graphene for laser applications · prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize usa...

27
http://www.gpi.ru/nanospectroscopy Graphene for laser applications E.D. Obraztsova 1 , M.G. Rybin 1 , A.V. Tausenev 2 , V.A. Shotniev 2 , V.R. Sorochenko 1 , P.S. Rusakov 1 , I.I. Kondrashov 1 1 A.M. Prokhorov General Physics Institute, RAS, 38 Vavilov street, 119991, Moscow, Russia 2 Avesta-Project Limited Liability Company, Troitsk, Moscow Region, Russia

Upload: others

Post on 27-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

http://www.gpi.ru/nanospectroscopy

Graphene for laser applications

E.D. Obraztsova1, M.G. Rybin1, A.V. Tausenev2, V.A. Shotniev2, V.R. Sorochenko1, P.S. Rusakov1, I.I. Kondrashov1

1A.M. Prokhorov General Physics Institute, RAS, 38 Vavilov street, 119991, Moscow, Russia2Avesta-Project Limited Liability Company, Troitsk, Moscow Region, Russia

Page 2: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

A.M. Prokhorov General Physics Institute of Russian Academy of Sciences http//:www.gpi.ru

GPI RAS is one of the leading physics institutes in Russia.

About 770 persons work there.

Page 3: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

The Nobel Prize in Physics 1964

"for fundamental work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser-laser principle"

In Stokholm

Charles Hard

Townes

Nicolay

Gennadiyevich

Basov

Aleksandr

Mikhailovich

Prokhorov

1/2 of the prize 1/4 of the prize 1/4 of the prize

USA USSR USSR

Massachusetts Institute of

Technology (MIT) Cambridge, MA, USA

P.N. Lebedev Physical Institute

Moscow, USSR

P.N. Lebedev Physical Institute

Moscow, USSR

b. 1915 b. 1922

d. 2001

b. 1916

d. 2002

Page 4: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

Our main task – formation of ultrafast non-linear optical elements based on carbon nanotubes for solid state lasers

Page 5: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

Output radiation

Lpumping

continious wave laser radiation train of femtosecond pulses

Laser crystal (active

medium)

Carbon nanotubes or

graphene

Page 6: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

We have started from

single-wall carbon nanotubes

Page 7: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

Our work

Different media based on single-wall carbon nanotubes

Our work

1.0-2.2 mkm) http://www.gpi.ru/nanospectroscopy

Page 8: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

SMF-28

Er3+:fiberWDM

980/155

0

50/5

0

output

SWNT module

Insulator

A scheme of Er3+- fiber laser with a ring resonatorcontaining a saturable absorber“arc SWNTs +PvA”

nanotubes

A.V. Tausenev, E.D. Obraztsova, A.S. Lobach et al., Quantum

Electronics 37 (2007) 205-208.Ceramic

capillary

Fibers

0

Laser diode 980 нм

Page 9: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

The SWNT-based media is not a limiting factor for the pulse duration

The pulse may be shorten via the resonator optimisation

A.V. Tausenev, E.D. Obraztsova et al., APL 92 (N18) (2008)171113

Page 10: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

Since 2004

a mode-locking regime with the saturable absorbers

based on CARBON NANOTUBES has been realized in

a number of solid state lasers:

2 nm0.8 nm

Page 11: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

Graphene?

Nanotubes graphene

1 µµµµm 3 µµµµm 6 µµµµm 10 µµµµm

Spectral range (µµµµm)

Page 12: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

2009 – the first publications

concerning mode locking with a

graphene saturable absorber

Q. Bao, H. Zhang et al. , Adv. Func.

Materials 19 (2009) 3077.

T. Hasan, et al., Adv. Mater. 21 (2009)

3874.

http://nanotechweb.org/cws/article/tech/41949

Page 13: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

A scheme of a home-made installation for CVD graphene synthesis

1. Pyrometer2. An electric direct current source3. Vacuum pump4. Vacuum-gauge5. CH4 and H2

Page 14: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

Synthesis of graphene by CVD method

Home-made installation for chemical vapor deposition of graphene onto Ni foil heated by electrical current

M.G. Rybin, A.S. Pozharov and E.D. Obraztsova

“Control of number of graphene layers grown by chemical vapor deposition”,

Phys. Status Solidi C, 7 (2010) 2785-2788

The nickel foil between two electrodes

The optimal size of the foil is 2x2 cm

Page 15: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

Etching of Ni in FeCl3 and formation of a free-standing graphene film

Graphene on Ni

Graphene on the surface of FeCl3

solution

FeCl3

solution

Graphene on glass

Page 16: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

1 layer 2 layers 3 layers 20 layers

Raman Optical absorptionRaman Optical absorption

Page 17: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

τ1 =260 fs

Ab

sorb

an

ce c

ha

ng

e,

ΔA

τ2 =2900 fs

P.A. Obraztsov et al.

“Broadband Light-Induced Absorbance Change in Multilayer Graphene”,

NanoLetters 11 (2011)1540.

Delay time, fsA

bso

rba

nce

ch

an

ge

,

Page 18: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

Mode locking with graphene

1. Er fiber laser (1.55 µµµµm)

2. CO2 bulk laser (10 µµµµm)

Page 19: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

Ni foil

graphene

In FeCl3 etcher

Optical fiber

Reprinting the graphene film on the cross section of optical fiber

Nitrocellulos

e filter

Optical fiber

Optical fiber

with graphene

coverage

1- graphene film on Ni 2 – Etching in FeCl3 3- Separation of film and substrate

4 – Film fished out 5 – Pressing the filter 6 – Graphene coverage ontoonto a nitrocellylose filter to the fiber the fiber cross-section

Page 20: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

Faraday isolator

gain medium

pump 980 nm

beam splitter

output

http://lem.onera.fr/download/lectures_graphene/Obraztsov/Obraztsova%20E_reduit.pd

Cargese school on graphene (France), 2010.

optical fiber

graphene

polarization controller

graphene

GVD compensator (SMF-28e)

output

A scheme of Er fiber laser with a graphene saturable absorber

Page 21: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

Output spectrum Output autocorrelation function

Spectral wide 7.2 nm

Generation of 380 fs pulses with the graphene saturable absorber

Wavelength, nm

Inte

nsit

y, a

.u.

Delay, fs

Inte

nsit

y, a

.u.

380 fs

Page 22: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

PErL Femtosecond OEM Er Fiber Laser

Page 23: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

Laser specification

PErL Femtosecond OEM Er Fiber Laser – the commercial product

as result of the collaboration between the laboratory and the“Avesta” company

Available pulse duration (fixed), fs 250-5000

Wavelength, nm 1560±10

Average output power, mW >50

Repetition rate, MHz 50

Output type FC/APC fiber socket

Polarization extinction ratio, dB not applicable

RF sync out SMA connector (200-300 mV @ 50 ohm load)

Dimensions, mm 136 x 76 x 24 (27)

Power supply +5 V

http://www.avesta.ru

Page 24: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

Graphene saturable absorbers for semi-industrial mid-IR CO

A new spectral range

for semi-industrial mid-IR CO and CO2 lasers

With Dr. Yu. Klimachev and Dr. V. Sorochenko

Page 25: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

A 20-graphene layer saturable

absorber deposited on CaF2

for mode-locking in CO laser

(4.7-7.0 µµµµm)

For CO2 laser (10 µµµµm)

a BaF2 substrate is used.

2 4 6 8 1 00 ,0

0 ,2

0 ,4

0 ,6

0 ,8

1 ,0T

ran

smit

tan

ce

w a v e le n g th , m ic r o n s

C a F2

C a F2+ G ra p h e n

G ra p h e n

https://webistem.com/bin/pdfview?dir=gnt2011&level=2&ref=121GNT-meeting, Dourdan (France) 2011.

Page 26: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

100 200 300 400 500 600 700 8000,74

0,76

0,78

0,80

0,82

0,84

0,86

0,88

0,90

T graph

ene

Is, kW/cm2

B

100 200 300 400 500 600 700 8000,74

0,76

0,78

0,80

0,82

0,84

0,86

0,88

0,90

T graph

ene

Is, kW/cm2

BCO2 laser (λλλλ=10.55 µµµµm)

Saturable absorption of a few layer graphene

at wavelength 10.55 µµµµm

100 200 300 400 500 600 700 8000,74

0,76

0,78

0,80

0,82

0,84

0,86

0,88

0,90

T graph

ene

Is, kW/cm2

B

100 200 300 400 500 600 700 8000,74

0,76

0,78

0,80

0,82

0,84

0,86

0,88

0,90

T graph

ene

Is, kW/cm2

B

Diode laser (λλλλ=635 nm, P=2.7 mW)

Page 27: Graphene for laser applications · Prokhorov 1/2 of the prize 1/4 of the prize 1/4 of the prize USA USSR USSR Massachusetts Institute of Technology (MIT) Cambridge, MA, USA P.N. Lebedev

Conclusion

Graphene has been demonstrated as a prospective material for

a new family of

ultrafast (sub-picosecond) and efficient saturable absorbers

working in a spectral range 1-12 mkm.

The work was supported by Russian research programs RFBR-10-02-00792 and “Nanomaterials and Nanotechnologies”.