ground-based estimation of the aircraft mass, adaptive … · ground-based estimation of the...

51
Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA - IRIT/APO USA/Europe Air Traffic Management R&D Seminar, 2013 R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 1 / 33

Upload: dangtu

Post on 14-Sep-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method

R. Alligier D. Gianazza N. Durand

ENAC/MAIAA - IRIT/APO USA/Europe Air Traffic Management R&D Seminar, 2013

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 1 / 33

Page 2: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Introduction

altitude

£ ) e ; [ / +

+

+

+

R Alllg1er, D G1anazza, N Durand (ENAC) Est1mat1on of the Aircraft Mass ATM 2013 2133

Page 3: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Introduction

altitude

£ ) e+ ; l / .

+

+

+

R Alllg1er, D G1anazza, N Durand (ENAC) Est1mat1on of the Aircraft Mass ATM 2013 2133

Page 4: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Introduction

altitude

+

+

+

+

£ ) e+ ; l / .

+

+

+

R Alllg1er, D G1anazza, N Durand (ENAC) Est1mat1on of the Aircraft Mass ATM 2013 2133

Page 5: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Introduction

altitude • +

+

+

+ + +

+

+

+

R Alllg1er, D G1anazza, N Durand (ENAC) Est1mat1on of the Aircraft Mass ATM 2013 2133

Page 6: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

An energy-rate oriented approach

Newton’s laws 1 dv 2

2 dt dt + g =

dz power (mass)

ener

g y-rate _

mass

f (m a ss)

_

f is given by a physical model of the forces

Using past positions given by radar

We compute the observed energy-rate from radar data We search a mass such that:

observed energy-rate = f (mass)

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 3 / 33

Page 7: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Objective

Previous work [Schultz et al., 2012] An adaptive method

Synthesized data Without noise

[Alligier et al., 2012] A least square method Real data No result on the mass estimation accuracy

In this work

Synthesized data generated using BADA 3.9 Gaussian noise added to the observed variables BADA 3.9 model of forces is used to estimate the mass Comparison of the mass estimation accuracies

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 4 / 33

Page 8: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

1 Computing the power provided by BADA mass

2 The adaptive method [Schultz et al., 2012]

3 The least square method [Alligier et al., 2012]

4 Results

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 5 / 33

Page 9: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

1 Computing the power provided by BADA mass

2 The adaptive method [Schultz et al., 2012]

3 The least square method [Alligier et al., 2012]

4 Results

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 6 / 33

Page 10: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

A Point Mass Model

\

Weight

d V s . m. = Thr- 0 - m.g.sm(!)

" ATM 2013 7 / 33 R Alii W->r [1 1 l i.J i l ::J22:3 r J Durand (Et'-IAI I Estim ation of the A i rcraf t Mass

Page 11: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

A simplified model (longitudinal+vertical)

VTAS.

d VTAS

dt + g. =

dt dz (Thr − D).VTAS

ener g y-rate

_

m p ow er

mass

_

z: altitude Thr (Thrust): thrust of the engines D (Drag): drag of the aircraft m: mass VTAS (True Air Speed): velocity in the air dVTAS

dt : longitudinal acceleration dz dt = VTAS.sin(γ): rate of climb

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 8 / 33

Page 12: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

The BADA contribution

VTAS.

d VTAS

dt + g. =

dt dz (Thr − D).VTAS

ener g y-rate

_

m p ow er

mass

_

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 9 / 33

Page 13: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

The BADA contribution

VTAS.

d VTAS

dt + g. =

dt dz (Thr − D).VTAS

ener g y-rate

_

m p ow er

mass

_

BADA model Max climb thrust: Thr = f (T , VTAS, z) Drag: D = f (T , VTAS, z, m)

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 9 / 33

Page 14: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

The BADA contribution

VTAS.

d VTAS

dt + g. =

dt m dz (Thr − D).VTAS

ener g y-rate

_ p ow er

mass

_ = f (T , VTAS, z , m)

BADA

model

_

BADA model Max climb thrust: Thr = f (T , VTAS, z) Drag: D = f (T , VTAS, z, m)

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 9 / 33

Page 15: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Equation at a given point

VTAS.

d VTAS

dt + g. =

dt m dz (Thr − D).VTAS

ener g y-rate

_ p ow er

mass

_ = f (T , VTAS, z , m)

BADA

model

_

Using radar and weather data, we know : T , VTAS, z, dz , dt dt

dVTAS

We want to adjust the mass m

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 10 / 33

Page 16: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Equation at a given point

VTAS. d VTAS dt + g. dt =

m dz

ener

g y-rate

_

(Thr − D). VTAS

p ow er

mass

_ = f ( T , VTAS , z , m)

BADA

model

_

Using radar and weather data, we know :

T , VTAS , z , dz , dVTAS dt dt

We want to adjust the mass m

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 10 / 33

Page 17: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Equation at a given point

VTAS. d VTAS dt

+ g. dt = dz

ener g y-rate

_

(Thr − D). VTAS

m p ow er

_ mass

Using radar and weather data, we know :

= f ( T , VTAS , z , m )

BADA

model

_

T , VTAS , z , dz , dVTAS dt dt

We want to adjust the mass m

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 10 / 33

Page 18: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Equation at a given point

VTAS. d VTAS dt + g. dt = dz

ener

g y-rate

_

(Thr − D). VTAS

m p ow er

_ mass

Using radar and weather data, we know :

= f ( T , VTAS , z , m )

BADA

model

_

T , VTAS , z , dz , dVTAS dt dt

We want to adjust the mass m

E ene

r g y-_rate

= f ( T , VTAS , z , m )

BADA

model

_

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 10 / 33

Page 19: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Equation at a given point

VTAS. d VTAS dt + g. dt = dz

ener

g y-rate

_

(Thr − D). VTAS

m p ow er

_ mass

Using radar and weather data, we know :

= f ( T , VTAS , z , m )

BADA

model

_

T , VTAS , z , dz , dVTAS dt dt

We want to adjust the mass m

E ene

r g y-_rate

= f ( T , VTAS , z , m ) =

BADA

model

_ P ( m )

m _ P , a known function

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 10 / 33

Page 20: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

1 Computing the power provided by BADA mass

2 The adaptive method [Schultz et al., 2012]

3 The least square method [Alligier et al., 2012]

4 Results

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 11 / 33

Page 21: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

The adaptive method [Schultz et al., 2012]

Principle We assume an initial guess m0

At each point i, the mass mi is estimated using mi− 1

Ei = Pi (mi )

m i

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 12 / 33

Page 22: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

The adaptive method [Schultz et al., 2012]

Principle We assume an initial guess m0

At each point i, the mass mi is estimated using mi− 1

Ei = Pi (mi )

m i ⇔ mi =

Pi (mi ) E i

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 12 / 33

Page 23: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

The adaptive method [Schultz et al., 2012]

Principle We assume an initial guess m0

At each point i, the mass mi is estimated using mi− 1

Ei = Pi (mi )

m i ⇔ mi =

Pi (mi ) E i

Pi (mi − 1 ) E i

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 12 / 33

Page 24: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

The adaptive method [Schultz et al., 2012]

Principle We assume an initial guess m0

At each point i, the mass mi is estimated using mi− 1

Ei = Pi (mi )

m i ⇔ mi =

Pi (mi ) E i

Pi (mi − 1 ) E i

At each new point i, we have:

mi = Pi (mi − 1 ) E i

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 12 / 33

Page 25: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Introduction of the sensitivity parameter β [Schultz et al., 2012]

The previous update formula can be rewritten:

mi = mi− 1

1 +

mi − 1 (

Pi (mi− 1) mi− 1 Ei − Pi (mi − 1 )

error on the

energy rat

_e

when using mi− 1

− 1

Introducing a sensitivity parameter βi :

mi = mi− 1 1 + βi P (m mi − 1

(

i i− 1 ) Ei − Pi (mi − 1 )

l −

i− 1 m

1

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 13 / 33

Page 26: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Logic of the sensitivity parameter β [Schultz et al., 2012]

mi = mi− 1 1 + βi P (m

mi − 1

(

i i− 1 ) Ei − Pi (mi − 1 )

l −

i− 1 m

1

Let ∆ E i = 1 gVTAS

(Ei − Pi (mi− 1)

\, β is updated using this rule: mi− 1

if i > 0 and ∆ E i > 0.0001

and ∆ E − ∆ E i

avg < 3 ∆ Eavg

then βi = max (0.205, βi− 1 + 0.05)

else βi = 0.005

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 14 / 33

Page 27: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Logic of the sensitivity parameter β [Schultz et al., 2012]

mi = mi− 1 1 + βi P (m

mi − 1

(

i i− 1 ) Ei − Pi (mi − 1 )

l −

i− 1 m

1

This mechanism increases robustness If ∆ E i repeatedly high in the same order of magnitude, β will increase, strengthening adaptation Isolated low or high ∆ E i has a lower impact on adaptation

The variation is limited

The variation is limited to 2% of the reference mass The estimated mass is kept within 80% and 120% of the reference mass

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 15 / 33

Page 28: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

1 Computing the power provided by BADA mass

2 The adaptive method [Schultz et al., 2012]

3 The least square method [Alligier et al., 2012]

4 Results

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 16 / 33

Page 29: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

The least square method [Alligier et al., 2012]

Principle All the points are considered at once Minimizes the sum of square error on the energy rate

At each point i, we have:

Pi (mi ) = E mi

i

However, the different masses are not independant variables ⇒ These equations above cannot be satisfied altogether (in general) Then, we search (m1, . . . , mn) minimizing:

n E (m1, . . . , mn) =

' \ "

i= 1

( P (m ) i i mi

− Ei 2

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 17 / 33

Page 30: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Relationship between the mi

fuel consumption BADA model of the fuel consumption:

dm dt

= −f (T , VTAS, z)

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 18 / 33

Page 31: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Relationship between the mi

fuel consumption BADA model of the fuel consumption:

dm dt

= −f ( T , VTAS , z )

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 18 / 33

Page 32: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Relationship between the mi

fuel consumption BADA model of the fuel consumption:

dm dt

= −f ( T , VTAS , z )

tn mi = mn + f (T (t ), VTAS(t ), z(t ))dt

ti

⇒ mi mn + ' \ " n− 1 f (t

k = i

k + 1 ) + f (t ) k (tk + 1 − tk ) 2

⇒ mi = mn + δi

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 18 / 33

Page 33: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Minimizing this error

The error function can be rewritten:

n E (m1, . . . , mn) = E (mn) =

' \ "

i= 1

( P (m + δ ) i n i mn + δi

− Ei 2

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 19 / 33

Page 34: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Minimizing this error

The error function can be rewritten:

n E (m1, . . . , mn) = E (mn) =

' \ "

i= 1

( P (m + δ ) i n i mn + δi

− Ei 2

Minimizing this error can be done by solving:

E /(m) = 0

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 19 / 33

Page 35: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Minimizing this error

The error function can be rewritten:

n E (m1, . . . , mn) = E (mn) =

' \ "

i= 1

( P (m + δ ) i n i mn + δi

− Ei 2

Minimizing this error can be done by solving:

E /(m) = 0 With the BADA model, Pi polynomial of the second degree

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 19 / 33

Page 36: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Minimizing this error

The error function can be rewritten:

n E (m1, . . . , mn) = E (mn) =

' \ "

i= 1

( P (m + δ ) i n i mn + δi

− Ei 2

Minimizing this error can be done by solving:

E /(m) = 0

With the BADA model, Pi polynomial of the second degree ⇒ Solving E /(m) = 0 leads to find roots of a polynomial of degree at most 3(n − 1) + 4

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 19 / 33

Page 37: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Minimizing this error

The original error function:

n E (mn) =

' \ "

i= 1

( P (m + δ ) i n i mn + δi

− Ei 2

⇒ Numerical issues solving E /(m) = 0

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 20 / 33

Page 38: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Minimizing this error

The original error function:

n E (mn) =

' \ "

i= 1

( P (m + δ ) i n i mn + δi

− Ei 2

⇒ Numerical issues solving E /(m) = 0 An approximated error function:

n Eapprox (mn) =

' \ "

i= 1

( P (m + δ ) i n i mn + δavg

− Ei 2

with: δavg = 1 �n δi n i= 1

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 20 / 33

Page 39: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Minimizing this error

The original error function:

n E (mn) =

' \ "

i= 1

( P (m + δ ) i n i mn + δi

− Ei 2

⇒ Numerical issues solving E /(m) = 0 An approximated error function:

n Eapprox (mn) =

' \ "

i= 1

( P (m + δ ) i n i mn + δavg

− Ei 2

with: δavg = 1 �n δi n i= 1

⇒ Solving E /approx (m) = 0 leads to find roots of a polynomial of degree 4

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 20 / 33

Page 40: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

1 Computing the power provided by BADA mass

2 The adaptive method [Schultz et al., 2012]

3 The least square method [Alligier et al., 2012]

4 Results

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 21 / 33

Page 41: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Synthesized aircraft trajectories

Each trajectory BADA 3.9 Trajectories start at altitude 12,000 ft Each 12 seconds, we observe: T ,VTAS, z, dz , dt dt

dVTAS

Trajectories of 4 minutes long (ie. 21 points) Each set of trajectories

Contains 1,000 trajectories of a given aircraft type Distribution of the parameters used to generate trajectories

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 22 / 33

parameter distribution CAS CASref + uniform([−30; 30]) Mach Machref + uniform([−0.03; 0.03]) ∆T uniform([−20; 20])

mass massref × uniform([0.8; 1.2])

Page 42: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Adding a Gaussian noise

Principle Given one variable among T ,VTAS, z, dz , dt dt

dVTAS and a standard deviation σ:

1 We draw errors from the Gaussian distribution For each observation of the choosen variable, the error is added to the observed value

2

For instance, if we have chosen T and σT = 2K : 1 We draw 1, 000 × 21 values from N (0, 2)

These 21, 000 values are added to the 21, 000 observations of T 2

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 23 / 33

Page 43: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Results: Noise on z

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

σHp [ft]

RM

S 10

0 ×

m

estim

ated

− m

actu

al

m

actu

al

÷

[%]

● ●

Weight Adaptation A320 A333 B744

Least Square ● A320 ● A333 ● B744

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 24 / 33

Page 44: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Results: Noise on T

● ●

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

σT [K]

RM

S 10

0 ×

m

estim

ated

− m

actu

al

m

actu

al

÷

[%]

Weight Adaptation A320 A333 B744

Least Square ● A320 ● A333 ● B744

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 25 / 33

Page 45: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Results: Noise on VTAS

● ● ●

0 10 20 30 40

0 1

2 3

σVa [kts]

RM

S 10

0 ×

m

estim

ated

− m

actu

al

m

actu

al

÷

[%]

● ●

● ● ●

Weight Adaptation A320 A333 B744

Least Square ● A320 ● A333 ● B744

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 26 / 33

Page 46: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Results: Noise on dVTAS dt

● ●

0.00 0.05 0.10 0.15 0.20

0 1

2 3

4

σdVa [kts/s] dt

RM

S 10

0 ×

m

estim

ated

− m

actu

al

m

actu

al

÷

[%]

● ●

Weight Adaptation A320 A333 B744

Least Square ● A320 ● A333 ● B744

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 27 / 33

Page 47: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Results: Noise on dz dt

● ●

0 100 200 300 400 500 600 700

0 1

2 3

4 5

σdHp [ft/min] dt

RM

S 10

0 ×

m

estim

ated

− m

actu

al

m

actu

al

÷

[%]

● ●

●●

Weight Adaptation A320 A333 B744

Least Square ● A320 ● A333 ● B744

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 28 / 33

Page 48: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Conclusion

accuracy Both methods gives a good estimation of the mass Least square method performs slightly better

Beyond accuracy

Adaptive method is simpler to implement than the least square method Adaptive method can use a black box model of the power Adaptive method needs more points to give a good estimate of the mass Adaptive method demands to tune the β sensitivity parameter

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 29 / 33

Page 49: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Further work

Comparing these two methods on real data Use the estimated mass in machine learning techniques

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 30 / 33

Page 50: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Thank you, any questions ?

I

R All1g1er D G1anazza. N Durand (ENAC) Est1mat1on of the Aircraft Mass ATM 2013 31 /33

Page 51: Ground-based Estimation of the Aircraft Mass, Adaptive … · Ground-based Estimation of the Aircraft Mass, Adaptive vs. Least Squares Method R. Alligier D. Gianazza N. Durand ENAC/MAIAA

Alligier, R., Gianazza, D., and Durand, N. (2012). Energy Rate Prediction Using an Equivalent Thrust Setting Profile (regular paper). In International Conference on Research in Air Transportation (ICRAT), Berkeley, California, 22/05/12-25/05/12, page (on line), http://www.icrat.org. ICRAT.

Schultz, C., Thipphavong, D., and Erzberger, H. (2012). Adaptive trajectory prediction algorithm for climbing flights. In AIAA Guidance, Navigation, and Control (GNC) Conference.

R. Alligier, D. Gianazza, N. Durand (ENAC) Estimation of the Aircraft Mass ATM 2013 32 / 33