutionsthatdonotoffermanyadvancedcoursesinsolarandspacephysics.Inaddition,sincethestudentsmeetresearchersandmanyotherstudentsinthefieldatthesummerschool,theinteractionencouragesthestudentstoremaininthefieldbylearningaboutcareerandemploymentopportunities.

TheGS‐sponsoredsummerschoolfromthelegacyCenterforIntegratedSpaceWeatherModel‐ing(CISM)providesparticipantswithanintroductiontothephenomenologicalandmodelingas‐pectsofspaceweather.Itfillsanimportantnicheamongthemanysummerschoolopportunitiesopentograduatestudentsandupperlevelundergraduates.Ithasbecomeincreasinglypopularandnowreceivesmoreapplicationsforparticipationthanitcanaccommodate.

TheGSalsosupportsasummerschoolintheuseofIncoherentScatterRadars(ISRs)andinter‐pretationofdatafromISRs.Thesesummerschoolsprovideanimportantservicetothecommunity.

Finding:TheDSrecommendedthatasuitablereplacement(orcontinuation)oftheNSFCenterforIntegratedSpaceWeatherModelingsummerschool(p92oftheSurvey)becompetitivelyse‐lected.Asofthisdate,theGShascontinuedtosupportthesummerschoolandhassatisfiedtheDSrecommendation.

Recommendation4.3.TheCISMsummerschoolandtheISRsummerschoolshouldbecontin‐ued,periodicallyassessedandcompetedforrenewal.Metricsonthediversityofthestudentpar‐ticipantsshouldbekeptandreportedannually.

TheGStargetedgrantsprogramsreviewedinChapter6includestudentsupporttoattendtheGEM,CEDARandSHINEcommunityworkshops.

Finding.TheDSrecommendedthatNSFshouldenableopportunitiesforfocusedcommunityworkshopsthatdirectlyaddressprofessionaldevelopmentskillsforgraduatestudents(DSp92).ThisactivitytakesplacetoalargeextentattheGS‐sponsoredCEDAR,GEMandSHINEsummerwork‐shops.Studentparticipationintheseworkshopsisverypopularandprovidesamoreresearchori‐entededucationalexperienceforstudentsthansummerschools.

Recommendation4.4.GSsupportforgraduateandadvancedundergraduatestudentstoattendtheGEM,CEDARandSHINEsummerworkshopsshouldbecontinuedasresourcesallow.Metricsonthediversityofthestudentparticipantsreceivingsupportshouldbekeptforeachworkshopandreportedannually.

4.6 Research Experiences for Undergraduates 

NSF’sResearchExperiencesforUndergraduates(REU)programprovidescollegestudentsbe‐tweentheirjuniorandsenioryearwithtravelandstipendsupportforasummerresearchexperi‐enceatauniversityotherthantheirhomeinstitution.Thisexperiencehasbeensuccessfulinhelp‐ingstudentsgainconfidenceintheirscientificknowledgeandskillsandinlearningaboutresearchandcareeropportunitiesinfieldsofpotentialinterest.Italsohelpsthemmakeconnectionsandac‐quirerelevantresearchexperiencesothattheycanchooseagraduateschoolbestalignedwiththeirtalentsandinterests.

AGShassupportedfiveREUgrantsatthreeinstitutionsoverthepasttenyears.(Inaddition,someREUgrantsfromotherNSFdivisionshavesupportedstudentresearchinAGSscience).ThePrograminSolarandSpacePhysicsattheUniversityofColoradoBoulderisoneofthemost

Page 34: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  27  GS Portfolio Review  

popularREUsandattractsabout30undergraduateseverysummer.ItallowsstudentstoworkwithscientistsatoneofthemanyspacescienceorganizationsinBoulder:UniversityofColorado’sLaboratoryforAtmosphericandSpacePhysics(LASP),NCAR’sHighAltitudeObservatory(HAO),NOAA’sSpaceWeatherPredictionCenter(SWPC),theSouthwestResearchInstitute(SwRI),NorthWestResearchAssociates(NWRA)andAtmosphericandEnvironmentalResearch(AER)orAtmospheric&SpaceTechnologyResearchAssociates(ASTRA).Summerprojectsspanthefieldofsolarandspacephysics,frominstrumenthardwaretodataanalysistomodelingoftheSun‐Earthsystem.ThenumberofparticipantsintheCUREUprogrambyyearappearsinTable4.7alongwithdiversitydata.Participationbywomenandotherunderrepresentedgroupsissignificant.

Table 4.7.  Colorado REU students 2007‐2015

Year  Males  Females  White†  Hispanic  Black†  Asian Native 

American 

2007  12  2  12 0 2 0  0

2008  9  5  11 0 1 2  0

2009  6  5  9 0 1 1  0

2010  7  9  15 0 0 1  0

2011  7  9  13 1 0 2  0

2012  2  12  12 1 1 0  0

2013  7  10  12 2 0 2  1

2014  7  10  15 0 1 1  0

2015  6  10  12 1 1 2  0

Totals  63  72  111 5 7 11  1

† Non‐Hispanic 

TheNASA/NSFsponsoredCommunityCoordinatedModelingCenterhoststheSpaceWeatherResearch,EducationandDevelopmentInitiative(SWREDI)whichprovideseducationalopportuni‐tiesforhighschool,undergraduateandgraduatestudents.Theprogram’sobjectivesareto:pro‐motespaceenvironmentawarenessasanimportantcomponentofthenewmillenniumcoreeduca‐tion;facilitateestablishmentofspaceweatherprogramsatuniversitiesworldwide;andprovideun‐dergraduatestudentinternshipopportunitiesatCCMC/SWRCtodevelopskillsbeneficialforanyfuturecareerpursuit.Thehigh‐schoolandcollege‐orientedprogramsupportsbothtwo‐weekedu‐cational“bootcamps”andinternships.With23internshipshostedin2014‐15,theSWREDIpro‐gramappearstobebothpopularandsuccessfulinmeetingitsgoals.Italsoappearstobedoingwellinfacilitatinggenderandethnicdiversityinthefield(Table4.8).

Finding.TheNSF‐sponsoredREUprogramandSWREDIprogramprovideundergraduateswithopportunitiestoexperienceresearchinthespacesciencesandtomakebetterinformedcareerdeci‐sions.Theseprogramsarealsodoingwellinpromotinggenderandethnicdiversitywhiletrainingthenextgenerationofresearchers.

Recommendation4.5.NSFsupportforREUprogramsinsolarandspacephysicsshouldbeen‐couraged.TheSWREDIprogramshouldbecontinuedasresourcesallow.Metricsonthediversityofparticipantsshouldbekeptonallsuchfundedprogramsandreportedannually.

Page 35: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  28  GS Portfolio Review  

4.7 Workforce Diversity 

ThefractionofwomenparticipatingasundergraduatestudentsintheColoradoREUprogramisquitelarge,mirroringtheunder‐graduatepopulationthatisnowmorethan50%women.However,thenumberoffemalegraduatestudentsdropstoaround30%,assuggestedbydataforstudentparticipationintheSHINEsummerworkshop(Table4.9).

Table 4.8.  GS‐supported CCMC interns†, 2014‐15

Type Number  Fraction

Women 6  0.26

Hispanic 0  0.00

American Indian 1  0.04

African‐American 2  0.09

White Male 9  0.39

Asian (male) 5  0.22

Total 23 

† Two of these interns were graduate students. 

Thefractionofwomenfallsstillfurtherinlatercareerstages,withlessthan30%CAREERawardeesbeingwomen(Table4.6),andonly25%asFDSSrecipients(Table4.5).ThefractionoffemaleGSPIsissignificantlyless.DiversitydataforGSgrantawardeesareincludedinAppendixD.Weexpectthenumberofwomeningeospacesciencetoincrease,asthisnewgenerationofre‐searchers“moveuptheranks”.Thefractionofotherminorities(excludingAsians)ismuchless.ParticipantsinstudentconferencessuchasSACNAS(SocietyforAdvancementofChicanos/Hispan‐icsandNativeAmericansinScience)showthatfarmoreHispanicsandNativeAmericansaredrawntothebiologicalsciencesthanthephysicalsciences,perhapsforculturalreasonsandperhapsbe‐causethesefieldsareconsideredlessmathematical,orjustbecauseofalackofrolemodels.

Finding.TheGShasbeenreasonablyeffectiveinfundingcompetitiveproposalsfromun‐derrepresentedgroups.However,thenumberofproposalsubmissionsfromdiversePIsisstillquitelow.

Table 4.9.  SHINE students supported by NSF, 2006‐2009

Type  2006  2007  2008  2009  2011 2012 2013 2014  2015  Total  % 

Women  8  14  15  16  15 15 16 16 14  129  31 

Hispanic (M/F)⍭  0  0/2  0/1  1/1  1/1 0/3 0/2 0/4 1/2  3/16  1/4 

Other Minority  1  0  0  0  0 0 0 0 0  1  ‐ 

White Male  29  23  21  39  34 34 27 38 40  285  68 

Total  38  37  36  56  50 49 43 54 55  418  100 ⍭ Hispanic female students indicated here are included in the count of women in the line above. 

   Data for 2010 was not available

Recommendation4.6.TheGSandtheGScommunityshouldbeinthevanguardofNSFinitia‐tivestopromoteengagementofwomenandunder‐servedpopulationsinallaspectsofgeospacesciencefromschooltoresearchproposalwritingtoleadershipinGSactivities.

4.8 PhD Employment Opportunities 

ThenumbersofPhDsinspacesciencehasincreasedfrom~35peryearin2000‐2005to~55peryearin2006‐201012(Figure4.4).Thesamestudysawthetypicalresearchandfacultyjoblist‐ingsdeclineinrealnumbersoverthesameperiod.Partofthedeclineinthenumbersofjobsposted

                                                            12 Moldwin, M. B., J. Torrence, L. A. Moldwin, C. Morrow (2013), Is there an appropriate balance between the num‐ber of solar and space physics PhDs and the jobs available?, Space Weather 11, 445–448, doi:10.1002/swe.20075. 

Page 36: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  29  GS Portfolio Review  

islikelyrelatedtorecentreductionsinsponsoredresearchforgeospacescienceasdiscussedinSection4.1.Manyoftheserecentgraduatesaregoingintootherfieldsortoindustry,or,amongin‐ternationalstudents,returningtotheirhomecountry.ThesestudentsadvancenewknowledgeofgeospacesciencewhileearningaPhD,eveniftheydonotcontinueingeospacesciencepost‐PhD.Thesubsetofgraduateswhoarepursuingsuccessfulcareersinindustryistestamenttothebroadutilityofaneducationingeospacescience.InternationalstudentswhopursueAGS‐relatedresearchafterreturningtotheirhomecountrybecomeinternationalcollaboratorsandfacilitateamuchneededglobalnetworkofgeospacescientists.

Finding.AGSappearstobeservingasanexcellentplatformfortrainingahighlyskilledwork‐force.Insodoing,itcontributestotheeconomyandtechnicalproductivityoftheNation.

Recommendation4.7.Wherepossible,thefirstemploymentstepofgeospacePhDstudentsshouldbetrackedtodetermineanddemonstratehowtheskilledworkforceisbeingutilized.Thisinfor‐mationcouldbeenteredinadata‐informationboxinthefinalgrantreport.

4.9 GS CubeSat Program and Education  

AnextensivereviewoftheGSCubeSatprogramfollowsinSection6.6.Sincethischapterad‐dressesthevitalityoftheprofessionandworkforceissues,thesignificantroleofuniversityCubeSatprogramsisalsoemphasizedhere.UniversityCubeSatprogramsingeneralandtheGSCubeSatpro‐graminparticularhavebeenveryeffectiveinstimulatinginterestinSTEMeducationandinaero‐space‐relatedcareers.Indoingtheycontributetothedevelopmentofahighlyskilledworkforce.

Finding.CubeSatprojectsareanexcellentvehiclefortrainingstudentsonspacecraftinstrumen‐tationandsystems.AsdescribedinSection6.6,GSCubeSatprojectstodatehavegeneratedmoreengi‐neeringthansciencepublicationsandhavegarneredparticipationfrom6highschoolstudentsandmorethan250BSandMSstudents.Theyhaveprovidedthebasisfor15Ph.D.theses.

Figure 4.4.  Left: Production of PhDs in Solar and Space Physics.   Right:  Job advertisements in Space 

Physics and Aeronomy and the Solar Physics Division for US institutions.12 

Page 37: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  30  GS Portfolio Review  

Recommendation4.8.TheGSshouldcontinueitsCubeSatprogramatthefundinglevelrecom‐mendedinSections6.6and9.3.GiventheeducationalandengineeringsuccessesoftheCubeSatprogram,theGSshouldcultivatepartnershipswiththeNSFEngineeringandEducationDirec‐toratestobroadenNSFinvestmentinCubeSatprogramsandexpandtheirreachacrossNSF.

4.10 Public Outreach 

TheroleofoutreachininspiringyouthiscrucialincreatingandmaintaininginterestinSTEMsubjectsandSTEMcareers.NSFrequiresstatementsof“BroaderImpacts”inallnewproposals;however,manyoftheseeffortshavebeenlimitedinscopeand/orregionalinimpact.Similarly,CA‐REERgrantsalsorequireanoutreachcomponent.SciencecenterssuchasCISMhaveincludedcomprehensiveeducationandoutreachprogramsbuthavenowexpired.TheNSFInformalScienceDivisionhassponsoredanumberofexcellentplanetariumshowsthatshowcaseHeliophysicssci‐ence,andthesevenuescanreachmillions.Untilrecently,NASAmissionswere“taxed”1to3per‐centtosupportoutreachefforts.ThispracticewasrecentlyrescindedbytheCommitteeonScience,Technology,Engineering,andMathematics,andNASAoutreachfundingwillbeconcentratedinfewerprogramsbutwithamoreintegratedapproach.ThusoutreacheffortsfromNSFprogramsmaybeincreasinglyimportantinthefuture.

GSfundstwonoteworthyprojectsinthisregard.ItsSuperMagdatacenterengagesK‐12teach‐ersinitsactivities.Its“Aurorasaurus”projectisanexcellentcitizenscienceprogramtomonitortherealtimeaurora.Thesenovelprogramsforengagingandinforming“teacherscience”and“citi‐zenscience”improvevisibilityofthefield.

Recommendation4.9.Continuemodestinvestmentsinprojectsandprogramsthatinvolveteacherresearchandcitizenscienceandinformpublicinterestingeospaceandsolarscience.

4.11 Survey of Earned Doctorates 

AsignificantdifficultyforsolarandspacephysicsisitsinvisibilityintheNSF‐sponsored“Sur‐veyofEarnedDoctorates”.TherecentstudyofPhDgraduatesreferencedabove4usedkeywordsinabstractstoidentifyrelevanttheses,butsomespacesciencethesesmayhavebeenmissed.Mostundergraduateshaveneverheardofsolarandspacephysicsasanoptionforgraduatestudy.Stu‐dentsapplyingforNSFGraduateResearchFellowshipstostudygeospacesciencemaybeatadisad‐vantageinthereviewprocesswithoutaclearcategoryfortheirproposedwork.

Finding.TheDecadalsurveyrecommendedhavingNSFimmediatelyimplementacategoryof“so‐larandspacephysics”.Itislikelythatothercompendiawouldfollowsuit.Thisproposalforasepa‐ratelistingcanevenbefoundinoneofthefirstdecadalreports:“SolarTerrestrialResearchforthe1980’s”[NRC,1981].

Recommendation4.10.TheGSshouldworkwiththeNSFofficethatmaintains“SurveyofEarnedDoctorates”toimplementimmediatelythecategory“SolarandSpacePhysics”(oran‐othernametobedetermined)intotheSurvey.

Page 38: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot
Page 39: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  31  GS Portfolio Review  

Chapter 5.  Science Goals and Capabilities for SSP

Buildingontheextraordinaryadvancesinsolarandgeospacescienceofthepreviousdecade,theDecadalSurvey(DS)forSolarandSpacePhysics(SSP)recommendedacomprehensiveprogramofresearchto“improveunderstandingofthemechanismsthatdrivetheSun’sactivityandthefun‐damentalphysicalprocessesunderlyingnear‐Earthplasmadynamics;todeterminethephysicalin‐teractionsofEarth’satmosphericlayersinthecontextoftheconnectedSun‐Earthsystem;andtogreatlyenhancethecapabilitytoproviderealisticandspecificforecastsofEarth’sspaceenviron‐mentthatwillbetterservetheneedsofsociety.”TheoverarchingDSrecommendationscrystallizedwithfourkeysciencegoalsinChapter1oftheDSreport:

KeyScienceGoal1.DeterminetheoriginsoftheSun’sactivityandpredictthevariationsinthespaceenvironment.

KeyScienceGoal2.DeterminethedynamicsandcouplingofEarth’smagnetosphere,ionosphere,andatmosphereandtheirresponsetosolarandterrestrialinputs.

KeyScienceGoal3.DeterminetheinteractionoftheSunwiththesolarsystemandtheinterstellarmedium.

KeyScienceGoal4.Discoverandcharacterizefundamentalprocessesthatoccurbothwithintheheliosphereandthroughouttheuniverse.

ThesekeysciencegoalswerefurtherparsedinChapter2oftheDSreportinto12sciencechal‐lenges.Theflowdownfromkeysciencegoalstosciencechallenges–ineffectscienceobjectives–canbeusedtodeterminethecriticalcapabilitiesrequiredtoachieveDSgoalsandtherebymeetcharge(1)oftheportfolioreview.ThesechallengesarelistedinTable5.1.OtherchaptersoftheDSreportprovidemorespecificguidanceonvariousaspectsofthisreview.DSChapter4,Recommen‐dations,outlinesprogramelementsneededtoaccomplishthekeygoals;Chapter5,NSFProgramImplementation,providesspecificguidancetoNSFinimplementingenablingprogramelements;andChapter7,SpaceWeatherandSpaceClimatology:AVisionforFutureCapabilities,describestheenhancedcapabilitiesrequiredtoproviderealisticandspecificforecastsofEarth’sspaceenviron‐ment.ThePRCalsousedthethreeDSpanelreportsonAtmosphere‐Ionosphere‐MagnetosphereIn‐teractions,SolarWind–MagnetosphereInteractionsandSolarandHeliosphericPhysics,andtheirimperativesforNSFinitiatives,tofurtherinformitsreviewandassessmentofcriticalcapabilities.

ThePRCformedfoursciencesub‐committeestoidentifycriticalsciencecapabilities.Threeofthesub‐committeesaddressedcapabilitiesforsciencechallengeslistedinTable5.1forAtmos‐phere‐Ionosphere‐MagnetosphereInteractions,SolarWind‐Magnetosphere‐IonosphereInterac‐tionsandSolarandHeliosphericPhysics.Thefourthsub‐committeefocusedspecificallyonSpaceWeatherandPrediction,and,inkeepingwithDSdirectivesforadvancingintegrativescience,gavespecialattentiontothecapabilitiesneededtoaddresssciencechallenges thatspanacrossthetradi‐tionaldisciplinesandthatinvolveinteractionsoccurringwithintheconnectedSun‐Earthsystem.Thesefoursub‐committeesidentifiedthesubsetofcriticalcapabilities,withinthebroaderland‐scapeofsupportforSSP,thatliewithinthepurviewofthecurrentorfutureGSportfolio.Withtheassessmentsofthesesub‐committeesinhand,thePRCasawholereviewedandrankedthecriticalcapabilitiesforadvancingtheDSscientificagendausingobservations,instrumenttechniques,dataanalysis,theoreticalandmodelingapproachesandlaboratorymeasurements.

Page 40: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  32  GS Portfolio Review  

TheDSsciencechallengesandthecriticalcapabilitiesrequiredtoaddressthemaresumma‐rizedinthenextfoursections.

5.1 Atmosphere‐Ionosphere‐Magnetosphere Interactions 

AIMI‐1:  Understand how the ionosphere‐thermosphere system responds to, and regulates, 

magnetospheric forcing over global, regional, and local scales.  

Thissciencechallengeembodiestherecognitionthatthemagnetosphere,ionosphere,andther‐mosphererespondasacoherentlyintegratedsystemtosolarforcing.Tounderstandandpredictvariabilitywithinthissystemrequiresadeepunderstandingofsolarwindforcing,energystorage

TABLE 5.1 Science Challenges for Solar and Space Physics from the 2012 Decadal Survey

 

Atmosphere‐Ionosphere‐Magnetosphere Interactions (AIMI) 

AIMI‐1  Understand how the ionosphere‐thermosphere system responds to, and regulates, magnetospheric forc‐ing over global, regional, and local scales. 

AIMI‐2  Understand the plasma‐neutral coupling processes that give rise to local, regional, and global‐scale struc‐tures and dynamics in the AIM system. 

AIMI‐3  Understand how forcing from the lower atmosphere via tidal, planetary, and gravity waves influences the ionosphere and thermosphere. 

AIMI‐4  Determine and identify the causes for long‐term (multi‐decadal) changes in the AIM system. 

Solar Wind‐Magnetosphere Interactions (SWMI) 

SWMI‐1  Establish how magnetic reconnection is triggered and how it evolves to drive mass, momentum, and en‐ergy transport.  

SWMI‐2  Identify the mechanisms that control the production, loss, and energization of energetic particles in the magnetosphere. 

SWMI‐3  Determine how coupling and feedback between the magnetosphere, ionosphere, and thermosphere govern the dynamics of the coupled system in its response to the variable solar wind. 

SWMI‐4  Critically advance the physical understanding of magnetospheres and their coupling to ionospheres and thermospheres by comparing models against observations from different magnetospheric systems. 

The Sun and Heliosphere (SHP) 

SHP‐1  Understand how the Sun generates the quasi‐cyclical magnetic field that extends throughout the helio‐sphere.  

SHP‐2  Determine how the Sun’s magnetism creates its hot, dynamic atmosphere. 

SHP‐3  Determine how magnetic energy is stored and explosively released and how the resultant disturbances propagate through the heliosphere. 

SHP‐4   Discover how the Sun interacts with the local interstellar medium. 

 

Page 41: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  33  GS Portfolio Review  

andrelease,feedbackpathways,preconditioning,andregulationmechanisms.TheAIMI‐1challengeservesasthe“Aeronomy”complementtoSWMI‐3,whichcaststhischallengefromthemagneto‐sphericperspective.TheshiftoftheAeronomyandMagnetosphericcommunitiestowardthe“sys‐temscience”paradigmisadirectconsequenceofthevastexpansionofcollaborativemeasurementsfromgroundandspaceovertheprecedingdecade,coupledwithcommensurateadvancesinassimi‐lativeandfirst‐principlesmodeling.FurtherprogresswillrequireinitiativesandcapabilitiesthattranscendtraditionalprogrammaticboundarieswithintheGeospaceSection.

AunifyingthemeunderAIMI‐1isthegeospacesystemresponsetogeomagneticstormsandsubstorms,whichareknowntohaveglobaleffectsontheAIMIsystemextendingfrompoletoequa‐tor,andareamajorcomponentofspaceweather.StructuringoftheconductancefieldbyparticleprecipitationpatternsaffectsthepartitioningandefficiencyofenergytransferintotheI‐Tsystem.Transmissionandreflectionofwavepowerfromthemagnetosphereoffersacomplementaryviewintotheseissues.Theresultantthermalexpansion,ambipolardiffusion,andstructuredconvectionpatternsconstituteaneffectivesystemofmassredistributionwithinthegeospacesystem.Freeen‐ergyarisingfromstormtimeinteractionsalsodrivesarichvarietyofinstabilities(e.g.,Langmuirturbulence,Farley‐Bunemanwaves,Rayleigh‐Taylorinstabilities,gradient‐driftinstabilities)whichadverselyimpactground‐spacecommunicationsandfurtheraffectenergyandmomentumtransferwithintheAIMIsystemthroughcross‐scalecoupling.Progresshasbeenmadeinaddressingtheseissues,bothintermsofglobalobservationalmeasurementsandinthedevelopmentofcoupled,large‐scalephysics‐basedandassimilativenumericalmodels;however,afullunderstandingandpredictivecapabilityofstormtimeeffectsonthenear‐Earthspaceenvironmentremaintobeachieved.

Geospacescienceshouldaggressivelycontinueitstrendtowarddistributedmeasurementscou‐pledthroughmulti‐scalephysicalmodels.DASI‐typemeasurementsandcoordinatedobservations(e.g.,TECmaps,ISRs,SuperDARN,ionosondes,passiveopticalnetworks,andsatellites)withthein‐ternationalcommunityarenecessarytoassessthetemporalandspatialchangesintheAIMsystemduringthecourseofamagneticstorm.Inparticular,thedirectconnectionbetweensolarwindpa‐rameters(density,velocity,andmagneticfield)at1AUandtheensuingdynamicswithintheAIMsystem.Additionally,fullyglobalmodelsoftheAIMsystemneedtobedevelopedwithinthe'sys‐temscience'approach,thatis,todeterminethecomplexnonlinearrelationshipsbetweenthediffer‐entcomponentsofthesystemasafunctionofspaceandtime.Inadditiontoconsideringtheessen‐tialphysicalprocessesinvolved,thereisaneedforhighspatialandtemporalresolutionincompu‐tationalmodelsthatislackinginmostmodelstoday.Forexample,thedevelopmentofionosphericirregularitiesonscalelengthsofafewkilometersneedstobemodeledtoassesstheirimpactonspace‐basednavigationandcommunicationsystemsduringmagneticstorms,yetmostglobalmod‐elshaveagridresolutionofafewhundredkilometers.

Importantquestionsthatneedtobeaddressedincludethefollowing:

1.Howdosolarwinddisturbancespropagatethroughthemagnetosphereandimpacttheiono‐sphere?

2.Howdoionosphericstormsdevelop,evolve,andrecover?

3.Whatphysicalprocessescontrolthespatialandtemporalextentofstorm‐timepenetrationelectricfieldsinthelow‐tomid‐latitudeionosphere?

4.Howdoneutralwinddynamicsimpacttheelectrodynamicsoftheglobalionosphereduring

Page 42: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  34  GS Portfolio Review  

ionosphericstorms?

5.Howdosub‐auroraliondrifts(SAIDs)andsub‐auroralplasmastreams(SAPS)formandde‐velop?

6.HowdoAIMIinteractionsaffectmassredistributionwithinthegeospacesystem?

Criticalcapabilities.Thecriticalcapabilitiesneededtoaddressthischallengeentailsynergiesbetweenmeasurementandmodeling.Distributedmeasurementsofflows,temperatures,andcom‐positionsoftheplasmaandneutralgasesareneededforingestionintoassimilativemodels,andasconstraintsonfirst‐principlesmodels.Provisionofthesecapabilitiesultimatelyincludescollabora‐tivemeasurementsfromground‐basedandspace‐basedplatforms.

Specifichigh‐priorityobservationalcapabilitiesrelevanttoGSinclude:(1)densityandcompo‐sitionoftheneutralatmospherefrom0to1000kmaltitude,(2)measurementsofionosphericflowsat10kmand10sresolution,(3)mapsofionosphericconductanceatspace‐timescalesinher‐entinthephenomenon(contextdependent,but100mand1svariationsarepossible),and(4)cyberinfrastructurecapabilitiestooptimallyexploitthegrowingdatabaseofheterogeneous,multi‐scalemeasurements.

Modelingcapabilitiesinclude:(1)Amulti‐scalemodelingeffortisneededinconcertwiththeseobservationalcapabilities.(2)Bothregional(transport,flux‐tube)andglobal(multi‐fluid,MHD,GCMs)modelsoffirstprinciplesphysicsareneededtotestourphysicalunderstandingandtopre‐dictunobservableparametersinthesystem(e.g.,neutralabundances,ioncomposition).(3)Aglobalmodeloftheelectrodynamicsoftheionospherethatself‐consistentlyincludesthemajordrivers:thehigh‐latitudeRegion1and2currentsystemsandtheneutralwind.(4)Assimilativemodelsareneededtoevaluateself‐consistencyofheterogeneousdistributedmeasurements,andtomakereal‐timepredictionsofspaceweathereffectsonthegeospacesystem.

AIMI‐2. Understand the plasma‐neutral coupling processes that give rise to local, regional, and 

global‐scale structures and dynamics in the AIM system.

Althoughionizedspeciesintheouteratmosphereareaminorconstituentintermsofmassden‐sity,theyhaveasignificantimpactonneutraldynamicsowingtotheefficacywithwhichtheymaybedrivenbyfreeenergyinthemagnetosphereandsolarwind.Conversely,neutralmotionsinflu‐encetheeffectiveconductivityandelectricfieldsprojectedintothemagnetosphere,aswellasserv‐ingasthereservoirforionosphericplasmaproduction.Ourunderstandingofplasma‐neutralinter‐actionsisincompleteatbest,basedinlargepartonthedifficultyofobservingtheneutralgas.

Untilrecently,theroleoftheneutralatmosphereonthegeospacesystemhasreceivedinade‐quateattention.Inagreatmanystudies,thereliabilityoftheMassSpectrometerandIncoherentScatterRadarmodel(MSIS)isacceptedasabaselineassumptionforstudiesdrivenbyobservationsofplasmaphenomena.ThispracticeisfollowednotbecauseMSISisreliable,butbecauseitspa‐rametersaredifficulttoquantifyexperimentally.TheforthcomingNASAmissionsICONandGOLDincludesubstantialfocusonplasma‐neutralinteractions.RecenteffortstodevelopimagingFabry‐Perotinterferometers(FPIs)anddeploysuchinstrumentsinnetworkedconfigurationsalongsideplasmadiagnosticswillalsocontributesubstantially.

Perhapsthedominantion‐neutralcouplingissueintheAIMIsystemisthegenerationoftheglobaldynamoelectricfieldassociatedwiththermosphericwindsintheEandFregions.This

Page 43: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  35  GS Portfolio Review  

electricfieldisthedominanttransportmechanismofplasmatransversetothegeomagneticfieldviatheEBdrift,andisresponsibleforthegenerationoftheAppletonanomalypeaksinFregionaswellastheenhancementoftheupwardplasmadriftatsunsetwhichisamajorfactorinthegenerationofequatorialspreadF(ESF).Anotherimportantissueconcernstheinterplayofplasmaandneutralspeciesincontrollingtheionoutflow.Themechanicaltransferofelectromagneticpowertotheneutralwinddynamoathighlatitudesisalsopoorlyquantified.

Importantquestionsthatneedtobeaddressedarethefollowing:

1.Whatisthedominantneutralwindstructurethatcontrolsthestrengthofthepost‐sunsetpre‐reversalenhancement?

2.Whatchangesoccurduringperiodsoflowsolaractivitythatcauseapost‐midnightenhance‐mentoftheupwardplasmadriftandleadtopre‐dawndensitydepletions?

3.Whatroledothermosphericdriversplayinregulatingtheday‐to‐dayvariabilityoftheneu‐tralwindandlow‐latitudeelectricfield?

4.Whataretheprimaryprocessesthatcontrolthelongitudinalvariabilityofthegloballow‐lati‐tudeelectricfield?

5.Howdoesthermosphericcomposition,temperature,andbulkmotionaffectplasmaproduc‐tionandoutflow?

Toanswerthesequestionsrequiresknowledgeoftheglobalthermosphericwind.However,measurementsofthewindarerelativelysparsecomparedtomeasurementsofionosphericproper‐ties,andaglobalsystemofobservationsisneeded(e.g.,Fabry‐Perotinterferometers).Theupcom‐ingNASAICONmissionisdesignedtomakemeasurementsoftheneutralwindinthelow‐latitudeionosphereandwillprovideanimportantnewdataset.

Asidefromobservations,first‐principlesphysics‐basedmodelsarebeingusedtodeterminethethermosphericwind(e.g.,TIEGCM,TIMEGCM,WACCM‐X,WAM).Itisimportantthatthistypeofmodeldevelopmentbecontinuedandvalidatedtoprovidecriticalwinddataintheabsenceofmeasurements.

Criticalcapabilities.Inadditiontothegeneralframeworkformodelinganddistributedmeas‐urementspreviouslydiscussed,progressinunderstandingplasma‐neutralcouplingrequiresthefollowingcapabilities:(1)coordinatedmeasurementsofneutralandplasmadynamics.Thiscapa‐bilityincludesdistributedground‐basedmeasurementsofneutralwindsandtemperatures,andco‐ordinatedglobal‐scaleobservationsfromspace,(2)improvedhybridfluid‐kineticmodelscapableofcapturingmagnetosphere‐ionosphere‐thermosphere‐mesosphereinteractions,(3)experimen‐tallydrivenmethodologiesbywhichsmallscaleprocessesmaybeusedtodriveGCMandMHDmodelingefforts.

AIMI‐3. Understand how forcing from the lower atmosphere via tidal, planetary, and gravity 

waves influences the ionosphere and thermosphere. 

Inrecentyearstherehasbeenagrowingrecognitionthatthegeospacesystemcanbeeffec‐tivelyandsignificantlydriventhrough“couplingfrombelow.”Thefullimplicationsofloweratmos‐phericforcingarestillbeingexplored.Duringtherecentextendedsolarminimumperiod,theoc‐currenceofequatorialspreadF(ESF)occurredmorefrequentlyinthepost‐midnightperiodthan

Page 44: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  36  GS Portfolio Review  

thepost‐sunsetperiod—amarkeddeparturefrom'normal'ESF.Althoughnotentirelyunderstood,itisconjecturedthatthechangesinthethermosphericwindbecauseoflowsolarirradianceandvarioustidalandgravitywavemotionsalteredtheglobalelectricfieldtofavorpost‐midnightF‐re‐gionirregularitiestodevelop(asnotedinAIMI‐2).Thisresultbecomesmoreimportanttothegeo‐spacecommunityinlightofpredictionsthatsolaractivitywillcontinuetodeclineandpossiblyreachsolarconditionssimilartotheMaunderminimumin2030.

Therehasalsobeenconsiderableinterestoflateintheimpactofsuddenstratosphericwarm‐ings(SSW)inthePolarRegionsontheglobalionosphere.Forexample,changesintheionosphericdriftvelocitieshavebeenobservedatJicamarcafollowingaSSWsuggestingaglobalcouplingofthepolarstratospheretotheequatorialionosphereassociatedwithalteredatmosphericwavepatterns.

Lastly,non‐migratingtidalmotionsgeneratedinthetropospherehavebeenconvincinglylinkedtotheso‐called'4wave'patternobservedinionosphericopticalemissionsandTECpatterns.Sub‐sequentsimulationstudieshavebeenabletoreproducethisbehavior.

TheNASAIonosphericConnectionExplorer(ICON),tobelaunchedin2016,andtheGlobal‐scaleObservationsoftheLimbandDisk(GOLD)missiontobelaunchedin2018,willcontributetothischallenge.ICON,inparticular,isspecificallydedicatedtoexploringconnectionsbetweenEarth’sweatherandspaceweather.Newmodelingefforts,suchastheWholeAtmosphereCommu‐nityClimateModel(WACCM)areemergingtomakequantitativepredictions.TheseeffortsareparticularlyimportantowingtotheunprecedentedchangesofEarth’sintrinsicmagneticfield.

Criticalcapabilities.Thescientificefficacyofthesespace‐basedandmodelingeffortswillbegreatlyenhancedthroughground‐basedmeasurementstraditionallysponsoredwithintheNSFAeronomyandFacilitiesPrograms.Ofparticularinterestare(1)opticaltechniques,suchasFabry‐PerotinterferometersandLIDARsand(2)neutralairglowmonitors,whichremaintheprincipaldi‐agnosticoftheneutralstateoftheouteratmosphere,(3)radarsystems(incoherentscatter,MF,meteor)whichcanusebackscatterfromionizedspeciesastracersofneutraldynamics,coupledwith(4)collaborativemeasurementsofloweratmosphericphenomena(forcingfromorographic,geological,anthropogenic,andweathersystemsources).

AIMI‐4. Determine and identify the causes for long‐term (multi‐decadal) changes in the AIM 

system. 

Understandinglong‐termtrendsintheloweratmospherehasbeenattheforefrontofresearchintheGeoscienceDirectoratefordecades.Climatechangehasimmediateglobalsocietalconse‐quences.Similareffortsaimedatunderstandingclimatologicaleffectsintheupperatmospheremayprovidecrucialadditionalinsightsintoourunderstandingofhowourhomeinspaceinteractswithourparentstar.

Criticalcapabilities.Althoughinvestmentsinlong‐termmeasurementsareneeded,thecom‐munityisstilldebatingwhichmeasurementsarehighestpriorityandviablegiventhesubstantialvariationincostdependingondiagnostictechnique.Candidatesinclude:(1)Calibratedlong‐termgloballydistributedmagnetometermeasurements(availablefromthemid1800’stopresent);(2)Opticalmeasurements(desirablebutexpensiveandchallengingintermsoflong‐termcalibration);(3)A50‐yeardatabaseofISRmeasurementsremainslargelyuntappedatpresentandisexpensivetomaintain.ThenewAMISRradarshavethepromisingcapabilityof“lowdutycycleopera‐tion.”Emergingnetworksofopticalinstrumentationareachievingsimilarcadence,albeitsubjectto

Page 45: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  37  GS Portfolio Review  

weatherandobservingconditions.Theseelectronicallysteerablesystemscansampleionosphericstateparametersataregularcadence(typically10’sofsecondstominutes)withreasonableoper‐atingcost.Thesemeasurementswillneedtobesupportedbyappropriatedatabase,cyberinfra‐structure,andmodelingmethodologies,asdiscussedpreviously.

5.2 Solar Wind‐Magnetosphere‐Ionosphere Interactions 

SWMI‐1. Establish how magnetic reconnection is triggered and how it evolves to drive mass, 

momentum, and energy transport. 

Whilethebroadviewofhowreconnectiontakesplaceanddrivesconvectioninthemagneto‐sphereisnowwellestablished,theunderlyingphysicsofmagneticreconnectioninthecollisionlessregimeofthemagnetosphereisnotyetunderstoodwellenoughtoenablepredictionofwhen,where,andhowfastthisprocesswilloccurandhowitcontributestomass,momentumandenergytransport.NASA’sMagnetosphericMultiscaleMission(MMS)waslaunchedafterthe2012DecadalSurveywascompletedandisnowconductingmeasurementsinsidereconnectiondiffusionregionstoresolvethecollisionlessmicrophysicsofreconnectioninEarth’smagnetosphere.

MMSinsitumeasurementswilldeterminehowreconnectionoccurs,butpredictionofitsonsetandspatialdistributionisinfluencedbybothlocalmicrophysicsandnonlocaleffectsofmagneto‐sphere‐ionospherecoupling.Reconnectionalsoimpactsthemagnetosphere‐ionospheresystem.Thespatialvariationinionosphericconductivityregulatestheionosphericloadonthesolarwinddynamoandtheclosureofelectriccurrentscouplesreconnectionregionstotheionosphere.Thetransportofionsfromtheionospheretothemagnetospherebecomesespeciallyintenseduringmagneticstormsandcanmodifylocalreconnectionratesbychangingthemasscompositionofre‐connectingplasmas.Thereconnectionprocessexhibitsdifferentdynamicsindifferentregionsofgeospace.Magnetotailreconnectionproducesburstsofhigh‐speedflowsinnarrowchannels.Day‐sidereconnectiongenerateslocalizedfluxtransfereventsthatproduceburstsofparticleprecipita‐tion,aurorallightandflowchannelsinandpolewardofthelow‐altitudecuspregion.Reconnectionproducesstructuredionosphericsignaturesinplasmaflowsanddensity,verticaltransport,Alf‐vénicactivityandcharged‐particleprecipitation,andthesesignaturesareprimarydiagnosticsoftheregionalandglobaldistributionsofreconnectionoccurringatthemagnetosphericboundary.Thusmeasurementsandmodelsoflow‐altitudesignaturesareneededtounderstandreconnectionwellenoughtobeabletopredictwhenandwhereitwilloccurandhowitevolvestodrivemass,momentumandenergytransport.

Criticalcapabilities.Dataandobservationalcapabilitiesinclude:(1)basicresearchandanaly‐sisofdatafromspacecraftandGBOsrelevanttoreconnectionprocesses;(2)measurementsnearthedaysideandnightsideconvectionthroatsintheionosphereofionosphericflows,precipitationinferredfromground‐basedimagers,magneticfieldperturbationsfromGBOsandlow‐altitudespacecraft(e.g.,AMPEREconstellation)toresolvecurrentsystems;(3)coherentscatterradarmeasurementsforresolvingglobalconvectionpatterns;(4)cyberinfrastructurecapabilitiestoex‐ploitthegrowingdatabaseofheterogeneous,multi‐scalemeasurements;

Modelingcapabilitiesinclude:(1)large‐scope3Dkineticsimulationstostudythemicrophysicsofreconnectiondiffusionregions;(2)regionalfluxtubesimulationstostudyAlfvénwavedynamics,charged‐particleprecipitationandionosphericoutflowsonandnearreconnectionfluxtubes;(3)

Page 46: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  38  GS Portfolio Review  

globalMHDsimulationstostudynonlocalprocessescontrollingwhereandwhenreconnectionoc‐cursandtheinfluenceofMIcouplinginregulatingit.

 SWMI‐2. Identify the mechanisms that control the production, loss, and energization of ener‐

getic particles in the magnetosphere.

Wave‐particleinteractions(WPIs)arekeydriversofparticleenergygainandlossintheradia‐tionbelts.WPIsandmixingofenergeticandlow‐energyplasmaspromotesandsustainsthevariousmodesofwaveturbulencethatpermeatetheringcurrentandradiationbelts.Itisnowunderstoodthatstorm‐timeparticledynamicsaretheresultofadelicatebalancebetweenaccelerationandlossofrelativisticparticlesmediatedbywavesproducedbylocalplasmainstabilities.TheefficiencyofWPIsdependscriticallyonthecoldplasmasphericpopulationthatundergoeserosionduringgeo‐magneticstormsandexhibitsprominentlongitudinalasymmetriesthatarepoorlyresolvedbyspacecraftmeasurements.NASA’sVanAllenProbesMissionhasbeenconductingmeasurementsinthiscriticalregionsincethecompletionoftheDecadalSurveyandhasobservedlocalaccelerationandradialdiffusion.

Magneticreconnectioninthemagnetotaildrivesconvectionthatcarriesenergeticparticlesearthward,wheretheyareinjectedandtrappedinorbitsaroundEarthtoformtheextraterrestrialringcurrent,aregionoverlappingtheradiationbelts.Energeticionsandelectronsarefoundatdis‐tancesof1to7REfromEarth’scenter.TheinnerextentcanoverlapLEOwhiletheouterextentofenergeticparticlescanoverlapstheorbitalradiusofgeostationarysatellites(6.6RE)wherethevastmajorityofcommunicationsandEarth‐monitoringspacecraftreside.Thesesatellitescanbedam‐agedbyenergeticradiationbeltelectronswhosefluxisstronglyenhancedduringintensesolarandgeomagneticactivity.Understandingchargedparticleacceleration,scattering,andloss,whichcon‐troltheintensificationanddepletionoftheradiationbelts,anddevelopingcapabilitiestopredicttheirdynamicsareprioritiesforsolarandspacephysics.

Criticalcapabilities.BasicresearchandanalysisofdatafromspacecraftandGBOsrelevanttoenergizationandlossprocessesareofhighestimportance;lossprocessesareunderstoodempiri‐cally,butbettertheoreticalunderstandingisneeded.Insitumeasurementsofbothparticlesandwavefieldsarecriticalindetermininglocalpropertiesofenergeticparticlesintheinnermagneto‐sphere,understandingthemechanismsthatcontroltheirproduction,loss,andenergization.Fullunderstandingalsorequiresdistributedcomplementaryground‐basedmeasurementsofprecipita‐tion(fromriometersandVLFnetworks),particle‐scatteringbyultralowfrequencywavefieldsex‐tendinguptotheioncyclotronfrequency(frommagnetometernetworks),ionosphericconvectioncontrollingthelocationoftheplasmapause(frommid‐latitudeISRmeasurements),andTotalElec‐tronContent(whosevariationshavebeenshowntomaptotheplasmadensitychangesinthemag‐netospherethatcontrolWPI).Low‐altitudepolarorbitingCubeSatsandballoon‐bornemeasure‐mentsofenergeticparticleprecipitationcanplayacomplementaryroleandaredesirable.Observa‐tionsareneededforavarietyofsolarwindconditionsandthroughouttheentiresolarcycle;itisalsoessentialtohaveobservationsinthesolarwindinordertocharacterizetheexternaldrivers,althoughprovisionofthisdataisnotwithintheGSpurview.

Modelingcapabilitiesinclude:(1)bounce‐averagedtransportmodelsthatincludepressureanisotropyandeffectsofWPI;(2)hybridsimulationcodestostudygrowthandpropagationofwavesandtheirinteractionswithchargedparticles;(3)globalMHDcodestosimulateULFwave

Page 47: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  39  GS Portfolio Review  

variabilityandthestructureofmagnetosphericelectricandmagneticfieldsinresponsetointerplanetarydrivers;and(4)Assimilativemodelsof3Ddiffusion(inenergy,pitchangleandL*)thatingestboundarydatatoconstrainthesolution.

SWMI‐3. Determine how coupling and feedback between the magnetosphere, ionosphere and thermosphere govern the dynamics of the coupled system in its response to the variable 

solar wind.

TheSWMI‐3sciencechallengeintersectswith,andiscomplementaryto,AIMI‐1,bothofwhichaddressfundamentalaspectsofKeyScienceGoal2.Thepastdecadehasseentremendousadvancesinunderstandinghowthemagnetosphereandionosphererespondtostorm‐timedisturbances,butthenonlinearlinkagesthatcontrolthecoupledsystemarerelativelyopaqueandnotreadilydeter‐minedfromobservationalone.Addressingthischallengerequiresaconcertedeffort.Datafromwidelydistributedobservations,insituandground‐based,mustbeintegratedandassimilatedintoincreasinglyrealisticdynamicmodelsandcomputersimulationsofgeospacetounderstandcauseandeffect.

Examplesoftheunderlyingcomplexityinclude:Electrodynamiccouplingbetweenthemagneto‐sphereandionospheremodifiesthesimpledissipativeresponseofthecoupledsystemindramaticways.Dynamiccharged‐particleprecipitationchangesthedistributionofionosphericconductanceandthusthepatternsofelectricalcurrentflowandJouledissipationintheionosphere.Themagne‐tosphericdynamosthatpowerdissipationintheionosphere‐thermospheremustthereforedynami‐callyadapttotheevolvingsitesofdissipation,andionosphericdynamosfeedbackonthemagneto‐sphericplasma.Theinteractionoftheringcurrentwiththeionosphereseverelydistortsinnermag‐netosphericconvection,whichfeedsbackontheringcurrentitself,skewingitspeaktowarddawn.Dusksideflowchannelsarisingfromionosphericcouplingremainlongpastperiodsofpeaksolarwinddriving.OutflowsofionsfromtheionosphereintothemagnetospherearesointenseduringmagneticstormsthationosphericO+candominatethering‐currentionpressures.Outflowofheavyionsalsoaltermagnetosphericdynamicsbymodifyingmagneticreconnectiononboththedaysideandthenightside.Sincethefeedbackoftheionosphereandthermosphereasasourceofplasmaanddissipationforthemagnetospherehassuchprofoundeffects,theevolutionoftheionosphereandmagnetospheremustbestudiedasagloballycoupledsystem.

Criticalcapabilities.Basicresearchandanalysisofdatafromthemultitudeofground‐andspace‐basedmeasurementsisessential.Distributedsynopticmeasurementsofthefollowingvaria‐blesathigh‐andmid‐latitudesarecritical:(1)Electriccurrentsflowingintoandthroughtheiono‐sphereandassociatedmagneticperturbations(frommagnetometersatGBOsandonlow‐altitudesatelliteconstellations);(2)convectiveelectricfields(fromradarmeasurements);(3)energyandfluxofcharged‐particleprecipitation(andideallytheirphasespace‐density),obtainedeitherfromdirectmeasurementoropticaltechniques(fromISRs,low‐altitudesatellitesandground‐basedim‐agers);(4)associatedionosphericconductivityandionosphericplasmadensity(fromISRsandmodelinversiontechniques);(5)fluxanddensityofupflowingandoutflowingionosphericionsandideallytheirphasespacedensity(fromISRs);and(6)thefrequencyandwavenumberspectrumofturbulentfluctuationsofelectromagneticfieldsandplasmavariables(fromlow‐altitudesatellitemeasurements).AllarewithinthepurviewofGSsponsorship.Distributedmeasurementsofturbu‐lentspectraiscurrentlyandwillcontinuetobeaverychallengingdiagnosticproblemformanyyearstocome.Theselow‐altitudedatashouldbecomplementedbyinsitudataobtainedfromother

Page 48: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  40  GS Portfolio Review  

sources,especiallyupstreamsolarwinddataandmagnetosphericstatevariablesderivedfrommeasurementsonNASA,NOAAandDoDsatellites.

Modelingcapabilitiesinclude:(1)increasinglydetailedempiricalmodels(dynamicstatistical);(2)globalsimulationsofthecoupledsolarwind–magnetosphere–ionosphere–thermospherein‐teraction,extendedtoincludethegeneralizedOhm’slawanddriftkineticeffectsandcoupledtohigh‐resolutionglobalI‐Tmodelsthatincludefield‐alignedmasstransportbetweenthemagneto‐sphereandionosphere:(3)regionalmodelstostudydynamicsofactiveregionsintheoutermagne‐tosphere(magnetopause,magnetotail),generationofwavesinsuchregions,andwavepropagationtoandinteractionwiththeionosphere;and(4)Localandregionalthree‐dimensionalkineticandhybridsimulationstodeterminethemechanismsresponsibleforfield‐alignedaccelerationofelec‐tronsandionsandtransverseaccelerationofions.

SWMI‐4. Critically advance the physical understanding of magnetospheres and their coupling 

to ionospheres and thermospheres by comparing models against observations from different 

magnetospheric systems.  

Jupiter’smoonIoisacopioussourceofneutralgas,which,uponionization,isadominantdragforceontherapidlyco‐rotatingmagneticfieldoftheplanet.Similarly,themoonsofSaturn,particu‐larlyTitanandEnceladus,aremajorsourcesofplasmathataffectsthedynamicsofSaturn’smagne‐tosphere,andaspectshavebeenstudiedwithdatafromtheCassiniandVoyagerspacecraft,thoughmuchremainsunexplained.ThemagnetospheresofUranusandNeptunearelargelyunexploredbutpresentuniquecasesthatwilllikelyfurtherchallengescientificunderstanding.Finally,thetinymagnetosphereofMercuryisanextremeexampleofamagnetosphericsystembecauseitpossessesnoionosphere.Insuchasituationthecouplingprocessesthatoperateareradicallydifferent.Theseothersystemspresentasuiteofvastlydifferentconfigurationsandtheopportunitytotestcurrenttheoriesandmodelsonthesewidelyvaryingsystems.

Criticalcapabilities.ThecapabilitieswithinthepurviewofGSsponsorshiprequiredtoad‐dressthissciencechallengeinclude(1)developmentoftheoreticalmodelsand(2)applicationofempiricalandfirst‐principlessimulationmodelsadaptedtothespecialcircumstancesthatmakeotherplanetarymagnetospheresdifferentfromEarth’s.

5.3 Solar and Heliospheric Physics 

SHP‐1.  Understand how the sun generates the quasi‐cyclical magnetic field that extends 

throughout the heliosphere 

ThefirstSolar‐Heliospheric(whichisessentiallyequivalentinscopetotheGSconceptofSolar‐Terrestrial)challengeraisedbytheDecadalSurveyaddressesboththeoriginsandtheimpactsofcyclingmagneticactivitythroughouttheheliosphere.Wehavebrokenthechallengeintothesetwocomponentsinordertofocusonthecapabilitiesandrequirementsdistincttoeach.

Howisthecyclingsolarmagneticfieldgenerated?Dynamomodelsrangefrommean‐fieldpa‐rameterizationstoglobalconvectivesimulations.Thesemodelshavehadsignificantrecentsuccessinexplainingmagneticfieldgeneration,cyclingfields,andeven“grandminima”(i.e.,extendedperi‐odsoflowsolaractivityinterruptingotherwisequasi‐regularsolarcycles).Observationsofsolaroscillations(helioseismology)andsurfaceflowshaveprovidednewdetailsaboutbothglobaland

Page 49: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  41  GS Portfolio Review  

localstructureswithintheSun,andhigh‐resolutionobservationsandnumericalsimulationsofmagneticfluxemergencehaverevealedthephysicalprocessesatworkinsunspotfinestructure.Alongwithrecentstellarmeasurementsofthepropertiesofsolaranalogsrelatingrotation,convec‐tion,magnetism,andcyclicactivity,theseobservationsandsimulationshavebeenarichresourceforinspiringtheoryandconstrainingmodels.

However,fundamentalquestionsremainastotherolesplayedbythevariousphysicalpro‐cessespotentiallyinvolvedingeneratingmagnetism‐‐e.g.,convection,circulation,rotation,andfluxemergence‐‐andhowthesevarywithinandacrosssolaractivitycycles.Forexample,patternsofmeridionalcirculationwithlatitudeanddepth,andthedegreeofdiffusivityofflowsareessen‐tiallyunknownparameters.Similarly,uncertaintiesremainabouthowlocaldynamoeffectsmayimpacttheglobaldynamowhichgeneratesthecyclingsolarmagneticfield,andofhowsunspotsformandtowhatextenttheycontributetotheoperationoftheglobaldynamo.Untilandunlessthesequestionscanberesolved,ourabilitytopredictfuturesolaractivitylevelsisseverelylimited.

Criticalcapabilities.(1)Basicresearchanddevelopmentpertainingtodynamotheoryandmodelsremainsahighpriority.(2)Observationalanalysesofhelioseismologyandsurfacemagneticfieldsandflowscontinuetobeessential,and(3)effortsindataassimilationtodirectlyincorporatetheseobservationsintomodelsareofgrowingsignificance.(4)AnalysesofobservedSun‐likestarsprovideanexcellentmeansoftestingthephysicalityandgeneralityofdynamomodels.

Inwhatwayandtowhateffectdoesthesolarcyclevarythroughouttheheliosphere?Theimpactoftherecentprolongedsolarminimumwasfeltthroughouttheheliosphere,forcingustoreassessourexpectationsfora“typical”low‐activitytimeperiod.Forexample,galacticcosmicray(GCR)fluxesnearEarthreachedthehighestlevelsonrecord,andareductioninsolarUVheatingoftheEarth’supperatmosphereledtolessdragonsatellitesthaninpriorsolarminima.

Thepossibilityofanevenmoreextendedgrandminimuminthefutureraisesquestionsaboutimplicationsforbothterrestrialandspaceclimate.Recentterrestrialclimatemodelresultsindicatethatasustaineddecreaseintotalsolarirradiance(TSI)atlevelsexpectedforagrandminimumwouldhaveasmall‐‐buttemporary‐‐impactonupwardtrendsinglobalsurfacetemperature.Theimpactonspaceclimatewouldbegreater:sincevariationatshortwavelengthsismorestronglymodulatedbysolaractivitythanTSI,theupperatmospherewouldchangesignificantlyifUVradia‐tionwerediminishedforanextendedperiod(astherecentsolarminimumdemonstrated).Theef‐fectsofcouplingsbetweenspaceandterrestrialclimateareasyetlargelyundetermined.Underly‐ingtheseissuesarefundamentaluncertaintiesabouthowsolarmagneticvariabilitytranslatestochangesinspectralsolarirradiance–whichdependsonthedistributionofclosedmagneticfields,andinsolarwind/Heliosphericstructure–whichdependsonthedistributionofopenmagneticfields.

Criticalcapabilities.(1)Solar‐cycleanalysesareneededofboththecomprehensivespace‐agerecordofremote‐sensingandin‐situobservationsthatspantheheliosphere,andthelonger‐termhistoricalandgeologicalrecordofsolar‐cycleproxies.(2)High‐resolutionmagneticfluxemergenceobservationsand(3)radiative‐magnetohydrodynamic(R‐MHD)simulationsareneededtoconnectsolarmagneticdistributiontospectralirradiance.(4)ModelsthatlinkobservationsfromSuntoEarth‐‐e.g.,asprovidedbytheCommunityCoordinatedModelingCenter(CCMC)‐‐areimportantforrelatinglong‐livedheliosphericmagneticstructurestoperiodicsolar‐windforcingandassociatedgeospaceandGCRresponses.(5)Data‐exploitationeffortsareneededtoarchiveand

Page 50: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  42  GS Portfolio Review  

cross‐calibrateobservationalrecords.

SHP‐2.  Determine how the Sun’s magnetism creates its hot, dynamic atmosphere 

Howisthesolaratmosphereheatedandthesolarwindaccelerated?Thefundamentalphysicalproblemsofhowthesolarcoronaisheatedtomillionsofdegrees,andhowthesolarwindisaccel‐eratedtosupersonicspeeds,arestilllargelyunsolved.Theseproblemsarerelatedthroughady‐namiccouplingbetweencoronaandsolarwind,withtheloweratmosphere(chromosphere)poten‐tiallyactingasasourceforheatandmassfluxes.Arangeofcoronalheatingmodelsbasedonnanoflares,turbulentcurrentsheets,and/orwaveshavebeenproposedandtosomeextentvali‐datedwithobservations.In‐situmeasurementsofthesolar‐windplasmavelocitydistributionfunc‐tionsandelectromagneticfluctuationshavebeenusedinstudiesofthegenerationanddissipationofAlfvénicfluctuationsandothertypesofsolar‐windturbulence,andnonthermalionandelectrondistributionfunctionshaveyieldedcluestohowandwhatkineticinstabilitiesmaydevelop.Recon‐nectioneventsinthesolarwindhavebeenstudied,withconnectionsmadetosolarphenomenain‐cludingplumes,spicules,andnanoflares.Finally,chargestateandcompositionmeasurementscou‐pledwithglobalmagneticmodelshavebeenusedtoconnectsolarwindobservationstotheirori‐ginsinthesolaratmosphere,withspecificsignaturesfoundforfast,slow,andtransientsolarwind.

Magnetismisthecommonthemeinalloftheseanalysesandlinksthemacrossmanyscales(temporalandspatial).However,modelsofcoronal/heliosphericmagneticfieldsgenerallydefinealowermagneticboundaryconditionusingobservationsofthephotospherewheretheplasmabetaisexpectedtobehigh,whichlimitstheirreliability.Thechromospheremaybeabetterboundaryconditiononmagneticmodels,anditclearlyplaysanimportantroleintheinjectionofenergyintothecoronaandsolarwind.However,thechromosphereisoneoftheleastwellunderstoodregimesinsolar‐terrestrialphysics.Ingeneral,amorecompleteunderstandingisneededofthephysicalmechanismormechanismsresponsibleforthetransferofenergyfromtheSun’sinteriorthroughitsatmospheretothesolarwind,andofhowsolarandheliosphericmagneticfieldscontrolandcon‐nectthesemechanisms.

Criticalcapabilities.(1)Analysesofhigh‐resolutionmeasurementsofplasmaandelectromag‐neticfluctuationsinthesolarwind,and(2)ofhighspatial/temporalresolutionobservationsatallheightsinthesolaratmosphereareneededtotestanddevelopmodelsofthephysicalmechanismsdrivingcoronalheatingandsolarwinddynamics.(3)Three‐dimensionalR‐MHDnumericalsimula‐tionsthatspantheupper‐convectionzonethroughthecoronaasacoherentsystemareimportantforprogress,asis(4)thedevelopmentofmethodologyfordrivingthesesimulationswithobserva‐tionsfrommultipleheightsofthesolaratmosphere.(5)Globalmagneticmodelsareimportantforcontextandtoconnectsolarwindtoitssources.

SHP‐3.   Determine how magnetic energy is stored and explosively released and how the re‐

sultant disturbances propagate through the heliosphere.

Again,wehavebrokenthischallengeintotwocomponents,dealingwiththeformofexplosiveenergyreleaseandtheoriginsofgeoeffectiveness,inordertofocusonthecapabilitiesandrequire‐mentsdistincttoeach.

Inwhatformisenergyreleasedinflares/CMEs?Flowsatthesolarsurfaceandmagneticflux

Page 51: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  43  GS Portfolio Review  

emergingfrombeneathittwistanddistortthecoronalmagneticfield,buildingupfreeenergyontimescalesofdays,weeks,orpossiblylonger.Thisfreeenergymaybeexplosivelyreleasedduringaflareand/orcoronalmassejection(CME)intheformofhigh‐speedflows,localplasmaheating,andtheaccelerationofparticlestohighenergies.CMEaccelerationhasbeenshowntobecloselysyn‐chronizedwithhigh‐energyreleaseinflares,implyingthatfastexpansioncreatesaflarecurrentsheetbelowaCME.Particleaccelerationisseenneartheflaresiteaspartofamagneticreconnec‐tionprocess,aswellasatcoronalandinterplanetaryshocksdrivenbyfastCMEs‐‐thelatterbeingtheprimarysourceoflargesolarenergeticparticle(SEP)eventsobservedinsituintheinterplane‐tarymediumandgeospace.MeasurementshaveindicatedthattheacceleratedrelativisticelectronsoftencontainhalfoftheenergyreleasedinaflarewhilealargefractionoftheCMEenergy(tensofpercent)iscommonlyimpartedtotheSEPs.

Whilethecombinationofmulti‐pointobservations,currentmodelsandtheoreticalcalculationshaveledtosignificantimprovementsinourunderstandingofflareandCMEgenerationaswellasparticleaccelerationandtransport,manyquestionsremainaboutthephysicalprocessesinvolved.Inparticular,howissuchalargefractionofthereleasedenergyconvertedintoparticleenergy?WhydoesSEPaccelerationandlongitudinaltransportefficiencyvarysogreatlyfromeventtoevent?WhataretherolesofprecedingCMEs,theconditionsoftheinterplanetarymedium,andthecharacteristicsofthesuprathermalseedparticlepopulationindeterminingthisefficiency?

Criticalcapabilities.(1)Analysisoftherichremotesensingandin‐situdatasetsobtainedthroughouttheheliosphereareneededtoconnectsourceconditionstoenergeticphenomena.(2)Modelsincorporatingmultiwavelengthobservationsofflaresandhightemporal/spatialresolutionmagnetometricobservationsofactiveregionsbefore,duringandaftereruptionsareneededtoun‐derstandenergybuildupandrelease.(3)Dataexploitationofthemeasurementsoftheevolutionofthehalosolarwindandsuprathermaltails,CMEsandtheirassociatedshocks,radiobursts,ener‐geticneutralatoms(ENAs),andSEPsisneededtoadvancemodelsofparticleaccelerationandtransport.(4)Makingthesemodelsavailabletothecommunity(e.g.,viatheCCMC)furtherin‐creasestheoverallscientificreturn.

WhataretheoriginsofflaresandCMEs,andhowdotheseresultingeo‐effectiveness?SubstantialrecentprogresshasbeenmadeincreatingmaturemodelsofCMEs,shocks,andSEPsfromsolareruptions(includingmodelsservedbytheCCMC).Thesuccessofsimulationsinreproducingobser‐vationsofCMEstestifiestoarobustscientificunderstandingofmanyoftheprocessesofmagneticstorageandrelease,andindeeditispossibletoidentifywhichareasontheSunaremostlikelytoproduceflaresandCMEs.Inaddition,observationscombinedwithoperationalmodelsgiveadvancewarningofpotentialspaceweatherhazards.Aninitial1‐3daywarningofimpendingshocksandCMEimpactsisprovidedbyaCME’slaunchandsubsequentobservedpropagation:recentworktri‐angulatingSTEREOobservationshassignificantlyreduceduncertaintiesinarrivaltimeforecasts.Morepreciseinformationcanbeobtainedfrom,e.g.,measurementsofrelativisticelectronswhicharriveapproximatelyonehourbeforetheSEPions.

However,wehavenotreachedapointwherewecanpredictwhenaneruptionwilloccur,orthelikelyseverityoftheeruption’simpactattheEarth,e.g.speed,mass,magneticfluxcontentand(mostsignificantly)magneticorientation(seeSWPbelowforfurtherdiscussion).Inaddition,recentstudiesshowing“sympatheticeruptions”indicateglobalconnectivitycanplayaroleintriggeringCMEs,andtheglobalmagneticenvironmentisknowntoinfluenceCMEsastheyerupt,e.g.throughrotation,deflection,and/orreconnection.SEPaccelerationandlongitudinaltransport

Page 52: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  44  GS Portfolio Review  

efficiencysimilarlydependsuponspatialandtemporalcontext.AfullunderstandingofthephysicalenvironmentwithinandaroundCMEsourceregionsmaybeultimatelynecessaryforprediction.

Criticalcapabilities.(1)MHDmodelsfromactiveregiontoglobalscalesareneededtocoverthestorage,release,andpropagationstagesofCMEsasareobservationsofallofthesestagesfromSuntoEarth.(2)Time‐evolvingmeasurementsofplasmaandmagneticfieldsatmultipleheightsinthesolaratmosphereandcoveringtheglobalsolaratmosphere,alongwith(3)methodsfortheirincorporationintosolarmagneticmodels,arerequiredtoimprovethequalityofreal‐timemodelsandtoadvancetheforecastingofspace‐weathereventsandheliosphericconditions.

SHP‐4.  Discover how the Sun interacts with the local interstellar medium 

Whatisthenatureofstructureofthelocalinterstellarmediummagneticfield?Neutralsfromthelocalinterstellarmedium(LISM)entertheheliosphere,becomeionizedandarepickedupbythesolarwind.Thesesingly‐ionized‘pickupions’providemostofthepressureattheboundaryoftheheliosphere.ThestructureoftheinterfacebetweentheLISMandtheheliosphereregulatesthepen‐etrationofGCRs.DuringtherecentsolarminimumrecordhighintensitylevelsofGCRsweremeas‐ured,andadditionalanalysisofpastsolarcyclesindicatethatthismaybemore‘typical’offuturesolarminima.Ifthisprovestrue,evaluationsofsolarcycledependenceofradiationhazardsat1AUandespeciallyforlong‐term,mannedspace‐explorationmissionsmayhavetobesignificantlyre‐evaluated.Additionalsurprisescontinuetoemergefromthein‐situexplorationofthesolarwind‐LISMboundarybytheVoyagerspacecraft:examplesincludeloweramountsofsolarwindheatingattheheliopausethanexpected,thelackofaclearsourceforanomalouscosmicrays(ACRs),andanunexpectedmagneticfieldorientationintheheliosheath.TheseobservationsarecurrentlybeingcombinedwithneutralatommeasurementsbyIBEXandsensorsonCassinitogiveamoreglobalpictureofthestructureoftheheliosphere‐LISMinteraction.

UnfortunatelythestructureandorientationoftheLISMmagneticfieldispoorlyconstrainedbycurrentmeasurements.Severalnewtheorieshavebeendevelopedtoexplaintheunexpectedobser‐vations,butthisremainsaquicklyevolvingandactiveareaofsciencewithcontinuingnewmeas‐urements,modeldevelopmentandmodeltesting.

Criticalcapabilities.(1)ModeldevelopmentcombinedwithappropriatedataanalysisfromtheVoyagerandIBEXmissions,arerequiredtocorrectlyinterpretthenewobservationsandun‐derstandthetransportofbothcosmicraysandneutralatomsthroughouttheregion.(2)Methodsforassimilating/incorporatingthedataintothesemodelsneedtobedeveloped,andthemodelsul‐timatelymadeavailabletothecommunity(e.g.,viatheCCMC)inordertobetteradvanceourunder‐standingofACRacceleration,GCRpenetrationintoandpropagationthroughtheheliosphere,theinteractionofthesolarwindandLISM,andthepropagationofsolar/interplanetarydisturbancesouttotheboundaryandtheirimpactonitsstructure.

5.4 Space Weather and Prediction     

Beginningwithitstitle,“SolarandSpacePhysics:AScienceforaTechnologicalSociety,”theDe‐cadalSurvey(DS)recognizestheimportanceoftheapplicationofspacesciencetoaddresssocietalneeds.Furthermore,KeyScienceGoal1aimsto“…predictthevariationsinthespaceenviron‐ment”.Predictionofthenear‐Earthspaceenvironment,onwhichsocietydepends,istantalizinglywithinreach.Yet,theDScommittee“foundthattheexistingadhocapproachtoprovidingspace

Page 53: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  45  GS Portfolio Review  

weather‐relatedcapabilitiesisinadequate.”13

UnlikethesummariesoftheAIMI,SWMIandSHPchallenges,whichwereexplicitlycalledoutwithDSlabels(e.g.,AIMI‐1,SWMI‐3,SHP‐4,etc.),goalsandchallengesforSpaceWeatherandPre‐diction(SWP)werenotorganizedinthismanner.TheGS‐relevantchallengesforspaceweatherpredictionmaybederivedfromthefollowingoverarchingobjective.

SWP: Develop reliable predictive capabilities for when and in what direction major disturb‐

ances will be emitted by the Sun, and how they will affect the geospace environment when 

coupled with inputs from Earth. 

Majorsolardisturbancessuchasflares,CMEs,SEPs,andhigh‐speedsolarwindstreamsaretheoriginatorsofspaceweatherconditionsatEarthandininterplanetaryspacethatcanendangerhu‐mansinspaceanddamageorinterferewithtechnologicalsystemsinspaceandontheground.FlaresemitintenseX‐raysandultravioletradiationthatreachesEarthatthespeedoflight,affectingconditionsinEarth’sdaysideionosphereandupperatmosphere.CMEsandtheco‐rotatinginterac‐tionregionsformedwhenthehigh‐speedsolarwindencountersslowersolarwindaresourcesof:geomagneticstormsandtheirattendantcurrentsandaurora,atmosphericneutraldensityvaria‐tionsandgeomagneticallyinducedcurrents(GICs).WhenacteduponbysolarwinddisturbancesEarth’smagneticfieldactsasanaturalbuterraticparticleaccelerator;producingenhancementsanddepletionsoftheVanAllenradiationbeltsovershortandlongtimescales.Additionally,thenear‐Earthspaceenvironmentisinfluencedfrombelowbyphysicalandchemicalprocessesassoci‐atedwithatmospherictides,winds,gravitywaves,lightning,theoutflowofelectricallychargedpar‐ticlesfromEarth’sionosphereandneutralsfromtheatmosphere.

Satelliteoperations,orbitprediction,precisionnavigation/location/timingservices,astronautactivitiesinspace,andHFradiocommunicationswithairlinesareexamplesofactivitiesthatareaffectedbyspaceweatherdisturbances.AtEarth’ssurface,powergrids,communicationcablesandpipelinesareexamplesofinfrastructurethatcanbeaffectedbyGICs.Theradiationbeltsareoneoftheprincipalthreatstohumantechnologicalsystemsinspaceaswellashumansflyinginlow‐EarthsystemssuchastheInternationalSpaceStation.Numerousoperationalanomaliesandoutrightfail‐uresofspacecraftsystemsandsubsystemshavebeendirectlylinkedtoradiationbeltspaceweatherepisodes.

Itremainsasignificantchallengetopredictwithaccuracywhereandwhenaflarewilleruptandhowintenseitwillbe.Thereisessentiallyzeroleadtimeforwarningofthearrivaloftheflare’senergy.BecauseweknowSEPsareacceleratedinassociationwithflaresandatCMEshockfrontsastheypropagatethroughthebackgroundsolarwindwecanpotentiallyforecasttheirarrivalontimescalesofminutestohours,butitremainsachallengetopredictwithaccuracywhetherornotapar‐ticularflareorCMEwillresultinSEPsstrikingEarth,theintensityandenergyspectrumoftheSEPsandhowlongtheeventwilllast.WhilerecentMHDmodelsofCMEshaveimprovedtheaccuracyofwhetherornotaCMEwillstrikeEarthandwhenitwillarrive,therearemajorchallengesforbetterpredictionsandespeciallyforpredictingthevectormagneticfieldembeddedintheCME.Whileitisperhapseasiertopredictthearrivalofhigh‐speedstreams,therearestillsignificantchallengesforpredictingtheirtimingandintensity.

                                                            13 DS Chap. 7 page 139 

Page 54: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  46  GS Portfolio Review  

OnceadisturbancearrivesatEarththeresponsestilldependsonmanyfactorsuniquetothegeospacesystem.Solarcycleandseasonaleffects,aswellasthepreconditionedstateofmanyofthedifferentcomponentsofthegeospacesystem,areadditionalimportantfactorsthatrequirecon‐siderationandintegrationintoacoupledpredictivesystem.

Criticalcapabilities.CapabilitiesneededtoaddressthechallengesoutlinedabovecanbeachievedthroughavarietyofNSFGSprograms.Theseeffortscouldcombinetotargetspaceweatherpredictionsandcouldbenefitfromfeedbackbetweenresearchandoperationscommu‐nities.ManyofthecriticalcapabilitiesneededforthisSWPeffortaredescribedinthesections5.1‐5.3.Weextractthemostrelevantcapabilitiesandincludeothersthatareimportanttospaceweatherprediction.

Solar‐Heliosphere:(1)Modelsfromactive‐regiontoglobalscalesofthestorage,release,andpropagationphasesoferuptionsSun‐to‐Earth,andofperiodicsolar‐windforcingwithassoci‐atedgeospaceandGCRresponses(2)Detailedknowledgeofconditionsbefore,during,andaf‐tereruptionsfromSuntoEarth,andoftheglobalsolarandheliosphericmagneticfield

Magnetosphere:(1)GlobalsimulationsofthecoupledSW‐M‐I‐Tinteractionthatincluderecon‐nectionprocessesandmagnetosphericwavesandwavepropagationlinkedtointeractionwiththeI‐Tsystem.(2)Newpredictivemodelsthatcombineearthwardradialparticletransportwithlocalaccelerationandappropriatelyincorporatenonlinearprocesses,aswellasenergeticparticlelossmechanisms.(3)Detailedknowledgeofthemagneticfieldconfigurationduringdisturbedconditions,aswellasspectralinformationontherelevantplasmawavemodeswithrespecttolocaltimeandlatitude.

Space‐AtmosphereInteractionRegion:(1)Globalassimilativeandphysicsmodelsoftheelec‐trodynamicsoftheionospherethatself‐consistentlyincludethemajordriversofenergypro‐duction,transferandlossthroughoutthesystem(2)Multi‐scalefirst‐principlesmodelstopre‐dictunobservableparametersinthesystem(e.g.,neutralabundances,ioncomposition);(3)Modelingandmeasurementsofionosphericirregularities;(4)Modelingofupperatmosphericconductivity;(5)Measurementsandmodelingoflow‐andmid‐atmosphericphenomena(forc‐ingfromtidesandorographic/weathersystemsources).

Geospace‐Hazards:(1)Three‐dimensionalinductionmodelssupportedbydatafromglobalmagnetosphericMHDmodeloutput;(2)Mappingofthedetailed3‐Dgroundconductivitystruc‐turesingeomagnetically‐induced‐currentproneregions;and(3)measurementsofneutralden‐sity,windsandcompositionscientificstudiesrelatedtosatellitedraganddebrismitigation.

ObservationsandDataExploitation:(1)Time‐evolvingmeasurementsofplasmaandmagneticfieldsinthesolaratmosphere,Earth’sgeospaceandLEOenvironments;(2)Cyberinfrastruc‐turecapabilitiestoexploitthegrowingdatabaseofheterogeneous,multi‐scalemeasurements;(3)Dataexploitationofthemeasurementsoftheevolutionofthesolarwind,CMEsandtheirassociatedshocks,radiobursts,energeticneutralatoms(ENAs),andSEPsforadvancingmodelsofparticleaccelerationandtransport;(4)Coordinatedmeasurementsofneutralandplasmady‐namics,includingground‐basedmeasurementsofneutralwindsandtemperatures,andcoordi‐natedglobal‐scaleobservationsfromspace;(5)Measurementofsoftandhardprecipitatingparticles;(6)Data‐exploitationeffortstoarchiveandcross‐calibrateobservationalrecords.

Page 55: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  47  GS Portfolio Review  

The above description of the overarching SWP objective, and associated capabilities, clearly shows that such an endeavor sits at the frontier of current GS-funded efforts and Grand Challenge Science, and also at the boundary of NSF GS- and USGS-funded ground-based observatories and NASA- and NOAA-funded space-based observatories, as well as assets from other nations. In Chap-ter 6 the PRC describes Grand Challenge Projects that illustrate frameworks for the science that sup-ports space weather prediction.

Similarly, the DS noted inadequacy for predicting “how changes on the Sun may affect Earth’s climate, atmosphere, and ionosphere.”14 Predicting such changes is frontier research and thus requires (1) modeling capabilities already under development with NCAR’s Whole Atmosphere Community Climate Model (supported by AGS), as well as global climate and chemistry models under develop-ment around the world; and (2) observational support for solar spectral irradiance supported by NASA. The Committee believes that GS support for coupling space weather and climate, particularly with respect to particle interactions, is more appropriate for a Grand Challenge Project effort de-scribed in Chapter 6 of this report.

                                                            14 DS Chap. 3, page 74 

Page 56: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  48  GS Portfolio Review  

5.5 Summary of Critical Capabilities 

CapabilitiesrequiredtoaddresssciencegoalsandchallengesoftheAIMI,SWMI,SHPandSWPsciencethrustsoftheDSaresum‐marizedinTables5.2‐5.5.

Table 5.2   Summary of required capabilities and recommended investments for AIMI

Decadal Survey Challenge 

Required Capabilities  Recommended Investments 

Observational  Theory/Modeling Data Exploitation

AIMI‐1 M‐I‐T System 

Distributed sampling from ground and space.   Focus on conductance, electric field, and plasma and neutral com‐position, temperatures, densi‐ties, and velocities.

Development of advanced numerical algorithms and large‐scale integration of  global  assimilative, first‐principles, and space weather models

Innovative cloud‐based ap‐proach to data aggregation and assimilation 

GS: AER core, CEDAR, DASI, CubeSats, CCMC, ISRs, Data systems, AMPERE, SuperDARN, SuperMAG 

External/partner: EISCAT‐3D, EISCAT‐Svalbard, NCAR‐CISL, DOE/NSF, NASA 

AIMI‐2 Plasma‐neutral 

coupling 

Coordinated measurements of plasma and neutral bulk prop‐erties 

Regional and global mod‐els of the coupled plasma‐neutral system. 

Innovative cloud‐based ap‐proach to data aggregation and assimilation 

GS: AER core, CEDAR, DASI, CubeSats, CCMC, ISRs, Data systems, AMPERE, SuperDARN, SuperMAG 

External/partner: EISCAT‐3D, EISCAT‐Svalbard, NCAR‐CISL, DOE/NSF, NASA 

AIMI‐3 Lower atmospheric 

coupling 

Coordinated measurements of lower atmospheric phenom‐ena and geospace effects.  Fo‐cus on neutral dynamics, with plasma dynamics as proxy.

Innovative methods for advanced whole atmos‐phere model develop‐ment. 

Innovative cloud‐based ap‐proach to data aggregation and assimilation 

GS: AER core, CEDAR, DASI, CubeSats, CCMC, ISRs, Data system 

External/partner:  NCAR‐CISL, DOE/NSF, NASA 

AIMI‐4 Long‐term changes 

Multi solar cycle observations of critical geospace parame‐ters (composition, densities, temperatures) at key locations

Coupling to climate mod‐els 

Persistent long term measure‐ments of critical geospace pa‐rameters in cost effective man‐ner, e.g., maintain long term database (Madrigal) and pur‐sue data science initiatives

GS: AER core, CEDAR, DASI, CubeSats, CCMC, ISRs, Data systems, AMPERE, SuperDARN, SuperMAG 

External/partner: EISCAT‐3D, EISCAT‐Svalbard, NCAR‐CISL, DOE/NSF, NASA 

   

Page 57: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  49  GS Portfolio Review  

 

Table 5.3   Summary of required capabilities and recommended investments for SWMI

Decadal Survey Challenge

Required Capabilities Recommended

Investments (Chapters 6‐9) Observational Theory/Modeling Data Exploitation

SWMI‐1 Magnetic

reconnection

Precipitation, ionospheric responses 

from ISR and imager measurements 

in dayside and nightside convection 

throats; global and regional coher‐

ent scatter radar (CSR) measure‐

ments of high‐latitude flows; deter‐

mination of ionospheric currents

Large‐scope 3D kinetic simula‐

tions;regional flux tube simula‐

tions;Global MHD simulations; 

high‐performance computing

Common database for 

ground‐ and space‐

based measurements; 

data analysis, visualiza‐

tion tools; innovative 

cloud‐based approach 

to data aggregation; de‐

velopment of data as‐

similation methods

GS:MAG core, GEM, GCP; PFISR, 

RISR‐N; AMPERE, SuperDARN, Su‐

perMAG, CCMC; Data Systems, 

DASI External/partner: RISR‐C, TREx, 

NCAR‐CISL, DOE/NSF Partnership, 

NASA, DoD

SWMI‐2 Particle 

energization

Distributed ground‐based and low‐

altitude measurements of precipita‐

tion (imagers, riometers, CubeSats); 

magnetic perturbations (magnetom‐

eters); ionospheric convection (ISR, 

CSR); TEC;  

Bounce‐averaged transport mod‐

els; kinetic and hybrid simulations; 

global MHD simulations; assimila‐

tive and empirical models of waves 

based on observations.

GS:MAG core, GEM, GCP, Cu‐

beSats; MH ISR; SuperMAG, Super‐

DARN, CCMC; Data Systems, DASI External/partner: EISCAT‐Svalbard, 

EISCAT‐3D, TREx, NCAR‐CISL, 

DOE/NSF Partnership, NASA, DoD

SWMI‐3 SW‐M‐I‐T coupling

High‐ and mid‐latitude synoptic 

measurements of electric currents, 

convective electric fields, energy and 

flux of charged‐particle precipita‐

tion, ionospheric conductivities, ion‐

ospheric plasma density and number 

flux of upflowing ions, frequency 

and wavenumber spectrum of tur‐

bulent fluctuations

Global/regional simulations of SW‐

M‐I‐T interactions; MHD exten‐

sions with generalized Ohm’s law, 

drift kinetics; local/ regional 3D ki‐

netic simulations of charged parti‐

cle energization; empirical models

GS:MAG core, AER core, GEM, CE‐

DAR, GCP, SWR; PFISR, RISR‐N, MH 

ISR; AMPERE, SuperDARN, Super‐

MAG, CCMC; Data Systems, DASI External/partner: EISCAT‐Svalbard, 

EISCAT‐3D, RISR‐C, TREx, NCAR‐

CISL, NASA, DoD

SWMI‐4 Comparative M‐I‐T 

system science

Comparative theories and simula‐

tions models (MHD, hybrid, ki‐

netic); empirical models

GS:MAG core, possibly GCP

External/partner: NCAR‐CISL, 

DOE/NSF Partnership, NASA

Page 58: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  50  GS Portfolio Review  

Table 5.4   Summary of required capabilities and recommended investments for SHP

Decadal Survey Challenge

Required Capabilities Recommended

Investments (Chapters 6‐9) Observational Theory/Model Data Exploitation

SHP‐1 Solar cycle origins

Solar synoptic analyses ‐‐ helioseismology, surface 

flows/magnetism; evaluation of constraints from Sun‐like 

stars.

Dynamo theory/model devel‐

opment Data assimilation meth‐

ods for driving predic‐

tive dynamo and flux‐

transport models 

GS: STR core, SHINE, GCP; CCMC; 

Data Systems External/partner: NSO‐NIST, NOAO, 

NASA

SHP‐1 Solar cycle impacts

Analyses of high temporal and spatial resolution observa‐

tions of solar plasma and magnetic fields. Analyses of 

space‐age synoptic Sun‐to‐ Earth observations and histori‐

cal/geological solar‐cycle proxies. Global magnetometric 

observations at multiple heights in atmosphere.

Models connecting observa‐

tions sun to earth; theory/ 

models connecting solar mag‐

netic variability to radiative and 

particulate drivers at Earth.

Data archiving, cross‐

calibration GS: STR core, SHINE, GCP; CCMC; 

Data Systems; Midscale 

(COSMO,FASR) External/partner: NSO‐DKIST/NIST, 

NCAR‐HAO, NRAO, NASA

SHP‐2 Coronal heating and solar wind acceleration

Analyses of high temporal and spatial resolution measure‐

ments of the solar wind and solar atmosphere, and of syn‐

optic observations connecting solar wind to sources. 

Global magnetometric observations at multiple heights in 

atmosphere 

Coronal heating and solar wind 

acceleration models; simula‐

tions spanning solar interior ‐ 

atmosphere; global models for 

context.

Methods for driving 

simulations with multi‐

height measurements

GS: STR core, SHINE, SWR, GCP; 

CCMC; Data Systems;  Midscale 

(COSMO, FASR) External/partner: NSO‐DKIST/NIST, 

NCAR‐HAO, NRAO, NASA

SHP‐3 Explosive 

energy release

Analyses of remote sensing and in‐situ measurements of 

flares, CMEs, shocks, suprathermal and energetic particles, 

neutron monitors. Multi‐height solar atmospheric observa‐

tions. Active region magnetometry; electron beam and 

shock observations.

Models of particle acceleration 

and transport, and of storage 

and release of magnetic energy 

Development of data 

assimilation methods 

and cross‐calibration 

analysis tools for mul‐

tipoint analysis

GS: STR core, SHINE, SWR, GCP; 

CCMC; Data Systems; Midscale (FASR)

External/partner: NSO‐DKIST/NIST. 

NCAR‐HAO, NRAO, GEO‐PLR‐AAGS

SHP‐3 Origins and  

geoeffectiveness  

of flares and CMEs

Analyses of observations before, during, and after erup‐

tions from Sun to Earth; multi‐height measurements con‐

straining solar magnetic field from local to global scales. 

Global magnetometric observations at multiple heights in 

atmosphere.

Models from active‐region to 

global scales of the storage, re‐

lease, and propagation phases 

of eruptions Sun‐to‐Earth

Analysis tools for multi‐

height measurements 

and methods for assim‐

ilating into global mag‐

netic models

GS: STR core, SHINE, SWR, GCP; 

CCMC; Data Systems; Midscale 

(COSMO, FASR) External/partner: NSO‐NIST/DKIST, 

NCAR‐HAO, NRAO

SHP‐4 Outer

heliosphere

Analyses of outer heliospheric observations Model development related to 

transport of ACRs, GCRs and 

ENA throughout the region 

Development of data 

assimilation methods GS: STR core, SHINE, GCP; CCMC; 

Data Systems External/partner: NASA

Page 59: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  51  GS Portfolio Review  

Table 5.5   Summary of required capabilities and recommended investments for SWP

SWP Challenge

Required Capabilities Recommended

Investments 

(Chapters 6‐9) Observational Theory/Modeling Data Exploitation

Solar 

Heliospheric 

Multi‐height synoptic measure‐

ments constraining solar mag‐

netic field from local to global 

scales. Remote sensing and in‐

situ measurements of flares, 

CMEs, shocks, suprathermal and 

energetic particles.

Models from active‐region to 

global scales of the storage, re‐

lease, and propagation phases of 

eruptions Sun‐to‐Earth, and of par‐

ticle acceleration and transport.

Common databases, data visu‐

alization, data assimilation into 

global and eruptive models 

GS: STR Core, SHINE; SWR, 

GCP; CCMC; Data Systems; 

Midscale (COSMO, FASR) 

External: NSO‐NIST/DKIST, 

NCAR‐CISL/HAO, NRAO, 

GEO‐PLR‐AAGS, NASA 

Magnetosphere

Measurements of trapped and 

precipitating rad belt particles 

(possibly from CubeSats); meas‐

urements from neutron moni‐

tors, riometers, and ground‐

based radar for context

Global SW‐M‐I‐T models; compre‐

hensive models of radiation belt 

acceleration, radial transport and 

loss (both atmospheric precipita‐

tion and magnetopause escape); 

magnetospheric B‐field models

NSF‐supported data collections 

(listed on left) must be fully ar‐

chived and made broadly avail‐

able

GS: Core, strategic grants; 

GBOs (Obs. at left); Data Sys‐

tems; CCMC

External: NASA, NOAA, DOD 

data; NCAR‐CISL 

Space‐ 

Atmosphere 

Interaction 

Region

GB magnetometers, radars; syn‐

optic measurements of LEO ΔB, E 

and particles; LIDARs, imagers, 

DASI; GNSS scintillation;  diagnos‐tics for lower atmosphere forcing

Predictive M‐I‐T models; global 

conductivity models; models for 

neutral density and charged parti‐

cle density to support satellite 

drag and radio propagation needs

NSF‐supported data collections 

(listed on left) must be fully ar‐

chived and made broadly avail‐

able; model visualization, vali‐

dation; improved data assimila‐

tion schemes 

GS: Core, strategic grants; 

DASI; CubeSat diagnostics; 

synoptic observations; CCMC

External: NASA, NOAA, DOD 

data; NCEI databases; NCAR‐

CISL 

Geospace 

Hazards

3‐D ground conductivity maps Linked MHD‐GIC models; for satel‐

lite drag see above 

See above GS: Core, strategic grants; 

CCMC

External: NASA, NOAA, USGS 

data

Page 60: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot
Page 61: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  52  GS Portfolio Review  

Chapter 6.  GS Core and Strategic Grants Programs 

TheGSgrantsprogramsprovidemanyofthecriticalcapabilitiesneededtomakeprogressinachievingDSgoals.Theyarethelifebloodofthescientificenterprise,withoutwhichlittlescien‐tificadvancementcanoccur.

Thegrantsprogramssupportanalysisofscientificdataderivedfromalltypesofmeasure‐ments,notjustthosefromGS‐sponsoredfacilitiesandinstruments.Theysupportdevelopmentofnewtheoriesandcomputermodelsthatareessentialinadvancingscientificunderstandingofge‐ospaceandsolarprocesses.Thegrantsprogramssponsorearly‐phasedevelopmentprojectslead‐ingtoinnovativenewmeasurementtechniquesandsimulationcapabilitiesandlargecollabora‐tiveresearchprojects,somewhollyfundedbyNSF,otherscosponsoredbyinternationalpartnersandotherUSagencies.GSgrantsprovidethenucleusoffundingforGSinvestigatorstoparticipateinawidevarietyofworkforce,cross‐disciplinary,seedandtargetedresearchprogramsthatareinitiatedandco‐fundedbyotherNSFentitiesandthatleverageGSinvestments.Maintainingvi‐brant,peer‐reviewedgrantsprogramsisabsolutelycriticalforthefuturevitalityofgeospaceandsolarscience.

TheDecadalSurveyrecommendedimplementationofanew,integrated,multi‐agencyinitia‐tive(DRIVE—Diversify,Realize,Integrate,Venture,Educate)thatwilldevelopmorefullyandem‐ploymoreeffectivelythemanyexperimentalandtheoreticalassetsatNASA,NSF,andotheragen‐cies.TheDRIVErecommendationsareanimportanttouchstoneforPRCrecommendations.Forreferencelaterinthisandotherchapters,theNSF‐relevantDRIVErecommendationsarelistedinTABLE6.1.

TheSurvey’srecommendationsfortheDRIVEinitiativewerederivedfromdisciplinarypanelrecommendationsonscientificprioritiesandimperatives.ThePRCrecognizesthatpanel‐specificimperativesarenotequivalenttosurveyrecommendations.Neverthelesstheydoofferusefulin‐formationindetermininghowbesttoalignGSinvestmentsinsupportofcriticalcapabilities.TheSurvey’spanel‐specificimperativeswerealsoreviewedbythePRCtoinformitsrecommenda‐tions.

TwoimperativesadvocatedbytheSWMIpanelspecificallyaddressGS‐relevantSpaceWeatherresearch.Inparticular,theSWMIpanelencouragedallagenciestofosterinteractionsbe‐tweentheresearchandoperationalcommunitiesandtoidentifyfundingformaintainingahealthyresearch‐to‐operations/operations‐to‐researchprogram;andtoimplementaprogramtodetermine,basedonpastobservations,theoptimumsetofmeasurementsthatarerequiredtodrivehigh‐fidelitypredictivemodelsoftheenvironment.Additionally,initssummaryofApplica‐tionRecommendations,15theDSrecommendedthedevelopmentandmaintenanceofdistinctfundinglinesforbasicspacephysicsresearchandforspaceweatherspecificationandforecasting.

ThischaptersummarizesthePRC’sreviewofinvestmentsinGScoreandstrategicgrantspro‐gramsanditsrecommendationstoensureGSinvestmentsarepositionedtoprovidethecriticalcapabilitiesidentifiedinthepreviouschapter.CapabilitiesandrecommendationsforavitalGSworkforcewereaddressedinChapter4.Facilitiesand(non‐GS)programsthatleverageGSinvest‐mentsareaddressedinChapters7and8,respectively.

                                                            15 DS Executive Summary, p. 4 

Page 62: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  53  GS Portfolio Review  

TABLE 6.1 NSF‐Relevant DRIVE Initiatives 

Diversify:  Diversify Observing Platforms with Microsatellites and Midscale Ground‐Based Assets. D1. The National Science Foundation should create a new, competitively selected midscale project funding line in order to enable midscale projects and instrumentation for large projects. D2. NSF’s CubeSat program should be augmented to enable at least two new starts per year. Detailed metrics should be maintained, documenting the accomplishments of the program in terms of training, research, tech‐nology development, and contributions to space weather forecasting. 

Realize:  Realize Scientific Potential by Sufficiently Funding Operations and Data Analysis R1. NSF should provide funding sufficient for essential synoptic observations and for efficient and scientifically productive operation of the Advanced Technology Solar Telescope (ATST), which provides a revolutionary new window on the solar magnetic atmosphere. R2. Support a solar and space physics data environment that draws together new and archived satellite and ground‐based solar and space physics data sets and computational results from the research and operations communities for (i) coordinated development of a data systems infrastructure that includes data systems soft‐ware, data analysis tools, and training of personnel; (ii) community oversight of emerging, integrated data sys‐tems and interagency coordination of data policies; (iii) exploitation of emerging information technologies with‐out investment in their initial development; (iv) virtual observatories as a specific component of the solar and space physics research‐supporting infrastructure, rather than as a direct competitor for research funds; (v)  community‐based development of software tools, including tools for data mining and assimilation; and (vi) Semantic technologies to enable cross‐discipline data access.

Integrate:  Integrate Observing Platforms and Strengthen Ties Between Agency Disciplines I1. NASA should join with NSF and DOE in a multiagency program on laboratory plasma physics and spectros‐copy, with an expected NASA contribution ramping from $2 million per year (plus increases for inflation), in or‐der to obtain unique insights into fundamental physical processes. I2. NSF should ensure that funding is available for basic research in subjects that fall between sections, divi‐sions, and directorates, such as planetary magnetospheres and ionospheres, the Sun as a star, and the outer heliosphere. In particular, research on the outer heliosphere should be included explicitly in the scope of re‐search supported by the Atmospheric and Geospace Sciences Division at NSF. I3. NASA, NSF, and other agencies should coordinate ground‐ and space‐based solar‐terrestrial observational and technology programs and expand efforts to take advantage of the synergy gained by multiscale observa‐tions. 

Venture:  Venture Forward with Science Centers and Instrument and Technology Development V1. NASA and NSF together should create Heliophysics [geospace] science centers to tackle the key science problems of solar and space physics that require multidisciplinary teams of theorists, observers, modelers, and computer scientists, with annual funding in the range of $1 million to $3 million for each center for 6 years, re‐quiring NASA funds ramping to $8 million per year (plus increases for inflation).

Educate:  Educate, Empower, and Inspire the Next Generation of Space Researchers (addressed in PR Ch 4)E1. The NSF Faculty Development in the Space Sciences (FDSS) program should be continued and be considered open to applications from 4‐year as well as Ph.D.‐granting institutions as a means to broaden and diversify the field. NSF should also support a curriculum development program to complement the FDSS program and to support its faculty. E2. A suitable replacement for the NSF Center for Integrated Space Weather Modeling summer school should be competitively selected, and NSF should enable opportunities for focused community workshops that directly address professional development skills for graduate students. E3. To further enhance the visibility of the field, NSF should recognize solar and space physics as a specifically named subdiscipline of physics and astronomy by adding it to the list of dissertation research areas in NSF’s an‐nual Survey of Earned Doctorates. 

Page 63: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  54  GS Portfolio Review  

Thenextsection(6.1)summarizesthePRC’sfindingsandrecommendationsongeneralas‐pectsoftheGSdisciplinaryprograms,andconnectionsbetweentheseandotherprogramsinter‐nalandexternaltoGS.FindingsandrecommendationsspecifictoGSgrantsprogramsinAero‐nomy(AER),MagnetosphericPhysics(MAG)andSolar‐TerrestrialResearch(STR)followinSec‐tions6.2‐6.4.FindingsandrecommendationspertainingtoIntegrativeGeospaceScienceisad‐dressedinSection6.5,totheCubeSatprogramSection6.6,andtotheneedforregularSeniorRe‐viewofthegrantsprogramsinSection6.7.

6.1 General Aspects of GS Grants Programs  

Eachofthedisciplinaryprograms(AER,MAG,STR)includescoreandtargetedgrantpro‐grams.ThetargetedprogramsincludetheCoupling,EnergeticsandDynamicsofAtmosphericRe‐gions(CEDAR)ProgramadministeredbytheAERProgramManager(PM),theGeospaceEnviron‐mentModeling(GEM)ProgramadministeredbytheMAGPMandtheSolarHeliosphericandInter‐planetaryEnvironment(SHINE)ProgramadministeredbytheSTRPM.

Finding.ThecurrentstructureofGSCoreResearchprogram(AER,MAGandSTR)withassoci‐atedTargetedprograms(CEDAR,GEMandSHINE)supportsthezerothorderDSrecommendationtocompletethecurrentprogramandpartiallysatisfiestheDShigherlevelrecommendationstoimple‐mentDRIVEandextendmodeldevelopmenteffortstothepointthattheysupportforecastsofthedy‐namicsofthiscomplex,nonlinearsystemanditsimpactsonsociety.

Finding.Theaverageproposalsuccessrates(Section4.1)havebeenacceptableinthecoregrantsprograms(about1in4onaverage)andaremarginalinthetargetedgrantsprograms(closer1in5onaverage).However,theratesareunevenacrossindividualprograms,e.g.,thenumberofproposalssubmittedtotheSHINEprogramnearlydoubledfrom2012to2014whentheproposalsuccessratewentfrom32%to17%.

Successratesbelow20%havealotteryqualityandencouragePIstosubmithighlyrankedbutunsuccessfulproposalstootherprogramsoragenciesortothesameprogramatalaterdatewithupdatesand/ortweaks.ThispracticehasanadverseimpactonthescientificproductivityofthecommunityatlargeasdiscussedinSection4.1.

Recommendation6.1.AcollectivebudgetforcoreprogramsshouldbeapportionedamongAER,MAGandSTRaccordingtoproposalpressure(numberandquality)withoutfixedbudgetsforeachdiscipline.Similarprinciplesshouldbeappliedtothetargetedprograms.

Finding.ThecriticalcapabilitiesdescribedinChapter5placerequirementsonprogramsbeyondthedisciplinaryprograms,bothinternalandexternaltoGS.ExistingprogramsincludeelementsofIntegrativeGeospaceSciencesuchastheSpaceWeather(SW)program(describedinSection6.5),Cu‐beSats(describedinSection6.6),facilitiesandinfrastructures(describedinChapter7),andNSF‐wideprogramsandpartnershipswithotherentities(Chapter8).

Finding.SomeofthecriticalcapabilitiesdescribedinChapter5requirenewgrantsprogramele‐ments,includingtheGrandChallengeProjects(GCP)program(Section6.6),andnewfacilitiesandin‐frastructuresprograms(Section7.4).

Finding.Becauseoftheenormityandinaccessibilityofthegeospacesystemmuchofitssciencereliesonmodeling.ThephysicalsystemspansaspatialrangefromDebyelengths(assmallas10‐6m)to1AU(1011m)andspansatemporalrangefromchemicalreactions(asshortas10‐14sec)tothe

Page 64: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  55  GS Portfolio Review  

electronplasmaperiod(asshortas10‐7sec)tothetransittimeofplasmafromtheSuntotheEarth(severaldays)tosolarcycletimescales.Additionally,differentphysicalprocessesdominateondiffer‐enttimeandlengthscales,andrequiredifferentphysicaldescriptions(e.g.,kinetic,hybrid,orfluid).Thischallengecanonlybeaccomplishedwithsophisticated,high‐levelcomputationalmodelsofthesystem,ratherthantryingtomodelitasacollectionoflooselyconnectedregions.Aconsiderableamountofresearchisrequiredtodevelopmodelsthattrulydescribethe'systemscience'oftheSun‐Earthsystem.

Recommendation6.2.ThePRCrecommendsthatGScontinuesupportofmulti‐scalephysics‐basedanddata‐assimilationmodelswithanemphasisonintegratedscienceandthecouplingofmodels.Opportunitiesformodeldevelopmentandimplementationcancomefromcoreandtar‐getedresearchaswellastheSpaceWeatherandGCPprograms,theCCMC,andtherecommendedInnovations&Vitalityline(Section7.4).

Recommendation6.3.AER/MAG/STRgrantsresearchalsoshouldcontinuetoserveasatech‐nologyincubator,fundingmodest‐scaleprojectsinexperimentalinstrumentdevelopmentwithafocusonnewscientificcapabilities.Asthesedevelopmenteffortsmature,theirfundingsourceshouldtransitionfromthecoreprogramstoprogramssuchastherecommendedInnovationandVitality(Section7.4.1)andDASI(Section7.4.3)programsandtheCubeSatprogram.TheGSshouldalsoencourageinstrumentdevelopmentprojectstoseekfundingthroughtheNSF‐wideMRIandMREFCprogramswhenappropriate(Section8.1).

6.1.1 Core Grants Programs 

Finding.Thecoregrantsprogramsareunsolicitedgrantsprogramswithoutproposaldeadlines.PMssolicitpeerreviewsofproposalswithoutconveningfollow‐upreviewpanelsforfurtherevalua‐tion.

Recommendation6.4.ThePRCrecommendsthatGSmaintainitsCoreResearchProgramasaPriority1effort,withacollectivebudgetforallthreeprogramsnotlessthanthecurrentlevel.Thecoreprogramsshouldconductinnovativedataanalysisandexploitation,theory,modeling,develop‐mentandapplicationofnewinstrumentation,measurementtechniquesandlaboratoryexperi‐mentsalignedwiththecoregoalsofeachprogram,asarticulatedinfollowingsubsections.

Recommendation6.5.TheGSshouldcontinuetoencouragethegeospacesciencecommunitytoparticipateinleveraged,targetedresearchprograms,butcautionisadvisedwhentheleveragedfundingisderivedfromGScoreresearchprograms.Incommittingcoregrantsfundstothesetar‐getedopportunities,GSPMsshouldguardagainstscopecreepovertimethattendstodiminishun‐solicitedcorefundsavailableforcompetition.

6.1.2 Strategic Grants Programs 

Finding.Thecurrentdisciplinarytargetedgrantsprograms(CEDAR/GEM/SHINE)arealsostra‐tegicresearchprograms.Theyadvanceresearchstrategiesbydevelopingcommunityconsensusaroundcriticalandtimelydirectionsforresearch.Theirmodusoperandiaretousecommunitywork‐shopstotargetandcoordinatespecificobservingandmodelingcampaigns,researchchallenges,eventstudies,focusgroupstudiesandworkshopsessionstoadvancestrategicresearchandtoex‐plorescientificissuesofimmediateconcern.

Page 65: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  56  GS Portfolio Review  

Finding.TheworkshopssponsoredbyCEDAR,GEM,andSHINEareverypopularandwellat‐tended.TheyleveragescienceenabledbyGSinvestmentswithprograms,data,instruments,facilitiesandmissionssponsoredbyotheragencyandinternationalpartners.Theyareeffectiveinfacilitatingresearchcollaborations.Theyarealsoanimportantprofessionaldevelopmentopportunityforearlycareerscientists.

Recommendation6.6.TheGSshouldcontinuetosupportthethreetargetedresearchprogramsandtheirsummerworkshops(asalsorecommendedinSection4.8)andevaluatetheircontinuingalignmentwithGSgoalsatsemi‐decadalintervalsusingaSeniorReviewprocess(Section6.7).

Finding.ConsistentwiththeoverarchingthemeoftheDecadalSurvey,CEDAR,GEM,andSHINEhavemovedtowardssystemsscienceinrecentyears.CEDARandGEMinparticularhaveatraditionofworkingtogethertopromotecross‐disciplinaryinteractionsbetweenthemagnetosphericandaer‐onomycommunities.

Recommendation6.7.TheGSshouldencouragemultidisciplinaryresearchthatbridgesthetra‐ditionalprogramareaswithintheSection,inparticular,acrossthethreetargetedgrantspro‐grams.Overthenextdecadeandasappropriateprojectsemerge,aportionofthecurrentbudgetfortargetedgrantsprogramsshouldmigrateintotheIntegrativeGeospaceSciencegrantspro‐grams(Section6.5).(SeeChapter9regardingprovisionalbudgetrecommendations.)

Finding.Thetargetedgrantsprogramssolicitproposalsforopportunitieswithproposaldead‐lines,andtheyconvenereviewpanelstorecommendproposalselections.Panelreviewsareconsid‐eredtobeusefulinidentifyingproposalsthatarebestalignedwithstrategicresearchgoals.

Finding.Proposalsuccessratestendtobehigherinthecoregrantsprogramsthaninthetar‐getedgrantsprograms.

Recommendation6.8.TheGSshouldevaluatetheutilityofproposaldeadlinesinitstargetedgrantsprogramsanddeterminewhetherproposaldeadlinesmaybestimulatinganartificialinfla‐tioninproposalsubmissionsforthelimitedfundingavailableinthetargetedprograms,resultinginlowerproposalsuccessratesassuggestedinanexperimentundertakenbytheDivisionofEarthSciences.16Ifproposaldeadlinesdoresultininflatednumbersofproposalsubmissions,thentheGSshouldchargeitsCommitteesofVisitorstoevaluatethemeritofretainingproposaldeadlinesinitstargetedprograms.

Analternativetothecurrentmodeofsolicitingproposalswithadeadline,coupledwithpro‐posalreviewsandrecommendationsforproposalselectionsbyadhocpanels,mightinvolvecon‐veningvirtualpanelreviewsatregularintervalsthroughouttheyeartorecommendselectionsofunsolicitedproposalssubmittedtotargetedprograms.Thismodelwouldretainthedesiredeffectofhavingpanelsidentifyproposalsthatarebestalignedwithstrategicresearchgoals.

6.2 Aeronomy 

Aeronomyisthescienceofplanetaryatmospheresinwhichthephysicalandchemicalpro‐cessesassociatedwithsolarradiationarepredominant.AtNSFtheAeronomyProgramsupports“researchfromthemesospheretotheouterreachesofthethermosphereandallregionsofthe

                                                            16 Report to the National Science Board on the National Science Foundation’s Merit Review Process, Fiscal Year 2014 (NSB‐2015‐14) p. 48‐49, Table 16. (http://www.nsf.gov/nsb/publications/2015/nsb201514.pdf) 

Page 66: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  57  GS Portfolio Review  

Earth'sionosphere.”TheAeronomyProgramseekstounderstandphenomenaofionization,re‐combination,chemicalreaction,photo‐emission,andthetransportofenergy,andmomentumwithinandbetweentheseregions.Theprogramalsosupportsresearchintothecouplingofthisglobalsystemtothestratosphereandtropospherebelowandmagnetosphereaboveandtheplasmaphysicsofphenomenamanifestedinthecoupledionosphere‐magnetospheresystem,in‐cludingtheeffectsofhigh‐powerradiowavemodification.”

Finding.TheresearchconductedwithinAERaddressesalloftheAIMIsciencechallengesandas‐pectsofKeyScienceGoals2and4oftheDecadalSurvey.

6.2.1 AER Core Program 

TheAeronomyprogramsponsorsadiverserangeoftopicsrelatedtophenomenaoccurringbe‐tweentheatmospherewebreatheandtheinterplanetaryenvironment.Topicsinclude,butarenotlimitedto,instrumentdevelopment,laboratoryexperiments,comparativeaeronomy(withothersolarsystembodies),meteors,lightning,basicresearchontheionosphere,thermosphere,andmes‐osphere,plasmainstabilitiesandtheirsocietaleffects,neutralgasdynamics(waves,tides),andmagnetosphericinteractions.

Finding.Geospacefacilitieshavehistoricallybeendirectedtowardaeronomicalmeasurements(e.g.,ground‐basedradars,activeandpassiveopticalsystems,magnetometers).AssuchtherehasbeenacloseconnectionbetweentheAeronomyandFacilitiesProgramswithintheGeospaceSection.

Finding.ThegeneraltrajectoryoftheAeronomyprogram(andCEDAR)overthepast10yearshasbeentoward“systemscience”supportedbytheDistributedArraysofScientificInstruments(DASI)initiativeandparalleleffortsinassimilativeandfirst‐principlesmodeling.

Recommendation6.9.TheGSshouldencourageandfundAERresearchprojects,incollaborationwiththeMAGcommunity,forearlydevelopmentofDASIconceptsfordiagnosingupperatmos‐pheric,ionosphericandmagnetosphericprocesses,aswellasthedevelopmentofself‐consistentlycoupledphysics‐basedmodels.AstheDASIconceptsmature,theirfundingsourceshouldmigratetotheGSFacilitiesprogram(Section7.4.3).

6.2.2 CEDAR 

TheprimarygoaloftheCEDARprogramresidingwithinAERisto“explainhowenergyistransferredbetweenatmosphericregionsbycombiningacomprehensiveobservationalprogramwiththeoreticalandempiricalmodelingefforts.”

TheCEDARprogramhasevolvedorganicallyoveritsthreedecadesofexistence.TheinitialgoaloftheprogramwastocoalesceasetofindividualPIssponsoredbysmallinstrumentgrants.ThemeetingsoonbecameavenueforgroupsofPIstoorganize“campaigns”targetingaspecificsciencetopicaddressedbyaspecificgroupofmeasurementsandmodels.

Finding.CEDARisbothacommunity‐drivenandtargetedelementoftheGeospaceSectionbudgetasdistinctfromthecore.ThebenefitsofafundedCEDARgrantsprograminclude(1)targetedfundingalignedwithacommunity‐drivenstrategicplan,(2)panelreviews,whichconsider~30proposalsatonetime,thatarebeneficialforcomparisonsandcommunitydiscussions,and(3)occasionalcross‐disciplinarycompetitions,suchastheCEDAR‐GEMM‐Icouplingcompetition.TheCEDARgrantsprogramhasbeennimbleandresponsivetochangesinsciencepriorities,technical

Page 67: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  58  GS Portfolio Review  

capabilitiesandfundingrealities.

Finding.CEDARcurrentlysupportsanannualmeetingandagrantssolicitationwithnominaldeadlineofmid‐July.

Finding.Inrecentyears,theCEDAR“GrandChallengeWorkshops”haveengagedbroadsegmentsoftheCEDARandGEMcommunitiesingrass‐roots,collaborative,multi‐disciplinaryresearchcam‐paigns.TheseworkshopsaredistinctfromtheGrandChallengeProject(GCP)programrecommendedinSection6.5,althoughsuchworkshopsmayhelpdefinecandidatetopicsfortheGCPprogram.

Recommendation6.10.TheCEDARgrantsprogramshouldcontinuetosupportcommunity‐de‐fined“GrandChallengeWorkshops”,preferablyjointlywiththeGEMGrantsprogram.

6.3 Magnetospheric Physics 

NSF’sMagnetosphericPhysicsProgram“supportsresearchonthemagnetizedplasmaenvelopeoftheouteratmosphere,includingenergizationbythesolarwind;theoriginofgeomagneticstormsandsubstorms;theplasmapopulationbysolarandionosphericsources;theoriginofelectricfields;thecouplingamongthemagnetosphere,ionosphere,andatmosphere;andwavesandinstabilitiesinthenaturalplasma.”

Finding.TheresearchconductedwithinMAGaddressesalloftheSWMIsciencechallengesandaspectsofKeyScienceGoals2and4oftheDecadalSurvey.

Finding.Thelow‐altituderegionsofgeospaceencompassingthethermosphereandionosphereanditsouterregionsincludingthesolarwind‐magnetosphereinteraction,themagnetosphereandmagnetotail,andtheinnermagnetosphereandplasmasphereareconnected.Consequently,somede‐greeofsynergybetweentheMAGprogramandtheAERandSTRprogramsisexpectedincross‐overareasofmutualinterest.

6.3.1 MAG Core Program   

MAGcoregrantssupportdataanalysis,especiallycombiningground‐basedandsatellitedatasets,theoryandsimulationofmagnetosphericprocesses,anddataacquisitionandanalysisfromGBOstoinvestigatemagnetosphericprocesses.Itsupportsresearchintouniversalprocessessuchasmag‐neticreconnection,plasmaturbulence,transportandenergizationandwavesandinstabilitiesincollisionlessplasmas.Researchintootherplanetarymagnetosphereshasalsobeensupported.

Finding.Investmentsinobservationalcapabilitiesincludebothground‐basedobservationalpro‐gramsathighlatitudesandlaboratoryexperimentsapplicabletothegeospaceenvironment.Analysisofdatafromallsources,whetherground‐basedorfromspacecraft,andadvancementofnumericalsimulationsusingavarietyofMHD,hybridandparticlecodesarealsosupported.

Finding.LittleinstrumentdevelopmentissponsoredbytheMAGprogram,mostlikelybecauseitreceivesfewerproposalsforinstrumentdevelopmentthantheAERprogram.However,innovativepro‐jectslikeAMPERE,SuperDARNandSuperMagreceivedMAGcorefundingforearlyphasedevelopmentandoperationandhavenowbecomeClass2facilities,asreviewedinChapter7.

Finding.HistoricallytheMAGprogramhasfundeddeployment,maintenanceandoperationofGBOsformagnetometers,opticalimagersandradioreceivers,andacquisitionandanalysisofdataobtainedfromtheseinstruments.Italsofundssynopticstudiesrelevanttomagnetosphericprocesses

Page 68: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  59  GS Portfolio Review  

usingdatafromISRs,andAMPEREandvariousDASIsincludingSuperDARN,magnetometersandimagers,togetherwithsatellitedataacquiredfromNASA,DODandNOAAmissions.

Recommendation6.11.TheGSshouldencourageandfundMAGresearchprojects,incollabora‐tionwiththeAERcommunity,forearlydevelopmentofDASIconceptsfordiagnosingupperatmos‐pheric,ionosphericandmagnetosphericprocesses.Astheconceptsmature,theirfundingsourceshouldmigratetotheGSFacilitiesprogram.

6.3.2 GEM 

TheGeospaceEnvironmentModeling(GEM)ProgramisastrategicresearchelementoftheMagnetosphericPhysicsProgramwiththegoal“tounderstandthesolar‐terrestrialsystemwellenoughtobeabletoformulateamathematicalframeworkthatcanpredictthedeterministicprop‐ertiesofgeospace(‘weatherinspace’)andthestatisticalcharacteristicsofitsstochasticproperties(‘climateinspace’).”

TheGEMProgramsupportsglobalgeospacemodeldevelopmentandapplications,synopticground‐basedobservationsandtheacquisition,coordinationanduseofdatafromanysourcesthatadvancetheprogramgoal.LiketheCEDARProgram,GEMhasastrongfocusonintegrativegeo‐spacescience.Itssynergisticoutcomestypicallyculminateincommunity‐initiatedcampaignsandsciencechallenges.

Finding.Inadditiontoitsoverarchinggoalofdevelopingpredictivemodelsforgeospaceweatherandclimate,GEMresearchisorganizedaroundevolvingcommunity‐definedthemesthatculminatein(typically)five‐yeardurationGEMFocusGroupsselectedbytheGEMsteeringcommitteeatitsFallAGUmeeting.CompetitiveresearchproposalsforGEMfundingmustaddresseithersomeaspectofge‐ospacemodeldevelopment,modelvalidation,ortopicsrelevanttooneormoreofthecurrentlyactiveGEMFocusGroups.

Finding.GEMfocusgroupscoordinateobservationalandmodelingresearchandissueresearchchallengestothecommunityatlarge.Theresponsetopastchallengeshasbeensuccessfulinadvanc‐ingGEMgoals.ThesechallengessubstantiallyleveragethemodestinvestmentinGEMbyGSandat‐tractbroadinterestinintegrativesciencerelevanttoGEM.

Finding.TheGEMprogramfundsanannualcallforresearchproposalswithamid‐Octoberdead‐line,asummerworkshop,amini‐workshopheldinconjunctionwiththefallAGUmeetingandcommu‐nicationsforGEMnewsandworkshopsummaries.

Recommendation6.12.TheGEMgrantsprogramshouldcontinuetosupportcommunity‐definedresearchchallengesand,whenappropriate,“GrandChallengeWorkshops”jointlywiththeCEDARGrantsprogram.

6.4 Solar‐Terrestrial Research 

TheSTRprogramsupportsresearchaimedatunderstandingtheflowofenergyfromtheSun,throughthesolarwind,totheEarthandbeyond.Specifically,STRresearchfocusesontheplasma,fields,andenergeticparticlesthatoriginateattheSunandpropagatetowardsEarthandthepro‐cessesthatgoverntheirgenerationandtransport.WhilemuchoftheSTRresearchisrelatedtospaceweatherandhassignificantpotentialforimprovingpredictivecapability,thefocusisonbasicresearchintoawiderangeofprocessesofsolar‐terrestrialphysics.

Page 69: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  60  GS Portfolio Review  

Finding.TheresearchconductedwithinSTRaddressesalloftheSHPsciencechallengesandKeyScienceGoal1oftheDecadalSurvey,aswellasaspectsofKeyScienceGoals3and4.

6.4.1 STR Core Program 

STRcoregrantssupportdataanalysisandexploitation,theoryandmodeling,andinstrumentdevel‐opment.Majortopicsincludethesolardynamo,thesolarcycle,helioseismology,magneticfluxemergence,solarflares,coronalmassejections,magneticreconnection,solarwind,interplanetarydisturbances,energeticparticles,shockacceleration,diffusion,magneticturbulence,thesolarwind/magnetosphereboundaryandspaceweathereffects.

Finding.InadditiontofundinginvestigationsfocusedonasingleaspectoftheSunorinterplan‐etaryspace,alargeportionofselectedproposalsstudytheSun‐Earthasasystem,combiningground‐andspace‐basedobservationswithsophisticatedmodels.Thismovementtowardssystemsciencehasbeenreflectedinthesteadyincreaseofcollaborativeproposalssubmittedtotheprogramoverthelastsixyears.

Finding.MostoftheobservationaldatarelevanttoSTRresearchareproducedbyfacilitiesop‐eratedbyentitiesoutsidetheGSsection.TheseincludeNSFsolarfacilitiesmanagedbytheASTDivi‐sion–theNationalSolarObservatory(NSO)andNationalRadioAstronomicalObservatory(NRAO)–andbytheAGSDivision’sNCAR/HAO–theMaunaLoaSolarObservatory(MLSO).Observationsofsolar‐analogstarsaretakenbytheNationalOpticalAstronomicalObservatory,alsomanagedbytheASTDivisionandmeasurementsrelevanttoenergeticparticlesareobtainedbyneutronmonitorssupportedbythePolarPrograms(PLR)DivisionoftheGeosciencesDirectorate.Solarsciencealsooftenreliesonvariousobservatoriesmanagedbyuniversities(oftenwithgrantsfromNSF),numer‐ousNASA‐runsatellites,ground‐basedtelescopesrunbytheAirForce,aswellasvariousinterna‐tionalassets.

Finding.TheSTRresearchprogramisimportantformaximizingthescientificreturnfromtheseexternalprogramsandconversely,theseobservationsarecriticaltomanySTR‐fundedstudies.Alt‐houghreviewofthemanagementofthesefacilitiesisbeyondthepurviewofthisPortfolioReview,itisemphasizedthatnon‐GSNSFassetsareessentialinprovidingcriticalcapabilitiesidentifiedinChapter5.

Recommendation6.13.STRgrantsprogramsshouldcontinuetosupportanalysesofimportantsynopticandhigh‐resolutionobservationsderivedfromobservatoriesoperatedexternaltoGS.

Recommendation6.14.TheSTRprogrammanagershouldcontinuetomeetregularlywithmanag‐ersofthevariousground‐basedtelescopesinordertocoordinateprioritiesandimprovecommuni‐cation.Sucheffortsmustcontinueinordertominimizeanyunintendedconsequencesofalteringtheprioritiesofdatacollectionatthesefacilities.

Finding.TheadventoftheDKISTunderdevelopmentbytheNSO,andtobeoperatedbytheNSO,presentsauniqueopportunityforexploitingatransformationalnewobservationalfacility.

Recommendation6.15.ToreapthefullpotentialofDKIST,theASTandAGSDivisionsshouldex‐ploremodesofcollaborationthatbestsupportsciencefromthisnewfacility.

Page 70: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  61  GS Portfolio Review  

6.4.2 SHINE 

TheSHINEprogramresidingwithinSTRbringstogetherresearchersfromthesolar,inter‐planetary,andheliosphericcommunities,inorderto“studytheprocessesbywhichenergyintheformofmagneticfieldsandparticlesareproducedbytheSunand/oracceleratedininterplane‐taryspaceandonthemechanismsbywhichthesefieldsandparticlesaretransportedtotheEarththroughtheinnerheliosphere.“

TheSHINEprogramandinparticularitsgrassroots‐createdworkshoporiginatedtobringscientistsworkingondifferentaspectsoftheSun‐Earthsystemtogetherinanenvironmentwhereactivediscussion,ratherthanpolishedtalks,werethemainfocus.TheSHINEworkshopsarethusanimportantvenueforSTcommunitybuildingandforstudenttraining(seeChapter4).

Finding.TheSHINEprogramfundsanannualcallforresearchproposalswithamid‐Decemberdeadline,aswellasanannualworkshop.Proposalsfocusontheprimarytopicsdiscussedatthean‐nualSHINEworkshop,includingtheSHPchallengesdescribedinSection5.3andaspectsofsolar‐ter‐restrialphysicsrelevanttospaceweather.

6.5 Integrative Geospace Science 

PresidentJohnF.Kennedyinhis1963presentationtotheU.S.NationalAcademyofSciences,ontheoccasionofthe100thanniversaryofthatinstitution,asserted“…thatscienceisalreadymovingtoenlargeitsinfluenceinthreegeneralways:intheinterdisciplinaryarea,intheinterna‐tionalarea,andintheinterculturalarea.Forscienceisthemostpowerfulmeanswehavefortheunificationofknowledge,andamainobligationofitsfuturemustbetodealwithproblemswhichcutacrossboundaries,whetherboundariesbetweenthesciences,boundariesbetweennations,orboundariesbetweenman'sscientificandhishumaneconcerns.”17

OverthepastdecadesGShassupportedintensebasicscienceinvestigationsatthe“regional”levelsassociatedwiththedomainsofCEDAR‐Aeronomy,GEM‐Magnetosphere,andSHINE‐Solar

                                                            17 “A Century of Scientific Conquest by John F. Kennedy in The Scientific Endeavor, Centennial Celebration of the U.S. National Academy of Sciences, 1963 

Figure 6.1.  A GS framework that illustrates a vision for Integrative Geospace Science 

Page 71: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  62  GS Portfolio Review  

Terrestrial.Figure6.1depictsanIntegrativeSystemsScienceFrameworkfortheGeospaceSec‐ tion.Insomeways,thisframeworkrepresentstheworkcurrentlysupportedbytheGeospaceSci‐encesection,butmoreimportantlyitpresentsaviewthatcanservetoenhanceandencourageanewandinnovativeintegrativesystemsscienceemphasisandapproach.Itismeantasavisionandframeworkforfutureprogramsratherthanaprescribedadministrativestructurethatisbestlefttothosewhocarryoutday‐to‐daybusiness.TheintegrativeapproachrestsonafoundationofcoreresearchandfacilitiessupportedbyNSFGeospaceSectiongrantsintheareasofAeronomy,MagnetosphereandSolar‐Terrestrialinteractions.EachofthecoreareashasassociatedtargetedscienceprogramsrepresentedbyCEDAR,GEMandSHINEwherebothgrantsandconnectionstocommunityscienceprogramscometogethertoadvanceGeospaceSectiongoals.Alloftheseactiv‐itiesarethreadedbyoverarchingsystemscienceprogramsthatbuildontheelementsbelowbutplayanintegrativeroleandcutacrossdisciplineboundaries.

Finding.GSispoisedtofuseandintegratethegrowingknowledgebaseacrossthesedisciplinaryareastocreateanIntegratedGeospaceScience(IGS)Program,whichencompassesSpaceWeatherasasystemscience,aswellasGrandChallengeProjectswhichrequirescross‐disciplinaryinteractions.

6.5.1 Space Weather Research 

Inthe1990’sGS(thenUpperAtmosphereSection)spearheadedtheefforttoestablishspaceweatherasaviablenewscienceandtookanactiveroleinestablishingtheNationalSpaceWeatherProgram.SpaceWeatherisanexampleofintegrativesystemssciencethatthreadsalltheelementsofresearchsupportedbytheGeospaceSection.IntheGS,“TheSpaceWeatherResearchprogramsupportsthedevelopmentofintegrativespacesciencemodels,extendednetworkobservingcapa‐bilities,andtargetededucationandoutreachwiththeoverarchinggoaltomeetsocietalneedsforimprovedmonitoringandadvancepredictionsofspaceweatherphenomenaandeffects.”Whilefundamentalspaceweathersciencecanbefocusedonindividualelementsofthesystem,itcanalsofocusonanintegrativeviewandinterdisciplinaryaspectsoftheheliosphericsystem.

Finding:WithcontributionsfromAFOSRandONR,theGSrananannualsolicitationforre‐searchinsupportoftheNationalSpaceWeatherProgramfrom1996through2010.Thisdedicatedfundinglinewasdiscontinuedin2011,atwhichtimeGSpositedthatresearchrelevanttospaceweatherhadstartedtoemergeintheCEDAR,GEMandSHINEprogramswithsomedegreeofobser‐vationalsupportcomingfromClass2facilities(reviewedinChapter7).InvestmentsinthisseminalspaceweatherresearchprogramweresubsequentlyredirectedintowhathasnowbecometheNASA/NSFCollaborativeSpaceWeatherModelingprogram.

Finding.AscurrentlyconfiguredtheSpaceWeatherResearch(SWR)programisanadministra‐tivestructureformanagingavarietyofGSgrants(NASA/NSFCollaborativeSpaceWeatherModel‐ingandCubeSat),facilities(Class2facilitiesreviewedinChapter7)andworkforce(FDSSreviewedinChapter4)programs.AmongtheseprogramsasdescribedinChapter3,onlytheNASA/NSFCollabo‐rativeSpaceWeatherModelingprogramsupportsclearlydifferentiatedspaceweatherresearch.AnunspecifiedportionofthebudgetsforClass2facilitiesandtheCubeSatandFDSSprogramsaug‐mentsthisspaceweathermodelingeffort.

Finding.ProposalsaresolicitedeverythreetofiveyearsintheNASA/NSFCollaborativeSpaceWeatherModelingProgramtoaddresstopics(“StrategicCapabilities”)establishedbytheSteeringCommitteefortheNASALivingWithaStarProgram.

Page 72: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  63  GS Portfolio Review  

Recommendation6.16ThePRCrecommendstheestablishmentofadistinctfundinglineforbasicspaceweatherresearchthatsupportsimprovedcapabilitiesinspaceweatherspecificationandforecasting,andsustainarobustspaceweatherandclimatologyprogramthatinvestsin“pre‐dictivespaceweatherscience”andactivitiesthat“optimizetheuseofresearchtoaddressnationalneeds.”

Recommendation6.17.ThePRCgenerallyendorsesacontinuationofthecurrentNASA/NSFCollaborativeModelingunderSpaceWeather.However,wellinadvanceofeachnewrequestforproposalstothisprogram,theGSPMforSWRshoulddetermineiftheNASAcallforproposalsonStrategicCapabilitiescontinuestobealignedwithGSprogramgoalsforSWR.IfthealignmentisconsistentwithGSprogramgoals,thencontinuationatappropriatefundinglevelsshouldbesus‐tained.Additionally,overtime,fundsinthislineshouldbemadeavailableforotherstrategicspaceweatherfocusedcapabilities.

Finding:TheacquisitionandimplementationofindividualmodelsatNASA’sCCMChavepro‐ducedavibrantandhighly‐productivefoundationforspaceweathermodelingatalllevels.GSsup‐portedscientists,asacommunity,havebenefitedfromCCMCactivitiessuchas“runs‐on‐re‐quest.”NSFGShasprovidedsignificantfinancialsupportforCCMCpersonnelandcomputersystems,thusstronglycontributingtoarobustspaceweatherandclimatologyprogramasrecommendedbytheDS.

Recommendation6.18.ThePRCrecommendsthatGSmaintainitssupporttoCCMCasaPriority1effortintheFacilitiesPrograminordertocontinueandenhanceeffortsinIntegrativeGeospaceScience.

Finding:NSFGSprovidedstrongsupportfortheGlobalOscillationNetworkGroup(GONG),whichmadesignificantcontributiontoactivitiesthatwouldnowbeconsideredpartofIGS.Theon‐goingsupportallowedGONGtodemonstrateitsutilityinreal‐timespaceweatherforecasting.GONGisnowsupportedinpartbyNOAAforcollectingandprocessingdataforspaceweatheroperationsandwillbemakingHalphaandCarringtonmapsavailabletothescientificcommunity.

Recommendation6.19.ThePRCrecommendsthatGSusetheproposedInnovationandVitalityProgram(Section7.4.1)toopenfundingpathsforscientificallyviablespaceweatherobservationsandplatformsthatcouldservedemonstratedreal‐timeIGSmonitoringneeds.

Finding.InOctober2015,theNationalScienceandTechnologyCouncilreleasedtheNationalSpaceWeatherStrategicPlanandNationalSpaceWeatherActionPlan.TheActionPlanannounces“newcommitmentsfromtheFederalandnon‐Federalsectorstoenhancenationalpreparednessforspaceweatherevents.”Theplanelaborates18actionsforNSF,onewithNSFhavingprimaryrespon‐sibilityandseventeenotherstobeimplementedincollaborationwithotheragencies.Manyoftheseactionshavemilestoneswithinthenextfewyears.OneofNSF’sprimaryresponsibilitiesisto“En‐hanceFundamentalUnderstandingofSpaceWeatherandItsDriverstoDevelopandContinuallyIm‐provePredictiveModels.”

Finding.OperationstoResearch(O2R)informssocietally‐relevantresearch;Researchtooperations(R2O)fulfillssocietalneeds.Throughcoreandtargetedresearch,aswellasinsomeaspectsofthecurrentspaceweatherprogram,NSFGSisdevotingresourcestocuriosity‐drivenbasicresearchrelatedtounderstandingandmodelingthefundamentalphysicsofthesolar‐terrestrialsystem.Insomecases,theresultsofthisworkrelatetoproblemsthatultimatelyhavenear‐term

Page 73: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  64  GS Portfolio Review  

societalrelevanceandcanbejudgedascontributingto“broaderimpacts”asdefinedinNSFproposalcriteria.SomeoftheresearchandmodeldevelopmentsupportedbyNSFisclosetobeingripefortransitiontoanoperationalagencysuchasNOAAorDODwhereadditionaldevelopmentwillbeneedtobringnewideas,observationsandmodelsintooperationaluse.

Recommendation6.20.ThePRCendorsesNSF’scriticalroleincontributingtonationaleffortsforcoordinatedspace‐weatherpreparedness,andrecommendsthattheGSsectionpursueoppor‐tunitiesforcollaborationbetweenagencieswhichcanbeusedtofurtherNSFgoalsto"innovateforsociety,”aswellasDecadalgoalsrelatedtoDRIVE.

6.5.2 Grand Challenge Projects 

AccordingtotheDS,“amechanismisneededforbringingtogethercriticallysizedteamsofob‐servers,theorists,modelers,andcomputerscientiststoaddressthemostchallengingproblemsinsolarandspacephysics.ThescopeoftheoryandmodelinginvestigationssupportedbytheNSFCEDAR,GEM,andSHINEprograms…shouldbeexpandedsoastoenabledeepandtransformativescience.‘Heliophysicssciencecenters’wouldbringscientiststogetherforsignificantcollabora‐tionstoaddressthemostpressingscientificissuesofHeliophysics,withsuccessjudgedaccordingtoprogressmadetowardresolvingtheprimarysciencegoals.Centersshouldconsistofmulti‐dis‐ciplinaryteamswithtwotothreeprimaryinstitutionsthatincludetheorists,modelers,algorithmdevelopers,andobservers.Resourcesshouldbefocusedonthecoreinstitutionstoavoidspread‐ingtheresourcestoobroadlyandtoachieveafocusedinvestigationofthetopic.Thecentersshouldbedesignedtohighlighttheexcitingscienceproblemsofthefieldtobolstertheinterestoffacultyatuniversitiesandtoattracttopstudentsintothefield.”

Finding.GrandChallengeProjectscouldaddresscriticalcapabilitiesgapsasdescribed,e.g.inTables5.2‐5.5.

Finding.TheDecadalSurveyrecommendedthatthesecentersshouldbejointlycreatedbyNASAandNSF,andterm‐limited,withasuggesteddurationofsixyears.

Recommendation6.21.TheIntegrativeGeospaceScienceprogramshouldalsobethehomeofanewGrandChallengeProjectsprogram.

Recommendation6.22.ThePRCrecommendsthatNASA/NSFexplorebestpracticesforcollabo‐rationonGrandChallengeProjects,perhapsalongthelinesoftheaforementionedNASA/NSFCol‐laborativeModelingunderSpaceWeather.Thebroadeningofthesecollaborativeeffortsem‐bracestheholisticscopeoftheDecadalSurvey.

ToaddsubstancetonotionofaGrandChallengeProject(GCP),afewillustrativeconceptsaresuggestedhere.Theyspanprojectsrangingfromuniversalprocess,toSun‐to‐Earthcouplings,tomoreregionallyfocusedproblemsthatneverthelessrequirecross‐disciplinaryinteractions.TheseconceptsaremeanttoillustratethetypeofquestionsthatcouldbeaddressedinGCPsandshouldnotbeinterpretedasaspecialvisionforthefuturecontentandscopeofGCPs.WhenaGrandChal‐lengeProjectsprogramislaunched,communityconceptsforthemostcompellingprojectsto‐getherwiththepeerreviewprocesswilldeterminethebestcandidates.

Understand Particle Acceleration/Transport (maps to DS Key Science Goals 3 & 4) 

Particleaccelerationandtransportrepresentsauniversalplasmaprocesswithrelevancefrom

Page 74: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  65  GS Portfolio Review  

theSun,throughthesolarwind,totheEarth’sradiationbeltsandaurora,totheouterhelio‐sphere.Majordevelopmentsareneededbothintermsofourbasicunderstandingoftheconnec‐tionsbetweensourceconditionsandpropertiesofenergeticphenomena,andintermsofourabil‐itytopredictthecharacteristicsoftheradiationenvironmentsthroughwhichastronautsandspacecraftfly.Significantprogressmightbemadethroughcoordinatedeffortsinfundamentalre‐searchanddevelopmentofparticleaccelerationandtransportmodels,observationalanalysesofremote‐sensingandin‐situdata,andadvancesincross‐calibrationofmultipointanalysisanddata‐assimilativemethodologies.

Connect Sun‐Geospace‐Climate (maps to DS Key Science Goals 1 & 2) 

Althoughtheeffectoflong‐termsolarirradiancevariabilityontroposphericclimateisnotex‐pectedtobelarge,uncertaintiesremaininparticularregardingsensitivitiestoshortwavelengthradiationfromthesun.Inaddition,enhancedionizationfromenergeticparticleprecipitation(EPP)producesHOxandNOvariations,whichhavebeentracedtochangesinmiddleatmosphereozonebalance,thusprovidingapotentiallinktodynamicsandregionalclimate.Analysesstudy‐ingtheoriginsofsolarmagneticfieldsandhowtheirvariabilitytranslatestoradiative,particulateandpossiblyelectricalforcingsattheEarthareneeded,connectingfundamentaltheorytoobser‐vationalstudiesfromSuntoEarth.Coordinatedeffortscouldinvolvedevelopmentsincommunitymodels,data‐assimilation,andhigh‐performancecomputing,andpotentiallydrawonhistorical,geological,andsolar‐stellaranalogdata.

Predict the geoeffectiveness of solar drivers of space weather (maps to DS Key Science Goals 1 & 2) 

Thischallengeisattheheartofspaceweatherprediction.Tofullyaddressit,theuppersolar‐convectionzonethroughthecoronatothesolarwind,geospace,andtheEarth’supperatmos‐phereneedstobeconsideredasacoherentsystem,acrossmultiplescales(temporalandspa‐tial).AnswersmustbesoughttoquestionsaboutreconnectionandexplosivereleasesofenergyattheSunandatEarthandthestateofthemediumthroughwhichsuchdisturbancespropa‐gate.ClosertoEarthitrequiresinvestigationsintosocietally‐relevantareasofgeomagneticallyinducedcurrents,spacecraftenvironmentandhealthandcommunicationsvulnerability.Signifi‐canteffortsindataassimilationandhigh‐performancecomputingareneeded,asaredevelopmentofdata‐analysisandinversiontools,fundamentalresearchintothephysicalmechanismsdrivingcoronalheatingandsolarwinddynamics,andobservationalstudiesatbothhightemporal/spatialresolutionandinvolvingongoingsynopticdata.

Develop capabilities for satellite drag and debris prediction and mitigation (maps to DS Key Science Goal 2) 

Satellitedraganddebrismitigationaregrowingcommercial,governmentalanddefensecon‐cerns.Atmosphericdragisthelargestcontributoramongthemanyerrorsourcesinlow‐Earthor‐bit(LEO)orbitalestimationandisattherootofmanyissuesassociatedwithre‐entryprediction,tracking/identifyingactivepayloads,andcollisionavoidance.Presentlyorbitprojectionsarenotsufficientlyaccurate,nortimelyenough,todeterminewhetheranavoidancemaneuver,ifonecanbemade,isactuallywarranted.Investigationsrelatedtolongandshort‐termsolaremissions,M‐I‐Tcoupling,meso‐andsmall‐scalethermosphericstructuring,loweratmosphereforcingand,infra‐redradiativecoolingcouldallcontributetoaholisticaddressoftheproblem.Connectionsbe‐tweenmodelsandobservations,dataassimilationmethodologies,andhigh‐performancecompu‐tingarealsokeyelements.

Page 75: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  66  GS Portfolio Review  

6.6 CubeSat Program 

TheNSFCubeSatprogramgrewoutoftheJune2006“ReportoftheAssessmentCommitteefortheNationalSpaceWeatherProgram”(FCM‐R24‐2006).Theassessmentcommitteerecom‐mendedexploringtheuseofmicrosatellitestomakekeymeasurementsfrom—andabout—spaceinordertoadvanceunderstandingofbasicphysics,aswellasforaddressingkeyaspectsofspaceweatherobservations.TheGeospaceSection(UpperAtmosphereSectionatthattime)tookthatrecommendationtoheartandexhibitedvisionaryleadershipinbringingCubeSatstothenationalstageinsupportofGeospacescience.TheGS’seffortsinprovidingaccesstospacearewidelyrec‐ognizedingovernmentandacademiaasanenterprisingprogramforthegeospacesciences.AsanexploratoryprogramtheNSFGSCubeSatprogramhasbeenproductiveineducation,intraining,inengineeringdevelopment,andinsomeaspectsofbasicresearch.

SubsequenttotheMay2007communityworkshopaboutCubeSatmissionpossibilitiesandthefirstNSFsolicitationforCubeSatmissionideasinFebruary2008,dozensofCubeSatproposalshavebeensubmittedtoNSF.Theresulthasbeenanactivespaceflightprogrambuiltaroundsmallerspacecraftthatfitintocubesorstackedcubes.

RecognizingtheearlysuccessoftheNSFGSCubeSatexploratoryprogram,theDSmadetwoprimaryandonesecondaryCubeSatrecommendationstoNSF.Theserecommendationsweremadeduringaperiodwhenatleastmodestbudgetgrowthwasexpected.

1. “NSF’sCubeSatprogramshouldbeaugmentedtoenableatleasttwonewstartsperyear.”

2. “Detailedmetricsshouldbemaintained,documentingtheaccomplishmentsoftheprogramintermsoftraining,research,technologydevelopment,andcontributionstospaceweatherforecasting.”

3. “Asthisprogramgrows,itiscriticaltodevelopbest‐in‐classeducationalprogramsandtracktheimpactsofinvestmentsinthesepotentiallygame‐changingassets."

WithresourcescarvedoutofthepreviouscorescienceprogramandsupplementalfundingfromtheNSFEBSCoRprogram,theGShassupported12CubeSatmissionsplusthreenewstarts(AppendixE).Severaladditionalawardsarependingasofmid‐2015.CubeSatsupporthaspri‐marilybeentouniversitiesandsmallbusinesses.TotalexpendituresbyNSFfrom2008through2015forCubeSatmissionsandrelatedexpenseswereabout$15.6M,withannualexpensesvary‐ingfromyeartoyear,butontheorderof$1Mto$2M/year.Additionalfundingand/orin‐kindsupportfromNASAandDoDarenotreflectedinthenumbersabove.

SevenNSF‐sponsoredCubeSatmissions(tenspacecraft)havelaunched;threeareawaitinglaunch,twomissionsareinadvanceddesign,andthreemissionsareinearlystagedesign.Ofthesevenmissionsinspace,fivesuccessfullyacquiredpartoralloftheirintendeddata.Twomissionsexperiencedearlycommunicationsfailuresresultinginonly“firstlight”data.Threemissionsre‐turnedsciencedatafor18monthsormore.TheRadarAuroraleXplorer(RAX)andColoradoStu‐dentSpaceWeatherExplorer(CSSWE)generatedmorethantwo‐dozenrefereedscienceandengi‐neeringjournalpublications.Inparticular,CSSWEhascontributedsignificantlytointegrativesystemsciencecarriedoutbytheVanAllenProbemissionwithpapersappearinginjournalssuchasJGR‐SpaceandNature,andhassubmitteditssciencedatatoNASA’sNationalSpaceScienceDataCenter.Thefirsteightmissionscollectivelyhavecontributedto~15Ph.D.thesesandtheeduca‐tionofmorethan250BSandMSstudentsandatleastsixhighschoolstudents(Figure6.2).

Page 76: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  67  GS Portfolio Review  

Finding.TheNSFGSinvestmentinCubeSatsisaparadigm‐shiftingefforttoshowthatGSsciencecanbeenabledandextendedbyreachingintospacewithinexpensiveCubeSats.Theprogrampavesapathforexpandingspace‐basedactivitiesmorebroadlyinNSFgrants,particularlyinEarthandOceanSciences,BiologicalSciencesandEngineering;andforexpandingopportunitiesforindustrialcollabo‐rationandcommercialinnovationandcross‐disciplinarytechnologydevelopment.

Finding.TheGSsectionhasdevelopedaCubeSatprogramthatleveragessupportfromNASA,DoDandinternationalpartners.NASAandDoDhaveprovidedandcontinuetoprovideCubeSat“ridestospace.”CurrentandfutureCubeSatmissionshaveNASApartnershipand/orfunding.About10%oftheNSFCubeSatbudgetgoestotheNASAWallopsFlightFacilityformissionsupport.18GSisfundingfourCubeSatsfortheEuropeanQB50mission.

Finding.TheNSFCubeSatprogramhasbeenaneducationalsuccessandhassupportedmanyen‐gineeringadvances.Sevenspacecrafthavelaunchedandnearly300studentshaveengagedinsome aspectofCubeSatdesignandoroperation.Theprogramhasdevelopedanextraordinarymodelfortrainingthenextgenerationofscientistsandengineersinspaceandforenhancinguniversityandstu‐dentparticipationinspaceactivities.StudentanduniversityenthusiasmfortheCubeSatprogramisveryhigh.Forafewstudentstheprogramoffersarare,end‐to‐endmissionexperience.Formanyotherstudentstheprogramprovidesanintroductiontospacemissiondevelopment,whichhasspurrednewexcitementforscienceandengineering. 

                                                            18 NSF GS presentation to NRC dated June 22, 2015 

 

Figure 6.2. Number of students involved in each of the first eight CubeSat missions (from NSF GS).

0

10

20

30

40

50

60

70

RAX DICE CINEMA CSSWE FIREBIRD FIREFLY EXOCUBE CADRE

Cubesat Student Involvment

High School BS/MS PhD

Page 77: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  68  GS Portfolio Review  

Finding.TheCubeSatprogramhasproducedmorethan70refereedandproceedingspublicationsalongwithnumerouspressreleasesandwebpages.Intotalpublications,includingconferencepro‐ceedingsandjournalpublications,about80%oftheCubeSatpublicationsareinengineeringproceed‐ingsandjournalsvsabout20%insciencejournals(Figure6.3).

Finding.Ofthefivemissionscompletedornolongercollectingdata,twohavecontributedthebulkofarchivalengineeringandsciencepublicationsandprovideddatatoawebsiteorsciencedatacenter.TheCSSWEandRAXmissionscontributedtocollaborativeanalysestounderstandcomplexin‐terconnectedsystemsandhavepublishedarchivalresults.InthecaseofCSSWE,combininglow‐alti‐tudeenergeticparticleobservationswithelliptical‐orbitingVanAllenProbesdatahavecontributedtoradiationbeltscience.InthecaseofRAX,coordinationwithground‐basedradarshascontributedtoionosphericE‐regionscience.Twomissionsexperiencedearlycommunicationsfailure,assuchtheirpotentialforsciencecontributionswasnotrealized.

Finding.InharmonywiththeDecadalSurveyrecommendation,somecommunitywhitepaperssubmittedtothePRCsuggestthatGSshouldestablishamorerigorousdesignreviewprocesstoinsureCubeSatmissionsuccess.

 

Figure 6.3.  Publications in science and engineering journals and conference proceedings for the first ten CubeSat missions.  Many proceedings were associated with SmallSat Conferences.  Data provided by 

NSF and supplemented with searches at the SAO/NASA Astrophysics Data System and on the Web. 

Page 78: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  69  GS Portfolio Review  

Recommendation6.23.TheCubeSatprogramshouldincludeadditionaldesignreviewsandover‐sightaimedatachievingmissionsuccessandbeevaluatedforimpactandeffectivenessinordertojustifytheinvestment.Thisoversightshouldbeimplementedinawaythatdoesnotunderminethehigh‐riskhigh‐payoffbenefitsofCubeSatprojects.

Recommendation6.24.CubeSatmissionsshouldcontributetheirdatatoasciencedatacenterorothercuratedarchive.

Finding.Aunified,tabulateddatabaseofCubeSatstatus,successes,challenges,fundingprofilesandproductivitywouldallowbettertrackingandcomparisonsofinvestments,consistentwiththeDSrecommendations.

Recommendation6.25.NSFGSshouldprovideanannual,tabulatedsetofdetailedmetrics,docu‐mentingtheaccomplishmentsandchallengesoftheprogramintermsoftraining,research,technol‐ogydevelopment,andcontributionstogeospacescienceand/orspaceweatherforecasting.

Finding.AnexaminationofpublicationsresultingfromtheNSFCubeSatprogramsuggeststhattheresultsarepredominantlyengineering‐orientedandthat,onaverage,basicscienceproductivityislowincomparisontothenumberofpublicationsonemightexpectfromthesamefinancialinvestmentinGSprogramsforcoreandtargetedresearchgrantsandfacilities.Whilemostmissionsgeneratemanyconferencepresentationsandproceedings,comparativelyfewerresultsshowupasrefereedpub‐licationscontributingtoarchivalknowledgeinbasicscience.Insomecases,missionsreturnedlittleornoscienceoronlylimitedsciencewaspublished.ThisfindingisconsistentwiththetypicaluniversitymodelforCubeSatdevelopmentinwhichmostoftheavailableresourcesaredevotedtodevelopingsci‐enceinstrumentsandspacecraftbusseswithanever‐changingstudentworkforce.Grantmoneymaylastlongenoughtoseethesesmallmissionstospace,butperhapsnotlongenoughtosupportarobustdataanalysisprogramatalevelsimilartocoreandtargetedgrantprograms.

Recommendation6.26.Inthisbudget‐constrainedenvironmentGSshouldcontinuetoinvestintheCubeSatprogramwithanenhancedfocusonscience/strategicinstrumentdevelopmentandlessfocusonthesatellitebusandsystemdevelopmentandstriveforgreaterscientificvaluefromthisinvestment.GSshouldalsocontinueitscollaborativeandpartneringeffortswithNASA,DoD,andinternationalpartnersandinvestigatepartneringopportunitieswithindustry.

Recommendation6.27.ItisthePRC’sviewthatadditionalcollaborationwithotherDirectoratesandNSFOffices,whoseactivitiesalignwitheducation,engineeringandmultidisciplinaryefforts(e.g.,NSFOfficeofEmergingFrontiersandMultidisciplinaryActivities)areneededfortheGSinitia‐tiveinCubeSatstocontinueasavibrantcross‐FoundationeffortandtoallowtheGSsectiontoaug‐mentNSF’sCubeSatprogramtosupport“twonewstartsperyear,”asrecommendedbytheDecadalSurvey.Shortofsuchwhole‐of‐Foundationsupportforthisfrontiereffort,thePRCmustrecom‐mendarebalancingoftheGSCubeSatefforttofocusonscienceandwithperhapsfewermissionsthanenvisionedbytheDecadalSurvey.

6.7 Senior Review of GS Grants Programs 

RecommendedinvestmentsinGSCoreandStrategicGrantsPrograms,assummarizedinChap‐ter9tofollow,willrequireapproximately63%oftheGSbudgetoverthenextdecade,assumingtheinflation‐adjusted,flatbudgetscenarioforthisreview.ThisrecommendedportfoliofulfillsthePRC

Page 79: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  70  GS Portfolio Review  

chargeto“recommendthebalanceofinvestmentsinthenewandinexistingfacilities,grantspro‐grams,andotheractivitiesthatwouldoptimallyimplementtheSurveyrecommendationsandachievethegoalsoftheGeospaceSection.”However,thebudgetlandscapeoverthedecadeoftherecommendedportfoliomaydeviatefromtheassumptionsofthereviewandpasttrendssuggestthatnewopportunitiesforscientificadvancementwillemergeduringthenextdecade.Aninterim(semi‐decadal)seniorreviewoftheGSportfoliowouldensurethattheportfolioremainsalignedwithresearchprioritiesandwouldprovidecommunityinputtoGSPMsinnavigatinganevolvingbudgetandresearchlandscape.

ThePRCconsideredthemeritsofasingleseniorreviewoftheentireportfolioversusseparatereviewsoftheGSGrantsPrograms(coreplusstrategicasreviewedinChapter6)andtheGSFacili‐tiesProgram(reviewedinChapter7).Asinglefullreviewhastheadvantageofexaminingthebal‐anceofinvestmentsacrossallprogramsanditsalignmentwithsciencegoalsandnewopportuni‐ties.Itsdisadvantageisthelargeandcomplicatedscopeofafullportfolioreview,towhichthisPRCcanattest.Separatereviewsofgrantsandfacilitiesprogramshavetwoadvantages:1)Theseparatereviewsarequitedifferentinscopeandhavedifferentmetrics,sotheseniorreviewcommitteescouldbeoptimizedforthenatureofthereviews,and2)thereviewprocessfortwoseparateseniorreviewcommitteeswouldbelessonerousthanafullportfolioreviewandcouldbecompletedmoreefficientlyandquickly.Theobviousdisadvantageofseparatereviewsisthepossibilityofproducingmyopicreviewsofthetwoseparateelementsratherthanaholisticportfolioreview.

Asrecommendedbelow,thePRCoptsfortwoseparatereviews,withtheprovisothatspecialattentionbegiventocrossoverissuesinbothreviews.Oneimportantissueconcernsthetransitionfromacoreorstrategicresearchactivitytoafacilitiesactivity.

Finding.ThegeospaceresearchcommunityisexpectedinthenextdecadetocontinueaggressivedevelopmentanddeploymentofnewDistributedArraysofScientificInstruments(DASI)andotherClass2facilitiesinordertoprovideemergingcriticalcapabilitiesforgeospacescienceandtoaddressthebigchallengesofgeospacesystemscience.

Finding.M&OforClass2facilitiesandnascentClass2facilities(Section7.2),especiallybutnotlimitedtoDASI(Section7.4.3),arecurrentlyfundedbyboththeGSGrantsProgramsandtheGSFacili‐tiesProgram.ThesegrantsincludewidelyvaryinglevelsofsupportforresearchwithinthefacilitiesorresearchawardfortheClass2facility.

Finding.TheGSdoesnothaveclearguidelinesfordelineatingi)whenfacility‐classresearch,de‐velopmentandoperationcrossesthetransomfromaPI‐ledresearchprojecttoaClass2communityfacilityasdiscussedinChapter7;ii)whenthefundingsourceforanemergentClass2facility,ortheportionofitsfundingspecificallyforM&O,shouldmigratefromtheGSGrantsProgramstotheGSFa‐cilitiesProgramandbereviewedseparatelyfromresearchproposedfortheClass2facility;andiii)anappropriatelevelofresearchfundingforinclusioninaClass2facilityaward.ThebudgetsforGSgrantsandfacilitiesprogramslosetransparencywithoutsuchguidelines.

TheseissuesaremainlyaddressedinthecontextoftheGSFacilitiesPrograminChapter7,andguidelineswillbepresentedthereforappropriateM&Osupportforfacility‐classactivities.TheseissuesclearlycrossoverintotheGSGrantsProgram,however.IdeallytheGSGrantsProgramssupportdevelopmentandapplicationofinnovativemeasurementtechniques;novelobservationstypicallyofmorelimitedscopeanddurationthanafacility‐classactivity;dataanalysisanddataexploitation;andmodelingandtheorythatadvanceandtransformourunderstandingofgeospace.

Page 80: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  71  GS Portfolio Review  

RetainingM&Osupportforfacility‐classactivitiesintheGSgrantsprogramsdiminishesinvestmentincriticalcoreandstrategicgeospacescience.

Recommendation6.28.BeyondalevelofM&OsupportbytheGSFacilitiesProgramtobede‐scribedinChapter7,proposalsforresearchactivitiesassociatedwithfacilitiesshouldbepeer‐re‐viewedseparatelyfromfacilitiesproposalsandevaluatedagainstthesamescientificstandardsasanycompetitiveresearchproposalconductingthesameresearchwithdatafromthefacility.

Recommendation6.29.TheGSshouldchargeaseniorreviewcommitteetoconductaninterim,semi‐decadalreviewoftheGSCoreandStrategicGrantsPrograms.AseparateseniorreviewoftheGSFacilitiesProgramisalsorecommended,asdescribedinChapter7.

TheobjectivesoftheinterimSeniorReviewofGSGrantsprogramsareto:

1. Reviewthebalanceofinvestmentsincoreandstrategicgrantsprogramsinlightofthebudgetandresearchenvironmentatthetimeofthereview,evaluatetheprograms’effec‐tivenessinachievingSectionandDecadalSurveysciencegoalsand,inconsultationwithGSstaff,recommendadjustmentsinthedirectionandbalanceofthegrantsprogramsifsuchadjustmentswouldenhancetheoveralleffectivenessoftheGSGrantsProgramsinachiev‐ingSectionandDSsciencegoals.

2. FacilitatetransparencyinGSinvestmentsinitsgrantsprogramsbyevaluatingprogressoftheSectioninimplementingrecommendationsofthedecadalportfolioreviewandbyre‐viewingfundingallocationsinvariousgrantcategories,includingbutnotlimitedtograntsthatfundbothM&Oandresearchforemergingfacility‐classprojects.

Finding.Thepurposeofthisreview(andtherecommendedfacilities’seniorreview)isdistinctfromthemandatedperiodicreviewsconductedbyCommitteesofVisitors,whicharechargedwithprovidingassessmentsofthequalityandintegrityofprogramoperationsandprogram‐leveltechnicalandmanagerialmatterspertainingtoproposaldecisions.

Recommendation6.30.AdministrationanddecisionsonthestructureoftheSeniorReviewpro‐cessshouldresidewiththeGSHeadandProgramPMs.

Givenitsexperienceinconductingthisportfolioreview,thePRCcanoffersomesuggestionsforensuringthatthereviewismostefficientlyandeffectivelyconducted.SoonafteraSeniorReviewpanelforGSGrantsProgramsischarged,andwellbeforeitsscheduledmeetingatNSF,theGScouldprovidethepanelwiththefollowingdataonitsgrantsprograms:

1. BudgetsbyyearsincetheportfolioreviewforeachGSgrantprogram(AERcore,MAGcore,STRcore,CEDAR,GEM,SHINE,GCP,SWR,CubeSat, GrandChallengesandFDSS);

2. SeparatelistingsofgrantsfromtheNSFAwardsdatabasecurrentlyfundedbyeachoftheaforementionedgrantprograms;

3. StatusofallCubeSatmissionsfundedorco‐fundedbytheGS;

4. Proposalsuccessratesbyyearsincetheportfolioreviewforeachprogramwithareasona‐blydetaileddescriptionofthebasisforthesuccessrate andwithamethodologyconsistentwiththatemployedacrossNSF;and

5. IdentificationofprojectsthatmaybeonapathtobecomingaClass2facility.

Page 81: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  72  GS Portfolio Review  

Annualpublicationofthedatain1‐4abovewouldkeepthecommunityinformed.Withthisinfor‐mationinhand,theSeniorReviewpanelwouldbeinagoodpositiontorequestadditionalinfor‐mationasneededinordertoconductacomprehensiveandefficientreview.

ThePRCrecognizesthemanychallengesofmanagingGSresearchandfacilitiesprograms.Effec‐tiveSectionadministrationmayrequireGSProgramManagerstoadministerbothresearchandfa‐cilitiesproposalsandgrants,withsomeoftheminGSprogramsoutsidethePM’sprimaryareaofresponsibility.ResourcesharingacrossGSprogramsmayalsobethebestwaytofunddeservingprojects,especiallycross‐disciplinaryprojects,whentheoverallbudgetisconstrained.Suchman‐agementdecisionsarebestlefttotheverycapableGSstaff.Onetheotherhand,transparencyinprogramadministrationisgreatlyfacilitatedwhenaprogramanditsaccountingincludes,tothefullestextentpossible,grantsdirectlyrelevantonlytothatprogramelement.Administrativecon‐structsliketheexistingSpaceWeatherProgram,whileadministrativelyexpedient,tendtoconfusetheresearchcommunityatlargeinunderstandinghowGSresourcesarebeingallocated;thePIsofgrantsadministeredbytheprogramwhomaybepursuingprojectsnotnecessarilyfocusedonspaceweatherresearch;andareviewcommitteelikethePRCwhichhasdifficultydisentanglingre‐sourceadministrationfromresourceallocationinitsreview.ThesameconfusionarisesforgrantsmanagedbyaPMforaprogramoutsidethatofthePM’sprimaryareaofresponsibilitye.g.,afacilitygrantmanagedbytheAERPM.Fromthecommunityperspective,themosttransparentaccountingofprograminvestmentsistolistfundedactivitieswiththeprogrammostrelevanttotheprojectra‐therthanwiththeprogramofthePMmanagingthegrant.Thispracticeappearstohavebeenfol‐lowedinmostbutnotallcasesintheprogramgrantlistingsprovidedtothePRC.Forcross‐discipli‐naryprojectsfundedbytwoormoreprograms,itwouldalsodesirabletoaccountfortheportionoffundingallocatedfromeachprogram,althoughthePRCrecognizesthatthislevelofdetailmaybedifficulttoachieveinpractice.

   

Page 82: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot
Page 83: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  73  GS Portfolio Review  

Chapter 7.  GS Facilities and Infrastructure 

ThemaintenanceoftheleadingpositionoftheU.S.ingeospacescientificresearchrequiresabroad‐basedprogramofactivitiesthatsupports,sustainsandstimulatesavibrant,novelscientificenterprise.ThisenterpriseincludesthreekeyresearchelementsthatthefutureGSresearchpro‐grammustencourage:

Curiosity‐drivenresearchdrivenbyproposalsfromprincipalinvestigators(PIs); 

Acollectionoflarger‐scaleresearchinitiativesthataddressparticularlycompellingscientificquestionspoisedforsignificantadvancebutareinsize,cost,andcomplexitybeyondthescopeofaPI‐drivenproject;and 

Strategicresearch,i.e.,sciencethatshoulddelivernewunderstandingthatwill,overtime,con‐tributetoaddressingsomeofthemajorresearchchallengesofthegeospaceenvironment,itsimpactsonotherpartsofourplanet,andresiliencetospaceweatherhazards. 

Oneofthefundamentalrequirementsforinternational‐classscienceisforscientiststohavereadyaccesstointernational‐classfacilitiesandcapabilitiesinmodeling,theory,observationanddatamanagement. 

AsdescribedinChapters5and6,increasingemphasison“systemscience”isexpectedoverthenextdecade.Thisapproachwillrequirebothsophisticatedsiteswithcolocationofmanyinstru‐mentsforcomprehensivemeasurementsofthelocalgeospaceenvironment,anddistributednet‐worksofinstrumentstoprovidearegionalandglobalcontextandperspectiveofgeospace.Com‐plementarymodelinganddatamanagementinitiativeswillbekeyelementstoo.Nationalandin‐ternationalpartnershipswillbeessentialinprovidingacomprehensiverangeofcapabilitiesandglobalcoverage(seeChapter8). 

7.1 Recent History of GS Facilities 

Intheearly1990s,theGeospaceFacilities(GF)program(thenknownasUpperAtmosphericFacilities,UAF),fundedprincipallyincoherentscatterradars(ISRs),e.g.,SondrestromFjord(Son‐drestrom),MillstoneHill,AreciboandJicamarca,andsomeinstrumentationclusteredaroundthosefacilities.Theannualfundingwasabout$9M. 

Withtime,moreISRsandotherinstrumentsandinfrastructurewereaddedtoUAF,inparticu‐lar,USSuperDARN(polarandmidlatitudes),AdvancedModularISRs(AMISRs),namelyPokerFlatIncoherentScatterRadar(PFISR)andResoluteBayNorthFaceISR(RISR‐N),andtheConsortiumofResonanceandRayleighLIDARs(CRRL).By2008theUAFannualbudgetwasabout$14M.TheprincipalincreasewasfromtheadditionoftheAMISRs,whichhadbeeninplanningsincethe1990s.TheconstructionanddevelopmentofthesenewinstrumentswerefundedbytheformerAGSMid‐SizeInfrastructureProgramand/orARRA(AmericanRecoveryandReinvestmentActof2009),orwithfundingfromotheragenciesandNSFprograms,andnotwiththeUAF/GSfunds.

By2013,furtherfacilities,infrastructureandcapabilitieswereaddedtotheportfolio.Theseadditionsincluded:AMPERE(IandlaterII),SuperMag,CommunityCoordinatedModelingCenter(CCMC),andCubeSats,withtheannualbudgetrisingtoabout$18M. 

TheannualGSbudgetforAreciboObservatoryjumpedfrom$1.8M($2Min2015dollars)in

Page 84: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  74  GS Portfolio Review  

2008to$4.1Min2016assupportfromtheNSFAstronomyDivisionwassubstantiallydecreased.Atthesametime,otherISRsexperiencedabouta10%reductionrelativetotheirsupportpriorto2008. 

ItisclearthattheGFprogramhasbeenexperiencinganevolutiontowardsincludingwhatwedefinehereas"Class2"facilities,inadditiontotheimplementationofnewClass1facilities.Thecharacteristicsoftheseclassesaregiveninsection7.2.3. 

7.2 Characteristics of GS Facilities 

NSFhaslongsupportedseverallargeincoherentscatterradarfacilities.SeveralofthelargeISRfacilitieshavebeeninheritedbytheNSFfromformerDepartmentofDefense(DoD)programs.Ingeneraltwoownershipmodelsoffacilitiesarefunded: 

● FacilitiesownedbyNSFandoperatedandmaintainedbyexternalorganisations. 

● FacilitiesfundedbyNSF,andnowownedbyexternalorganisations. 

Someofthefacilitiesareprovidedtogivesupportandservicetoawidecommunity,whileoth‐ersarehighlyfocusedtomeettheneedsofaspecificPrincipalInvestigatororasmallgroupofre‐searchers. 

7.2.1 Definition of a Community Facility 

TheCommitteefoundthatNSF/GSdoesnothaveacleardefinitionofaCommunityFacility–whatitshouldprovideandhowitshouldinteractwithitsusers.ThecontributionofeachfacilitytoGSprogramgoalsandobjectivesdoesnotappeartobeconsistentlyevaluated,noritsperformanceinservingitsusercommunity.ThecontractualarrangementsbetweenfacilityPIsandNSFvarysig‐nificantlyfromfacilitytofacility,andfundingforscienceundertheprimarygrantorcooperativeagreementofeachfacilityalsovariessignificantlyamongthefacilities.Thispracticehasmeantthattheexpectationsofthefacilitiesandtheirmanagementisnotclearortransparent. 

AsaresultofitsexaminationofNSF/GSpractisesregardingfacilities,theCommitteehasidenti‐fiedtheessentialcharacteristicsofaNSFGSfacility.

Recommendation7.1.Afacilityshouldexhibitthefollowingfunctions: 

1. ServeacommunityofuserswellbeyondasinglePIorsmallgroupofinvestigators,i.e.,atleastnationalbutmaybeinternational;

2. Beoperatedinsuchawayastoensureresponsivenesstotheneedsoftheresearchcommu‐nitytosustaininternational‐classscientificproductivity;thuseachfacilityisexpectedtohavebothanadvisorygroupandauserforum,withmembershipnotselectedbyfacilitymanagement;

3. OperateformorethanoneawardcycleandtypicallysubstantiallylongerifwarrantedbytheSeniorReviewprocess(seeSection7.8);

4. Makealldataopenlyavailableandaccessibleinatimelyfashionaccordingtoapublisheddatadistributionanddisseminationplan;

5. Developanddeliveraneffectivelong‐termplantomaintainthefacilityataninternational

Page 85: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  75  GS Portfolio Review  

cutting‐edgelevel;

6. CarryoutalimitedamountofsciencefundedfromtheMaintenanceandOperations(M&O)contract(seeSection7.5.2);

7. Supportthedeploymentandoperationsofco‐locatedinstrumentswiththefullcostscov‐eredbyeachco‐locatedinstrumentPrincipalInvestigator;

8. Deliversubstantialeducation,outreach,anddiversityprograms;and

9. Providecost‐effectiveoperations.

7.2.2 Community Facility:  Funding and relationship with NSF  

1. FacilitiesmaybeownedbyNSF,universitiesorresearchinstitutions.

2. Facilitiesareexpectedtohavemultiplefundingsourcesinvolvinginteragencyandinterna‐tionalpartners.

3. Facilitiesmaybefundedthrougheithercontinuinggrantsorcooperativeserviceagreements(CSAs).ACSAensuresappropriateNSFinvolvementinfacilityoperationanduse.

4. RecompetitionoftheCSAtypicallyoccurseveryfiveyearsforNSF‐ownedfacilities.Apeer‐reviewedproposalisrequiredforrenewalofacontinuinggrant.

5. TheentireportfolioofNSFGS(facilitiesandprograms)wouldbereviewedeveryfiveyears(seeSection7.8,SeniorReview).

7.2.3 Class 1 and Class 2 Community Facilities 

ThePRCfoundithelpfultoconsidertheCommunityFacilitiesintwoclasses.AClass1facilityisamajor,complexfacilityatasinglesite.Itsinvestmentovertimetypicallyreachesmany$10sM,re‐quiressignificantM&Ofundsandaccommodatesavarietyofcomplementaryinstrumentsatorverynearthesite.Class1facilitiesmightbeexpectedtohavealifetimeof20+yearsfromfirstdeploy‐ment.Inthecurrentportfolio,alltheincoherentscatterradars(ISRs)areconsideredtobeClass1. 

Class2facilitiesaremoremodestanddiverseinvestments.TheyincludedistributednetworksofinstrumentsthataresimplertooperatethanISRs(e.g.SuperDARN),facilitiesproducingvalue‐addedproductsfromdatafromothersources(e.g.SuperMAGandAMPERE),modelsupportforthecommunity(e.g.CCMC)anddatamanagement(MadrigalDatabase,currentlyfundedthroughtheMillstoneHillISRcontract). 

ItisrecognisedthatmostUSfacilitiesoperateinaninternationalcontext.Thisimportantchar‐acteristicisaddressedfurtherinChapter8. 

7.3 Current Investments and Capabilities 

7.3.1 Evidence Used by the PRC 

PriortothePRC’sfirstin‐personmeetingatNSFonApril6‐7,2015,theGSActingHeadmadeavailabletotheCommitteeawrittenintroductiontoeachfacilitypreparedbyitsPI.ThePRCsub‐sequentlyrequestedmoredetailedwritteninformationfromeachPIregardingthecurrentstatusof

Page 86: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  76  GS Portfolio Review  

eachfacilityandfutureplans.Afterreceivingthewrittenresponsestotheserequests,thePRCtheninterviewedeachfacilityPIviawebconference(about1hourdurationeach)todelvedeeperintoissuesaddressedinthewrittenresponses;afewoftheseinterviewswerethensupplementedbyadditionalwritteninformationfromthePIs.Supplementaryinformation,suchasfundinglevels,wasprovidedbyNSF.ThePRCalsoheldawebconferenceinterviewwiththeDirectoroftheEuro‐peanIncoherentScatterFacility(EISCAT).OnthebasisofallthisinformationthePRCproducedthefollowingfindingsandrecommendations. 

7.3.2 Class 1 Facilities: Summary  

TheNSFGScurrentlyfundstheoperationsforsixIncoherentScatterRadar(ISR)facilities(Ta‐ble7.1).TheISRoperatingfrequency,power,sensitivityandthedataacquisitionandhandlingin‐frastructureateachofthesesixsitesvarywidely.Theirlocationsrangefromthegeomagneticpolarcapregion(ResoluteBay,Canada)tothegeomagneticequator(Jicamarca,Peru).TheoriginalISRs–stretchingfromSondrestrom,Greenland(geomagneticcuspregion),toMillstoneHill,Massachu‐setts(geomagneticmidlatitude),toArecibo,PuertoRico(geomagneticlowlatitude),andtoJica‐marca–havebeencalledalatitudinalarrayofISRsatvarioustimes.ThenewestISRsareAd‐vancedModularIncoherentScatterRadars(AMISRs).TheyarelocatedatResoluteBay(RISR‐N)andatthePokerFlatrocketrangeinChatanika,Alaska(PFISR).Arecentlybuilt14‐panelAMISRiscurrentlylocatedatJicamarca.ThePokerFlatrocketrange,locatedsome30milesnorthofFair‐banks,isoperatedbytheUniversityofAlaska.ThelocationsoftheGS‐fundedISRsalongwiththeirfieldsofviewareillustratedinFigure7.1.

TheoperationalcostsoftheISRfacilitiesisabout$13M/year,whichrepresentsabout30%oftheGSbudget.

7.3.3 Class 1 Facilities: Findings and recommendations 

Finding.Littlesignificantsciencehasbeenproducedutilisingcollectivedatafromthe“latitudinalarray”ofISRs.Theimportanceofatmospheric/ionosphericcouplingduringSuddenStratosphericWarmingeventsisoneofthefewexamples. 

Finding.TheISRfacilityatSondrestrom,Greenland,hasbeeninoperationforgeomagneticcuspstudiesfornearly35years(havingbeenmovedfromChatanika,Alaska,in1982).Itsmaintenanceandoperations(M&O)costsare$2.55M/year.Amongotherfeatures,theradaroperateswithklys‐trontechnology.Spareklystronsarenotavailableandrequirespecialbuilds.AcomprehensivesuiteofancillaryinstrumentationislocatedatSondrestrom. 

Finding.AnumberofEuropeancountriesandcountriesfromtheFarEasthavedevelopedacoor‐dinatedsetofISRradars(EISCAT),deployedinnorthernScandinavia.EISCATprovidesanexcellentresearchcapabilityextendingfromsub‐aurorallatitudestothepolarcap.Awealthofancillaryre‐searchinstrumentation,includingahighpowerHFheater,arelocatedwithinthefieldsofviewoftheEISCATradars.USAPIsprovidesomeoftheseinstruments. 

Finding.AconsortiumofEISCATcountrieshasrecentlyinitiateddevelopmentoftheEISCAT‐3Dradar.EISCAT‐3Dwillgiveunparalleled3‐Dspatialandtemporalmeasurementsofthegeospaceen‐vironmentespeciallyintheauroraloval.EISCAT‐3Dwillconsistoffivephased‐arrayantennafieldslocatedinthenorthernmostareasofFinland,NorwayandSweden,eachwitharound10,000crosseddipoleantennaelements.ThecoresiteatTromsø,Norway,willtransmitat233MHz.Allfivesites

Page 87: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  77  GS Portfolio Review  

Table 7.1  Main characteristics of GS‐funded ISRs 

ISR  Owner  Freq (MHz) 

Antenna Type (s) 

AntennaSize 

PeakPower(MW) 

DutyCycle% 

InitialOper 

GeomLat 

ISROper 

(hr/year) 

Other Instruments & Infrastr 

Coverage

MHO  MIT  440  One steerable and one fixed parabolic dish 

46 m steerable68 m fixed 

2.5 6 1960 52.1oN 1000 Madrigal, Cluster 

± 70o

JRO  IGP  50  Square Phased array 

290 m x 290 m 3 6 1961 0.3oN 1000 JULIA1, Cluster 

± 3o on‐axis

AO  NSF  440  Spherical dish  305 m 2.5 6 1962 27.6oN 1000 Heater, Cluster 

± 15o

Sonde  NSF  1290  Steerable parabolic dish 

32 m  3.5 3 19832 72.6oN 2000 Cluster  ± 45o

PFISR  NSF  449  Phased array  32 m x 28 m 2 10 2007 65.4oN >6000 Rocket Range, Cluster 

± 23o on‐axis

RISR‐N  NSF  449  Phased array  32 m x 28 m 2 10 2010 >80oN 1000 Cluster  ± 23o on‐axis

Abbreviations: Millstone Hill Observatory (MHO), Jicamarca Radio Observatory (JRO), Arecibo Observatory (AO), Sondrestrom 

Geospace Facility (Sonde), AMISR at Poker Flat (PFISR), NSF AMISR at Resolute Bay (RISR‐N), Frequency (Freq), Operation 

(Oper), Geomagnetic Latitude (Geom Lat) and Infrastructure (Infrastr) 

1 JULIA is Jicamarca Unattended Long‐term Investigations of the Ionosphere and Atmosphere – a continuously operating meso‐

sphere, stratosphere, troposphere radar 

2 Before 1983, it was at Chatanika, Alaska, and before that at Stanford University.

Figure 7.1.  Locations of the Incoherent Scatter Radars and their fields of view.  US funded radars in white (PFISR, RISR‐N, Sonde, MHO, AO and JR0), others in yellow (MU, IRIS, Kharkov, RISR‐C and EISCAT with two fields of view). Figure courtesy of C. Heinselmann

Page 88: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  78  GS Portfolio Review  

willreceivethereturnedradiosignals.Instantaneouselectronicsteeringofthetransmittedbeamandmeasurementswillbeused.Smalleroutlyingarrayswillfacilitateaperturesynthesisimagingtoac‐quiresub‐beamspatialresolution. 

Finding.TheEISCATconsortiumwillcontinuetooperateandenhanceitsfacilitiesatSvalbardinthecuspregion.

Finding.NoplansareinplaceforenablingU.S.investigatorstousetheEISCATortheEISCAT‐3Dfacilitiesforauroralorcuspstudies. 

Recommendation7.2.TheISRfacilityatSondrestromshouldbeterminated,andscienceper‐formedatSondrestromshouldbecoveredbyparticipation,afterpeerreview,inEISCATandEIS‐CAT‐Svalbardforcuspstudies.

Recommendation7.3.AncillaryinstrumentationforgeosciencestudiesandtheiroperationalcostsatSondrestromshouldbebudgetedanddecidedbyapeerreviewprocessfromtheCoreorTargetedGSprograms.

Recommendation7.4.TheGSshouldinvestigatecostsandcontractualarrangementsforU.S.in‐vestigators’accesstotheexistingEISCATfacilitiesand,moreimportantly,totheplannedEISCAT3‐Dfacility(Seesection7.4.2forfurtherdetails). 

Finding.TheAreciboISRisthemostsensitiveofanyISRintheworld,allowingthehighestalti‐tudeandtemporalresolution.

Finding.TheArecibo430MHztransmitteris50‐year‐old,vacuumtubeklystrontechnology.TheSRIReportofJune2012indicatesthatfivespareklystronsexistedatthattime(klystronsdonatedbytheU.S.AirForcefromtheirThule,Greenlandlocation).TheSRIReportofOctober2013statedthatthe“usefulpowerisabout1.25MW”.TheSRIReportofOctober2014statesthatthe“systemhascon‐tinuedtoachieve1.5MWofpower”.Thetransmittercanonlyoperateattheselowpowerlevels(lessthanhalftheoriginalratedpowerlevelof4MW)duetotheagingelectronics.

Finding.Theresearchprograminoptics(includingLIDAR)atArecibohasgreatlyexpandedinrecentyears,withopticsscientificpersonnelexceedingISRscientificpersonnel. 

Finding.AnionosphereheatingfacilityhasbeenunderconstructionatAreciboforanumberofyears.Theheatingfacilitywasrecentlycompletedandpreliminaryexperimentshavebeencarriedout.M&OfundshavenotbeendesignatedbyNSFforitsuse. 

Finding.TheFY2016M&OcostofArecibofromtheGSbudgetis$4.1M,whichiscurrentlymatchedbytheAstronomySection(AST)oftheNSF.NASAprovidesminimalM&OsupportforitsuseofArecibo.GSincreaseditsM&Ocontributiontothe$4.1Mlevelfromanoriginal$1.8Min2008.The2012ASTPortfolioReviewrecommendedthatASTshouldre‐evaluateitsparticipationinArecibolaterinthedecadeinlightofthescienceopportunitiesandbudgetforecastsatthattime. 

Finding.About11%ofthetotalproposalsreceivedfrom2012to2014foruseoftheArecibofacil‐itywereforGS‐relatedresearch.

Finding.SRIReportsshowthattheGS‐relatedprogramusageoftotal(includingmaintenance)telescopetimerangedfromabout8%toabout13%over2012‐2015.IntheSRIReportdatedJanuary2016,about40%ofthisGS‐relatedtelescopetimewasdevotedtoWorldDaycampaignsofdataacqui‐sition,nottoindividualPIpeer‐reviewedresearchprograms.

Page 89: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  79  GS Portfolio Review  

Recommendation7.5.TheGSshouldreduceitsM&OsupportfortheAreciboISRto$1.1M/year;i.e.,toaproportionalproratalevelapproximatelycommensuratewiththefractionalNSFGSpro‐posalpressureandusageforfrontierresearch.

ThisreductioninArecibofundingbyGSisimperativeformeetingthePRCchargetorecom‐mendthebalanceofinvestmentsinnewandinexistingfacilities,grantsprograms,andotheractivi‐tiesthatwouldoptimallyimplementDecadalSurveyrecommendationsinthepresumedflatbudgetenvironmentofthenextdecade.Independentofmetricsonproposalpressureandobservingtime,rebalancingtheGSinvestmentinArecibocorrectsanincreasingdistortioninitsrelativevaluetofuturegeospacescience.Takingthishardstepnowwillenablenewandinnovativedistributedmeasurements,datasystemsandresearchrequiredtoaccomplishtheintegrativegeospacesciencedescribedinChapters5and6ofthisreviewandemphasizedintheDecadalSurvey.

Recommendation7.6.Ancillaryinstrumentation(includingtheextensiveopticsinstrumentation)forgeosciencestudiesandtheiroperationalcostsatAreciboshouldallbebudgetedanddecidedinthepeerreviewprocess.

Recommendation7.7.CostsofrunningtheHFheateratAreciboshouldbebudgetedasapay‐as‐you‐gosystem,anddecidedinthepeerreviewprocess.

Finding.ThePFISRislocatedatthesitefromwhichthecurrentSondrestromradarwasremovedin1982.ProximitytothePokerFlatrocketrangeisreportedtoprovideconvenienceandefficienciesintheoperationofPFISR,aswellasresearchsynergiesresultingfromancillaryinstrumentationforsupportofrocketlaunches.PossiblerelocationofPFISRtooneofseveralalternativesiteshasbeenconsidered.

Finding.TheM&OcostsforPFISRarecurrentlycombinedwiththosefortheAMISRatResoluteBay(RISR‐N)andarethusnotreadilydetermined.

Recommendation7.8.FundingforRISR‐Nshouldbedecoupledfromthefundingforanyotherfacilityinordertohaveaccuratecostanalysisavailable. 

Recommendation7.9.ThefuturelocationanduseofthePFISRradarforresearchshouldbede‐terminedbypeerreviewbythetimetheEISCAT‐3Dbeginsoperations.Peerreviewshoulddeter‐minethevaluepropositionforcontinuingtousetheradar’scapabilitiesatitscurrentsiteoriftheymightbebetterusedfornew,frontierresearchiftheradarweretobeinstalledatanotherlocation.

Finding.MillstoneHillISRhasaverylargefieldofviewthathasbeenutilizedforinnovativenewscience.Thisextensivecoveragecouldcontributesignificantlytosystemscience. 

Finding.TheMillstoneHillgrouphasdevelopedandextendedtheoriginalCEDARdatabase(nowcalledMadrigal)toprovideanexcellentmulti‐instrumentdatabasethatisusedextensivelybythecommunity. 

Finding.TheMillstoneHillgrouphassecuredsignificantexternalfundingforscienceandengi‐neeringtechnicaldevelopments.TheGroup’sresearchtodevelopalowcostISRmaybeofconsidera‐blevaluetoNSF,leadingtoreplacementofolderISRtechnology,includingtheMillstoneHillinstalla‐tion. 

Finding.TheMillstoneHilldishhassignificantstructuralproblems. 

Recommendation7.10.InvestmentisrequiredtoextendthelifetimeofMillstoneHilluntilsuch

Page 90: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  80  GS Portfolio Review  

timeasitmaybereplacedbyalowercostoption,and/oratanotherlocation. 

Finding.TheJicamarcaISR(JRO)istheonlyISRlocatedatthemagneticequatorandundertheequatorialelectrojet.JROisownedbyPeru.

Finding.JicamarcaisthemostpowerfulISRintermsof(power)(aperture).Spatialcoverageislimitedto±3°tothevertical.Expansionofthenear‐bycityisathreattooperationowingtoin‐creasedradiointerference.

Finding.Lackoffundingfordecadeshaspreventedthemodernizationoftheantennabeamswitching.

Finding.JROhostsalargeclusterofancillaryinstrumentationforupperatmosphereandiono‐spherestudies,manysupportedbyseparatefunding.Itisthecurrentlocationofanorphaned14‐panelAMISRsystembuiltwithMRIfunds.

Recommendation7.11.TheJROPIshouldapplytotherecommended,competitiveInnovationandVitalityProgram(Section7.4.1)forsupporttoinstallneededupgradestobringtheISRsystemuptomodernradiosciencestandards. 

Finding.Ancillaryinstrumentationforstudiesofvariousupperatmosphereandspacephenom‐enaareoftenco‐locatedateachISRsite.Theinstrumentationvariesconsiderablywithsitebutusu‐allyincreasessignificantlythepotentialfornovelresearch. 

Finding.SomeancillaryinstrumentsaresupportedbytheISRM&OcontractwhereasothersarefundedthroughtheinstrumentPIgrant. 

Recommendation7.12.NSFshoulddevelopaconsistentpolicyandprocedureforsupportingtheM&OoftheancillaryexperimentsatISRfacilitysites.NormallytheM&Ocostsshouldbethere‐sponsibilityofeachancillaryinstrumentPI.

7.3.4 Class 2 Facilities: Findings and recommendations 

Finding.AMPEREI/IIprovidesmagneticperturbationdataanddataproductsderivedfromtheIridiumsatelliteconstellation.Theunprecedentedspatialandtemporalcoverageofthemeasurementsisfacilitatingbasicresearchinmagnetosphere‐ionospherephysicsandspaceweather.Theseproductsareofincreasingimportance,particularlywiththegrowingemphasisonsystemscience. 

Finding.Itcouldbepossibletoproducenear‐realtimeAMPEREdataproductsofvalueforspaceweatheroperations.Todate,acompellingcasefortheuseofrealtimedataforbasicscienceresearchhasnotbeenmade,andhencethiscapabilityisoutsidetheNSFremitatthistime. 

Recommendation7.13.AMPEREI/IIshouldcontinuetobefundedatthecurrentlevels. 

Finding:CCMCprovideseasyaccesstomanymodelsusedforgeospaceresearch.CurrentlyNSFfundingsupportsionosphere‐thermosphere‐magnetosphere(ITM)expertise,andoutreachandeduca‐tionalactivities. 

Recommendation7.14.NSFinvolvementinCCMCshouldcontinueatthepresentlevelanditsfundingfocusshouldbeontheprovisionofscientificexpertiseandmodelcapabilitiesnotsup‐portedbyNASA,e.g.ITMandatmosphere‐ionosphere‐thermospherecoupling. 

Finding.SuperMAGisadataservice,initiallydevelopedtosatisfytheinterestsoftheoriginalPI,

Page 91: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  81  GS Portfolio Review  

butithasnowevolvedastrongcommunityservicecomponent. 

Recommendation7.15.SuperMAGshouldcontinuetobefundedatthecurrentlevel. 

Finding.Severalmagnetometersandmagnetometerarraysarefundedthroughresearchprojects. 

Recommendation7.16.TheGSshouldassessiftheeramaynowexistwhereingreaterscientificsynergiesandoptimizationofoperationscouldbeobtainedifallGS‐sponsoredmagnetometersweremanagedasasinglearray.SuchanarraycouldthusevolveintoaClass2facility(seeSection7.4.3formoredetailsonDASI). 

Finding.ThecurrentSuperDARNU.S.network,inconjunctionwiththeInternationalSuperDARNprogram,providesgoodspatialandtemporalcoverageatpolarlatitudesinbothhemispheres.Suchcapabilitieshavebeenexpandedmorerecentlytomid‐latitudes. 

Finding.TherecentextensionofuniversityinvolvementinSuperDARNrespondsdirectlytotherecommendationsofthe2004Averyreviewofthe(then)UpperAtmosphericResearchFacilities.Thischangehasmadecommunityservice(dataproducts,dataaccessandcommunitysupport)morediffi‐culttodeliver. 

Finding.TheU.S.SuperDARNnetworkhasexpandedmarkedlyinrecentyearsusingavarietyoffundingsources,butthedeploymentandadditionalM&Ocostshavenotbeenfullyassessed. 

Recommendation7.17.TheU.S.SuperDARNgroupsshoulddetermineanoptimalequilibriumbe‐tweenlocalresearchandcommunityservice,andoptimizetheefficiencyoftheirM&O. 

Finding.The Consortium of Resonance and Rayleigh Lidars (CRRL) comprisesfourdifferentLIDARsitesandaCRRLTechnologyCenter(CTC).TheCenterisdevelopingthenextgenerationofLIDARsforgeospaceresearch.

Finding.WhileeachofCRRLsitesprovidemeasurementsofkeystratospheric,mesospheric,andlowerthermosphereneutralparameters,theflowdownfromcoherentCRRLscienceobjectivestore‐quirementsfortheparticularchoiceoflocationsofthesitesisunclear. 

Finding.CRRLascurrentlyorganizedanddirectedisnotacommunityfacilityasdefinedinSec‐tion7.2.Itsscientificobjectivesanditsdecisionsonhowdifferenttechnologicalcapabilitiesandsci‐entificprioritiesarepursuedareconsistentwithresearchactivitiesfundedbytheGSCoreandTar‐getedGrantsProgramsratherthantheGSFacilitiesProgram. 

Recommendation7.18.TheparticipatingmembersoftheCRRLgroupshouldseekpeer‐reviewedfundingindividuallyorcollectivelyfromtheCoreorTargetedGSprograms. 

Recommendation7.19.IftheCTCaspirestodevelopinnovativeinstrumentcapabilitiesandcon‐ceptsforanewGSfacility,e.g.,anObservatoryforAtmosphereSpaceInteractionStudies(OASIS),itshouldapplyforseparatefundingfromtheproposedInnovationandVitalityProgram(seeSection7.4.1).

Finding.ALow‐latitudeIonosphereSensor(LISN)networkhasrecentlybeenestablishedacrossSouthAmericaunderanMRIgrant.LISNcurrentlyconsistsofabout50GPSreceivers,5magnetome‐tersand5ionosondes.SpecificresourcesforscienceandforM&Oofthisdistributedarrayarecur‐rentlycoveredbynon‐facilitysources.LISNhasmanyoftherequiredcharacteristicsofaclass2facil‐ity.

Page 92: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  82  GS Portfolio Review  

Recommendation7.20.TheM&OandscienceresourcesforLISNshouldbefundedviapeerreviewundertherecommended“DASI”lineasoutlinedinsection7.4.3.

7.4 New Investments and Capabilities 

7.4.1 Innovation and Vitality Program 

OngoinginvestmentinexistingfacilitiesbeyondannualM&Obudgetsisessentialinmaintain‐ingcutting‐edgeGSfacilities.Developmentofinnovativecapabilitiesthatmayonedayprovidetheimpetusforfutureinvestmentinanewfacilityisalsoessentialforthevitalityofthefield.Commu‐nityinputstotheDecadalSurveyindicatedthatthereweremanyexcellentideasforsubstantialnewinitiativeshenceapressingneedsforsupport.

Finding.Atpresent,facilityupgradesaredoneonafacility‐by‐facilitybasisinaratherpiecemealfashion.NomechanismexiststodevelopnewfacilitieswithintheGSportfolio,exceptinaratheradhocmanner.

Finding.Thereislimitedfundingavailableforthedevelopmentofcomputationalmodelsandnu‐mericalalgorithmstoimprovetheefficiencyandfidelityofphysics‐basedmodelsofthespaceenviron‐ment.SuchmodelsarecriticaltothevalueoftheCCMCandtoconsideringgeospaceasasystemsci‐ence.

ThesefindingsimplythatGSfundingislikelynotoptimallydeployedtopromoteGSscienceandthusmeetthestrategicneedsforinnovativeresearch.

Recommendation7.21.AcentralfundtosupportinnovationandvitalityforGSfacilitiesshouldbeestablished.Itisenvisagedthatthisfundwouldsupportseveraldifferentactivities.Theseshouldinclude,butnotbelimitedto:

Majorrepairsandrenovationofanexistingfacility

Fundingfordevelopingsoftwareand/orhardwarethatwillsignificantlyimprovetheperfor‐manceofcurrently‐fundedclass1and2facilities

Thedevelopmentofnewinstrumentation,probablyalreadydesignedanddevelopedfromresearchfunds,intoacapabilitywhereitcouldoperateasafacility;thiscouldincludeopera‐tionofaprototype.

Thedevelopmentofnumericalalgorithmsandmethodologies(independentofscienceobjec‐tives)toimprovetheefficacyandaccuracyofcomputationalmodelsforcommunityuse.

Thedevelopmentoffacilities‐includingmodels,dataprovisionandmeasurementcapabili‐ties–tomakethemoperationalinrealtime,ifacompellingscientificneedforrealtimeca‐pabilitiesbecomesevident.

Recommendation7.22.FundsfromtheproposedInnovationandVitalityProgramshouldbecompetedevery1‐2yearsdependingontheleveloffundingavailable.Itisexpectedthatsomeawardsmightextendover1‐3years.Giventhediversityofthepossibleapplications,apanelreviewisrecommendedsothatthebroaderrequirementsoftheGScommunitycanberepresented.

Page 93: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  83  GS Portfolio Review  

7.4.2 EISCAT and EISCAT‐3D 

Section7.3.3includesarecommendationthatNSFshouldinvestigatethepossibilitiesforU.S.investigatorstogainaccesstoEuropean‐basedISRsystems(EISCATandtheEISCATSvalbardRadar)thatextendfromthepolarcapduringdisturbedtimesintotheauroralovaltomid‐latitudesduringgeomagneticallyquiettimes(seeFigure7.1).Indevelopingthisrecommendation,thePRCreviewedbasicinformationaboutEISCAT,19theEISCATBlueBook(regulations),20EISCATAnnualAccounts,21abriefoverviewoftheEISCATstandardexperimentsandothersupportedexperi‐ments22,anoverviewofEISCAT‐3D23anddiscussionswiththeDirectorofEISCAT.

ThecurrentEISCATISRsystembasedontheScandinavianmainlandistheonlyradarthatcanmaketrue3Delectricfieldmeasurements,butonlyasinglepoint.EISCAT‐3Dwillenable3Dmeasurementsatmultiplepointssimultaneously.Inaddition,averyextensivenetworkofancillaryinstruments,includinganHFheater,isdeployedwithinandsurroundingtheEISCATfield‐of‐view.TheEISCATISRsystemandancillaryinstrumentationprovideaholisticviewofthecoupledmeso‐sphere‐thermosphere‐ionospheresystemthatisintimatelylinkedtothemagnetosphere‐solarwindsystemthroughthemagneticfield.

EISCAT‐3Disthenewworld‐leadingISRunderdevelopment.Itwillgivemanysignificantadvantagesoverthecurrentradars,including:

Phased‐arraytechnologiesforrapidbeamsteering(volumetricimaging)

Multiplesitesfor3Dvectormeasurementsoftheionosphereplasma

Sufficientsensitivityforsub‐secondmeasurementsofauroralphenomena

Interferometriccapabilitiesfor100mspatial‐scalemeasurements

ThusEISCAT‐3DwouldprovideanunparalleledrangeofnewscienceopportunitiesfortheUSgeospacesciencecommunity,particularlyformeasurementsrequiringsmallspatialandfasttemporalscales.Observationsofcross‐scalecouplingprocessesfromthemicro‐tothemacro‐scalesandviceversaareessentialforobtainingdeeperunderstandingofhowthegeospacesystemoperates.

Recommendation7.23.TheGSshouldsolicitproposalsfromtheUSGScommunitytoformaUSEISCATconsortiumthatwouldbefundedbyablockgrantfromNSF,initiallytojoinEISCATasAffil‐iateandeventuallyasanAssociate.24TheinitialAffiliatestatuswouldallowtheconsortiumtogainexperiencewithEISCATbeforemakingafive‐yearcommitmentasanAssociateandtodevelopadeeperunderstandingofEISCATsystemcapabilitieswhenEISCAT‐3Dbecomesoperational.UponattainingAssociatestatus,theconsortiumshouldbetaskedwith(1)transferoftheEISCATannualmembershipfeetoEISCAT‐3Dand(2)developmentandadministrationofaproposalandpanelre‐viewprocessfortheselectionofUSEISCATusers.Theconsortiumshoulddevelopproceduresfor

                                                            19 https://www.eiscat.se/groups/Documentation/BasicInfo  20 https://www.eiscat.se/eiscat2014/eiscat‐bluebook‐draft‐2015‐version‐2014‐04‐02/view  21 https://www.eiscat.se/groups/Documentation/Council/annual‐report‐of‐the‐accounts‐2014/view  22 https://www.eiscat.se/groups/Documentation/UserGuides/eiscat‐experiments/view  23 https://eiscat3d.se/  24 See Appendix F for an overview of the EISCAT membership type and conditions. 

Page 94: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  84  GS Portfolio Review  

cost‐effectivegrantadministrationthatminimizestheencumberedoverheadexpensesofmultiplememberinstitutions.

7.4.3 Distributed Arrays of Small Instruments  (DASI) 

TheDASIconceptwasrecommendedinthefirstdecadalsurveyofsolarandspacephysicsre‐searchTheSuntotheEarthandBeyond: ADecadalResearchStrategyinSolarandSpacePhysics(2003).DASIwouldprovidethetemporalandspatialcoverageofmanyatmosphericandiono‐sphericparametersthatcomplementmeasurementsfromotherground‐andspace‐basedfacilities.TheDASIconceptwassubsequentlyexaminedbyaNationalAcademiesworkshop.25

Inthelastdecade,theDASIconcepthasnotevolvedasrapidlyasoriginallyenvisaged.Thisshortcominghasbeenduetoavarietyoffactors,includingalackoffundingopportunities,inade‐quatecommunityexperienceincultivatingtherequiredinternationalcollaborations,andinade‐quateexperienceindevelopingrobustcapabilitiesforunmannedandenergy‐efficientoperationofdistributedinstrumentsandforautomateddataprocessing,analysisandtransfer.Nevertheless,somemembersoftheUSscientificcommunityhaveforgedaheadwiththedevelopmentandim‐provementofnewground‐basedinstrumentationandthedeploymentofsmallnetworks.Theseac‐tivitieshavebeensponsoredbydiversefundingstreamsincludingNSFMRI,GSCore,theOfficeofNavalResearch,andtheDepartmentofDefenseUniversityResearchInstrumentationProgram(DU‐RIP).

DASI‐typenetworksthathaveeitheremergedoraugmentedoperationsoverthelastdecadeincludeSuperDARN,CRRLandLISN.SomehavebeendevelopedspecificallytoachievethescienceobjectivesdefinedbythePIsandnotnecessarilytothesignificantbenefitofthewidergeospacecommunity.

ThetypesofinstrumentsdeployedinDASI‐typenetworksincludebutarenotlimitedtoGlobalPositioningSystemreceiversgivingtotalelectroncontentandscintillationactivity,Fabry‐Perotin‐terferometersmeasuringwindsandtemperaturesatmesosphericand/orthermosphericaltitudes,magnetometers,meteorwindradars,digitalionosondes,LIDARs,opticalimagers,photometers,ri‐ometersandVLFradioreceivers.

Finding.Withgrowingrecognitionfortheimportanceofgeospacesystemscience,thegeospacecommunitycanexpect,inthenextdecade,anincreasingdemandforhigherspatialandtemporalreso‐lutioninmeasurements,notonlytodeterminethelocal,regionalandglobalscaleofprocessesbutalsofordataassimilationintogeospacemodels. 

Recommendation7.24.TheGSshouldcreatea“DASI”fundwithtwopurposes:(i)todevelopandbuildnew“small”instrumentationsuitablefordeploymentinaDASInetworkand(ii)toprovideM&Ofundstomaintainthenetworkoncecreated.

Recommendation7.25.Theinitialopportunityforawards,tobeevaluatedbyanadhocreviewpanel,shouldprovidefundingofsufficientdurationthattheDASIprojectscanbeevaluatedincon‐junctionwiththeotherClass1andClass2facilitiesbytheproposedSeniorReviewPanel(Section7.5)atitsfirstmeeting.

                                                            25 http://www.nap.edu/catalog/11594/distributed‐arrays‐of‐small‐instruments‐for‐solar‐terrestrial‐research‐re‐port  

Page 95: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  85  GS Portfolio Review  

Matureandscientifically‐compellingDASInetworksthatareoperatingasaClass2facility(asdefinedinSection7.2)areenvisagedtobecandidatesforincorporationintotheGSfacilitiesbudget,ifthecapabilitiesandscientificobjectivesofthefacilitywouldenablesubstantialprogressonthescienceprogramarticulatedinthe2013DecadalSurveyforSolarandSpacePhysics.

AdvancementofaGSDASIProgramfacestwofundamentalchallenges:WhattypesofDASIwillbedeployedwhereandforwhatpurposes?HowwilltheUSdevelopmentsbeintegratedmosteffectivelywiththosefromtheinternationalcommunity,whichisprogressingalongasimilartra‐jectory? 

Inordertoensurecutting‐edgescience,fundsallocatedtotheproposedGSDASIProgramwouldbecompetedwithregularannouncementsofopportunityandwithselectionsrecommendedbyapeer‐reviewpanel.Primarycriteriaforselectionwouldincludeassessmentsof: 

CapabilitiesthatwouldenableprogressonthescienceprogramarticulatedinChapter1ofthe2013DecadalSurveyforSolarandSpacePhysics;

Qualityofthenewsciencetobederivedfromthedevelopmentand/ordeploymentofthenetworkofinstruments;

Sizeofthepotentialusercommunity;

QualityandrangeofservicestobeprovidedtotheUnitedStatesGScommunity;and

Leverageoftheproposedinvestmentfrominternationalpartners.

7.4.4 Data Systems, Products and Management 

ObservationsarecriticaltothesuccessofGSresearch.Theyareessentialfordescribingpro‐cessesingeospace,forrobustlytestingmodelsandforassimilationintomodels.Withtheever‐in‐creasingcapabilitiesandnumberofdistributedinstruments,thegrowthindataquantityisverysig‐nificant. 

TheISRdataandmanyofthosefromtheco‐locatedinstrumentsaremanagedandarchivedthroughtheMadrigaldatabasecurrentlysupportedthroughtheMillstoneHillISRM&Obudget. 

Finding.DatafromUSfacilitiesarevalidated,processedtoatleastlevel1,andarchivedbythePIsusingM&Ofunding.Limitedstatisticsareavailableondatadownloadsandonthenumberofdatausers. 

Assystemsciencedevelopsfurther,anever‐pressingneedisexpectedfornon‐dataexpertstobeabletoaccess,visualiseandutilisedataeasilyfromaproliferationofsources.Asaresult,coher‐ent,integrateddatasystemsneedtobedevelopedthatalloweasyaccesstoalldatacollectedbyUS‐fundedscience,andsometimesincludingdatafrominternationalpartners.

Thereisarealopportunitytoproducemore“value‐added”geospaceproductsbycombiningdatafromseveralsources.Forexample,ionosphericconductanceisessentialformanyscienceob‐jectives;regionalandglobalconductancemapscouldnowbeproducedusingAMPERE,SuperDARN,SuperMAGandotheravailabledatasets(e.g.,GPS,optical,ISRandspace‐baseddata).Itisnotes‐sentialtohaveallGSdataonasingleserverbutinter‐operabilityisessential. 

Recommendations.NSFshouldcreateaseparatecompetitivefundforthefurtherdevelopmentof

Page 96: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  86  GS Portfolio Review  

datamanagementanddatavisualisationfrommanysources,includingnewvalue‐addeddataprod‐ucts.ThisfundingshouldincludethefurtherdevelopmentandoperationoftheMadrigaldatabase,thusseparatingitfromtheMillstoneHillISRM&Ofundingforgreatertransparency. 

7.5 Facility Extensions   

7.5.1 Advisory/User Groups 

Thedeliveryoffacilitiestousersalwayspresentsmajorchallengesinbalancinginevitablecom‐petitionforlimitedfacilityresources.Thesechallengesincludemaintenance,operations,additionalsupportfortheusercommunity,developmentofnewhardwareandsoftwareandoperatingcosts(e.g.,thecostoffuelandrepairstotheinfrastructure).Prioritisingsuchactivitiesisparticularlydif‐ficultattimesoflimitedresources.PrioritydecisionsonthechallengeshavebeennormallymadebythePI,sometimesinconsultationwithNSFstaff. 

Finding.FacilitiesPIsoftenconveneonlyinformalusersmeetings,e.g.embeddedwithintheCE‐DARmeeting.Ausers’consensus(ifoneemergesinsuchmeetings)typicallyhaslimitedinfluenceindecidingpriorities. 

Recommendation7.26.Allfacilitiesshouldhaveaformalandactiveusers/advisorygroup,ap‐pointedbyNSFandchairedbyanindependentpersontosupportNSFandthePIindecidingpriori‐ties. 

Recommendation7.27.EachfacilityPIshouldprovideanannualreporttoNSFthatshouldin‐cludea3‐yeardevelopmentplan,prioritisedandbudgetedforthefacility. 

Recommendation7.28.AllannualreportsshouldbeopentotheGScommunity,exceptforsec‐tionsthatarecommerciallysensitiveorinvolveindividualpersonnelissues. 

7.5.2 Scientific Research Within Facilities Awards 

Somefacilityawardsbudgetaportionofthefacilitiesgrantorcooperativeserviceagreementforscientificexploitationoffacilitydata.Therationaleforthispracticeisnotalwaysclear. 

Amodestbudgetforstaffresearch(notmorethan10%ofstaffcosts)intheM&ObudgetofClass1andClass2facilitiescanprovidethefollowingadvantages: 

Recruitmentandretentionofhighly‐ratedstafftooperatethefacilityandinteractwithitscommunityofusers;

SupportforM.S.andPh.D.studentsengagedinthedeliveryofthefacilityservicesaspartoftheirtrainingandprofessionaldevelopment;and

Developmentofathoroughunderstandingoffacilitydatasetswithprovisionofexpertsup‐porttothefacility’susercommunity(e.g.advisingonthemodesofoperationofthefacilityanddataprocessingmethodologies).

Thequalityofthescienceundertakenmustbeinternationallycompetitive.ThereforeaSeniorReview(Section7.8)shouldevaluatethequalityofsciencesupportedbythefacilitygrantorcon‐tractwhenreviewingthefacility.

Scientistsandengineersassociatedwithfacilitiesarestronglyencouragedtoapplyfor 

Page 97: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  87  GS Portfolio Review  

additionalfundsthroughthemanyscience,engineeringandtechnicalopportunitiesavailabletothemtoenhancetheresearchofthefacility. 

Recommendation7.29.NSFshoulddevelopclearproceduresfordecidingwhethertoawardsci‐enceresearchfundingwithinafacilitycontract,andthelevelofthatfunding,whichnormallyshouldnotexceed10%ofthepersonnelcosts. 

Recommendation7.30.Thesemi‐decadalSeniorReviewoffacilitiesshouldevaluatethequalityofthescienceundertakenwiththeM&Ofunding. 

7.6 Non‐GS Funded Instrumentation 

Finding:OngoingM&Ocostsforgeospaceinstrumentsandarraysofinstrumentsinitiallydevel‐opedwithfundsobtainedfromNSF(e.g.,theMRIprogram)andotheragencyannouncementsofop‐portunityarenottypicallyincludedintheinitialaward.Aftertheinstrumentshavebeendeployedorusedforaninitially‐proposedperiod,theGSwilloftenreceiveaproposaltocoverongoingM&Ocostsoftheinstruments.ExamplesincludeLISN,GIMNAST,theheaterfacilityatArecibo,amini‐AMISRatJicamarcaandmultipleFabry‐Perotinstruments.

Recommendation7.31.NSFshouldidentifyboththeongoingM&Ocostsandtheirfundingsource(s)beforeawardingthegrant. 

Recommendation7.32.Forinstrumentsfundedfromexternalsources,theSeniorReviewpanel(Section7.8)shouldbetaskedtodeterminewhetherfacilityfundingisappropriate.

7.7 Midscale Projects Program 

TheDecadalSurveyrecommendedthatNSFshouldcreateanew,competitivelyselectedmid‐scaleprojectfundinglineinordertoenablemidscaleprojectsandinstrumentationforlargepro‐jects.TheenvisionedapproacheswereconsiderednecessarybytheDSsteeringcommitteetofillgapsinobservationalcapabilitiesandtomovethesurvey’sintegratedscienceplanforward.ThePRCconcurswiththeSurveycommittee’srecommendationandrationaleforit.

ToquotetheDS:

“Importantresearchisoftenaccomplishedthroughmidscaleresearchprojectsthatarelargerinscopethantypicalsingleprincipalinvestigator(PI)‐ledprojects(MRIs)andsmallerthanfacilities(MREFCs).TheAdvancedModularIncoherentScatterRadar(AMISR)isanexampleofamidscaleprojectwidelyseenashavingtransformedresearchintheground‐basedAIMcommunity.AlthoughdifferentNSFdirectorateshaveprogramstosupportunsolicitedmid‐scaleprojectsatdifferentlevels,theseprogramsmaybeoverlyprescriptiveandunevenintheiravailability,andpracticalgapsinproposalopportunitiesandfundinglevelsmaybelim‐itingtheeffectivenessofmidscaleresearchacrossNSF.Itisunclear,forinstance,howpro‐jects like the highly successfulAMISRwould be initiated and accomplished in the future.Mechanismsforthecontinuedfundingofmanagementandoperationsatexistingmidscalefacilitiesarealsonotentirelyclear.

TheNSFCommitteeonProgramsandPlansformedataskforcetostudyhoweffectivelyitsupportsmidscale projects, how flexible the funding is, howuniformly it is administeredacrossNSF,andhowwellsuchprojectsservetheinterestsofeducationandpublicoutreach.The resulting report affirmed the importance of strongly supporting midscaleinstrumentation but did not recommend any new or expanded NSF‐wide programs.

Page 98: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  88  GS Portfolio Review  

Nevertheless,asdescribed inChapter4 inthe“Diversify”recommendationsofDRIVE, thecommitteestronglyendorsesthecreationofsuchacompetitivelyselectedmidscaleprojectlineforsolarandspacephysics.Thisapproachisalsoconsistentwiththe2010astronomyandastrophysicsdecadalsurvey,whichrecommendedamidscalelineasitssecondpriorityinlargeground‐basedprojects.”

Thissurveycommittee’swhite‐paperprocessandthesubsequentdisciplinarypanelstudiesbrought forwardanumberof important ‘Heliophysics’projects thatwould require anewmidscalefundingline.Theunrankedexampleslistedbelowillustratethekindofsciencethatthelinecouldenable.Theseprojectsareseenasbeingcentraltotheintegratedsciencepro‐gramoutlinedinthesurvey:(1)TheFrequency‐AgileSolarRadiotelescope;(2)TheCoronalSolarMagnetismObservatory;(3)AnAll‐AtmosphereLidarObservatory;(4)AHeterogeneousIonosphericFacilityNetwork; (5)ASouthern‐Hemisphere IncoherentScatterRadar;and(6)Next‐GenerationGround‐BasedInstrumentation.

TothemidscalecandidatesidentifiedbytheDS,thePRCcanaddTheCoronalMassEjectionRa‐dar,whichwasproposedinoneofthewhite‐papercommentssubmittedtothePRC.

TheMidscaleInnovationsProgramrecommendedintheASTPortfolioReview,andnowimple‐mented,isanASTdivision‐wideprogramforprojectsrangingfrom$4Mto$30M.Ifamidscalepro‐jectsprogramweretobeimplementedattheGSlevel,fundingforitatanannuallevel$1Mto$6Mwouldsustainanewprojectwithatotalcostof$5Mto$30Mevery5years.

ThePRCagreeswiththeDSthatnumerouscompellingMidscaleprojectscouldaddressgapsincriticalcapabilitiesforgeospaceandsolarscience(e.g.,Tables5.2‐5.5).Investinginamidscalelinewouldenableinnovativemeasurementcapabilities,butaccommodatingallnewGSprogramele‐mentsrecommendedbytheSurveyisnotpossiblefortheflatbudgetassumedforGSoutto2025.AMidscaleProjectsline,inparticular,hasalowerpriorityatthistimethanotheritemsinthebudgetscenariopresentedinChapter9.However,thePRCwouldrecommendaMidscaleProjectsProgramifoneorbothofthefollowingconditionsaremet.

Recommendation7.33.IfuseoftheAreciboObservatoryisnolongeravailabletoGSresearchers,e.g.,duetodivestmentorinsufficientfundingforitscontinuingoperation,andtheGSbudgetre‐mainsatorabovetheflatfundinglevelassumedforthePortfolioReview,thentherecommendedannualfundingof$1.1MforAreciboshouldberedirectedtotheInnovationsandVitalityProgramdescribedinSection7.4.DependingoncommunityconsensusandtherecommendationsfromthefacilitiesSeniorReviewrecommendedinSection7.8,asignificantportionofthisaugmentedI&VannualbudgetmightbedirectedtofundingforanewMidscaleproject.

Recommendation7.34.IffutureGSbudgetsexceedtheflat‐budgetassumptionofthisreviewby$1Mperyearorgreater,thentheadditionalannualfundingshouldbedirectedtoaMidscalePro‐jectsProgram.

7.8 Facilities Senior Review 

Maintainingstateoftheartfacilitiesforgeospaceresearchiscrucialinenablingdiscoveriesthattransformunderstandingofgeospace.AsdiscussedinChapters3,4and6andSection7.3,theadditionofnewprograms,newGSfacilitiesandadoublingintheGSfinancialsupportofAreciboduringthepastdecadecameatatimewhentheinflation‐adjustedGSbudgetremainedflat.Whilesomeofthenewprogramsandfacilitieshaveenablednewcapabilities,theircostsproducedafundingsqueezeonallGSprogramsincludingsupportforscience,forexistingGSfacilitiesandfacilitiesupgrades.Consequently,fundsfortimelyfacilityupgradesandimprovedcapabilitieshave

Page 99: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  89  GS Portfolio Review  

beendeferred.Therecommendationsofthisportfolioreviewareintendedtocorrectthissituationinthecomingyears. 

IftheGSbudgetremainsflatforthenextdecade,aspresumedinthePRCcharge,pastpracticesuggeststhatGSfundsforfacilityupgradeswillagainbecomestressedasnewfacilitiescomeonlinefromsuccessfulMRIorMREFCinitiativesandotherpeer‐reviewedproposals.SuccessfulMRI(andpotentiallyMREFC)initiativesareawardedwithGSconsent,butwithoutadequateplanningforsubsequentM&Osupport,letalonesciencesupport.TheresultisthatongoingM&OcostsforthesenewfacilitiesmustbecoveredbytheGSbudget.Ifspaceisnotmadeinthepresumedflatbudget,thesecostswillfurthersubstantiallyreducefundsforexistingfacilitiesM&Oandtheirup‐gradestobesupportedbythenewInnovationandVitalityProgramdescribedinSection7.4. 

Recommendation7.35.TopreventscopecreepinfuturefacilitieswithoutadequatebudgettosupporttheadditionalM&Ocosts,aperiodic“SeniorReview”ofallGSfacilitiesshouldbecon‐ducted,atleastevery5years.Thisreviewshouldincludeestablishedfacilitiesi.e.allClass1andClass2facilities.Nascent“facilities”thatmaybeonatrajectoryforfacilitystatusbuteitherarenotyetoperatingasafacility,asdefinedinSection7.2,orhavenotyetbeenfullydeveloped,e.g.,aspartofanMRI,MREFC,apossiblenewMid‐ScaleProjectsline,orotherinitiative,shouldalsobein‐cludedintheSeniorReviewiftheirtransitiontofacilityclassisexpectedtooccurbeforethenextSeniorReview.Ideally,allfacilityproposals(includingthosefornewfacilities)shouldeventuallybesynchronizedona5‐yearrenewalfortheenvisionedSeniorReviewprocess. 

ThepurposeoftheFacilitiesSeniorReviewistwo‐fold: 

1. ToreconciletheGSfacilitiesbudgetwiththecostsrequiredtoprovideadequateM&OforallGSfacilitiesandtomaintainthestate‐of‐the‐artinfacilitiesinstrumentationandcapabili‐ties.Asdescribedinthisportfolioreview,reconciliationmayrequireclosureordivestmentofsomefacilitiestoaccommodatetheinnovativecapabilitiesprovidedbynewfacilitiesoraugmentedfacilities.

2. Toreviewandrankeachfacility’scapabilities(i)toenable,asastandaloneinstrumentorsystem,transformativescientificdiscoveries,and(ii)tocontributetointegrativescientificunderstandingasacomplementaryelementinNSF’sdistributedcapabilitiesforobservinggeospaceasasystem.Capability(ii)cutsacrossallGSprograms,sothepanelchargedwithconductingtheSeniorReviewwoulddrawonexpertiseineachoftheGScoreresearchpro‐grams.

AlthoughtheadministrationanddecisionsonthestructureoftheSeniorReviewprocessresidewiththeGSHeadandFacilitiesProjectManagers,thePRCofferssomesuggestionsforhowtoen‐surethatthereviewismosteffectivegivenitsexperienceinreviewingGSfacilitiesfortheportfolioreview.ThePRCenvisionstheSeniorReviewtobeanopenprocessinwhichwrittenproposalsforfacilitycontinuationarefirstreviewedbytheSeniorReviewpanel.ThePIsandkeystaffofeachofthefacilitiesarethensubsequentlyinvitedtopresentinaface‐to‐facemeetingwiththeSeniorRe‐viewpanelandGSstaff,thefacility’spastsuccessesandfutureplansformeetingcriteria(i)and(ii)above.TherecommendationsoftheSeniorReviewandtheirjustificationswouldbemadepubli‐callyavailableinaSeniorReviewreportfollowingthereview. 

TheSeniorReviewpanelwouldbechargedwellbeforethepresentationsandinterviewsarescheduled.Tobetterinformthereview,priortotheface‐to‐facemeetingthepanelwouldreacha

Page 100: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  90  GS Portfolio Review  

consensus(e.g.,viawebconference)onthemajorissuesofconcernandclarificationforeachfacil‐itysothatfacilityPIsmayprepareappropriateresponses. 

ItwouldbeadvantageousandadministrativelyefficientifthewrittenproposalssubmittedtotheSeniorReviewservedastheNSFproposalforthefive‐yeargrantorcooperativeagreementforthefacility.SomefacilitiesmayrequireupgradesoraugmentedcapabilitiestofulfilthePI’sorthecommunity’svisionforitsfuturesuccess.ProposalstocompleteupgradesoraugmentationsmightbeincludedintheproposalssubmittedtotheSeniorReview.

NSFhasdevelopedasetofcriteriaforreviewingmajorscientificinitiatives.ThesecriteriacouldbeadaptedfortheseniorReviewassessment.Theyare:

–Primaryfilter: 

Compellingscience:researchthathasthepotentialforimportant,transformativestepsfor‐wardinunderstandinganddiscovery. 

Secondaryfilters(importantcriteria,buteachonemaynotbemetineverycase): 

Potentialforsocietalimpact:researchthatyieldsinformationofnear‐termand/orlongtermbenefitsforsociety. 

Time‐sensitiveinnature:researchthatinvolvessystems/processesundergoingrapidchangethatneedtobeobservedsoonerratherthanlater;researchthatcouldhelpinformcurrentpublicpolicyconcerns. 

Readiness/feasibility:researchthatispoisedtomoveforwardquicklywithinthecomingdec‐ade,intermsofneededtechnologiesandcommunityreadiness. 

KeyareaforU.S.andNSFleadership:researchforwhichtheUnitedStates,andNSFinpartic‐ular,isadvantageouslypositionedtolead. 

Tertiaryfilters(additionalfactorstoconsider): 

Partnershippotential:researchforwhichNSFinvestmentscouldleverageinvestmentbyotherfederalagencies,otherpartsofNSF,orinternationalpartners. 

Impactsonprogrambalance:researchthatwouldnotcausesignificantadverseimpactsonotherprojectsbyrequiringdisproportionatefundingsupport,orlogisticalsupport. 

Potentialtohelpbridgeexistingdisciplinarydivides:researchthatcouldprovideopportu‐nitiestobringtogetherdisciplinarycommunitiesthatseldomworktogether.

Recommendation7.36.NSFGSshoulddevelopacommonsetofannualmetricsfromeachfacilitywhichcanbecollectedyear‐on‐yeartoprovideanunderpinningofthenextSeniorReview.Thesemetricscouldincludescienceoutputsbothfromfacilitystaffandexternalusers,annualexpendi‐ture(capitalandresource),datadownloadsandusage,andkeytechnicaldevelopments(hardwareandsoftware).

Page 101: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  91  GS Portfolio Review  

Chapter 8.  Partnerships and Opportunities 

Thisportfolioreviewformalizesthegeospacesciencecommunity’srecommendationstotheAGSDivisionforhowbesttooptimizeinvestmentsincriticalcapabilitiesneededovertheperiodfrom2016to2025thatwouldenableprogressonthescienceprogramarticulatedinthe2013De‐cadalSurveyforSolarandSpacePhysics.TherecommendedGSportfoliopresentedinthenextchapterdoessowithintheflat‐budgetconstraintassumedforthereview.However,somecriticalcapabilitiesareprovidedbyNSFprogramsexternaltotheGeospaceSectionanddonotexplicitlyenterthebudgetscenariooftherecommendedportfolio.OthercapabilitiesmaybeaugmentedorleveragedthroughpartnershipsbothinternalandexternaltoNSF.Theseextra‐GSprogramsandresourcesaresummarizedhere.LeveraginginvestmentsincriticalcapabilitiesforgeospacesciencenecessarilyrequirescollaborationbetweenGSprogramstaffandthegeospaceresearchcommu‐nity.ItalsorequiresinitiativeonthepartofgeospacePIsinapplyingforresourcesexternaltotheGS.ThischapterofthereviewisdirectedtobothGSprogrammanagersandthegeospaceresearchcommunity.

8.1 NSF Intra‐Agency Partnerships and Opportunities 

8.1.1 Programs Within AGS 

NCAR and HAO

TheNationalCenterforAtmosphericResearch(NCAR)isanationalinstitutionandresourcededicatedtothestudyoftheatmosphere,theEarthsystem,andtheSun.

TheHighAltitudeObservatory(HAO)isthegeospacelaboratoryofNCAR.HAOprovidescapa‐bilitiesthatdirectlysupportNSF‐GSscienceobjectivesandcommunityresearchefforts.Inparticu‐lar,HAOmanagestheMaunaLoaSolarObservatory(MLSO)whichmakesdailyobservationsthataredistributedviatheinternetinnear‐realtime.Theseformauniquesolarcoronalsynopticda‐tasetwhichisrequiredforseveraloftheSolar‐Terrestrialsciencechallenges(seeSection5.3).HAOalsoworkswiththecommunitytodeveloplarge‐scale,computationalmodelsthatsupportcommu‐nityresearchinupperatmospheric,ionospheric,andmagnetosphericphysics.TheseincludetheThermosphereIonosphereElectrodynamicsGeneralCirculationModel(TlEGCM),andtheWholeAtmosphereCommunityClimateModel(WACCM),withextensionupwardintotheionosphere,thermosphere,andmesosphere(WACCM‐X;currentlyunderdevelopment).HAOhasasubstantialvisitor’sprogramthatsupportsinteractionswiththebroadercommunity,andthatannuallyfundsbothpostdoctoralassociatesandgraduatestudents.HAOrepresentsasignificantinvestmentbytheAGSDivisioninsupportofgeospacescience.TheFY2015HAObudgetwasprojectedtobe$6.1MincludingNSFbasefundingandDirectoratetransfers.

NCAR’sComputationalandInformationSystemsLaboratory(CISL)deploysandoperatesthephysicalandvirtualcomputationalfacilitiesneededtosupportitssciencecommunity.CISL’ssupercomputingresourcesserveapproximately1,800usersinawidevarietyofdisciplinesincludinggeospacescience.CISLdevelopsandcuratesresearchdatasetsandmaintainsonlineuseraccesstothearchive.CISLalsoprovidesvirtualizationandgridtechnologies,promotingcollaborationandsharingofvaluablescientificresources.UniversityuseofCISLresourcesisintendedtosupportresearchintheatmosphericandrelatedsciencesbyscientistsholdingNSF

Page 102: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  92  GS Portfolio Review  

grantsandgraduatestudentsatU.S.universities.AllocationsforCISLresourcesaremadeatnocosttoeligibleusersandemphasizeextensiveprojectsthatarebeyondthescopeofuniversitycomputingcenters.Thisresourceenablescriticalcapabilitiesforlarge‐scalesimulationmodelingstudiesandbigdataanalysisprojectsofNSFgeospacescientists.

NCAR’sAdvancedStudyProgram(ASP)helpsNCARandthescientificcommunitiesitservesprepareforthefutureby:encouragingthedevelopmentofearlycareerscientistsinfieldsrelatedtoatmosphericscience;directingattentiontotimelyscientificareasneedingspecialemphasis;organ‐izingnewscienceinitiatives;supportinginteractionswithuniversities;andpromotingcontinuingeducationatNCAR.ASPsupportsthreeprogramsforscientistsandgraduateresearcherstoworkinresidenceatNCAR:PostdoctoralFellowshipProgram,FacultyFellowshipProgram,andGraduateStudentVisitorProgram.Theseprogramscontributetothevitalityofthegeospacescienceprofes‐sion.

Recommendation8.1.TheAGSDirectorandGSHeadshouldcontinuetocoordinatewiththeDi‐rectorofHAOtofacilitatealignmentofHAOsciencegoalswithGSsciencegoals.

TheAGSPostdoctoralResearchFellowshipsProgram,asdiscussedinChapter4,alsocontrib‐utestothevitalityoftheprofessionbysponsoringpostdoctoralfellowspursuingresearchingeo‐spacescience.

8.1.2 Programs Within the Geoscience Directorate 

Office of Polar Programs

TheAntarcticAstrophysicsandGeosciences(AAGS)ProgramoftheDivisionofPolarPrograms(DPP)supportssubstantialsolar‐terrestrialresearchatabudgetaryleveloftheorderofslightlymorethan$2M/year.Asthenameimplies,theProgramalsosupports,atabudgetarylevelofabout$9M/year,asignificantresearchprograminastronomyandastrophysics,largelyattheAmundsen‐ScottSouthPoleStation.Becauseitslandmassspansaverylargegeomagneticareaun‐derthepolarcapandauroralregions,theAntarcticcontinentisanideallocationfordeploying,atthemannedstationsandinthedeepfield,state‐of‐the‐artinstrumentationforsolar‐terrestrialre‐search.Theprogramsinsolar‐terrestrialresearchcurrentlyincludeawiderangeofinstrumenta‐tionforpolarcap,polarcusp,andauroralstudies.

Instrumentsinthedeepfieldconsistofseverallatitudinalmagnetometerchains,oneofwhich,theAutomaticGeophysicalObservatories,alsoincludesinstrumentationsuchasimagingriometers,photometers,VLFreceivers,andotherstudies.Thesechainsofremotesitesuseinnovativesolar,wind,andbatterypowerforyearlongoperations.ThemannedU.S.stationsatMcMurdo/ArrivalHeights(inthepolarcuspregion)andatSouthPole(theauroralzone)arehometoinstrumentationincludingmagnetometers,imagingriometers,Fabry‐PerotInterferometers(FPI),all‐skyimagersandphotometers,Lidars,VLFandELFreceivers.TheU.S.PalmerStation,ontheAntarcticPenin‐sula,hasanFPIandalsostudiesatVLFfrequenciesnatural(fromlightning)andman‐madesig‐nals.TwoSuperDARNradarsbasedintheAntarctic(SouthPoleandMcMurdo)aresupportedbytheAAGS.

DPPalsosupportstheoperationoftwoneutronmonitors(atMcMurdoandSouthPole)whichprovideuniquemeasurementsforseveralareasofsolar‐terrestrialresearch.Ofthe13neutronmonitorspreviouslysupportedbyNSF,onlythesetwoarecurrentlyNSF‐fundedandarecriticalto

Page 103: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  93  GS Portfolio Review  

continuingthe>50year‐longrecordofhighenergyparticlesimpactingtheEarth’satmos‐phere.Particlemeasurementsfromneutronmonitorsprovideinformationregardinglong‐termso‐larcyclevariationsaswellasshort‐termspaceweatherconditionsandareanessentiallinkbe‐tweenthelowerenergyparticlemeasurementsmadebysensorsonspacecraftandthehigheren‐ergyregimemonitoredbyground‐baseddetectorssuchasmuondetectorsandairshowerarrays.

ThechallengingenvironmentoftheAntarcticdemandsvastlydifferentlogisticsrequirementsforinstrumentationandM&Othaninotherinternationallocations.Thus,logisticsarehandledbytheGEO‐PLRandnotbyindividualPIs.

Internationalinstrumentationishostedatbothofthemannedstations,andinternationalinves‐tigatorscollaboratewithdataanalysisandmodelingofphenomenafromtheremotefieldsites.In‐ternationalcollaborationalsooccursinotherways,includingtheconjugacyofportionsoftheAnt‐arcticmagnetometerarrayswithnorthernhemispherelocations,andwithinstrumentationarraysinotherAntarcticlocationsofothernations,notablytheUK.

Onoccasionandasscienceprioritiesarise,theDivisionalsosupportsthescienceandlogisticsoflong‐durationballoonflightsforsolar‐terrestrialresearch.Inthepast,rocketsforauroralstud‐ieshavealsobeenlaunchedfromtheAntarctic.BothrocketsandballoonshavebeensupportedbytheDivisionandbyNASA.Also,asscienceprioritiesandobjectivesrequire,thereisclosecollabora‐tionbetweentheAntarcticAstrophysicsandGeosciencesProgramandtheGeoscienceSectionofAST.

Recommendation8.2.TheGSHeadshouldcontinuetocoordinatewiththeGEO=PLRAAGSPro‐gramDirectortofacilitatealignmentofAAGSsciencegoalswithGSsciencegoals.

Research in Hazards and Disasters (Hazards SEES) and Prediction of Resilience against Ex‐

treme EVENTS (PREEVENTS) Programs

NSFsupportsbasicresearchinscientificandengineeringdisciplinesnecessarytounderstandextremenaturaleventsandhazards.ProgramswiththisgoalincludetheInterdisciplinaryResearchinHazardsandDisasters(HazardsSEES)program,whichcompleteditssecondandfinalcompeti‐tionin2015,anditsrecentlyannouncedsuccessorprogram,PredictionofandResilienceagainstExtremeEVENTS(PREEVENTS).HazardsSEESiscurrentlyfundingorco‐fundingtwosignificantprojectsrelevanttogeospacescience:AMPEREIIasreviewedinChapter7andaprojecttoimprovepredictionofgeomagneticdisturbances,geomagnetically‐inducedcurrents,andtheirimpactsonpowerdistributionsystems.

Finding.Participationintheseprogramsmayrequireco‐fundingfromGSwhenaselectedprojectisrelevanttogeospacescienceorspaceweather.

Recommendation8.3.GSPMsshouldcontinuetoencourageGSinvestigatorstopursueco‐fundingfromthePREEVENTSandsimilarfutureprogramsoftheGeoscienceDirectorate.Wheneverpossi‐bleco‐fundingthesetypesoftargetedprogramsfromtheGSbudgetshouldbederivedfromGSStrategicGrantsorFacilitiesprogramsratherthantheGSCoreGrantsprogram.

Page 104: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  94  GS Portfolio Review  

8.1.3 Cross‐Directorate Programs 

AST‐GS Partnership in Solar Physics:  NSO, NRAO, NOAO

SolarphysicsisalsoapartofthemissionoftheNSF‐MPS‐ASTdivision.SynopticobservationsofsolarsurfacemagnetismandflowsthatcanbeusedinGSanalysesaretakenbytheNationalSolarObservatory(NSO)IntegratedSynopticProgram(NIST).Hightemporalandspatialresolutionob‐servationsofsolarplasmaandmagneticfieldswillbetakenbytheDanielK.InouyeSolarTelescope(DKIST)currentlyunderconstruction.TheNSOalso(withNASA)coordinatestheVirtualSolarOb‐servatory(VSO).RelevantstellarobservationsareobtainedbytheNationalOpticalAstronomicalObservatory(NOAO),andflare/CME‐relatedradioobservationsaretakenbytheNationalRadioAs‐tronomicalObservatory(NRAO).AllofthesearerequiredcapabilitiesforSolar‐Terrestrialsciencechallenges,asdescribedinSection6.4.

Asdiscussedinthatsection,coordinationacrossdirectoratesisimportant.TheASTinvestmentinNSOwas$8MinFY2015forbaseNSFfundingplus$5Mforramping‐upDKISToperations.

Recommendation8.4.ThisrecommendationreaffirmsthefindingandrecommendationinSection6.4thatGSshouldcontinuetocoordinatewithPMsandDirectorsoftheseexternalentitiestoen‐surecontinuingacquisitionofthesecriticaldatastreamsandaccesstothemforgeospaceandsolarscienceinvestigations.

EarthCube 

EarthCubeisacommunity‐drivenactivitysponsoredthroughapartnershipbetweentheNSFDirectorateforGeosciences(GEO)andtheDirectorateforComputer&InformationScience&Engi‐neering(CISE)DivisionofAdvancedCyberinfrastructure(ACI)totransformresearchintheaca‐demicgeosciencescommunity.EarthCubeaimstocreateawell‐connectedandfacileenvironmenttosharedataandknowledgeinanopen,transparent,andinclusivemanner,thusacceleratingourabilitytounderstandandpredicttheEarthsystem.

AchievingEarthCubewillrequirealong‐termdialogbetweenNSFandtheinterestedscientificcommunitiestodevelopcyberinfrastructurethatisthoughtfullyandsystematicallybuilttomeetthecurrentandfuturerequirementsofgeoscientists.NewavenueswillbesupportedtogathercommunityrequirementsandprioritiesfortheelementsofEarthCube,andtocapturethebesttech‐nologiestomeetthesecurrentandfutureneeds.TheEarthCubeportfoliowillconsistofintercon‐nectedprojectsandactivitiesthatengagethegeosciences,cyberinfrastructure,computerscience,andassociatedcommunities.TheportfolioofactivitiesandfundingopportunitieswillevolveovertimedependingonthestatusoftheEarthCubeeffortandthescientificandculturalneedsofthege‐osciencescommunity.

ThisEarthCubeprogramcurrentlysponsorsageospacescienceproject“EarthCubeIA:Magne‐tosphere‐Ionosphere‐AtmosphereCoupling”withtheintenttodevelopaseriesofinterlockingwebservicesthatprovideaccesstotheunderlyingMIACdatasets(AMPERE,SuperDARNandSuper‐MAG),thatapplythesciencealgorithmstoderivethedesiredelectrodynamicproducts,andprovidedatatranslationandvisualizationservices.

Finding.TheEarthCubeprogramisaneffectivevehicleforaugmentingGSinvestmentsintherec‐ommendedGSFacilitiesprogramforDataSystems,ProductsandManagement(Sect.7.4.4).

Page 105: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  95  GS Portfolio Review  

Recommendation8.3.GSPMsshouldcontinuetoencourageGSinvestigatorstopursueco‐fundingfromtheEarthCubeprogramforDataSystems,ProductsandManagement.Ifco‐fundingfromtheGSisdesirableorrequiredtosecureexternalEarthCubefunding,wheneverpossibletheco‐fundingshouldbederivedfromthenewlyrecommendedGSFacilitiesProgramforDataSystems,ProductsandManagement(Sec.7.4.4).

8.1.4 Foundation‐Wide 

Major Research Instrumentation Program (MRI) 

AsdescribedontheNSFprogramwebpage,theMajorResearchInstrumentationProgram(MRI)servestoincreaseaccesstosharedscientificandengineeringinstrumentsforresearchandresearchtraininginourNation'sinstitutionsofhighereducation,not‐for‐profitmuseums,sciencecentersandscientific/engineeringresearchorganizations.Theprogramprovidesorganizationswithopportunitiestoacquiremajorinstrumentationthatsupportstheresearchandresearchtrain‐inggoalsoftheorganizationandthatmaybeusedbyotherresearchersregionallyornationally.

EachMRIproposalmayrequestsupportfortheacquisition(Track1)ordevelopment(Track2)ofasingleresearchinstrumentforsharedinter‐and/orintra‐organizationaluse.Developmentef‐fortsthatleveragethestrengthsofprivatesectorpartnerstobuildinstrumentdevelopmentcapac‐ityatMRIsubmission‐eligibleorganizationsareencouraged.

TheMRIprogramassistswiththeacquisitionordevelopmentofasharedresearchinstrumentthatis,ingeneral,toocostlyand/ornotappropriateforsupportthroughotherNSFprograms.Theprogramdoesnotfundresearchprojectsorprovideongoingsupportforoperatingormaintainingfacilitiesorcenters.

Theinstrumentacquiredordevelopedisexpectedtobeoperationalforregularresearchusebytheendoftheawardperiod.ForthepurposesoftheMRIprogram,aproposalmustbeforeitherac‐quisition(Track1)ordevelopment(Track2)ofasingle,well‐integratedinstrument.TheMRIpro‐gramdoesnotsupporttheacquisitionordevelopmentofasuiteofinstrumentstooutfitresearchlaboratoriesorfacilities,orthatcanbeusedtoconductindependentresearchactivitiessimultane‐ously.

InstrumentacquisitionordevelopmentproposalsthatrequestfundsfromNSFintherange$100,000‐$4millionmaybeacceptedfromanyMRI‐eligibleorganization.

Cost‐sharingofprecisely30%ofthetotalprojectcostisrequiredforPh.D.‐grantinginstitutionsofhighereducationandfornon‐degree‐grantingorganizations.Non‐Ph.D.‐grantinginstitutionsofhighereducationareexemptfromcost‐sharingandcannotincludeit.

Finding.TheMRIprogramhasbeenusedeffectivelybyGSinvestigatorstoacquireanddevelopinstrumentationtoaugmentresearchconductedatClass1facilitiesandtodevelopDASIprojectsthathavethecapacitytobecomeClass2facilities.

Recommendation8.5.TheGSshouldcontinuetoencourageandworkwithPIsapplyingforandreceivingMRIfundstodevelopinnovativenewinstrumentationforuseingeospacescienceresearch.ConsistentwiththefindingandrecommendationofSection7.6,whenadditionalfundswillberequestedfromtheGSforfutureM&OcostsfortheMRI,thefundingsource(s)andspaceintheGSFacilitiesbudgetshouldbeplannedwellinadvanceoftaking‐onthenewfacilities’costs.

Page 106: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  96  GS Portfolio Review  

Alternatively,PIsshouldbeencouragedtoexplorenon‐NSFsourcesoffundingforfutureM&Ocosts.

Major Research Equipment and Facilities Construction (MREFC)

TheNationalScienceFoundation(NSF)definesafacilityunderMREFCasanessentialpartofthescienceandengineeringenterprisethatwilladvancescienceinwaysthatwouldnotbepossibleotherwise.Thefacilitycaneitherbecentralizedorconsistofdistributedinstallations.Theproject“shouldofferthepossibilityoftransformativeknowledgeandthepotentialtoshiftexistingpara‐digmsinscientificunderstandingandengineeringprocessesand/orinfrastructuretechnologyandshouldserveanurgentcontemporaryresearchandeducationneedthatwillpersistforyears”(NSF,2007).

MREFCprojectsaresolargethatthetotalconstructioncostswouldbe>10percentofthebudgetforthesponsoringdirectorateoroffice.Thus,fundingofthefacilitywoulddistortthebaseprogramoffundinginthatdiscipline(s)withoutMREFCfunding.Investmentsincomputingre‐sourcesandforsupportingcyberinfrastructurecanbeincludedinthedesignplanandtheconstruc‐tioncosts.DevelopmentoftheDKISTbytheNSF‐MPS‐ASTdivisionhasbeenenabledbyanMREFCgrant.

Finding.Todate,noGSfacilitieshavebeendevelopedwithMREFCfunds.TheMREFCprogramcouldprovidethemeansfordevelopmentofnext‐generationGSfacilitiesthathavethecapacitytotransformourunderstandingofgeospace.

Recommendation8.6.ConceptsappropriateforMREFCinvestmentingeospacesciencehavere‐centlyemergedinGScommunityforums(e.g.,attheconferenceonMeasurementTechniquesinSo‐larandSpacePhysicsheldinBoulderinApril,2015andatrecentCEDARandGEMwork‐shops).TheGSshouldencouragedevelopmentoftransformativefacilityconceptsappropriateforMREFCinvestmentbyco‐sponsoringcommunityworkshopstoadvanceinnovativenewconcepts.

Recommendation8.7.PlanningforapossiblefutureMREFCinvestmentshouldincludebudgetscenariosforhowM&Owouldbeaccommodatedforanewfacilityofthisscale,includingpossiblesunsettingofoneormoreexistingGSfacilities.

Software Infrastructure for Sustained Innovation (SI2) 

NSF’sprogramforSoftwareInfrastructureforSustainedInnovation(SI2)isalong‐terminvest‐mentfocusedonrealizingaportionoftheCyberinfrastructureFrameworkfor21stCenturyScienceandEngineeringvisionandforcatalyzingnewthinking,paradigmsandpracticesinscienceanden‐gineering.Itenvisionsalinkedcyberinfrastructurearchitecturethatintegrateslarge‐scalecompu‐ting,high‐speednetworks,massivedataarchives,instrumentsandmajorfacilities,observatories,experiments,andembeddedsensorsandactuators,acrossthenationandtheworld,andthatena‐blesresearchatunprecedentedscales,complexity,resolution,andaccuracybyintegratingcompu‐tation,data,andexperimentsinnovelways.

TheobjectivesofthenewGSDataSystemsprogramrecommendedinSection7.4arewell‐alignedwiththegoalstheSI2program.SI2couldenableinvestmentsinnewGSdatasystemsatthreedifferentlevels:1)ScientificSoftwareElementsawardstargetingsmallgroupstocreateanddeployrobustsoftwareelementsforwhichthereisademonstratedneedthatwilladvanceoneormoresignificantareasofscienceandengineering;2)ScientificSoftwareIntegrationawardsthat

Page 107: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  97  GS Portfolio Review  

targetlarger,interdisciplinaryteamsorganizedaroundthedevelopmentandapplicationofcommonsoftwareinfrastructureaimedatsolvingcommonresearchproblemsfacedbyNSFresearchersinoneormoreareasofscienceandengineering;and3)ScientificSoftwareInnovationInstitutesthatfocusontheestablishmentoflong‐termhubsofexcellenceinsoftwareinfrastructureandtechnologies,whichwillservearesearchcommunityofsubstantialsizeanddisciplinarybreadth.

SI2isanexcellentvehicleforaugmentingGSinvestmentsingeospacedatasystems.ThePRCoffersnoparticularrecommendationregardingSI2otherthantosuggestthattheGStocontinuetoencouragethegeospaceresearchcommunitytodevelopcompetitiveconceptsforfutureSI2invest‐ment.

Integrated NSF Support Promoting Interdisciplinary Research and Education (INSPIRE)

TheINSPIREprogramseekstosupportboldinterdisciplinaryprojectsinallNSF‐supportedar‐easofscience,engineering,andeducationresearch.INSPIREhasnotargetedthemesandservesasafundingmechanismforproposalsthatarerequiredbothtobeinterdisciplinaryandtoexhibitpo‐tentiallytransformativeresearch.ComplementingexistingNSFefforts,INSPIREwascreatedtohan‐dleproposalswhose:

Scientificadvanceslieoutsidethescopeofasingleprogramordiscipline,suchthatsubstan‐tialfundingsupportfrommorethanoneprogramordisciplineisnecessary.

Linesofresearchpromisetransformationaladvances.

Prospectivediscoveriesresideattheinterfacesofdisciplinaryboundariesthatmaynotberecognizedthroughtraditionalrevieworco‐review.

Finding.SuccessfulINSPIREproposalshaveaugmentedgeospacescienceaccomplishedinGSgrantsprograms.GSCubeSatprojects(Section6.6)alsoappeartobeagoodfitforINSPIREfunding,whichcouldleverageGSinvestmentCubeSats.

Finding.The INSPIRE program is designed to utilize mixed funding, with up to half of each award being provided by central funds and the rest shared between several divisions (programs). The INSPIRE funding model is set to change so that over the next 2 years, the central funding contribution will be phased out.

Recommendation.IfandwhenNSFcentralfundingforINSPIREprojectsphases‐out,theGSshouldcontinuetouseitsowninternalandwell‐establishedprocessestofundhigh‐qualityprojectsthatcrossthedisciplinaryboundariesofitscoregrantsprogramsandseekappropriatepartnersexternaltoGSforprojectsthatcrosssection,divisionordirectorateboundaries.

EPSCoR Research Infrastructure Improvement Program

ThemissionofEPSCoRistoadvanceexcellenceinscienceandengineeringresearchandeduca‐tioninordertoachievesustainableincreasesinresearch,education,andtrainingcapacityandcom‐petitivenessthatwillenableEPSCoRjurisdictionstohaveincreasedengagementinareassupportedbytheNSF.EPSCoRgoalsare:

toprovidestrategicprogramsandopportunitiesforEPSCoRparticipantsthatstimulatesustain‐ableimprovementsintheirR&Dcapacityandcompetitiveness;

toadvancescienceandengineeringcapabilitiesinEPSCoRjurisdictionsfordiscovery,innovationandoverallknowledge‐basedprosperity.

Page 108: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  98  GS Portfolio Review  

EPSCoRobjectivesunderlyingtheprogramgoalsare:

tocatalyzethedevelopmentofresearchcapabilitiesandthecreationofnewknowledgethatex‐pandsjurisdictions'contributionstoscientificdiscovery,innovation,learning,andknowledge‐basedprosperity;

toestablishsustainableSTEMeducation,training,andprofessionaldevelopmentpathwaysthatadvancejurisdiction‐identifiedresearchareasandworkforcedevelopment;

tobroadendirectparticipationofdiverseindividuals,institutions,andorganizationsinthepro‐ject’sscienceandengineeringresearchandeducationinitiatives;

toeffectsustainableengagementofprojectparticipantsandpartners,thejurisdiction,thena‐tionalresearchcommunity,andthegeneralpublicthroughdata‐sharing,communication,out‐reach,anddissemination;

toimpactresearch,education,andeconomicdevelopmentbeyondtheprojectatacademic,gov‐ernment,andprivatesectorlevels.

Finding.CubeSatprojectssatisfymanycriteriaforEPSCoRfunding,whichhasbeenusedtoco‐fundsomeCubeSatprojects.EligibilitytocompeteinNSFEPSCoRprogramopportunitiesiscurrentlylimitedtotwenty‐fivestates,theCommonwealthofPuertoRico,Guam,andtheU.S.VirginIslands.

Recommendation8.8.GSPMsshouldencourageeligiblePIstopursueEPSCoRopportunitiestoleveragefundingforappropriategeospaceresearchandeducationalprojects.

CubeSats

TheGSCubeSatprogramtodatehasbeenastandaloneprogramfundedprimarilybytheGSwithmodestaugmentationsfromotherNSFprograms(e.g.,EPSCoR).

Recommendation8.9.InlinewiththefindingsandrecommendationsofSection6.6regardingthefutureoftheGSCubeSatprogram,theGSshouldexplorepossiblepartnershipsacrossNSF(andwithDoD,NASA,industry,internationalpartners)foraugmentingthescientificimpactofinvest‐mentsintheGSCubeSatprogram.

8.2 Interagency Partnerships 

8.2.1 Department of Defense (DoD) 

AnumberofexistingandfutureDoDprogramsarefocusedonuniversityresearchofdirectrel‐evancetotheresearchareasoftheGeospaceSection.AFOSRhasannouncedaMultidisciplinaryUniversityResearchInitiative(MURI)for2016on'ActiveIonosphere‐ThermosphereCoupling:MechanismsandEffects.'Theobjectiveofthisprogram'istocharacterizethethermosphericre‐sponsetospacestormsfromthepolarcaptoequatoriallatitudes,touncoverthebasicphysicalpro‐cessesthatdeterminewhereandhowtheI‐Tsystemrespondstoenergyinput,andtodeterminethemechanismsofenergydissipationintheionosphere.'ThisobjectivecapsulizesmuchoftheCE‐DARprogramaswellasmagnetosphere‐ionospherecouplingwithinthescopeoftheGEMprogram.Additionally,DoDsponsorsaDefenseUniversityResearchInstrumentationProgram(DURIP)withthegoaltoprovidemajorequipmentto'augmentcurrentordevelopnewresearchcapabilitiesinsupportofDoD‐relevantresearch.'AlthoughnofinancialrelationshipbetweenNSFandDoDexistsforthesetypesofprograms,instrumentationandmodelsdevelopedandimplementedundersuch

Page 109: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  99  GS Portfolio Review  

DoDprogramsmaycontributetocriticalcapabilitiesforGSinvestigationsduringandafterthepe‐riodofperformanceoftheDoDcontract.

Finding.Innovativeinstrumentationandmodelshavebeendevelopedandimplementedforgeo‐spaceresearchbytheuniversityresearchcommunityusingfundsfromDoDprograms.Theusefullife‐timeoftheseDoDinvestmentsoftenexceedstheperiodofperformanceoftheoriginalDoDfunding.Insomecases,continuinguseoflegacyDoDinstrumentationandmodelsforgeospaceresearchhasbeensupportedbyGSgrants.

Recommendation8.10.TheGSshouldcarefullyreviewtheimpactonitsfacilitiesandgrantspro‐gramsofassumingM&OcostsforlegacyDoDinstrumentation.Whendoingsoiswell‐alignedwithDSandSectionsciencegoals,continuinguseofsuchequipmentmaybringsignificantaddedvaluetoGSprogramswithnoup‐frontcostsforinvestmentintheinstrumentdevelopment.TheGSshouldusetherecommendedSeniorReviewprocesses(Section6.7and7.7)todeterminetheover‐allvalueofassumingM&OcostsforlegacyDoDequipment.

8.2.2 Department of Energy (DoE) 

NSF/DOE Partnership in Basic Plasma Science and Engineering

TheNationalScienceFoundation(NSF),withparticipationoftheDirectoratesforEngineering,Geosciences,andMathematicalandPhysicalSciences,andtheDepartmentofEnergy,OfficeofSci‐ence,FusionEnergyScienceshasco‐fundedthejointPartnershipinBasicPlasmaScienceandEngi‐neeringsince1997.Thegoalofthisprogramistoenhancebasicplasmaresearchandeducationinthebroadlyapplicable,multidisciplinaryfieldofplasmasciencebycoordinatingeffortsandcom‐biningresourcesofthetwoagencies.ThepartnershipencouragesbasicresearchintofundamentalplasmascienceandbasicplasmaexperimentsatNSFandDOEsupporteduserfacilities,suchastheBasicPlasmaScienceFacilityattheUniversityofCalifornia,LosAngeles,designedtoservetheneedsofthebroaderplasmacommunity.

Finding.Co‐sponsorshipofbasicplasmasciencethroughtheNSF/DOEPartnershipsignificantlyleveragesGSinvestmentsincriticalcapabilitiestomakeprogressonDSKeyScienceGoal4:Discoverandcharacterizefundamentalprocessesthatoccurbothwithintheheliosphereandthroughouttheuniverse.

Recommendation8.11.TheGSshouldcontinuetoparticipateintheNSF/DOEPartnershipandco‐fundresearchprojectsthataddressDSKeyScienceGoal4.

8.2.3 National Aeronautics and Space Administration (NASA) 

Community Coordinated Modeling Center (CCMC) 

TheCCMCisamulti‐agencypartnershiptoenable,supportandperformtheresearchanddevel‐opmentfornext‐generationspacescienceandspaceweathermodels.AsdescribedinChapter7,theGSco‐sponsorsCCMCalthoughthebulkofitsfundingcomesfromNASA.

Finding.CCMCmodelsandsimulationdatafromCCMCruns‐on‐requestareusedextensivelybythegeospacescienceandspaceweatherresearchcommunities.

Page 110: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  100  GS Portfolio Review  

Recommendation8.12.TheGSshouldcontinuetoco‐fundCCMCatthecurrentlevelasrecom‐mendedinSection6.5.1).

NASA/NSF Partnership for Collaborative Space Weather Modeling 

TheGSincollaborationwiththeNSF‐GEOPolarProgramsDivision,theAirForceOfficeofSci‐entificResearchandtheOfficeofNavalResearchfundsbasicresearchinsupportofnationalspaceweatherobjectives.Thissupportincludesthedevelopmentofspaceweathermodelsforspecifica‐tionandforecastofconditionsthroughoutthespaceenvironment.

Similarly,aprimarygoalofNASA'sLivingWithaStar(LWS)Programisthedevelopmentoffirst‐principles‐basedmodelsforthecoupledSun‐EarthandSun‐SolarSystem,similarinspirittothefirst‐principlesmodelsforthelowerterrestrialatmosphere.Suchmodelscanactastoolsforscienceinvestigations,asprototypesandtestbedsforpredictionandspecificationcapabilities,asframeworksforlinkingdisparatedatasetsatvantagepointsthroughouttheSun‐SolarSystem,andasstrategicplanningaidsforenablingexplorationofouterspaceandtestingnewmissionconcepts.

Becauseofthecommongoalsamongtheagencyprogramsdescribedabove,NASAandNSFhaveperiodicallyagreedtorenewtheirpartnershiptosupportnewroundsofStrategicCapabilities,large‐scaleresearchprojectsthataremoreambitiousthanthosetypicallysupportedbyasinglegrantbyeitherorganization.Thepartnershipfundsprojectstotalingapproximately$4M/yearwiththeGScontributionrunning$1.5M/year.

Finding.TheNASA/NSFPartnershipforCollaborativeSpaceWeatherModelinghasbeeneffectiveinadvancingGSandDSsciencegoalsforspaceweatherresearch.ToassessitscontinuingalignmentwithbothGSandLWSsciencegoals,continuationofthepartnershipisreviewedbybothNASAandNSFat3‐5yearsintervalswhenanewAnnouncementofOpportunityisduetobereleased,

Recommendation8.13.TheGSshouldcontinuetheNASA/NSFPartnershipforCollaborativeSpaceWeatherModelinginthecurrentmodusoperandiandaslongasitcontinuestoadvancespaceweatherresearchgoalsfortheGS(asrecommendedinSection6.5.2).

Grand Challenge Projects (GCP) Program 

AGSGCPprogramisrecommendedinthisportfolioreview(Section6.5),andNASAiscurrentlyevaluatinganewHeliophysicsDivisionfundinglinetocreateHeliophysicsScienceCenterstopur‐sueGCR.SinceneithertheNSFnortheNASAprogramexiststoday,theextenttowhichthesciencegoalsofthetwoprogramswilloverlapisnotknown.TheDriveInitiativeoftheDecadalSurveyrec‐ommended“NASAandNSFtogethershouldcreateHeliophysicssciencecenterstotacklethekeyscienceproblemsofsolarandspacephysicsthatrequiremultidisciplinaryteamsoftheorists,ob‐servers,modelers,andcomputerscientists,withannualfundingintherangeof$1millionto$3mil‐lionforeachcenterfor6years,requiringNASAfundsrampingto$8millionperyear(plusin‐creasesforinflation).

ThisnascentprogramelementisacandidateforaNASA/NSFpartnership.Iftheirrespectivesciencegoalsandeligibilitycriteriaandmetricsforproposalselectionsarewell‐aligned,thensuchapartnershipcouldbeforgedandmanagedsimilarlytotheNASA/NSFPartnershipforCollabora‐tiveSpaceWeatherModeling.

Recommendation8.14.TheGSshouldexploreanewpartnershipwithNASAtocreateaco‐fundedGrandChallengeResearchprogram(asrecommendedinSection6.5.2).

Page 111: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  101  GS Portfolio Review  

8.2.4 National Oceanic and Atmospheric Administration (NOAA) 

TheNSFGeospaceSectionsupportslong‐established,andmutuallybeneficial,partnershipswithNOAA.CollaborationsareprimarilywiththeSpaceWeatherPredictionCenter(SWPC),oneofNOAA’sNationalWeatherService(NWS),NationalCentersforEnvironmentalPrediction(NCEP),butalsowithNOAA’sNationalCenterforEnvironmentalInformation(NCEI,formerlyNGDC)wheredataaremadeavailabletoNSFsupportedscientists.

AnexampleofarecentpartnershipistheNSFScienceTechnologyCenter(STC),CenterforInte‐gratedSpaceWeatherModeling(CISM).STCgoalsincludeestablishingmeaningfullinksandbene‐fitstosocietyandpromotinglinkstofederalagencies.InthecaseofCISM,thiswasaccomplishedthrougha“KnowledgeTransfer”componentwithSWPCscientistsplayingkeyrolesthroughoutthe10‐yearprogram.Inaddition,oneofthemodelssupportedbyNSF’sCISM,theWang‐Sheeley‐ArgeEnlilmodelthatpredictssolarwindconditionsatEarth,waslatertransitionedtooperationsatSWPC.

TheGeospaceSectionhasalsobeenapartnerwithSWPC’sannualSpaceWeatherWorkshopthatbringstogetherspaceweatherresearch,applications,operations,andusers.Inanotherpart‐nership,NOAAiscontributingsubstantialresourcesforthelong‐termoperationsandmaintenanceoftheGlobalOscillationNetworkGroup(GONG)thatispartoftheNationalSolarObservatorysup‐portedbyNSF’sDivisionofAstronomicalSciences(AST).Inthispartnership,NOAAwillbecollect‐ingandprocessingdatafrom6sitesforuseinspaceweatheroperationsandmakingthesedata,re‐latedtoHimagesandCarringtonmagnetogrammaps,availabletotheentiresciencecommunity.

Inadditiontothesepartnerships,therearemanycollaborationsbetweenNSFsupportedorgan‐izationssuchastheNationalCenterforAtmosphereResearch(NCAR)HighAltitudeObservatory(HAO)andNOAASWPC,andbetweenNSFsupportedresearcherswhoutilizeNOAAdataintheirresearch.Withregardtoprograms,NSF’sGEM,CEDAR,andSHINEhavealwaysinvolvedparticipa‐tionfromSWPC,includingNOAAmembersonthesteeringcommitteesoftheseNSFledcommunityprogramsthat,inmanycases,improveourunderstandingandmodelingofprocessesrelatedtospaceweather,aswellasspacescience.

Finally,newandongoingopportunitiesforcollaborativeworkbetweenNSFandNOAAareidentifiedintheWhiteHouseOfficeofScienceandTechnologyPolicy(OSTP)NationalSpaceWeatherActionPlan.26

Finding.TheGSSWRprogram,currentlyincollaborationwithNASA,undertakesbasicandap‐pliedresearchforimprovedunderstandingofspaceweatherphenomenaandfordevelopmentof“stra‐tegiccapabilities”toimprovespaceweatherforecasting‐‐theprovinceofNOAA’sSWPC.Thissymbi‐oticrelationshipbetweenSWPCandtheGSSWRismutuallybeneficial.ItprovidesimportantsocietalcontextandrelevanceforGSresearch,anditenablesimprovedcapabilitiesforSWPC’sdirectivetoprovidespaceweatherforecasts.

Finding.CooperationbetweenNOAA’sSWPCandtheGSSWRprogramhasbeenmultifaceted,rangingfromcapability‐enablingthroughNOAA‐NSF(AST)co‐sponsorship,e.g.,theGlobalOscillationNetworkGroup,tosubstantialresearchcollaboration,e.g.,viaNSF’sformerCISMSTC,todataprovi‐sionforGSresearchderivedfromNOAAsatelliteandground‐basedmeasurements,toinformation

                                                            26 https://www.whitehouse.gov/administration/eop/ostp/nstc/docsreports  

Page 112: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  102  GS Portfolio Review  

sharingatCEDAR,GEM,SHINEandtheco‐sponsoredannualSpaceWeatherWeekworkshops.ThiscooperationhasrequiredverymodestresourcesfromtheGS.

Recommendation8.15.TheGSshouldcontinueitscollaborationwithNOAA’sSWPCthroughre‐sourceandinformationsharinginwaysthatareconsistentwitheachagency’srespectivegoalsinadvancingbasicandappliedknowledgeofspaceweatherandcapabilitiesforpredictingitseffects.

8.3 International Partnerships 

ToaddresstheoutstandingresearchproblemsidentifiedintheDecadalSurvey,ground‐andspace‐basedmeasurementsofthegeospaceenvironmentfrommanydifferentpartsofthecoupledsystemarerequiredatincreasingtemporalandspatialresolution.Providingthiscapabilityisfarbeyondthecapacityofanyonenationandhenceinternationalcollaborationandcooperationareessential.ThisneedfordistributedgeophysicalmeasurementshasbeenrecognizedforwelloveracenturythroughinitiativessuchastheInternationalPolarYear(IPY)(1882‐83),thesecondIPY(1932‐33)andtheInternationalGeophysicalYear1957‐58.ExcellentinternationalcoordinationisalsoarrangedthroughthefamilyofscientificunionsandscienceorganizationsthataremembersoftheInternationalCouncilforScience(ICSU),togetherwithcooperationbetweenthenationalspaceagencies.

TheUShasbeenandcontinuestobeamajorcontributortointernationalprojectsandpro‐grams.NSF‐GSsupportsawiderangeofinternationalactivitiesonmanycontinents.Inthefuture,internationalcooperationislikelytoincreasegiventheemphasisonsystemscience,theever‐grow‐ingimportanceofspaceweather,andtheneedtomaximizethecost‐benefitofinvestments.Someofthemostimportantinternationalpartnershipsforground‐basedobservationofgeospacearesum‐marizedbelow.Thelistisbynomeansexhaustive.

ExamplesofinternationalcooperationforClass1facilitiesincludetheAreciboandJicamarcaISRsinPuertoRicoandPeru,respectively.TheUShasbeenthemajorityfinancialsponsorbutthehostnationsmakecriticallyimportantcontributionstothesuccessfuloperationofthefacility.TheseISRsalsohavestronglocalpublicoutreachandtechnicaltrainingprograms.

AnotherexcellentexampleofjointinternationaldevelopmentisRISR‐NandRISR‐C.Thefor‐merhasbeendevelopedwithfundsfromNSFandthelatterisfundedbyCanada.Theseradarsuti‐lizesimilartechnology,andwiththeradarsco‐locatedbutlookingindifferentdirections,significantscientificandtechnicalbenefitsaccrue,aswellasfinancialsavingsonM&Ocosts.

GS‐sponsoredinvestigatorshavealsoforgedanumberofimportantinternationalpartnershipstobroadenthescopeandgeographicreachofvariousClass2facilities,especiallyDASI‐likenet‐works.

SuperDARN(SuperDualAuroralRadarNetwork.)isaninternationalpartnershiptojointlyde‐sign,developandoperatecoherent‐scatterHFradarsforthepurposeofconductingresearchonEarth’sgeospaceenvironment.Theverylargefieldsofviewoftheradars(each~1Mkm2)allowawiderangeofscientifictopicstobestudiedincludingthestructureofglobalconvectionanditsre‐sponsetochangesininterplanetaryconditions,substorms,ULFwaves,gravitywaves,mesospherewindsandplasmairregularities.Alldataarefreelysharedamongstthepartners,andthevastma‐jorityofdataareopentoallscientistssoonaftercollection.

SuperDARNbeganintheearly1990sandprogressivelyexpanded.Itinvolves35radarstoday,

Page 113: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  103  GS Portfolio Review  

supportedbythefundingagenciesofninecountries.TheUScontinuestobeamajorplayerinSu‐perDARN,supportingnearlyhalftheradars,andoperatinginbothhemispheres.

TheleverageofSuperDARNhasbeensignificant.Keystothissuccessincludetheexcellentspiritofinternationalcollaboration,andtheorganizationhasbeenbureaucraticallylight.SuperDARNisacriticalsystemforcurrentandfuturegeospacesystemscienceasitprovidesaglobalperspectiveonmanykeyprocessesofthecoupledsolarwind‐magnetosphere‐ionosphere‐thermospheresystem.

OtherexampleswhereNSFgrantfundinghasmadeasignificantcontributiontointernationalnetworksincludeLISN,anetworkofinstrumentsinvolvingeightcountriesinSouthAmer‐ica;GIMNAST–aUSextensionoftheCanadianground‐basednetworkofAllSkyImagers(ASIs)ini‐tiallydevelopedtosupporttheNASAThemismission;MagnetometerArrayforCuspandCleftStud‐ies(MACCS)‐ahighlatitudearrayofeighthigh‐timeresolutionmagnetometersandfourstandardobservatoriesinnortheasternCanada;andtherecentlyinitiatedTransitionRegionExplorer(TREx)–aCanadiannetworkunderdevelopmenttoreplaceandenhancetheTHEMIS‐ASIswith21allskyimagersin3differentwavelengthbandsand10imagingriometers(thesetobedevelopedwithfundsfromtheNSFMRIprogram).

Ampere,SuperDARN,SuperMAGandtheMadrigaldatabaseallharvestdatafromdifferentsourcesbothintheUSandoverseas.TheseClass2facilityactivitiesprovideaccesstothecalibrateddata.Theyalsoproducevalue‐addeddataproducts.Theseservicesrequiresignificantcooperationandgoodwilloftheinternationalpartnersbutthebenefitstoallgeospacescientistsareverysignifi‐cant.Someofthesedatacouldbemadeavailableinnearreal‐timeforapplicationinspaceweatherforecastingornowcasting,butatpresenttheneedforreal‐timedataforscientificpurposesisnoturgent.

MostofthesedevelopmentshavebeeninitiatedbyUSinvestigators,butopportunitiesalsoexistfortheUStoengageinnewinternationalfacilitiesdevelopedbyothernationalentities.Aprimeex‐ampleistherecommendationinSection7.4fortheUStobecomeapartnerinEISCATandparticu‐larlyEISCAT‐3Dtoprovideaccesstonewcapabilities.

Finding.USfundingforengagementininternationalpartnershipsprovidesexcellentleverageforadditionaldata,accesstoanexpandedbaseofscientificandtechnicalskillsandknowledge,andtonewandinnovativesoftwareandhardware.Significantbenefitsaccruetoallpartners.

Recommendation8.16.TheGSshouldcontinuetosponsorhighly‐ratedproposalstodevelop,de‐ployandoperatenewinstruments,instrumentnetworksanddataacquisition,especiallywhenGSresourcesfortheprojectareleveragedthroughinternationalpartnerships.

TheGSprovidesmodestsupportforworkshopsforthedevelopmentofnewideas,technologyand/orfacilities.Oftentheseinvolveinternationalexperts.AlsoGSsupportsUSrepresentatives,oftenNSFofficers,toattendoverseasmeetingswithsimilarobjectives.

Finding.GS‐fundedinternationalworkshopsandattendanceatinternationalplanningwork‐shopscancatalyzeexcitingandimportantnewopportunities.

Recommendation8.17.TheGSshouldcontinuetoprovidefundingforinternationalworkshops.

Page 114: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot
Page 115: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  104  GS Portfolio Review  

Chapter 9.  Recommended GS Portfolio 

9.1. Balance of Investments 

ThecurrentbalanceofinvestmentsintheGSportfolioamongcoregrantsprograms,strategicgrantsprogramsandfacilities(Figure3.1)ispartitionedintheFY2015budgetat33%,28%and38%,respectively,withtheremaining1%intheGSreserveaccount.Thebalanceofinvestmentsintherecommendedportfoliooutto2025maintainsthisapproximatebalancebutshifts2%offacili‐tiesfundingintostrategicgrantsprogramstoaddressDRIVEinitiativesrecommendedbytheDeca‐dalSurvey.Bytiltingthebalancetowardstrategicgrantsprograms,theGScanencourageandena‐bletheintegrativescienceelementsadvocatedbytheDS,inparticular,regardingpredictivescienceunderlyingspaceweatherapplicationsandlarge‐scopecross‐disciplinaryscience.

Provisionalbudgetsfortherecommendedportfolioin2020and2025aregiveninTable9.1,withrelativedistributionsshowngraphicallyinFigure9.1.Forcomparison,theFY2015budgetforeachcontinuinganddiscontinuedlineitemisalsoincluded.Inkeepingwithitscharge,thePRChasassumedthattheprojectedfuturebudgetsareflatininflation‐adjustedFY2015dollars.

Recommendationsforthevariouslineitemsintheportfolioareincludedinthenextsections.Additionaldetails,findingsandrecommendationsrelatedtotherecommendationsofChapter9arediscussedinChapters4‐8.

9.2. Core Grants Program 

Thevitalityofthegeospacescienceenterprisedependscriticallyonavibrantcoregrantspro‐gram.ThePRCandmanymembersofthegeospacesciencecommunity(asexpressedinresponsestothesolicitationforcommunityinput)recommendmaintainingthecurrentleveloffundingforthecore(unsolicited)grantsprogram.Althoughahigherleveloffundingforcoregrantswasrecom‐mendedinsomecommunitycommentsandwouldmoderatetheproposalpressurereviewedinChanter4,thebalanceintheGSportfoliowouldhavetochangetoaccommodatesuchanincrease.IffutureGSbudgetsweretobemoreoptimisticthanassumed,augmentingthebudgetforthecoregrantsprogramwouldbebeneficial.

ThePRCisconcernedthatthecoregrantsprogram,attimes,maybeprovidingasignificantpor‐tionofitsbudgetfor“targeted”objectivessuchastheCAREERandthePost‐DoctoralFellowshipprograms.Whiletheseprogramsareofmeritintheirownright,andaresecuredbypeerreview,theyarenotcoreinthesensethatcoreisenvisioned:supportofinnovativefrontierresearchwith‐outregardtoanyspecificsconcerningtheproposer.

Recommendation9.1.TheGSshouldmaintaintheexistingbudgetsharefortheCoreGrantsPro‐graminAeronomy,MagnetosphericPhysicsandSolar‐TerrestrialResearchwithintheassumedin‐flation‐adjusted2015level(orgreater)forthenextdecade.Itshoulduseproposalpressureincon‐certwithportfoliobalancetodetermineanoptimumdistributionofinvestmentsacrossthethreeprograms.ThePRCrecognizesthatthebudgetallocationbetweencoreandtargetedgrantspro‐grams(CEDAR,GEM,SHINE)mayvaryfromyeartoyeardependingonthenumberandqualityofproposalssubmittedtothevariousgrantsprograms.GSprogrammanagersshouldcontinuetohavetheflexibilitytoadjustthesebudgetlinesinresponsetoproposalpressure,buttheyshouldstrivetomaintainaminimumbudgetforthecoreprogram.Agoodbalancefortheportfoliowouldbeatleast⅓oftheGSbudgetforthecoregrantsprogramsandnotlessthan$14‐15Mperyearshouldtheoverallbudgetdecline.

Page 116: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  105  GS Portfolio Review  

Table 9.1 Recommended Portfolio in 2015 Dollars (x $1M) 

Core Grants Program (Priority 1) 2015 2020 2025 %

AER (1)

Core†

6.14

14.4 14.4

Core

MAG (1) 3.88

STR (1) 4.36

Core Grant Total 14.38 14.4 14.4 33%

Strategic Grants Program (Priorities 1, 2, 3) Change from 2015 to 2020

CEDAR (1)

Targeted†

3.09

8.7 6.7

Stra

tegi

c

GEM (1) 2.63

SHINE (1) 2.98

Space Weather (1) IGS

1.50 1.55.0

Grand Challenge (2) 1.5

CubeSat (3) 1.50 1.0 1.0

FDSS (3) 0.60 0.6 0.6

Strategic Grants Total 12.30 13.3 13.3 30%

Class 1/2 Facilities (All priority 1) 2015a 2020 2025b,c

Faci

litie

s Arecibo d

Class 1‡

4.10 1.1

8.4

PFISR e 1.50 1.5

RISR-N e 1.50 1.5

Sondrestrom 2.50 0.0

Millstone Hill f 2.10 1.9

Jicamarca 1.35 1.4

SuperDARN

Class 2‡

0.96 1.0

4.8AMPERE 1.02 1.0

SuperMag 0.15 0.2

CCMC 0.50 0.5

CRRLg not a facility 1.20 0.0

Class 1/2 Facilities Subtotal 16.88 10.1 13.2

New Facilities Programs (Priorities 1, 2)

EISCAT (1) Class 1‡ 1.0 b

Data Systems (1) Class 2‡

0.5c

DASI (1) 1.6

Innovation & Vitality (2)

Upg

rade

s Instruments, Facilities 2.42.7

Community Models 0.3

New Facilities Programs Subtotal 5.8 2.7

Facilities Total 16.88 15.9 15.9 36%

Midscale Projects Line h out of budget $1-6M/year

GS Reserve 0.43 0.4 0.4 1%

Grand Total * 43.99 44.0 44.0 100%

NOTES

Priorities:(1)ScienceGrantsPrograms;SpaceWeather;Facili‐ties;EISCAT;DataSystems;DASI.(2)I&V;GCProjects.(3)Cu‐beSats;FDSS†2020/25budgetsplitbetweencore&targetedandbetweenin‐dividualprogramsincore&tar‐getedTBDbyproposalpressure

‡NewClass1/2facilitiesmaybedevelopedviaMRI,Midscale(ifcreated)orMREFCawards;ad‐ditionmayrequirediscontinua‐tionofotherfacilities

aBudgetvalueis3‐or5‐yearav‐eragebasedonmostrecentaward,exceptAOwhichisinthelastyearofa5‐yearcooperativeagreement

bEISCAT/EISCAT‐3DmembershipbecomesClass1facilityby2025

cNewDASI/DataSystemsprojectsbecomeClass2facilitiesby2025

dIfAOuseforGSresearchcannotbesecuredfor$1.1M,redirectits$1.1MbudgettotheI&VPro‐gram

ePFISR+RISR‐Nbudgetis$3M;delineated50/50here

fNewdatasystemslinetoabsorbMHMadrigalbudgetby2020

gCRRLisnotcurrentlyoperatingasafacility(Sec.7.2);itshouldseekfuturefundingfromcoreortargetedgrantsprograms.

hTobefundedonlywithaddi‐tionalfutureGSfunding;ifNSFdivestsfromAO,its$1.1MbudgetshouldbeaddedtotheI&VLine,aportionofwhichcouldgotoMidscaleProjects*GrandTotalexceedstheactualFY2015budgetof$43.56Mbe‐causeClass1/2facilitiesbudg‐etsare3‐and5‐yearaverages(seenotea)

Page 117: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  106  GS Portfolio Review  

Fixedfractionalbudgetallocations(orapproximatelyfixed)foreachofthethreeGSdisciplinarygrantsprograms(AER,MAG,STR)andtheirassociatedtargetedprograms(CEDAR,GEM,SHINE)isnot,inthePRC’sview,themostprudentwaytoallocateresources.Relaxingthisrestrictionandal‐lowingproposalpressuretoplayaroleindeterminingrelativebudgetallocationsamongdisci‐plines,canachievegeospacescienceofhighervalue.Withtheexpectationthatgeospacesciencewillincreasinglyencompassmoreintegrativescience,disciplinaryboundariescanbeexpectedtoblurinthefuture.

Recommendation9.2.GSprogrammanagersshouldallowproposalpressuretoplayaroleindeterminingtherelativebudgetallocationsamongthecoregrantsprogramsinAER,MAGandSTRandamongthetargetedgrantsprogramsCEDAR,GEMandSHINE.

Thisrecommendationisreflectedinthe2020and2025budgetscenariosofthePortfolioRe‐viewwhereinseparatelineitemsforAER,MAGandSTRandforCEDAR,GEMandSHINEareelimi‐nated.

Figure 9.1.  Relative budgets for GS program elements and Class 1/2 facilities itemized in Table 9.1 for FY

2015  and  recommended distributions  for 2020  and 2025.    IGS  in 2020  and  2025  includes  the  Space 

Weather Modeling  (SWM) and Grand Challenge Projects  (GCP) programs.  “Facilities Development”  in 

2020 includes support for initiation of a US EISCAT consortium, DASI facilities, Data Systems and an Inno‐

vation and Vitality (I&V) program.  EISCAT becomes a Class 1 facility by 2025 and the DASI and Data Sys‐

tems lines become Class 2 facilities.  

Page 118: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  107  GS Portfolio Review  

9.3. Strategic Grants Programs 

AsdiscussedinChapter6,CEDAR,GEMandSHINEarebothtargetedgrantsprogramsandstra‐tegicgrantsprogramsbecausetheytargetandcoordinatecampaigns,researchchallenges,eventstudies,focusgroupstudiesandworkshopsessionswhileservingtoinformanddevelopcommu‐nityvisionforstrategicresearchdirections.Animportantelementofeachofthethreetargetedgrantsprogramisthefundingallocatedfortheirverypopularandhighlyregardedcommunityworkshops.Strategicresearchdirectioncrystallizesintheseworkshopsandinthereviewpanelse‐lectionsofproposalssubmittedtothetargetedgrantsprograms.

TheDRIVEinitiativeoftheDSrecommendsthatNSFpartnerwithNASAto“createHeliophysicssciencecenterstotacklethekeyscienceproblemsofsolarandspacephysicsthatrequiremultidis‐ciplinaryteamsoftheorists,observers,modelers,andcomputerscientists”.ThisproposedstrategicgrantprogrameffectivelyanticipatestherecenttrendintheGSgrantsprogramstofundlargecol‐laborativeprojects.However,theenvisionedinitiativetocreatesciencecenterscallsforanevenhigherdegreeofmultidisciplinaritythanispresentlyoccurringintheGSgrantsprograms.TheGStargetedgrantsprogramshavebeenundertakingcommunity‐drivenresearchchallengesandor‐ganizinggrandchallengeworkshopssincetheirinception.ThePRCseesaspectsoftheproposedsciencecentersasanaturalprogressionintheevolvingdirectionofcommunity‐drivengrandchal‐lengeprojectswithonesignificantexception.Thecenterconceptconveysenduringinstitutionalfir‐mamentwithvisionandmission.Incontrast,agrandchallengeprojectbringsresourcestobearonastrategicresearchproblemandhasresearchgoalsandobjectives.Itsolvesormakessignificantprogressinsolvingtheproblemandthendiminishesinintensityofefforttomakewayforotherpressingstrategicresearchproblems.

Recommendation9.3.TheGSshouldinitiateanewstrategicgrantsprogram,GrandChallengeProjects,initiallywithabudgetof$1.5Mperyearby2020.

TheGrandChallengeProjectsmodelismoreconsistentwithcommunity‐driven,collaborativeresearchinitiativesemergingfromGStargetedgrantsprogramsthanwouldbeaHeliophysicsSci‐enceCentermodel.Itwillalsoencouragegreatercross‐disciplinarityandgreateremphasisoninte‐grativeandsystemsciencethanpresentlyoccursinthemoredisciplinary‐oriented,targetedgrantsprograms.

TheDecadalSurveyrecommendsmaintainingandgrowingbasicresearchprogramsatNSF(andatNASA,AFOSRandONR)formoreeffectivetransitionfrombasicresearchtospaceweatherforecastingapplications.ThesuccessfulNASA‐NSFPartnershipforCollaborativeSpaceWeatherModelinghasmaintainedabasicresearchprogramwiththisobjectiveforthepast10+years.AsdiscussedinSections6.5and8.2,thePRCgenerallyendorsescontinuationofthecollaborationaslongasthesciencegoalsfortheNASAandNSFprogramsarealigned.Themodestincreaseinspaceweatherfundingintherecommendedportfoliobeyond2020couldbeusedtoaugmentacontinu‐ingNASA‐NSFPartnership,oritmightfundamodestGS‐onlyspaceweatherprogramsimilartotheonethatexistedpriorto2011.

Recommendation9.4.ThebudgetforIntegrativeGeospaceScience,includingSpaceWeatherModelingandGrandChallengeProjects,shouldgrowfrom$3Mperyearin2020to$5Mperyearby2025byacquiringIGSprojectsfundedbytheTargetedGrantsPrograms.

Thedesignationof$2MfromtheTargetedGrantsProgramstoIGSby2025isnotconsideredsomucharedirectionofresourcestoadifferenttypeofresearchbutarecognitionandmoreaccurate

Page 119: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  108  GS Portfolio Review  

accountingoftheactualnatureofresearchthathasbeencontinuingunabatedintheseprogramsandisexpectedtocontinuewellintothefuture.

Recommendation9.5.Withtheassumptionthatfutureresearchincoreandtargetedgrantspro‐gramswillentailanincreasingnumberofcollaborativeprojectsdevotedtointegrativeandcross‐disciplinarygeospacescience,theGSshouldmigratefuturefundingforsuchprojectsintostrategicgrantsprogramsforSpaceWeatherresearchandGrandChallengeProjects.Astheseprojectsmi‐gratefromeithercoreortargetedgrantsprogramsintoSpaceWeatherResearchorGrandChal‐lengeProjectsgrants,thecoregrantsprogrambudgetshouldremainapproximatelyconstant(orgrowiffuturebudgetsaremoreoptimisticthanflat)whilethebudgetfortargetedgrantsprogramdecreases.

AsdiscussedinSection6.6,theGSCubeSatProgramhasbeenapioneeringeffortandhasdemonstratedthat(1)inexpensivesmallsatellitemissionsareviable,(2)theyareaneffectivevehi‐cleforstimulatinginterestinSTEMeducationamonguniversitystudents,especiallyundergradu‐ates,and(3)usefulsciencecanbeaccomplishedbysuchmissions.InterestinCubeSatshasbroad‐enedwellbeyondtheGS,andithasbecomeatrulyemergentcapability.WhiletheGSshouldcon‐tinuetoplayakeyroleinthescientificutilizationofCubeSats,itisimportantthatthefocusandlevelofsupportforthisprogrambecommensuratewithitsvaluepropositionforadvancinggeo‐spacescience.ThePRCrecommendsthattheGScontinueitsCubeSatProgram,atasomewhatre‐ducedlevel,buttheSectionshouldconsiderpossiblepartnershipswithotheragenciesorindustrytoaccomplishmoresciencefortheinvestmentintheprogram.ACubeSatprogrammightalsobeofinterestandutilityinotherdivisionsoftheNSF.Indeed,theDSrecommendationtoincreasethenumberofnewCubeSatsstartsperyearwithasuitablyaugmentedbudgetwasdirectedtoNSFasawholeandnottotheGSalone.MoregeneralrecommendationstoNSFarebeyondthePRC’schar‐ter.

Recommendation9.6.GSshouldcontinueitsCubeSatProgramwithafocusonmissionconcept,instrumentdevelopmentandscienceexploitationofthedatawhilepartneringwithotherentitieswithengineeringexperienceinthedevelopmentofCubeSatbuses.ThePRCrecommendsanannualbudgetof$1MforthereducedscopeofGSCubeSatmissiondevelopment.

TheGSProgramforFacultyDevelopmentinSpaceSciences(FDSS),inadditiontofundingca‐reerdevelopmentandresearchofearly‐careerfacultyinthespacesciences,hasthebroaderimpactofestablishingbulwarksforspacescienceinuniversitydepartments.Thisimpactincludesthetransmissionoftaxpayer‐fundedknowledgeofthespaceenvironmentoftheEarthandsolarsystemtostudentsinastronomyandgeneralsciencecoursesthatoftendonotincorporatesuchknowledge.TheprimarymetricforsuccessoftheFDSSprogramisthenumberforFDSSfacultywhohaveachievedtenure.Withan88%successrate(7/8)todate,theprogrammaybedoingbet‐terthantheaveragetenurerateforjuniorfacultyatlarge.

Recommendation9.7.GSshouldcontinuetosupporttheFDSSprogramwithanannualbudgetof$0.6M(cf.Section4.2).

PrioritiesinGSgrantsprogramsenablingcorefrontierscience,strategicscienceinitiativesandspecialprogramsforworkforcedevelopmentwillnaturallyevolveinresponsetonewscienceimperatives,newfundingopportunitiesarisingwithinNSFandbeyond,andprospectivenewpartnershipsthathavethecapacitytoleverageGSresources.ChangesinfundingprioritiesinGSgrantsprogramshavetypicallybeenmadebytheGSHeadandProgramManagersinconsultationwithvariousstandingsteeringcommitteesandadhocreviewcommitteeschargedwithoversight

Page 120: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  109  GS Portfolio Review  

orreviewofsomespecificprogramelement.Aformal,semi‐decadalreviewofallgrantsprogramswouldprovideamoreholisticreviewoftheeffectivenessofthegrantsprogramsinmeetingDecadalSurveyandGeospaceSectionsciencegoals.

Recommendation9.8.TheGSshouldimplementasemi‐decadalSeniorReviewofitsCoreandStrategicGrantsPrograms,asdescribedinSection6.7.

9.4. GS Facilities Program 

Althoughthefacilitiesbudgetisreducedbyonly2%intherecommendedportfolio,theactualchangesintherecommendedGSFacilitiesProgramaresubstantial.RecommendedchangesincludeterminationoftheSondrestromISRanda73%reductionintheGScontributiontoAreciboObser‐vatory(AO)funding,from$4.1MinFY2016to$1.1Mby2020.Thesetwochangesmake$5.5Mavailableforalternativeinvestmentsintheportfolio.

TherelativelyhighlatitudeoftheSondrestromISRhasmadeitastalwartforcuspresearchformorethantwodecades.Sondrestrom’srelativelyhighbudgetisdriveninpartbythelogisticsofop‐eratinginGreenlandandbyhigherM&Ocostsforitsolderdishandklystron‐tubetechnology.InplaceoftheSondrestromISR,thePRCrecommendsforginganewpartnershipwiththeEISCATcon‐sortium.The$1MannualcostofassociatemembershipinEISCATissubstantiallylessthan$2.5MbudgetforSondrestrom.TheEISCATSvalbardfacilityalsosamplescusplatitudes,andthegeomag‐neticlatitude‐localtimepositioningofthePFISR(auroral),RISR‐N/RISR‐C(bothpolarcap)andtheEISCATSvalbard(cusp)ISRmayofferadvantagesoverSondrestromforsomecoordinatedpolarregionstudies.EISCAT‐3D,anewmultistaticradarcomposedoffivephased‐arrayantennafields,isexpectedtoreplacetheEISCATsystematKirunaby2020.

MembershipinESICATcurrentlytakesoneofseveralforms.(1)Arollinglong‐termcommit‐mentof5yearsasanassociatememberwithafundingcommitmentofabout$1Mperyear.Termi‐nationofthemembershipwouldrequireaphase‐outperiodof5years.SuchamembershipwouldallowtheUStohaveaseatontheEISCATCouncilwhichwouldconsistoftwopersons,onetorepre‐sentthefundingagencyandonetorepresentthechiefscientist.ThismembershipwouldprovideaccesstoallarchivalEISCATdataimmediatelyaswellastheopportunitytoparticipateinspecificobservingprogramsgearedtoachievescienceobjectives.ThememberwouldhaveaccesstoCom‐monProgramsthatwouldincludeimmediatedataanalysisoftheobservationstoyielddataprod‐uctsthatcouldbeappliedimmediatelyforscienceanalysis.Normally,aone‐yearembargoisim‐poseduponanyobservationsobtainedbyaMembernation.(2)Affiliatemembershipincursauserfeeofabout$25,000forabout8hoursEISCATobservingtime.Multipleaffiliatesfromasinglecountryarepossible.(3)Peer‐reviewedscienceprojectsareawarded200‐300hoursayear.TheawardsaremadebasedontheproposedresearchanditsevaluationbyEISCATscientists.

Recommendation9.9.TheGSshouldterminatefundingfortheSondrestromISRfacilityafterthecurrentcontinuinggrantforitsmanagementandoperationends(December2017).Ancillaryin‐strumentationforgeospacestudiesandtheiroperationalcostsatSondrestromshouldbebudgetedanddecidedbyapeerreviewprocessfromtheCoreorTargetedGSprograms.

Recommendation9.10.TheGSshouldinvestigatecostsandcontractualarrangementsforU.S.in‐vestigators’accesstotheexistingEISCATfacilitiesandtotheplannedEISCAT‐3Dfacility.Ifnobar‐rierstosystemuseanddataaccessarise,NSFinvestigatorscouldbeginusingtheEISCATsystemsoonafterthecurrentcontinuinggrantforSondrestromM&Oexpires.

Page 121: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  110  GS Portfolio Review  

TheGScontributiontotheArecibocooperativeserviceagreementis$4.1MinFY2016.ThiscostisincommensuratewithArecibo’svalueforgeospacescience,andithasasignificantadverseimpactonthebalanceofinvestmentsintheGSportfolio.NSFdivestmentfromAOiscurrentlyun‐derstudybytheNationalScienceBoard,withunknownimplicationsforfutureoperationofthefa‐cilitybyNSF.

Recommendation9.11.TheGSshouldreduceitsM&OsupportfortheAreciboObservatory(AO)to$1.1Mby2020,i.e.,toaproportionalproratalevelapproximatelycommensuratewithitsfrac‐tionalNSFGSproposalpressureandusageforfrontierresearch.

TerminationofSondrestromISRfunding(Recommendation9.9)andthereductioninAOfund‐ing(Recommendation9.11)couldoccurinonestepwhentheircurrentagreementswithNSFex‐pire(September2016forAO,December2017forSondrestrom)orviaaprogressiveramp‐downtoward2020(to$1.1MforAOand$0forSondrestrom)uponexpirationoftheircurrentagree‐ments.Withoutastepchangeorramp‐downinfundingforthesefacilities,thenewinitiativesrec‐ommendedbythePRCwouldnothavesufficientfundstobeinplaceby2020.

IfNSFdivestsfromAOinthenearfutureoriftherecommendedlevelofsupportforAOpre‐ventsGSresearchers’futureaccesstothefacility,Recommendation9.16belowrecommendsanal‐ternativedispositionofthe$1.1MGScontributiontoAO.

TherecommendedchangesinGSinvestmentsinAOandSondrestrom,discountedbytheex‐pectedcostofjoiningEISCAT,open10%intheGSbudgetforimplementationofDSrecommenda‐tionsforNSF.Thiswedgefallsshortoftheestimated25%increaseintheGSbudgetrequiredforfullimplementationofDSrecommendations(Section3.2),butitdoesallowinitiationofimportantnewprogramelementsthatwillprovidecriticalcapabilities:ADistributedArrayofScientificIn‐struments(DASI)ProgramleadingtonewClass2facilities(seeSection7.2);aDataSystemsPro‐gramtoenabledeploymentofnewsystemsfordatamanagement,productsanddistribution,alsoexpectedtoevolveintonewClass2facilities;andanenduringInnovationandVitalityProgramforupgradestofacilitiesandmodels.Allareexpectedtobeinplaceby2020.

TheDRIVEinitiativeoftheDSdirectsNSFtoprovidefundingsufficientforessentialsynopticandmultiscaleobservations.Distributedmeasurementsarerequiredtoprovidesynopticground‐basedobservationsofgeospacephenomena.DASInetworkscanfulfillthisrequirement.Therecom‐mendedportfolioincludesanexplicitlineitemforDASIdevelopment,deploymentandoperation.

Recommendation9.12.TheGSshouldcreateanewDASIFacilitiesProgramwitha$1.6Mannualbudget.ThisfundshouldbeusedinitiallytodevelopandimplementoneormoreDASIClass2facili‐tieswithconceptselectiondeterminedbypeerreview.ForafullyoperationalDASItotransitiontoaClass2facility,itmustsatisfythecriteriaforacommunityfacilityasdefinedinSection7.2.

Inmostcases,operationalcostsforaDASIareexpectedtobelessthandevelopmentandimple‐mentationcosts.AsmoreDASIfacilitiesbecomeoperational,atsomepointtheannualbudgetforDASIwillbefullysubscribedbyDASIoperations.WhenthisoccursanewDASIcannotbedevelopedwithoutanincreaseintheGSbudgetforDASIorwithoutdefundingoneormoreexistingDASIfacil‐itiestomakefundsavailablefornewdevelopments.ArigorousseniorreviewforDASIprogramswillberequiredtodeterminethefutureoftheDASIprogram,andfuturenewinitiativesintheDASIprogram.

TheDecadalSurveycallsforNASAtoaugmentitsdatasystemssupportfortheHeliophysicsSystemObservatory(DecadalSurveyTable4.1).DatafromNSF‐sponsoredGBOsareincreasingly

Page 122: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  111  GS Portfolio Review  

beingcombinedwithHSOdataforsynopticstudiesofgeospacephenomena.GSground‐basedas‐setsineffectconstituteelementsofanemergingNSF‐sponsoredGeospaceSystemObservatory(GSO).NSFshouldaugmentitssupportforGSOdatasystems.TheMadrigalsystemdevelopedbytheMillstoneHillObservatorymanagesdatamainlyfortheAeronomycommunity.TheSuperMAGprojectmanagesdatafromUSandinternationalground‐basedmagnetometers.SuperDARNdataaremanagedbytheSuperDARNconsortium,anddatamanagementforAMPEREishandledbytheAMPEREPIinstitution.Otherdatasetsofutilityforgeospacesciencearebeingmanagedinamoreadhocmanner.ThePRCdoesnotnecessarilyadvocateasingledatasystemfordataderivedfromallGSassets,butmoreeffectivecoordinationofthesedatasetsanddevelopmentofvalue‐addeddataproductswouldimprovetheiraccessibilityandutilityforgeospacescience.KeyelementsoftherecommendeddataenvironmentarelistedinTable4.1oftheDecadalSurvey.

Recommendation9.13.TheGSshouldfundanewDataSystemsProgramfordataexploitationwithanannualbudgetof$0.5M,ofwhich$0.15MshouldberedirectedfromthecurrentMillstoneHillObservatorybudgetfortheMadrigalsystem.Selectionofaproposal(s)fordevelopmentandmanagementofthenewsystemshouldbedeterminedbypeerreview.Oncethesystembecomesfullyoperational,itshouldbecomeaClass2facility,withcompetitiverenewalsdeterminedbypeerreview.

AllGSfacilities,computermodelsanddatasystemsrequireperiodicupgradestomaintainstate‐of‐artcapabilities.AdedicatedGSfundforsuchupgradesdoesnotcurrentlyexist.Pastup‐gradeshavebeenadhoc,sometimesdealingwithurgentunscheduledmaintenanceorfailedcom‐ponents,andtheyareoftenfundedthroughnegotiationwithGSProgramManagers.Somefacilitieshaverequiredupgradesformanyyears,yetfundshavenotbeenavailableforthem.ThePRCrec‐ommendsanewenduringprogramdedicatedtomaintainingstate‐of‐artcapabilitiesofGSfacilities.

Recommendation9.14.TheGSshouldfundaFacilitiesInnovationandVitality(I&V)Programwithanannualbudgetreachingasteady‐statevalueof$2.7Mby2020.AllocationofI&VProgramfundsshouldbedecidedusingapeer‐reviewproposalprocesstodetermineimprovementsofgreatestvalueinanygivenyearforinstrument,facilityand/orcommunitymodelupgrades.ThebudgetscenarioinTable9.1providesnotionalbudgetaryguidanceonanapproximate,averagepar‐titionofthefundbetweeninstrumentandfacilityupgradesandmodelupgrades.

InreviewingtheConsortiumofResonanceandRayleighLidars(CRRL),whichisfundedasaGSfacility,thePRCreachedtheopinionthatCRRLascurrentlyorganizedanddirectedisnotoper‐atingasacommunityfacility(seeSections7.2and7.3).WhilethemeasurementtechniquesbeingadvancedbyCRRLandthemeasurementsthemselvesareinnovative,thePRCdoesnotrecommendfundingaPI‐ledresearchactivityfromthefacilitiesbudget.Suchresearchisappropriateforfund‐ingfromthecoreortargetedgrantsprograms.TheCRRLmightachievefacilitiesclassbyadoptingthecharacteristicsofcommunityengagementdescribedinSection7.2.Forthisreason,thebudgetforCRRLbecomeszeroby2020intherecommendedGSfacilitiesbudget.

ThebudgetscenariothatenablesthenewgrantsandfacilitiesprogramsdescribedaboveandlistedinTable9.1isillustratedinFigure9.2.ThescenariousesreprogrammedfundsfromtheSondrestrom($2.5M)andCRRL($1.2M)facilitylineitems,$3MoftheArecibobudget,aportionoftheCubeSatprogrambudget($0.5M)andtheMillstoneHillbudgetforcommunitydatasystems($0.2)toimplementthefirstphaseby2020.WithsubsequentdevelopmentofnewDASIfacilities,communityDataSystemsandaUSconsortiumforEISCATparticipation,thesefacilityelementsbecomeClass1/2facilitiesby2025.ThecurrentSpaceWeatherModelingprogramcombinedwith

Page 123: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  112  GS Portfolio Review  

therecommendedGrandChallengesProjectsprograminitiateanIntegrativeGeospaceScience(IGS)programby2020.Thisprogramisenvisionedtoacquire$2MofadditionalinvestmentfromprojectsalignedwithIGSgoalsandoriginallyfundedbytheTargetedGrantsprograms.

Theindividualfacilitiesbudgetsfor2015inTable9.1areaveragevaluesdeterminedfromthecurrent3‐or5‐yearawardtothefacility.TheexceptionisArecibo,whichisinitsfinalyearofaco‐operativeserviceagreement.ThelineitemforAreciboisitsFY2016budgetrequestedfromtheGS.

Arecibo

4.1

2.5

1.2

1.5

9.5

0.2

1.1Arecibo or MSP

2.7

1.6

0.5

1.0

Innovation& Vitality

DASI

Data Systems

EISCATSondrestrom

MH/Data Systems

CRRL

CubeSat

CubeSat

2015

2020

Reprogram

1.5

1.0

5.0

1.5

8.7

Grand ChallengeProjects

Space WeatherModeling

Targeted GrantsPrograms

1.1Arecibo or MSP

CubeSat

2025

1.0

5.0

6.7

Intgrative Geospace

Science(SWM and GCP)

TGP

2.7

Innovation& Vitality

Incorporationas facilities

3.1

3.1

2015 program elementsand facilities with budgets

reprogrammed by 2020

Figure 9.2.  Program elements in Table 9.1 with budget changes going from 2015 to 2020 and 2025. Son‐

drestrom, CRRL and the community data systems line item in Millstone Hill are eliminated as facilities by

2020.  The Arecibo budget is reduced from $4.1M to $1.1M. If NSF divests from Arecibo in the future, the

$1.1M for AO science is redirected to a GS Mid‐Scale Projects (MSP) line. The CubeSat program is reduced 

from $1.5M to $1.0M. New facilities development programs initiated by 2020 (EISCAT, Data Systems and

DASI) become incorporated as Class 1/2 facilities by 2025. Space Weather Modeling (SWM) is carried from

2015 to 2020 with a flat $1.5 M budget and is combined with the Grand Challenge Projects (GCP) program

(launched by 2020) to form an Integrative Geospace Science program by 2025. Their combined budgets

of $3M in 2020 grow to $5M by 2025 by acquiring $2M in projects from the Targeted Grants Programs. 

Page 124: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  113  GS Portfolio Review  

TherecommendedbudgetsforClass1andClass2facilitiesinTable9.1purposelydonotspec‐ifylineitemsforindividualfacilitiesin2025toemphasizethat(1)nofacilitynoritscurrentbudgetshouldbeconsideredenduringand(2)someturnoverinfacilitiesisconsideredhealthyasnewtechnologiesandnewscientificknowledgeandmeasurementtechniquesemerge.Thusinresponsetoevolvingscience,modeling,instrumentationandfacilitiesimperativesofthefuturesomeoftheGSfacilitiesin2025arelikelytobequitedifferentthanthosesupportedtoday.

Recommendation9.15.GoingforwardtheGSshouldstrivetomaintainabalancedportfolioofcut‐ting‐edgefacilitiesandshouldperiodicallyevaluatetheperformanceandbudgetofeachfacilityagainstDecadalSurveyandGeospaceSectionsciencegoalsusingtheFacilitiesSeniorReviewpro‐cessdescribedinSection7.8.

AMidscaleProjectsProgramrepresentsasignificantopportunityforaugmentationofGSsci‐ence,which,consideringthecompellingandmaturenatureofpotentialnext‐generationground‐basedobservatoriesdiscussedintheDS,islikelytoofferhighreturnoninvestmenttotheNSF.TheMidscaleProjectsProgramrecommendedbytheDSisintendedtofundprojectswithdevelopmentcostsintherangeof$4‐30M.Unfortunately,thiscostdoesnotfitintocurrentGSbudgetenvelopeandisnotexplicitlyincludedintherecommendationportfolioinTable9.1.However,asdiscussedinSection7.7,thePRCwouldrecommendaMidscaleProjectsProgramifoneorbothofthefollow‐ingconditionsaremet.

Recommendation9.16.IfuseoftheAreciboObservatoryisnolongeravailabletoGSresearchers,e.g.,duetodivestmentorinsufficientfundingforitscontinuingoperation,andtheGSbudgetre‐mainsatorabovetheflatfundinglevelassumedforthePortfolioReview,thentherecommendedannualfundingof$1.1MforAreciboshouldberedirectedtotheInnovationsandVitalityProgramdescribedinSection7.4.DependingoncommunityconsensusandtherecommendationsfromtheFacilitiesSeniorReviewrecommendedabove,asignificantportionofthisaugmentedI&VannualbudgetmightbeappliedtoinvestmentinanewMidscaleProjectProgram.

Recommendation9.17.IffutureGSbudgetsexceedtheflat‐budgetassumptionofthisreviewby$1Mperyearorgreater,thentheadditionalannualfundingshouldbedirectedtoaMidscalePro‐jectsProgram.

9.5. Prioritizations 

ThePRCwaschargedwithprioritizingelementsoftherecommendedportfolioinsufficientde‐tailtoenableGStomakesubsequentappropriateadjustmentsinresponsetovariationsinFederalandnon‐Federalfunding.ShouldfutureGSfundingbelessoptimisticthanflat,therecommendedportfolioinTable9.1giveshighestpriorityinrankordertothecoreandtargetedgrantsprograms,facilities,thespaceweathergrantsprogram,EISCATmembershipandthenewDataSystemsandDASIprograms.ThefacilitiesInnovationandVitalityprogramandtheGrandChallengeProjectsprogramarerankedequallyassecondpriorityprograms.TheFDSSandCubeSatprogramsarethelowestpriorityprogramsintheportfolio.

IffutureGSbudgetsaremoreoptimisticthanassumedforthisreview,anewMidscaleProjectsProgramshouldbeinitiatedwithhighestpriorityiftheadditionalfundsincludingsomeportionoftheI&Vlinearesufficienttofunda$4‐30Mmidscaleprojectoverafive‐yearperiod.Ifalesserbudgetincreaseoccurs,Priority1programsshouldbeaugmentedwithrelativeprogramincreaseslefttotheSection’sdiscretion,followedbyaugmentationintheGrandChallengeProjectsprogramthentheCubeSatprogram.

Page 125: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  114  GS Portfolio Review  

9.6. GS Management Processes 

ThePRCwouldliketoacknowledgecordialinteractionswithAGSDirectorPaulShepson,re‐centlyappointedSectionHeadThereseMorettoandallGSPMsandactingHeadsoverthecourseofthisreview.Theircandidopinionsandresponsestorequestsforinformationthroughouttheport‐folioreviewhelpedthePRCunderstandmanyaspectsofGSprograms.TheserequestsattimesmusthavebroughttomindtheSpanishInquisition.

ThepastyearhasbeenadifficulttimeoftransitionfortheGS,andthistransitionaddedcompli‐cationstothereviewprocessthatwerenotanticipatedwhenthecommitteeaccepteditscharge.Duringtheroughlyninemonthsofthereview,thePRCinteractedwiththreedifferentSectionHeads,twodifferentfacilityPMs,twodifferentAERPMs,andthethreestandingPMsfortheMAG,STRandSWRprograms.SomeoftheGSstaffwereontemporaryassignmenttotheSectionand,whileknowledgeableandcapable,werenotnecessarilypreparedtodealwiththedemandsofafirst‐everGSportfolioreview.Theyrespondedadmirably.

Changesinstaffandmanagementoccurinallorganizations,andthebeststrategyformanagingasmoothtransitionrequiresmaintainingahighdegreeoftransparencyinprogramoperationsandaccounting.ThePRCcanrecommendseveralimprovementsinGSorganizationalprocesses,whichwouldmakefuturereviewsofthistypemorestraightforwardandefficient,facilitatesmoothertran‐sitionsfortheinevitablechangesthatwilloccurinGSprogrammanagementandbuildstrongerre‐lationshipswiththeGScommunity.

Developaccurate,completeandtransparentlyunderstandabledatametrics,includingsuc‐cessrates(NSF‐standard)forallgrantsinthevariousprogramsoftheSection.Bothhistori‐caldataanddataforthecurrentfiscalyearareusefulforunderstandingtrendsandinas‐sessingthevitalityofthegrantsprograms;27

ConsiderasetoftheabovedefinedmetricstomakepublicallyavailableontheSection’swebportal;

SeparatefullyfundedGSresearchproposalsfromspecialcategoriesofawards,suchascon‐ferenceawards,MRIawardsandco‐fundedprojectssuchasCAREER,AGSPostdoc,NSF/DOEpartnership

Track,maintainandpublishdataonworkforceissues,e.g.,diversityandgender,forawardsandforpostdocsineachprogram.Forgrants,itwouldalsobedesirabletotrackyearssincethePIreceivedthePhD;

                                                            27 *Historical budget data (2014 and earlier) provided to the PRC for the GS programs changed with section heads during the portfolio review, indicating that the Section may not have a common and readily accessible extraction procedure or format for such data. The PRC received data on proposal success rates that were determined in at least three different ways, e.g., collaborative proposals were counted as one proposal by the NSF budget office and as multiple proposals by the GS based on the number of collaborating institutions. For the targeted programs (CE‐DAR, GEM, SHINE), the denominator in success rates appear to have been determined by the number of proposals received in the fiscal year rather than on proposal actions. Use consistent criteria for identifying facilities. The com‐mittee learned late in the review about one Class 2 facility not previously identified to the committee by either Fa‐cilities PM serving during the review, perhaps because different GS staff have different ideas about what consti‐tutes a facility.  The committee recommends using the criteria given in Section 7.2 to differentiate facilities from PI‐led research. 

Page 126: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final  115  GS Portfolio Review  

Asdifficultasitmaybetodoso,thePRCrecommendstrackingM&Ocostsingrantsandfa‐cilitiesawards.MaintainadatabasefortheportionoftheGSbudgetdevotedtoM&O.Ongo‐ingM&OintheGSGrantsprograms(versusGSFacilities)diminishesthefundsavailablefornewresearchprojects.ThenumberofDASIandDASI‐likeprojectsisexpectedtoincreaseinthefutureandtrackingtheirM&Ocostsmayappearinbothgrantsandfacilitiesprograms.AsdiscussedintheGSfacilitieschapter,suchissuesmayinsomecasesbearonthequalityofthefacility‐embeddedresearch;

EstablishguidelinesfordeterminingtheimpactsofencumberingprogramresourcesforM&Oofnewfacilitiesinitiativesbeforecommittingfuturebudgettothem.Forexample,thepeerreviewprocessforaninnovativenewDASItendstogenerateapositiverecommenda‐tiontofundit,butthereviewersarenotnecessarilyconsideringthebiggerpicture:WhatotherprograminvestmentswillbeimpactedbytakingonnewcontinuingM&Ocostsforthisproject?

GSoftenhastomakedifficultdecisions;thisportfolioreviewmakesseveralrecommenda‐tionstoprovideadditionalsupportindecision‐makingsuchastheSeniorReviewsandtheadvisorygroupsforClass1facilities.Communicatingtheoutcomes,rationaleandimpactsofdecisionsisanareawherefurtherdevelopmentsandtransparencyareencouraged.

Page 127: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final   A1   GS Portfolio Review 

Appendix A. Committee Charge 

National Science Foundation Directorate for Geosciences Division of Atmospheric and Geospace Sciences

Review of the Geospace Section Portfolio

Charge to the Review Committee

February 18, 2015

Context

This review is motivated in part by priorities highlighted for the Geospace scientific community in the National Research Council's (NRC) Decadal Survey: Solar and Space Physics – A Science for a Tech-nological Society (hereafter called the Survey) and by the current challenging outlook for the U.S. Federal budget.

The review is designed to examine the balance across the entire portfolio of activities supported by NSF’s Geospace Section (GS) within the Division of Atmospheric and Geospace Sciences (AGS). The primary goal of this review, and of any resulting adjustments of the GS portfolio, is to ensure that investments in the GS science disciplines and respective facilities are properly aligned, both now and in the future, with the needs and priorities of the Geospace scientific community, in part as articulated in the Survey.

The following boundary conditions will be adopted for the review:

All of the GS-funded activities should be considered together with the Survey recommendations: Core Programs of Aeronomy, Magnetospheric Physics, and Solar Terrestrial Research, focused programs CEDAR, GEM, and SHINE, elements of the new Space Weather Research & In-strumentation Program (CubeSats, space weather modeling, and other multi-user, space weather-related activities), components of the Geospace Facilities Program, such as the Incoherent Scatter Radar, Lidar Consortium, SuperDARN HF radars, and those activities spe-cifically designed to enhance educational opportunities, diversity, and international participa-tion.

The review should be forward-looking focusing on the potential of all funded facilities, programs, and activities for delivering the desired science outcomes and capabilities (while taking into account respective past performances) and considering the value of funded activities in terms of both intellectual merit and broader impacts.

The review should assume budget scenarios (to be provided by GS) to encompass the period from 2016 through 2025, and consider the costs of (i) continuing the existing observing capabilities and science-funded programs, as well as of (ii) new facilities and programs, including those recommended in the Survey and others the Review Committee may wish to introduce.

The Committee’s deliberations should take into consideration the national and international Ge-ospace Sciences landscape and the consequences of its recommendations for domestic and international partnerships.

The Charge

The Committee is asked to construct its recommendations around two themes:

1. Recommend the critical capabilities needed over the period from 2016 to 2025 that would enable progress on the science program articulated in Chapter 1 of the Sur-vey. These recommendations should encompass not only observational capabilities, but also theoretical, computational, and laboratory capabilities, as well as capabilities in research

Page 128: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final   A2   GS Portfolio Review 

support, workforce, and education.

2. Recommend the balance of investments in the new and in existing facilities, grants pro-grams, and other activities that would optimally implement the Survey recommendations and achieve the goals of the Geospace Section as articulated in the AGS Draft Goals and Ob-jectives Document (including NRC/BASC Review, 2014) and the GEO/Advisory Committee Document "Dynamic Earth: GEO Imperatives & Frontiers 2015-2020" (NSF, 2014). These recommendations may include closure or divestment of some facilities, as well as ter-mination of programs and other activities, and/or new investments enabled as a result. The overall portfolio must fit within the budgetary constraints provided to the Committee.

It is important that the Portfolio Review Committee considers not only what new activities need to be introduced or accomplished, but also what activities and capabilities will be potentially lost in enabling these new activities and discontinuing current activities.

The elements of the recommended portfolio should be prioritized in sufficient detail to enable GS to make subsequent appropriate adjustments in response to variations in Federal and non-Federal funding.

The Committee should consider the effects of its recommendations on the future landscape of the U.S. Geospace community. The recommended portfolio and any changes should be viable and lead to a vigorous and sustainable future. In particular, the Committee is asked to examine how the recommended portfolio supports and develops a workforce with the requisite abilities and diversity to exploit the recommended research and education investments.

The Committee will be a sub-committee of the Directorate for Geosciences Advisory Committee (AC/GEO). The Committee is asked to provide its recommendations by September 2015 for presentation to the AC/GEO, so NSF can consider them in formulating the FY 2017 Budget Request.

Portfolio Review Timeline

The timeline for this review is based on the desire for its results to inform on the input into the Fiscal Year 2017 budget process, and it is constrained by the needs to be initiated and reported to the GEO/Advisory Committee that meets in April/May and October/November each year.

The timeline for the Portfolio Review is as follows:

Finalize PR Committee membership (12-14 members; January 2015)

Develop criteria and strategy (January-February 2015)

GEO/Front Office approves the PR Charge and formation of PR Committee (Feb 2015)

Kick-off teleconference with GS/PR Committee (February 2015)

Collect data and begin assessment (February – March, 2015)

First PR Committee face-to-face meeting at NSF (March 2015)

Visiting selected facility sites (tentative; February – May, 2015)

Seeking community input via emails and workshops (March – June 2015)

PR Committee drafts their report (June - August 2015)

Second PR Committee face-to-face meeting at NSF (August 2015)

Submit GS Portfolio Review Report to GEO/Advisory Committee (September 2015)

GEO/Advisory Committee reviews the GS/PR Report (October 2015)

GS programs response to the PR Committee Report (November 2015)

Final (revised if necessary) GS/PR Report released (December 2015)

The detailed schedule for the Portfolio Review will be updated as events occur, milestones reached, and the process evolves.

Page 129: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final   A3   GS Portfolio Review 

Appendix B. Committee Membership 

WilliamLotko(Chair),DartmouthCollege

JoshuaSemeter(AC/GEOliaison),BostonUniversity

DanielN.Baker,UniversityofColorado‐Boulder

WilliamBristow(resignedMay2015),UniversityofAlaska‐Fairbanks

JorgeChau,Leibniz‐InstituteofAtmosphericPhysics(Germany)

ChristinaCohen,CaliforniaInstituteofTechnology

SarahGibson,HighAltitudeObservatory,NationalCenterforAtmosphericResearch

JosephHuba(appointedMay2015),NavalResearchLaboratory

MonaKessel,NASA/HQandGSFC

DeloresKnipp,UniversityofColorado‐Boulder

LouisLanzerotti,NewJerseyInstituteofTechnology

PatriciaReiff,RiceUniversity

AlanRodger,FormerlyBritishAntarcticSurvey

HowardSinger,NOAA/SpaceWeatherPredictionCenter

Page 130: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final   A4   GS Portfolio Review 

Appendix C. RFIs to Facility PIs 

C1.  Request for Information sent to all ISR PIs (AMISRs, AO, JRO, MH, Sondrestrom) 

Examination: ISR Facilities: 

Technical capabilities 

1. Describe the current capabilities of your ISR facility for addressing key science goals and key sci‐ence challenges described  in the recent Decadal Report for solar and space physics,  indicating recent improvements/modernizations. 

2. Describe the essential technical/engineering features and capabilities of your ISR facility, and why these are essential for your facility. 

3. How do these features and capabilities compare to state‐of‐the‐art astronomical and other radio capabilities, nationally and internationally?  

4. Has your facility conducted an independent review of its technical capabilities?   If so when, and the outcome?   If not, why?  

5. What international ISR facilities might be considered comparable to the capabilities of your facil‐ity? 

Maintenance and operations 

6. What is the current Maintenance and Operations (M&O) budget of your ISR facility and how has it changed in the last five years?   What is your total ISR budget if different than your M&O budget? 

7.  Does your facility receive funding from sources other than NSF Geoscience facilities (GF)? If so, how is the funding distributed among funding sources and main activities at your facility (M&O, Research, Solar/Mag/Aeronomy areas, ...) 

8. What fraction of your yearly ISR budget is devoted solely to M&O and what fraction is devoted to science, technology upgrades, and related, respectively? 

Strategic planning 

9. How often does your facility update its strategic plan? 

10. If more funding were available to your facility, how much would you require, where would it be invested and what would be the benefit for the US Geospace community?  

11. Has your facility interacted with other similar facilities in the last 5 years?  

12. Have you considered applying to medium sized grants in the last five years to develop your facili‐ties?  If not, why not? 

13. What are the biggest risks to the continued operation of the facility and how are they being miti‐gated?    

Page 131: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final   A5   GS Portfolio Review 

C2.  Request for Information sent to AMPERE PI 

Examination: Ampere Facility: 

Technical capabilities 

1. Describe the current capabilities of the AMPERE Facility products for addressing key science goals and key science challenges described  in the recent Decadal Report for solar and space physics, indicating recent developments. 

Maintenance and operations 

2. What fraction of the NSF AMPERE Facility yearly budget is devoted solely to producing and main‐taining the current data products, and what fraction is devoted to developing new products, sci‐ence, and other activities, respectively? How have these budgets changed over the last five years? 

3. What is the total yearly funding for AMPERE, and what are other sources and amounts of funding for routine operations, developing new products, science, and other activities, respectively? 

4. Approximately how  is AMPERE effort  and budget  split between providing products  for  space weather and for novel science research? 

Strategic planning 

5. What is the plan for AMPERE developments?   How often is this plan updated? 

6. If more funding were available to AMPERE, how much would be required, where would it be in‐vested and what would be the benefit for the US Geospace community? 

7. Are there plans to integrate AMPERE data with other data sets to produce further value‐added products?   

8. What are the biggest risks to the continued operation of the AMPERE facility?   How are they being mitigated?   

   

Page 132: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final   A6   GS Portfolio Review 

C3.  Request for Information sent to SuperMAG PI 

Examination: SuperMAG Facility 

Technical capabilities 

1. Describe the current capabilities of the SuperMAG facility products for addressing key science goals and key science challenges described in the recent Decadal Report for solar and space physics, indicating recent developments? 

Maintenance and operations 

2. What  fraction of  the NSF SuperMAG  facility yearly budget  is devoted  solely  to producing and maintaining the current data products, and what fraction is devoted to developing new products, science, data archiving, and other activities, respectively? How have these budgets changed over the last five years? 

3. What is the total yearly funding for SuperMAG, and what are other sources and amounts of fund‐ing for routine operations, developing new products, science, data archiving, and other activities, respectively? 

4. Approximately how is SuperMAG facility effort and budget split between providing products for space weather and for novel science research? 

Strategic planning 

5. What is the plan for SuperMAG developments?  How often is this plan updated? 

6. If more funding were available to SuperMAG, how much would be required, where would it be invested and what would be the benefit for the US Geospace community? 

7. Are there plans to integrated SuperMAG data with other data sets to produce further value‐added products?   

8. What are the biggest risks to the continued operation of SuperMAG?  How are they being miti‐gated?   

   

Page 133: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final   A7   GS Portfolio Review 

C3.  Request for Information sent to SuperDARN PI 

Examination: SuperDARN Facilities: 

Technical capabilities 

1. Describe the current capabilities of SuperDARN (the U.S. components and the international com‐ponent) for addressing key science goals and key science challenges described in the recent De‐cadal Report for solar and space physics, indicating recent improvements/modernizations. 

2. Can the US SuperDARN facilities be rank‐ordered by their contribution to the science defined in the Decadal Review? 

3. How do the technical/engineering features and capabilities of U.S. SuperDARN radars compare to state‐of‐the‐art astronomical and other radio capabilities, nationally and internationally? 

4. How much progress has been made since 2004 (Avery Report)  in gaining a more firm scientific understanding  of  the  source  and  behavior  of  the  irregularities  upon  which  the  SuperDARN backscatter relies for its results? 

Maintenance and operations 

5.  How are the individual U.S. radars coordinated and managed for the US Geoscience community?  

6. What fraction of the NSF U.S. SuperDARN yearly budget is devoted solely to M&O, and what frac‐tion is devoted to science, technology upgrades, and related, respectively?  How have these budg‐ets changed over the last five years?  

7. What is the total yearly funding of the U.S. SuperDARN?  What are other sources and amounts of funding for M&O, science, technology upgrades, data archiving and other activities, respectively? 

8. How much of the SuperDARN data is used for near‐real time space weather activities? 

Strategic planning 

9. Does the U.S. component of the SuperDARN consortium have a strategic plan? If so, how often is it updated? 

10. If more funding were available to SuperDARN, how much would be required, where would it be invested, and what would be the benefit for the US Geospace community?  

11. What are the biggest risks to the continued operation of the facility?  How are they being miti‐gated? 

   

Page 134: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final   A8   GS Portfolio Review 

C4.  Request for Information sent to CCMC PI 

Examination: CCMC Facility 

Technical capabilities 

1. Describe the current capabilities of the CCMC for addressing key science goals and key science challenges described in the recent Decadal Report for solar and space physics, indicating recent developments? 

2. Describe the decision process used to incorporate models into CCMC. Describe the decision pro‐cess for the termination of support for models. 

3. Describe the relationship for coordination with model development at HAO. 

4. Describe how the current suite of models at CCMC compares with other models, both in the USA and internationally. 

Maintenance and operations 

5. Describe how and by whom the priorities and the success criteria of CCMC are set each year. 

6. Provide information as to how often the various models are used each year.   Provide a breakdown between inside NASA and other users. 

7. What fraction of the NSF‐contributed CCMC yearly budget is devoted to maintaining the current suite of models, ingesting new models, setting up and running models for external scientists, sci‐ence research by CCMC‐funded staff, model archiving and other activities, respectively? How have these budgets changed over the last five years? 

8. What is the total yearly funding for CCMC, and what are the other sources and amounts of funding for maintaining the current suite of models, ingesting new models, setting up and running models for external scientists, science research by CCMC‐funded staff, model archiving and other activi‐ties, respectively. 

9. Are there any CCMC facility activities that could be considered for space weather in contrast to novel science research? 

Strategic planning 

10. What is the plan for CCMC developments?  How often is this plan updated? 

11. If more funding were available to CCMC, how much would be required, where would it be invested and what would be the benefit for the US Geospace community? 

12. What are the biggest risks to the continued operation of CCMC?  How are these being mitigated?   

   

Page 135: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final   A9   GS Portfolio Review 

C5.  Request for Information sent to CRRL PI 

Examination: Lidar Facilities: 

Technical capabilities 

1. Describe the current capabilities of the set of LIDAR installations for addressing key science goals and key science challenges described in the recent Decadal Report for solar and space physics, indicating recent improvements/modernizations. 

2. Can the LIDAR installations be rank‐ordered by their contribution to the science defined in the Decadal Review?  

3. Describe the coordination process for current individual PI‐led LIDAR instruments to obtain optimum research return. 

4. What are international LIDAR capabilities, and how do they compare to the U.S. capabilities? 

Maintenance and operations 

5. What fraction of the NSF U.S. LIDAR yearly budget is devoted solely to M&O, and what fraction is devoted to science, technology upgrades, and related, respectively?  How have these budg‐ets changed over the last five years? 

6. What is the total yearly funding of the LIDAR groups and what are other sources and amounts of funding for M&O, science, technology upgrades, data archiving and other activities, respec‐tively? 

Strategic planning 

7. Does the LIDAR PI‐group have a strategic plan?   If so, how often is it updated? 

8. If more funding were available to the LIDAR PI‐group, how much would be required, where would it be invested, and what would be the benefit for the US Geospace community?  

9. What are the biggest risks to the continued operation of the PI‐led LIDAR facility group?   How are they being mitigated?   

   

Page 136: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final   A10   GS Portfolio Review 

C5.  Request for Information sent to LISN PI 

Request for Information for LISN Facilities 

Technical capabilities 

1. Describe the current and any proposed capabilities of LISN (the U.S. components and the inter‐national components) for addressing key science goals (Chapter 1) and key science challenges (Chapter 2) described in the 2013 Decadal Survey Report for solar and space physics, indicating any recent or proposed improvements and modernizations in capabilities. 

2. How do the technical/engineering features and capabilities of the U.S. component of LISN com‐pare to similar or related state‐of‐the‐art capabilities, nationally and internationally? 

3. Describe the coordination process for current and any proposed LISN  instruments to obtain optimum research return for the US geospace science community. 

4. Please quantify the contribution to the design, build and deployment of the non‐US partners in the LISN project. 

Maintenance and operations 

5. We understand that NSF may not yet have decided or allocated yearly budgets for LISN. What are the proposed future yearly budgets from NSF starting with FY16? Please indicate the total proposed yearly budget and separate line items for LISN M&O, LISN science and LISN technol‐ogy upgrades? Describe very briefly the nature of the proposed science and technology up‐grades. What is the yearly budget for data storage and distribution to users (if these are not a part of M&O)?   How have the estimates for these budgets changed over the last five years?  What was the projected M&O budget included in the MRI proposal for LISN?  

6. What other sources and amounts of funding for M&O, science, technology upgrades, data ar‐chiving and other activities is LISN receiving from international partners and any non‐NSF US partners? 

7. How much of the LISN data are used for near‐real time space weather activities? 

Strategic planning 

8. Does the U.S. component of LISN have a strategic plan? If so, how often is it updated? What is the projected lifetime of LISN? 

9. If more funding were available to LISN, how much would be required, where would  it be  in‐vested, and what would be the benefit for the US geospace science community? 

10. What are the biggest risks to the continued operation of the facility? How are they being miti‐gated? 

 

Page 137: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final   A11   GS Portfolio Review 

Appendix D.  PI Diversity Data by GS Grants Program 

Table D1.  AER Awardees by gender and ethnicity, 2010‐2014 

PIs 2010‐14    

Asian  Black/AA1  Hispanic Multi‐ Racial 

Unknown  White  Total Fraction of awards 

Female 

Actions  23  0  0  0  10  30  63    

Awards  10  0  0  0  3  17  30  0.16 

Funding Rate  0.43           0.30     0.48    

Male 

Actions  47  1  13  0  13  243  317    

Awards  20  1  6  0  4  116  147  0.80 

Funding Rate  0.43  1.00  0.46     0.31     0.46    

Unknown 

Actions  1  0  0  0  18  5  24    

Awards  0  0  0  0  5  2  7  0.04 

Funding Rate  0           0.28  0.40  0.29    

Total 

Actions  71  1  13  0  41  278  404    

Awards  30  1  6  0  12  135  184    

Funding Rate  0.42  1.00  0.46  N/A  0.29  0.49  0.46    

Fraction of  total awards 

   0.16  0.01  0.03  0.00  0.07  0.73       

1 AA (African American)    

Page 138: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final   A12   GS Portfolio Review 

Table D2.   AER Awardees by gender and ethnicity, 2005‐2009 

PIs 2005‐09    

Asian  Black/AA1  Hispanic Multi‐ Racial 

Unknown  White  Total Fraction of awards 

Female 

Actions  16  2  0  0  6  30  54    

Awards  7  2  0  0  3  15  27  0.14 

Funding Rate  0.44        0  0.00  0.50  0.50    

Male 

Actions  52  12  20  2  16  336  438    

Awards  14  6  5  1  3  141  170  0.85 

Funding Rate  0.27  0.50  0.25  0.50  0.19  0.42  0.39    

Unknown 

Actions  1  0  0  0  5  6  12    

Awards  0  0  0  0  1  1  2  0.01 

Funding Rate              0.20     0.17    

Total 

Actions  69  14  20  2  27  372  504    

Awards  21  8  5  1  7  157  199    

Funding Rate  0.30  0.57  0.25  0.50  0.33  0.42  0.39    

Fraction of  total awards 

   0.11  0.04  0.03  0.01  0.04  0.79      

1 AA (African American)    

Page 139: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final   A13   GS Portfolio Review 

Table D3.    MAG Awardees by Gender and Ethnicity, 2010‐2014 

PIs 2010‐14    

Asian  Black/AA1  Hispanic Multi‐ Racial 

Unknown  White  Total Fraction of awards 

Female 

Actions  40  3  0  0  2  32  77   

Awards  14  3  0  0  1  9  27  0.18 

Funding Rate  0.35  1.00      0.50    0.35   

Male 

Actions  88  6  7  1  26  192  306   

Awards  28  2  3  1  11  77  114  0.77 

Funding Rate  0.32  0.33  0.43  1.00  0.42    0.37   

Unknown 

Actions  7  0  0  0  17  3  27   

Awards  0  0  0  0  6  1  7  0.05 

Funding Rate  0        0.35  0.33  0.26   

Total 

Actions  135  9  7  1  45  227  410   

Awards  42  5  3  1  18  87  148   

Funding Rate  0.31  0.56  0.43  1.00  0.40  0.38  0.36   

Fraction of  total awards 

   0.28  0.03  0.02  0.01  0.12  0.59     

1 AA (African American)    

Page 140: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final   A14   GS Portfolio Review 

Table D4.  MAG Awardees by Gender and Ethnicity, 2005‐2009 

PIs 2005‐09    

Asian  Black/AA1  Hispanic Multi‐ Racial 

Unknown  White  Total Fraction of awards 

Female 

Actions  12  0  0  0  1  23  36   

Awards  4  0  0  0  0  13  17  0.11 

Funding Rate  0.33      0  0.00  0.57  0.47   

Male 

Actions  95  8  8  1  21  214  347   

Awards  34  3  2  0  10  88  137  0.87 

Funding Rate  0.36  0.38  0.25  0.00  0.48  0.41  0.39   

Unknown 

Actions  4  0  0  0  8  4  16   

Awards  0  0  0  0  3  1  4  0.03 

Funding Rate  0        0.38  0.25  0.25   

Total 

Actions  111  8  8  1  30  241  399   

Awards  38  3  2  0  13  102  158   

Funding Rate  0.34  0.38  0.25  0.00  0.33  0.42  0.40   

Fraction of  total awards 

   0.24  0.02  0.01  0.00  0.08  0.65     

1 AA (African American)    

Page 141: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final   A15   GS Portfolio Review 

Table D5.    STR Awardees by Gender and Ethnicity, 2010‐2014 

PIs 2010‐14    

Asian  Black/AA1  Hispanic Multi‐ Racial 

Unknown  White  Total Fraction of awards 

Female 

Actions  21  1  5  0  11  35  73   

Awards  2  0  2  0  2  10  16  0.11 

Funding Rate  0.10  0.00  .4    0.18    0.47   

Male 

Actions  64  2  2  3  15  226  312   

Awards  18  0  2  3  4  82  137  0.87 

Funding Rate  0.28  0.00  1.00  1.00  0.27    0.39   

Unknown 

Actions  5  0  0  0  35  3  16   

Awards  0  0  0  0  9  0  4  0.03 

Funding Rate  0        0.26  0.00  0.25   

Total 

Actions  90  3  7  3  61  264  399   

Awards  20  0  4  3  15  92  158   

Funding Rate  0.22  0.00  0.57  1.00  0.25  0.35  0.40   

Fraction of  total awards 

   0.14  0.00  0.03  0.02  0.10  0.62     

1 AA (African American)    

Page 142: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final   A16   GS Portfolio Review 

Table D6.   STR Awardees by Gender and Ethnicity, 2005‐2009 

PIs 2005‐09    

Asian  Black/AA1  Hispanic Multi‐ Racial 

Unknown  White  Total Fraction of awards 

Female 

Actions  25  0  3  0  4  41  73   

Awards  7  0  2  0  2  17  28  0.22 

Funding Rate  0.28      0  0.00  0.41  0.38   

Male 

Actions  79  1  0  2  12  214  308   

Awards  19  0  0  1  3  74  97  0.77 

Funding Rate  0.24  0.00    0.50  0.25  0.35  0.31   

Unknown 

Actions  0  0  0  0  8  0  8   

Awards  0  0  0  0  1  0  1  0.01 

Funding Rate          0.13    0.13   

Total 

Actions  104  1  3  2  24  255  389   

Awards  26  0  2  1  6  91  126   

Funding Rate  0.25  0.00  0.67  0.50  0.33  0.36  0.32   

Fraction of  total awards 

   0.21  0.00  0.02  0.01  0.05  0.72     

1 AA (African American)    

Page 143: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final   A17   GS Portfolio Review 

IN ORBIT AWAITING LAUNCH NEW PROJECT Appendix E.  Summary of GS CubeSat Missions   

Mission, Launch   Leading Organizations  Science   Spacecraft Status  Comments 

RAX 2010 , 2011 

U Michigan SRI 

Ionospheric plasma regularities 1 of 2 S/C operated 18 months; mission complete 

30 Events, Data:rax.sri.com/raxdata.html 

DICE 2011 

Utah State U ASTRA LLC 

Storm time E‐fields,plasma density 

E‐field boom did not de‐ploy; mission complete 

Data archive not found

CINEMA 2012  UC Berkeley  Ring current dynamics Early comm failure Some magnetic field data

CSWWE 2012 

CU Boulder  Outer rad belt, solar energetic electron and protons 

Full operations; missioncomplete; 24 months 

Data at NSSDCwith Van Allen Probes 

FIREBIRD I, II 2013, 2015 

UNH, Montana State UAerospace 

Relativistic electronmicrobursts 

All SC operational Collecting Data

FIREFLY 2013 and FIRESTATION 

Siena College, NASA/GSFC Terrestrial gamma ray flashes S/C operational; mission nearing completion 

~60 Events Captured

EXOCUBE 2015 

U Wisconsin, Cal Poly, U IllinoisScientific Solutions 

Exospheric morphology, dynamics  Antenna did not deploy First light massspectrometer measurement 

CADRE  U Michigan, NRL  Thermospheric dynamics Awaiting Launch

LAICE  V Tech, U Ill, Aero Corp,  NWRA Atmospheric gravity waves Launch expected 2016

OPAL  USU, HISS (U. Maryland East Shore) Neutral temp profiles  90‐140 km alt Launch expected 2016

QBUS  U Michigan, CU Boulder, Stanford, U del Turabo, Draper Lab 

In situ lower thermospheric observa‐tion, spectrometer 

Project underway 2014;Launch expected 2018 

4 CubeSats to European QB50 Project 

ELFIN  UCLA, Aerospace Corp Relativistic particle PA distributions Project underway 2014

IT SPINS  JHU/APL, Montana State Um SRI UV nightglow radiance from O+ recomb  Initial funding

TRYAD  UA Huntsville, Auburn Terrestrial gamma‐ray Flashes Initial funding

ISX  Cal Poly, SRI  Ionospheric scintillation Initial funding

Page 144: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final   A18   GS Portfolio Review 

Appendix F.  Membership in EISCAT: Categories and Conditions  

Theappendixprovidesabriefoverviewofthemembershiptypeandconditions.TheelementstakendirectlyfromtheEISCATregulationsareininvertedcommas.Muchfurtherdetailsarepro‐videdintheEISCATBlueBook.28 

“TwolevelsofEISCATmembershipareavailable:AssociateandAffiliate.Associatemem‐bersmakealong‐termfinancialcommitmentatanationallevel.Thismembershipprovidesimme‐diateaccesstoallCommonProgram(CP)measurements,andgreaterinfluenceontheoperationandfuturedirectionofEISCAT.Affiliatemembershaveashorter‐termandsmallerfinancialcom‐mitment,gainimmediateaccesstotheCommonProgramandarenormallyindividualinstitutionsratherthannationalprograms.” 

Genericrequirement 

“NewAssociatesandAffiliatesneedtodemonstratescientificcompetenceonaninterna‐tionallevelandmustbepreparedtocontributetheirscientificexpertisetotheassociation.Theyareexpectedtocarryoutorfundbasicresearchthatispublishedininternationallyacceptedscientificjournalsand/ortohaveanindependentexternalscientificevaluationsysteminplace.” 

Associates 

“EISCATAssociatesenablethebasicconditionsforrunningtheAssociation,takefullre‐sponsibilityfortheAssociationanddeterminetheoveralldirectionofitsdevelopment.“TheyareexpectedtomakeasignificantinitialpaymentintotheAssociation,whichisusedtoachievetheAs‐sociation’sscientificandstrategicgoals,tocontributetotheEISCATsystem’soperationalcosts,maintenanceanddecommissioninginaproportionthatisrelatedtotheirinitialpaymentandthatallowsthattheminimumrequiredoperationcostsbecoveredbytheAssociates.AnAssociate’slong‐termcommitmentisfiveyearsonarollingbasis,i.e.,theymustgivefiveyears’noticebeforeleavingtheAssociation.AtpresenttheinitialpaymentofanewAssociateideallycorrespondstoatleast5%ofthetotalinvestmentcurrentlyplannedfornewEISCATinstruments.”EISCATisplan‐ningamajorinvestmentintothenewEISCAT‐3Dsystemthatisequivalenttoapproximately1100MSEK(118M€,~130M$).Therefore5%representsabout$6.5M(May2013costs).

“TheAssociatesdecideonacommonobservingprogramandondataformats.TheyhaveaccesstothearchiveddataoftheAssociation.Theirobservingtimeisguaranteedaccordingtoatime‐shareformuladevelopedbytheAssociation.AssociatesarenormallyNationalResearchCoun‐cils,theirequivalents,ormajornationalinstitutions.” 

CurrentAssociateMembersincludeNorway,Sweden,Finland,Japan,CanadaandtheUK. 

Affiliates 

“EISCATAffiliatescanjointheAssociationwithasmallerfinancialcontributionandwithlessresponsibilityandothercommitments.TheobservingtimeofAffiliatesisguaranteedbyanAs‐sociationtime‐shareformula.AffiliateshaveaccesstothearchiveddataoftheAssociation.Theex‐pectedminimumpaymentofanAffiliatetotheAssociationcoversthecostofobservingtimeforanAffiliatetorunatleastoneindependentobservationalcampaignperyear.”Thiscorrespondstoa

                                                            28 www.eiscat.se/eiscat2014/eiscat‐bluebook‐draft‐2015‐version‐2014‐04‐02/view 

Page 145: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final   A19   GS Portfolio Review 

minimumfeeequivalentto100KSEK(€11K,~$12K)(2014costs).“Affiliateswillnormallybein‐dividualinstitutionsorfoundations”. 

CurrentAffiliateMembersareRussia,FranceandUkraine.Koreamayjoininthenearfu‐ture. 

“TheEISCATAssociatesestablishthegoverningEISCATCouncilanditscommittees.Affili‐ateshavevestedmembershipintheEISCATScienceAdvisoryCommitteeandobserverstatusinCouncil.” 

In2014,theEISCATAssociatespaidbetween~170k$and667k$perannumtotheM&OofEISCATandthiscontributionprovidedbetween10‐30%ofEISCATSpecialTime. 

ThedistributionoftimeonEISCATis 

SpecialProgramTime:51% 

CommonProgramTime:38% 

PeerReviewTime(openlycompeted):8% 

EISCATTimefordevelopment:2% 

Page 146: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final   A20   GS Portfolio Review 

Appendix G.  List of ACRONYMS 

AAGS:AntarcticAstrophysicsandGeospaceSciencesprogramACR:AnomalousCosmicRaysAER:AERonomyAGS:AtmosphericandGeospaceSciencesAIM:Atmosphere‐Ionosphere‐MagnetosphereAIMI:Atmosphere‐Ionosphere‐MagnetosphereInteractionsAFOSR:AirForceOfficeofScientificResearchAMISR:AdvancedModularIncoherentScatterRadarAMPERE:ActiveMagnetosphereandPlanetaryElectrodynamicsResponseExperimentASP:AdvancedStudiesProgramAST:ASTronomicalsciencesATST:AdvanceTechnologySolarTelescopeBBSO:BigBearSolarObservatoryCCMC:CommunityCoordinatedModelingCenterCEDAR:Coupling,Energetics,andDynamicsofAtmosphericRegionsCISL:ComputationalandInformationSystemsLaboratoryCISM:CenterforIntegratedSpaceweatherModelingCME:CoronalMassInjectionCOSMO:COronalSolarMagnetismObservatoryCOSTEM:CommitteeonScience,Technology,Engineering,andMathematicsCOV:CommitteeofVisitorsCRRL:ConsortiumofResonanceandRayleighLidarsDASI:DistributiveArrayofScienceInstrumentsDKIST:DanielK.InouyeSolarTelescopeDRIVE:Diversify,Realize,Integrate,Venture,EducateDoD:DepartmentofDefenseDPP:DivisionofPolarProgramsDS:DecadalSurveyDURIP:DefenseUniversityResearchInstrumentationProgramEISCAT:EuropeanIncoherentSCAtterScientificAssociationELF:ExtremelyLowFrequencyENA:EnergeticNeutralAtomsEPSCoR:ExperimentalProgramtoStimulateCompetitiveResearchFASR:FrequencyAgileSolarRadiotelescopeFDSS:FacultyDevelopmentintheSpaceSciencesFPI:Fabry‐PerotInterferometerGEM:GeospaceEnvironmentModelingGBO:GroundBasedObservatory

Page 147: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final   A21   GS Portfolio Review 

GCM:GeneralCirculationModelGCP:GrandChallengeProjectsGCR:GalacticCosmicRayGIC:GeomagneticallyInducedCurrentsGONG:GlobalOscillationNetworkGroupGS:GeospaceSectionGSO:GeospaceSystemObservatoryHAO:HighAltitudeObservatoryHF:HighFrequencyHSO:HeliosphericSystemObservatoryIBEX:InterstellarBoundaryEXplorerICON:IonosphericCONnectionexplorerIGS:IntegratedGeospaceScienceINSPIRE:IntegratedNSFSupportPromotingInterdisciplinaryREsearchISR:IncoherentScatterRadarI‐T:Ionosphere‐ThermosphereI&V:InnovationandVitalityKP:KittPeakobservatoryLISN:Low‐latitudeIonosphericSensorNetworkLISM:LocalInterStellarMediumMAG:MAGnetosphereMHD:MagnetoHydroDynamicsMLSO:MaunaLoaSolarObservatoryMMS:MagnetosphericMultiscaleMissionM&O:ManagementandOperationsMPS:MathematicalandPhysicalSciencesMREFC:MajorResearchEquipmentandFacilitiesConstructionMRI:MajorResearchInstrumentationprogramMSIS:MassSpectrometerandIncoherentScatterradarmodelMURI:MultidisciplinaryUniversityResearchInitiativeNASA:NationalAeronauticsandSpaceAdministrationNCEI:NationalCenterofEnvironmentalInformationNCEP:NationalCenterforEnvironmentalPredictionNIST:NationalInstituteofStandardsandTechnologyNCAR:NationalCenterforAtmosphericResearchNOAA:NationalOceanicandAtmosphericAdministrationNRAO:NationalRadioAstronomyObservatoryNSF:NationalScienceFoundationNSO:NationalSolarObservatoryNWS:NationalWeatherService

Page 148: GS Portfolio Review FINAL 3 - NSFFinal 2 GS Portfolio Review Budget implications of the PRC recommendations are given at two snapshots in the future (Chap‐ ter 9). The first snapshot

Final   A22   GS Portfolio Review 

O2R:OperationstoResearchONR:OfficeofNavalResearchOSTP:OfficeofScienceandTechnologyPolicyPFISR:PokerFlatIncoherentScatterRadarPI:PrincipalInvestigatorPLR:PoLaRprogramsPRC:PortfolioReviewCommitteeR2O:ResearchtoOperationsRISR‐C:ResolutebayIncoherentScatterRadar‐CanadaRISR‐N:ResolutebayIncoherentScatterRadar‐NorthfaceR‐MHD:RadiativeMagnetoHydroDynamcisS2I2:SoftwareInfrastructureforSustainedInnovationSEP:SolarEnergeticParticlesSFO:SanFernandoObservatorySHINE:SolarHeliosphericandINterplanetaryEnvironmentSOLIS:SynopticOpticalLong‐termInvestigationoftheSunSP:SacramentoPeakobservatorySSP:SolarandSpacePhysicsSTEM:Science,Technology,EngineeringandMathSTEREO:SolarTErrestrialRElationsObservatorySTC:ScienceTechnologyCenterSTR:Solar‐TerrestrialRelationsSWM:NASA/NSFCollaborativeSpaceWeatherModelingSWMI:SolarWindMagnetosphereInteractionSWPC:SpaceWeatherPredictionCenterSWR:SpaceWeatherResearchSuperDARN:SuperDualAuroralRadarNetworkTEC:TotalElectronContentTHEMIS:TimeHistoryofEventsandMacroscaleInteractionsDuringSubstormsTIEGCM:ThermosphereIonosphereElectrodynamicsGeneralCirculationModelTSI:TotalSolarIrradianceUCAR:UniversityCentersforAtmosphericResearchUV:UltraVioletVLF:VeryLowFrequencyVSO:VirtualSolarObservatoryWACCM:WholeAtmosphereCommunityClimateModelWACCM‐X:WholeAtmosphereCommunityClimateModeleXtendedWSO:WilcoxSolarObservatoryWPI:Wave‐ParticleInteraction