grimaldiandengel 2005 - university of san diegohome.sandiego.edu/~gmorse/2015biol348/website/... ·...

51
Grimaldi and Engel 2005

Upload: others

Post on 27-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Grimaldi  and  Engel  2005

  • Current  Views  on  Insect  Diversity

    Mina Krenz Dan Chou

  • Phylogenomics  resolves  the  timing  and  pa@ern  of  insect  

    evolutionMisof B. et al 2014

  • Why  Study  Insect  Phylogeny?

    •  Insects represent one of the earliest animals to make their way to terrestrial and aquatic environments

    •  Due to having a multitude of species, the phylogeny of insects are still well debated to this day

    •  Must reconstruct timelines of insect diversification in order to understand the changes in their physiology and morphology

  • Summary  of  the  methods•  1478 nuclear genes from 144 extant taxa •  More than 2.5 gigabases from each of the 103

    species they studied •  Estimating divergence events via 37 fossil records •  Maximum Likelihood of mutations in DNA and

    amino acids (rather than maximum parsimony)

  • Boot-‐‑Strapping•  Acts as a resampling method in statistics •  Selects a number of base pairs to see how sensitive

    results are to exclusion of some data. •  Resampling data to see how robust and strong it is

    against randomization. •  See conflict in data by providing: confidence

    intervals, variance, errors, etc.

  • Paleoptera

  • Relationship  between  Odonates  and  Ephemeroptera

    •  The data indicates that Odonata and Ephemeroptera are nested within the Paleoptera

    •  However, this analysis is supported by a low boot-strapping

    •  What might this mean? o  Odonates and Ephemeroptera possibly paraphyletic?

    •  Why is it difficult to determine the relationships in Paleoptera?

  • Relationship  between  Odonates  and  Ephemeroptera

    •  Paleoptera only have two extant lineages, even though they derive from all the way back in the Carboniferous

    •  Most likely Odonata and Ephemeroptera divided shortly after Paleoptera and Neoptera diverged, so huge variance between two Orders

    •  Long time span for Ephemeroptera and Odonata to diverge through gene mutations

  • NeopteraPolyneoptera, Holometabola/Endometabolous and

    Paraneoptera***

  • Holometabolous•  Strong statistical support for the well-nested group

    of Holometabolous •  High diversity of Hymenoptera, Diptera, and

    Lepidoptera in early Cretaceous

  • Polyneoptera•  Previous study supported the monophyly in groups

    such as Hexapoda, Insecta, Pterygota, Neoptera, Paraneoptera, and Holometabolous

    •  However, there was weaker support for a monophyletic Polyneoptera (Kjer et al 2006)

  • Polyneoptera•  Misof et al strongly support the monophyletic group

    of the Polyneoptera •  Boom in diversity of Blattodea, Mantodea, and

    Plasmodea in Permean extinction.

  • Polyneoptera

    Holometabolous/Endopterygota

  • Paraneoptera•  The results suggest a diverge of Psocodea from the

    rest of the Paraneoptera, forming a paraphyletic group

    •  The results show that Psocodea in fact a sister taxa to the Holometabolous

    •  Yet this claim does not have statistical support •  Why include this data if it is not backed?

  • Age  of  Psocodea  Taxa?•  The study claims that that parasitic lice (Menopan

    and Pediculus) arose in around 53mya with the emergence of the avian and mammalian taxa.

    •  However, their analysis looks at the crown clade, rather than the stem clade from the remaining

    •  Stem shows an arrival of parasitic lice ~130 mya, at the arrival of feathered theropod dinosaurs

  • Food  for  Thought•  In your opinion, how to these results compare to

    what has been presented in class/in the book (i.e. what critiques do you have for this study)?

    •  What other data or tests could have been used to make this study more reliable?

    •  Study of genomics is still a fairly new field of science •  Science based on certain assumptions and

    interpretations of the data; continuously changing and growing

  • Gullan  and  Cranston,  2014

  • Food  for  Thought•  What evolutionary/environmental factors may have

    given rise to these diverse groups?

  • Phylogeny  of  the  Ants:  Diversifica6on  in  the  Age  of  Angiosperms  

    Moreau  C.S.,  Bell  C.D.,  Vila  R.,  Archibald  B.,  Pierce  N.E.    

  • Ants  

    •  Key  roles  in  symbio6c  interac6ons  •  Soil  Aera6on  •  Nutrient  cycling  •  Dominant  in  terrestrial  landscape:  – 11,800  species  –  evolu6onary  history  poorly  resolved    

  • Main  points  

    •  Extant  ants  arose  much  earlier  than  previously  proposed:  75-‐125  mya  

    •  Began  to  diversify  late  Cretaceous  –  Early  Eocene  –  60-‐100  mya  

    •  This  6me  period  corresponds  with  the  rise  of  angiosperms  and  many  herbivorous  insects    

  • Past  phylogenies  of  Family  Formicidae  

    •  Past  phylogenies  proposed  using  morphological  traits  and  molecular  data  with  less  data  

    •  This  phylogeny  constructed  from  large-‐scale  molecular  data  – 4.5  kb  of  sequence  data  – Six  gene  regions  from  139  of  288    extant  genera  

    •  Represents  19  of  20  subfamilies  

  • Sta6s6cal  Analysis    

    •  Maximum  likelihood  bootstrap  •  Bayesian  posterior  probabili6es  •  Maximum  parsimony  bootstrap  

  • Major  lineages  in  Formicidae  

    •  Three  main  clades:  –  Leptanilloid  (sister  taxon  to  all  other  ants)  •  One  subfamily:  Leptanillinae    

    –  Poneroid  •  5  subfamilies  •  Amblyoponinae  lacked  support  

    –  Formicoid  •  Contains  remaining  13  subfamilies  

     

  • Monophyly  •  14  recovered  as  Monophyle6c  with  strong  support  – Leptanillinae  (100%)  

    •  Early  morphological  phylogenies  do  not  show  this  at  basal  posi6on  •  Basal  posi6on  shows  early  tergosternal  fusion  of  3rd  &  4th  abdominal  segments,  lost  secondarily    •  These  characters  are  labile/homoplasious  

    •  19  recovered  as  monophyle6c  •  Cerapachyinae  paraphyly  

  • Bolton  =    Proposed  “poneromorph”  clade  

    -‐Amblyoponinae  -‐Ectatomminae  -‐Heteroponerinae  -‐Paraponerinae  -‐Ponerinae  -‐Procer6inae  

     These  results  exclude  Ectatomminae  and  Heteroponerinae,  but  add  Agroecomyrmecinae  

    -‐Represented  by  Tatuidris  Tatusia    

     

  • Bolton  =    Proposed  “poneromorph”  clade  using  morphological  analyses  

    -‐Amblyoponinae  -‐Ectatomminae  -‐Heteroponerinae  -‐Paraponerinae  -‐Ponerinae  -‐Procer6inae  

     These  results  exclude  Ectatomminae  and  Heteroponerinae,  but  add  Agroecomyrmecinae  

       

  • Historical  placement  of  Heteroponerinae  and  Ectatomminae  •  Heteroponerinae  in  formicoid  clade  is  unexpected  – Historically  in  poneromorph  clade  – Same  goes  for  Ectatomminae  (closely  related  to  Heteroponerinae)  

  • Fossil  record  

    •  Oldest  reliable  fossils  containing  Formicidae  are  ~100  million  yrs.  old  from  early  cretaceous  in  French  &  Burnese  ambers  

    •  Implies  earlier  history  than  expected  of  Formicidae  

    •  Results  show  an  even  earlier  history…      

  • 140-‐168  Million  years  old!  Much  older  than  previous  es6mate  based  on  fossil  record  

  • Previous  studies  showing  early  history  of  Formicidae  

    •  Previous  studies  by  Brady  and  Ward  used  molecular  data  to  arrive  at  an  es6mate  of  130-‐140  Million  years  old  – But….  Although  these  are  similar  dates  the  Moreau  et  al.  study  used:  • Wider  sampling    •  Addi6onal  fossils  

    à  Leads  to  an  even  older  es6mate!  (140-‐168  mil  years  old)    

  • Results  •  Diversifica6on  of  major  Formicidae  lineages  ocurred:  –  beginning  of  Early  Paleoceneto  Late  cretaceous  (60-‐100  Mya)  

    •  Ancestors  of  major  subfamilies  present  75-‐125  mya  

    •  If  they  were  present  much  earlier,  why  did  they  take  so  long  to  diversify?  

    •  Previous  fossil  record  indicates  later  evolu6on  

     

  • Correspondence  with  Angiosperm  radia6on  

    •  Rise  in  Angiosperm  dominated  forests  was  essen6al  to  the  diversifica6on  of  ants    – Why  would  this  happen?    

  • Discussion  

    Given  the  importance  of  plants  in  determining  the  6ming  of  evolved  traits  in  insects,  as  well  as  human’s  adverse  impact  on  nature  (eg:  deforesta6on),  is  it  possible  that  insect  evolu6on  is  being  dampened?  Would  insects  be  bemer  off  without  humans  or  are  all  organisms  interconnected  and  important  for  others  to  thrive,  despite  some  downfalls?      

  • Lineages  through  6me  plot  

    •  LTT  plot:  Accumula6on  of  ant  lineages  around  ~100  (following  angiosperm  radia6on)  – Also  seen  in  Coleopteran  &  Hemipteran  diversifica6on  

  • Is  there  something  wrong  with  the  way  this    Histogram  was  constructed?  

    Are  LTT  graphs  a  good  method  for  researchers  to  infer  phylogene6c  rela6onships?  Why  or  why  not?  

  • Why  the  correla,on  between  Angiosperm  radia,on  and  diversifica,on  of  Formicidae?    

    •  Forests  are  more  diverse  – Wider  array  of  habitats  

    •  Expansion  of  herbivorous  insects  – Provided  direct  food  source    –  Indirect  food  source:  honeydew  – Shio  in  diet  à  evolu6on  of  social  behaviors  

     

  • Significance?  

    •  Evolu6onary  inves6ga6on  of  life  history,  ecology,  biogeography  in  order  to:  – Observe  pamerns  of  diversifica6on  and  distribu6on  of  this  dominant  group  of  insects  

    •  This  highlights  need  for  conserva6on  of  ant  habitats  to  foster  biodiversity  to  further  research  poorly  understood  evolu6onary  history  

  • The  Fossil  record  and  Macroevolu6onary  history  of  

    beetles  Smith  D.M.  and  Marcot  J.D.    

  • Main  points  •  Compiled  a  database  of  

    global  beetle  fossil  data  in  order  to  study  evolu6onary  history  

    •  Polyphaga  responsible  for  most  taxononmic  richness  of  beetles    –  Also  increase  in  diversifica6on  rate  in  Cretaceous  like  Formicidae,  but  not  due  to  Angiosperm  radia6on  

    •  Observed  mechanisms  that  inhibited  beetle  ex6nc6on  rather  than  mechanisms  promo6ng  specia6on    

  • Polyphagan  vs.  Non-‐Polyphagan  diversifica6on  

    •  Degree  of  dietary  varia6on  and  specializa6on  within  subgroups  in  Polyphaga  – Algae,  fluid  feeders,  carnivores,  xylophages  

    •  Non-‐polyphagans  first  to  appear  in  fossil  record  –  Reach  peak  of  family  richness  in  Triassic  –  Jurassic:  low  origina6on  rates  and  higher  ex6nc6on  rates  than  Polyphaga  

    •  Polyphagans  surpass  richness  of  non-‐polyphagans  in  Jurassic    –  Established  early  and  longlived  (family  ex6nc6on  rate  of  zero)  

  • Non-‐polyphagans  reach  family  richness  peak  

    Polyphagans  diversifica6on  rate  surpasses  that  of  non-‐polyphagans  (who  have  a  higher  ex6nc6on  rate  in  this  6me  period)  

    Increase  in  diversifica6on  rate  of  Polyphagans  

    Should  this  middle-‐cretacean  increase  in  the  diversifica6on  rate  of  Polyphagans  be  amributed  to  the  rise  in  Angiosperms  during  the  same  6me  period?  Like  that  of  the  Ant  paper?  

    Origin  of  non-‐polyphagans  

  • Amber  deposits    

    •  Instead  of  amribu6ng  this  to  Angiosperm  radia6on,  Smith  and  Marcot  connect  this  pulse  of  Polyphagan  origina6on  to:  – First  ocurrence  of  beetle-‐bearing  amber  deposits  in  fossil  record  

    – They  used  different  types  of  fossils  in  their  database:  lacustrine  deposits    

     

       

  • Why  Polyphaga  beetles  may  not  be  as  suscep6ble  to  ex6nc6on  

    •  Ability  to  change  geographical  distribu6on  in  response  to  climate  change  – Diet  

     

  • Discussion  

    Why  must  phylogenies  always  be  regarded  as  working  hypotheses  and  considered  with  a  certain  level  of  scru6ny?    

  • References•  Main Papers:

    o  Misof et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346.620: 763-767

    o  Moreau C.S., Bell C.D., Vila R., Archibald S.B, Pierce N.E.. 2006. Phylogeny of the Ants: Diversification in the Age of Angiosperms. Science 312: 101-104.

    •  Resources: o  Grimaldi D. and Engel M.S. 2005. Evolution of the Insects. Cambridge

    University Press: New York. o  Kjer K.M. Carle F.L. Litman J., and Ware J. 2006. A Molecular Phylogeny of

    Hexapoda. Arthropod Systematics & Phylogeny 61(1): 35-44. o  Smith D.M and Marcot J.D. 2015. The fossil record and macroevolutionary

    history of the beetles. Proc. R. Soc. B 282: 1-8.