grand challenges of characterization & modeling of cellulose

13
Grand Challenges of Characterization & Modeling of Cellulose Nanomaterials Robert Moon Adjunct Assistant Professor Materials Engineering Purdue University Materials Research Engineer US Forest Service Forest Products Laboratory DOE- Sustainable Nanomaterials Workshop, 26 June, 2012

Upload: vocong

Post on 01-Jan-2017

221 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Grand Challenges of Characterization & Modeling of Cellulose

Grand Challenges of Characterization & Modeling of

Cellulose Nanomaterials Robert Moon

Adjunct Assistant Professor

Materials Engineering

Purdue University

Materials Research Engineer

US Forest Service

Forest Products Laboratory

DOE- Sustainable Nanomaterials Workshop,

26 June, 2012

Page 2: Grand Challenges of Characterization & Modeling of Cellulose

Cellulose Nanomaterials (CN)

2

• Influence: • Cellulose Source • Extraction Process

• Two Particle Morphologies: • Rod: CNC, NCC, NCW, NCXLS

• Fibrillar: CNF, NFC, MFC, BC, AC

• Questions: • What to Characterize? • How to Characterize? • How to Model?

Char & Modeling: • Extraction Process

•Linked to bioenergy

• Extracted Materials • Chemicals • Nanomaterials

• Reassembly

Page 3: Grand Challenges of Characterization & Modeling of Cellulose

Wood- Cellulose Nanomaterials (CNs)

Moon et al., Chem Soc Rev 2011.

3

Page 4: Grand Challenges of Characterization & Modeling of Cellulose

4

CN form Wide Variety of Sources

Tunicate Wheat Straw Cotton

Sugar Beet Sisal

Ramie

Bacteria

Trees Plants Other

Algae

Banana

Potato Alfa, Hemp, Flax, Jute, etc

Page 5: Grand Challenges of Characterization & Modeling of Cellulose

5

Biosynthesis

Influence on Extracted Particle •Morphology •Crystalline/Amorphous •Surface Chemistry •Uniformity

Moon et al., Chem Soc Rev 2011.

TC dependent on Source Wood/Plant Microfibril Synthesis

Microfibril Structure

•Dependent on Source •Hierarchical structure •Crystalline/Amorphous, Bundling

• Crystalline high properties

• Structure not 100% quantified.

Page 6: Grand Challenges of Characterization & Modeling of Cellulose

6

CNs Extraction Summary Pretreatment:

Acid Hydrolysis Mechanical

Homogenizer

Mass Colloider

CryoCrushing

Microfluidizer

Fibrillar Types: Rod Types:

Fibrillation Treatment

CNC

CNF I CNF II

Dufresne et al., J. App. Poly. Sci., 1997 Saito et al., Biomacromolecules, 2007 Moon et al., Chem Soc Rev 2011.

Page 7: Grand Challenges of Characterization & Modeling of Cellulose

Degree of Branching

7

CNC BC CNF II CNF I

branching

•30-50, 6-10nm •> 1μm •low

•40-100 nm •> 1um, ? •High

•4-40 nm •> 1um, ? •med

•Diameter: 3-20 nm •Length: 50-500 nm •Branching: low

Dufresne et al., J. App. Poly. Sci., 1997 Saito et al., Biomacromolecules, 2007 Ifuku et al., Biomacromolecules, 2007

Moon et al., Chem Soc Rev 2011.

Page 8: Grand Challenges of Characterization & Modeling of Cellulose

Differences in CN Morphology

Result From: Biosynthesis process Extraction process

Cross-Sectional Shape: CNC, CNF-wood/plant

CNC-tunicate

Algae Cellulose (AC) Bacterial Cellulose (BC)

8 Moon et al., Chem Soc Rev 2011.

Page 9: Grand Challenges of Characterization & Modeling of Cellulose

Surface Modification:

9 Moon et al., Chem Soc Rev 2011.

Induce New Functionality Readily Reactive Surface: -OH

Alter Particle-Particle, & Particle-Matrix

•TEMPO regioselective oxidation •sulfonation •halogenated acetic acids •carboxylic acid halides •acid anhydrides •epoxides •isocyanates •chlorosilanes

Covalent Bonding

Page 10: Grand Challenges of Characterization & Modeling of Cellulose

Amphiphilic copolymers

NPs, ALD, QDs Surfactants

PAH PAA PAH

NH 3 + Cl -

n

Polyelectrolyte multilayers

PO EO EO PDM PDM

+ + + + + + + +

Proteins

NH

O

H2O:MeOHPMDETACu(I)Br

+ CNC

OO

HNO

Br

OO

HNO

Br

O

Br

O

CNC

O

Br

O

n n

poly(NiPAAm)-g-CNCs

Korhonen, ACSNano 2011

http://www.mcgill.ca/pprc/members/gray/quantum/

D. Grey

Polymer grafting

Surface Modification:

100 nm

silver

Padalkar et al., Langmuir, 2010,

• processing (Ag, Au, Cu, Pt, CdS, PdS, ZnS)

10

Moon et al., Chem Soc Rev 2011.

Roy et al., Chem Soc Rev, 38, 2046-2064,2009

Page 11: Grand Challenges of Characterization & Modeling of Cellulose

Grand Challenge: CN Characterization

11

Technique Summary: •Microscopy: light, e-, ion, scanning probe •Diffraction: e-, neutron, x-ray •Inelastic Scattering: Raman •Scattering: DLS, •Spectroscopy: NMR, IR, FTIR, •Rheology: •Thermal: TGA/DTA • Etc

Key Challenges: • Increased Fidelity • Quantification • Anisotropy Effects • Application

• high Throughput • Representative volume • Combination of Techniques

Needed Information: • Morphology

•Size, aspect ratio, uniformity •Degree of Branching •distribution, etc

• Surface Chemistry • Functional Group • Charge, etc.

• Surface Area • Crystallinity • Molecular Mass • Rheology • Material Properties

• Mechanical, Thermal, Electrical

Page 12: Grand Challenges of Characterization & Modeling of Cellulose

Grand Challenge: Modeling

12

Key Challenges: • Multiple-Length Scales

•Atoms Structures •Atomistic Analytical

• Validation/Verification • Linked to experiments • Linked to other modeling

• Predictive Capabilities

Modeling Areas: • CN Particles

• Size, aspect ratio, uniformity • Structure • H-bonding • Defects & Branching

• CN Suspensions • Water Interactions • Chemical interaction • Surface Reactivity

•CN Composites • CN-CN interactions • CN-Matrix Interactions • interfaces

Page 13: Grand Challenges of Characterization & Modeling of Cellulose

13

Thank YOU

In Reality: • Steps • divots

Lahiji et al. Langmuir, 26(6) , 2010

Ideal CNC Morphology?