gnet 2017 forward - dartmouth collegeice/gnet_workshop_materials/gnetwhitepaper... · gnet 2017...

40
1 GNET 2017 Forward: The future shape of a Greenland GNSS observation network A whitepaper produced by the participants of the NSF- supported GNET workshop, NASA GSFC, 26-27 January 2017

Upload: vanhanh

Post on 15-Sep-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

1

GNET2017Forward:ThefutureshapeofaGreenlandGNSS

observationnetwork

AwhitepaperproducedbytheparticipantsoftheNSF-supportedGNETworkshop,NASAGSFC,26-27January2017

Page 2: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

2

ExecutiveCommittee:

RobertHawley,DartmouthCollege

ErikIvins,NASAJetPropulsionLaboratory

TomNeumann,NASAGoddardSpaceFlightCenter

ContributingAuthors:SurendraAdhikari,NASAJetPropulsionLaboratoryLaurenAndrews,NASAGoddardSpaceFlightCenterGregBabonis,UniversityofBuffaloMikeBevis,TheOhioStateUniversityDavidBromwich,TheOhioStateUniversityClaraChew,NASAJetPropulsionLaboratorySorenChristensen,AgencyforDataSupplyandEfficiency,DenmarkReneeCrain,NationalScienceFoundationBeaCsatho,UniversityofBuffaloReneForsberg,TechnicalUniversityofDenmarkRonniGrapenthin,NewMexicoInstituteofMiningandTechnologyRobertHawley,DartmouthCollegeErikIvins,NASAJetPropulsionLaboratoryAbbasKhan,TechnicalUniversityofDenmarkKristianKjeldsen,UniversityofCopenhagenPerKnudsen,TechnicalUniversityofDenmarkEricLarour,NASAJetPropulsionLaboratoryFinnBoMadsen,TechnicalUniversityofDenmarkGlenMattiolli,UNAVCOTomNeumann,NASAGoddardSpaceFlightCenterThomasNylen,UNAVCOKeshavDevSingh,UniversityofCalifornia,DavisTonieVanDam,UniversityofLuxembourgMikeWillis,UniversityofColorado

Page 3: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

3

TableofContentsExecutiveSummary...................................................................................................................................4

1 Currentstateofthenetwork.........................................................................................................6

2 CurrentandfuturescienceusingGNETdata...........................................................................72.1 SolidEarthandIsostaticAdjustment................................................................................72.2 IceMassBalance......................................................................................................................92.2.1 Surfacemassbalance...........................................................................................................................92.2.1.1 Background...................................................................................................................................92.2.1.2 Theconnectionofincreasedmeltondischarge.........................................................112.2.1.3 SMBAnalysiswithGNETData...........................................................................................132.2.1.4 UseofGNETDataforFundamentalImprovementinSMBModeling...............142.2.1.5 GNETZenithTotalDelay:UseforRegionalAtmosphericModels......................152.2.1.6 ChangesinGrISdrivenbybothglacierdischargeandSMB.................................172.2.1.7 OtherpossiblesurfacemassbalancestudiesbenefitingfromGNET...............21

2.2.2 SupportforInterpretationofAltimetry...................................................................................222.2.3 SupportforGRACEandtheTotalMassBalanceTimeSeries.........................................23

2.3 Ionosphere,Troposphere...................................................................................................232.4 Largescalegeodesy...............................................................................................................252.4.1 GNSScoordinatetimeseriesandreferenceframes............................................................252.4.2 MakingITRFavailabletotheusers............................................................................................262.4.3 GNSSreflectometry...........................................................................................................................27

3 DataManagement...........................................................................................................................273.1 GeneralBackground.............................................................................................................273.2 AncillaryData.........................................................................................................................283.3 GenerationofTimeSeries..................................................................................................283.4 DataStreamandArchivingFundedbyNSF..................................................................29

4 Bestconfigurationmovingforward..........................................................................................304.1 EvaluationofGNETstations...............................................................................................304.2 Addingstationstotheexistingnetwork........................................................................324.3 Detailedsitecharacterizationofexistingsites,additionalmeasurements.......334.4 Expandedskycoverageanddataaccessforexistingsites......................................33

5 REFERENCES:....................................................................................................................................34

Page 4: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

4

GNET2017forward:ThefutureshapeofaGreenlandGNSSobservationnetwork

AwhitepaperproducedbytheparticipantsoftheNSF-supportedGNETworkshop,NASAGSFC,26-27January2017

ExecutiveSummaryAninternationallycoordinatedresearchcampaign,theInternationalPolarYear(IPY)2007-2008,initiatedacoordinatedefforttostudythepolarregionsusingmodernobservationaltechniques,includingamajorinvestigationusinggeodeticandseismicinstrumentation.Thiseffortisformallyknownandfundedunderthename“POLENET”,orthePolarEarthObservingNetwork.InGreenland,theGNETprojectwasdevelopedtoestablishanetworkofGPSreceiversoperatingcontinuouslyandautonomouslyonstablebedrockaroundGreenland.ThemostprominentinstitutionsinvolvedinsupportingthisefforthavebeenTheOhioStateUniversity,theUniversityofLuxembourg,UNAVCO(Boulder,CO)andtheInstitutforRumsforskningogRumteknologi(DTUSpace,Copenhagen).ThepurposeoftheJanuary26-27,2017workshopwastodiscussthefutureofthisnetworkfromageodeticperspective.WewereespeciallyfocusedondocumentinghowGNETdataarebeingusednow,toprobehowthenetworkcouldevolve,andtoaskwhatscientificquestionsmotivateitsfuture.GNETdatahaveservedavarietyofusefulscientificpurposes,suchasprovidinggroundtruthforpredictivemodelsforpostglacialrise/fallofbedrockadjacenttotheicesheetthatinturn,playanessentialroleincorrectingsatellitegravityandaltimetrybasedestimatesoficemassbalanceondecadaltimescales.Adecadeofobservationsnowindicatethatverticalmotionstendtobedominatedbythemassunloadingcausedbysecularicesheetmasslosstotheocean.InadditiontoenumeratingpastsuccessesofGNET,theworkshopparticipantssoughttoexaminetheyetunexploitedvaluethatthenetworkmayprovideforachievingnewscienceobjectives,suchastroposphericandionosphericmapping,gainingnewinsightsconcerningsurfacemassbalance,icedynamicsandoceantidalmapping,amongothers.Thisworkshopreportisdesignedtocapturesomeofthesenewexplorations,butwillhardlyserveasacomprehensivesurveyofallofthedetailsorallofthenewscientificdiscoveryanewdecadeofGNEToperationcouldenable,howeverthenetworkmayevolve.Thereisanemphasisplaceduponthecomponentsoficesheetsurfacemassbalanceinthisreport.Surfacemassbalanceisessentiallythenetinputmasscomponent.Thisisdrivenprimarilybytheatmosphereandnear-surfaceicesheettemperaturestructure.Theemphasisismotivatedbythreerecentsciencebreakthroughs:(i)sinceabout2006thenegativemassbalanceoftheGreenlandicesheetisdominatedbymeltprocesses(andsinceabout1997dominatedbysurfacemassbalanceingeneral);(ii)recentfindingsdemonstratethatGNEThavesensitivitiestotheloadingcomponentsofthevariouselementsofthesurfacemassbalance;(iii)the

Page 5: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

5

zenith-delaysmeasuredinthecarrierphaseoftheelectromagneticpulsesreceivedatthestationsarecapableofsignificantlyimprovinghindcastmodelsofprecipitation,afundamentalcomponentofthesurfacemassbalance.Theprimaryrecommendationsofthisreportare:

1. ContinuetosupportthecontinuousandautonomousoperationofthecurrentconfigurationofGNET.Thespatialdistributionandlongtimeseriesofobservationsfromthecurrentnetworkhasenabledawealthofscientificdiscovery,andextendingthesetimeseriesintothefuturewillenablenewscience.

2. Maximizetheutilityofthecurrentdatabypromotingtheexistingdatadistributionmodel,whichencourageslow-latencyaccesstodata.Theseeffortsshouldbeaugmentedwithreadilyavailabledoinumberstoenableproperdatacitation.

3. EncouragingnewusesofGNETdata,suchastroposphericzenithdelayanalyses

toimproveatmosphericmodelsinGreenlandanduseofthesedataformodelingtheionosphere.Thisisoneexampleofmanyofnewsciencethatcouldbesupportedbytheexistingdata.

4. Ifpossible,densifythecurrentnetworktobetterresolvethoseareasof

maximumgradientinGIA,and/orregionsofrapidglacierchange.

5. Givenfiniteresources,weconsiderascoringschemeforevaluatingtherelativeimportanceofexistingstations.Consideredaretheroleofexistingstationsforfosteringanimprovedunderstandingof(i)GIA,(ii)surfacemassbalanceminusdischarge(SMB-D)and(iii)resolvingthelargerdiscords(>4.5mm/yr)revealedincomparisonofGIAmodelsbasedonrelativesea-leveldataversusthosemorereliantonGNETupliftratedata.TheultimatedecisionregardingtherelativeimportanceofthesecompetingscienceobjectivesshouldbeguidedbytheacceptanceofviablescienceprojectsselectedbytheNationalScienceFoundation.

Page 6: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

6

1 CurrentstateofthenetworkTheGreenlandGeodeticNetwork(GNET;Figure1)currentlyconsistsof58geodetic-gradeGlobalPositioningSystem(GPS)receivers,locatedonfixedbedrocksitesaroundthecoastofGreenland[Bevisetal.,2012].ThecapabilityoftheextendedGlobalNavigationSatelliteSystem(GNSS)hasnowsurpassedtheprecisepositioningperformanceoftheolderGPSduetoincorporationofmoresatellitesandadvancesinon-boardtechnology.Thenetworkhasthefullcapabilityformmlevelgeodesy.GNEThasgrownovertheyears,andisoperatedincooperationbetweenseveralgroups.Currentlythereare36stationsoperatedbytheOhioStateUniversity(OSU),1operatedbyNASA’sJetPropulsionLab(JPL),1operatedbyUNAVCO,15byDenmark(DTU),and5bytheUniversityofLuxembourg.Itisimportanttonotethatthoughthereareavarietyof‘owners’ofvariousGNETstations,thereiswidespreadcooperationbetweenthenetworkpartners,intermsofsharingoflogistics,datamanagement,andcollaboratingonbestpracticesforstationinstallation.MaintenanceissharedandcoordinatedbyOSU,UNAVCO,andDTU.Eachstationconsistsofageodetic-gradeGPSantennamountedonapermanently-anchoredmonumentonbedrock,aGPSreceiver,anextensivepowerandpower-managementsystem(solarpanels,windgenerators,batteries),andatelecommunicationssystemfortelemeteringdata-thiscanbewiredorwireless,andisfrequentlyprovidedbytheiridiumnetwork.Thesestationshavethefullcapabilitytomonitorveryprecisecrustalmovements,asforexample,recentlydescribedbyHerringetal.[2016].Eachstationinthenetworkfacesitsownspecificchallengestolongevity.Simplewearandtearonequipmentcancausefailures,butextremeweatherconditionsatsomesitescanalsoposeproblems,withhighwinds,icingandheavysnowloadsdamagingstations.Satellitecommunicationfordataretrievalcanfailformultiplereasons.Somestationsarevisitedbywildlife;polarbearsareanobviouspotentialproblem(theyarenaturallycuriousandverystrong),butequallydamagingtodatareturncanbethesharpteethandbeaksofArcticfoxesandravens.Inspiteofthesepotentialproblems,regularmaintenanceofthestationshas,overtheyears,produceda92%rateofdatareturnforthenetworkandgapsinthedatastreamshavesteadilyreducedovertheyears.Currently,inanygivenyear,manystationsmustbevisitedforroutinemaintenance,upgrades,andrepairs.Thecostofthesemaintenancevisitsislargelydrivenbythehelicoptertimerequiredtoaccess

GNET 2007-2009 (-2014)

• 2007– 23 new stations– 3 field team– Ad-hoc charter helicopters

• 2008– 11 new stations– 1 field team– Long-term fixed charter

helicopter

• 2009– 12 new stations– 1 field team– Long-term fixed charter

helicopter

• 2010-2014– 3 new stations

Figure1.Mapof58currentGNETsitesandinstallationdate.

Page 7: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

7

mostGNETsites.Continuedmaintenance,upgrades,andadditionstothenetworkwillrequiretheinvestmentofresourcesbynationalfundingagencies.Althoughexpensive,GNETdatasupportsasubstantialbodyofscienceinGreenland,acrossmanydisciplines,asoutlinedinSection2.

2 CurrentandfuturescienceusingGNETdata

2.1 SolidEarthandIsostaticAdjustmentTheelevationofEarth’scrustiscontinuallychangingowingtothecontinuummechanicalresponseofthesolidEarthtotheredistributionofmassontheEarth’ssurface.Oneoftheprimarycausesofsuchchangesisthegrowthandmeltofthegreaticesheets,suchastheGreenlandicesheet.Thechangesincrustalelevationduetotheinterrelatedchangesingroundedicemassandoceanloadingisbroadlytermedglacialisostaticadjustment(GIA)whenthesechangeshavelongtimescales,generallyoforder100-10,000years.However,veryimportantcrustalresponsesalsooccuronelastictimescales,essentiallythesametimescalesasseismicwavepropagationandabasicobservationofferedbyGNETisthatpresent-dayicemassvariabilitytendstodominatemanyoftherecordedverticalsignals[Bevisetal.,2012].OurgeophysicalandobservationalunderstandingofGIAprocesseswerenurturedbystudyoftheemergenceofthecoastlinealongtheBalticSeainSwedenandFinlandmorethan100yearsago[e.g.,Ekman,1991;Peltier,1998].Landtodayrisesatratesof2-15mm/yearnearthecentersoftheformergreaticesheetsoftheLatePleistocene,causinglocalsea-levelstorecede,producingaclearobservationalrecordofsea-leveldrop.Thisphenomenonwascalledpost-glacialrebound(PGR),yetasitbecameunderstoodthattheprocessinvolvedtheentiresphericalearthduetothe125metersofsea-levelloadchange,andassociatedgeoidchanges,theprocessisnowtermedglacialisostaticadjustment(GIA).TheoriginaldesignofGNETwasprimarilyfocusedonthemeasurementofverticallandmotionsassociatedwithdirectpasticeloadandviscoelasticresponses. ForsolidEarthapplications,werecommendcontinuedoperationofexistingGNETsitesforaslongaspossible.Thisallowsustoseparateelasticandviscoelasticcrust-mantleresponses.Theselengthenedtimeserieswillaidinaccomplishingthisgoal,especiallyastheyoverlapwithaltimetrymissions(CryoSat-2andICESat-2(launchingin2018)),WorldViewimagingsatellites,aswellasthethreeSentinelsatellitesofESA’sCopernicusprogram.Inaddition,theNASA-ISROjointNISARmission,launchingin2020thatwillenablespace-baseddischargeobservationsofGreenland’soutletglacierstobetterresolvemassbalancetimeseries.ThisperiodoftemporallycoincidentobservationswillgreatlyimprovetheelasticcorrectionforsolvingforGIA.ItisimportanttoemphasizethatGIAisatime-invarianttrend,andmoreover,thataGIAcorrectionisusedtocorrectsatelliteobservationsthatmonitorthestateoftheicesheet.GreatdiscrepanciesremaininourcurrentpredictionsofviscoelasticGIA[cf.,Lecavalieretal.,2014;Khanetal.,2016](seeError!Referencesourcenotfound.).

Page 8: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

8

Figure2.Relativesea-level-basedreconstruction(a;Lecavalieretal.,2014)andpredictionofpresent-dayupliftrate.GIAmodelwithGPS-basedupliftdata(b;Khanetal.,2016)andrevisedicehistoryreconstruction.Thediscrepancybetweenthetwopredictionsislargeenoughtobeanimpedimenttoproperlydiscriminatingbetweenalternativeicehistoryreconstructions.ReconciliationwillallowGIAmodelsthatproperlypredicttheGPStrendstobeusedinpaleoclimatemodels.

Inaddition,thecombinationofseismicimagingdataalongwithGPS-basedcrustalupliftdataenablesimprovedunderstandingofEarthstructureproperties.TheNSF-fundedGreenLandIceSheetmonitoringNetwork(GLISN)project(e.g.,Murrayetal.,2015)willprovideimprovedseismicdata.CombiningresultsofGLISNandGNETwillhelpbetterdefinebasalice-rockinteractions,lithosphericthickness,asthenosphericstructure,lateralheterogeneitiesintheEarth’scrustandprovideanimprovedbasisfortheheatfluxboundaryconditionusedinicesheetmodels[Rogozhinaetal.,2012].EachoftheseimagingfeaturesallowsbetterconstraintsforforwardmodelingtheGIAresponsetopastloadingfromicechanges.

Figure3:MapofcurrentstationswithGIAestimates.Currentstations(blackdots)andsuggestednewstations(yellowdots)areplacedtoconstrainGIA.

Page 9: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

9

AllGNETstations,shownasblackpointsinFigure3,arecurrentlyprovidingdatarelevanttoconstrainingGIA.Additionalstations,shownasyellowpointsinFigure3,arelocatedinplacesthatwouldenhanceourunderstandingofGIAinareashavingnotablespatialheterogeneityinsolidearthstructure.SeismicconstraintsfromprojectslikeGLISNbetterconstrainthestructureofthesolidearthparametersusedincrustalmotionmodelsofbothlongandshorttimescales.CombinationsofseismicandGPSgeodesycanbeimportantforconstrainingvariousimprovementsinEarthstructureandconstitutiveproperties[e.g.,Bosetal.,2015].

2.2 IceMassBalanceTherearetwoessentialphysicalcomponentsthatcontrolannualandinter-annualicemassbalance.Theseareinput,estimatedfromsurfacemassbalancemodels,andoutput,thatisgenerallycomputedfromicedrainagevelocitydata[Shepherdetal.,2012].Oneapproachtodeterminingtheongoingmassbalanceofanicesheetistoindependentlyestimateeachofthese,i.e.,changesinthe1)surfacemassbalanceand2)theicedischarge.Asecondapproachistoestimatetheinter-seasonalheightchangesovertheicesheet(estimatingthevolumechange)andfindanappropriatedensityscalingtodeterminemasschange.Athirdapproachistomeasurethegravitychangesfromspace.Thislatterapproachdeterminesmasschangesdirectly.Eachmethodhasadvantagesandpitfalls.Inwhatfollows,weaddresshowGNEThassupportedthegoalsofthesethreemethods,butdonotdiscussthemoreadvancedspeculationthatGNETmightofferawaytoadvancemassbalanceonitsown[e.g.Khanetal.,2010;Yangetal.,2013].

2.2.1 Surfacemassbalance

2.2.1.1 Background

Thesurfacemassbalance(SMB)referstothefactorsthatdeterminehowtheatmospherecandeliverrainandsnowtoreplenishthewatersupplyfortheGrIS,whileotherfactorsareablationbymeltingandrunoffwhilealsoaccountingforrefreezing.Greenlandalsohasnon-icesheetsurfaceswhichalsoparticipateinthemassbalancethataremeasuredbybothGRACE(directly)andbyGPScrustaldisplacements(indirectly).Figure4showsthemodelrepresentationofSMBforGreenlandthatcanbereconstructedfromthecurrentlymostsophisticatedSMBmodelrunningfrom1958-2015byvandenBroekeetal.[2016].IcemassbalanceisessentiallyestimatedasSMB-D,whereDistheicedischargeduetooutletglaciersexitingtothesurroundingocean.Thisisalsocalledtheinput-outputmethod(IOM)[Shepherdetal.,2012;Hurkmansetal.,2014].Technically,thisisnottheentiremassbalancesinceoneothercomponent,groundinglinemigration(GLM)alsomaycomeintoplay[Rosenauetal.,2013].ThemotivationtostudythetwocomponentsoftheIOM(SMBandD)isprovidedbytheimportantrelationshipoftheicesheetmassbalancetoongoingandfuturesea-levelrise[Hannaetal.,2013;vandenBroekeetal.,2016].SMBuncertaintiesaredifficulttoquantify,buttheyareoftenreportedat15-20%Tedescoetal.[2017],

Page 10: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

10

thoughlocallyandtemporallytheymaybemuchlarger[Schlegeletal.,2016;Alexanderetal.,2016].ChangesinSMBarenowaccountingforroughly2/3oftotalmassbalance[Enderlinetal.,2014;vandenBroekeetal.,2016],reducingtheuncertaintiesassociatedwithSMBestimatesisofconsiderablepracticalimportance.Inthissection,weaddressthevariouswaysinwhichGNETmighthelptoimproveSMBestimatesand/orgaugetheiruncertainty.Thesub-componentsofSMB,andtheimportanceofthesubtlephysicsthatcontroltheirbehaviorcannotbeunderemphasized.Forexample,ithasrecentlybeenarguedthatthenegativemassbalanceofGreenlandowestotheenergybalancehavingreachedatippingpoint,whereinthefirnlayerbegantoloseitscapabilitytorefreezenearsurfacemeltwater[Nöeletal.,2017].

Figure 4. Cumulative surface mass balance (SMB) for the full land area of Greenland (orange line),cumulativeicedischargeD(blueline)andresultingcumulativemassbalanceMBGreenland(redline).GRACEtimeseriesincluded(greyline)hasbeenoffsetby1000Gtforclarity.NotethatanincreaseinslopeforD(t),anddecreaseinslopeforSMB(t)eachacttopushthemassbalanceofGreenlandintoanegativestate[vandenBroekeetal.,2016].

ItisworthwhiletodisaggregatetheconstituentsofSMBandalsotheirspatialandtemporalvariability.Long-termmassstabilityofglaciercomplexesisuniversallydeterminedbyknowingthestabilityoftheannualaccumulationandablationzones.

Page 11: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

11

Figure5.Modelbasedannualvaluesfor1958-2012.25ofSMBconstituentsforGrIS:totalprecipitation(Ptot),melt(ME),runoff(RU),refreezing(RF)andrainfall(RA).Dashedlinesindicate1991–2015trends[vandenBroekeetal.,2016].

2.2.1.2 Theconnectionofincreasedmeltondischarge

AccumulationandablationzonesofanicesheetaredefinedastheareaswherethesignofannualSMBdiffer(positiveandnegative),respectively,withthetwozonesbeingseparatedbytheequilibriumlineatwhichSMB=0.InFigure5weshowthe5mostimportantconstituentsasreconstructedina regionalatmosphericclimate(RACMO2.3)SMBmodelfrom1958throughwinterof2012[vandenBroekeetal.,2016].Notethatmelting(ME)hasthestrongestestimatedslopeduring1991-2012,andalsohasthelargestexcursionsfromthenorm.Meltisalsoacriticalcomponentofchangesindischarge,D,aswatermovementtothebaseoftheicesheetcancauselubricationandglacierspeedup[alsoseeFigure4,andthechangesinslopeafter2005].Somewhatparadoxically,overtime,extensivemeltwateratthebasemayleadtosubsequentdecreaseinglacierspeed[vandeWaletal.,2008;Soleetal.,2011].Theseprocessesarenoteasilymodeled[e.g.,Dasetal.,2008;PimentelandFlowers,2011]andcanseeevolutionarycomplexitythatarepoorlypredictedinmodels[e.g.,Tedstoneetal.,2015].Observationsofice-flowenhancementbysuchlubricationindicatesabroad-scaleinfluenceasthemeltwaterspreadsoverthebed.Thepatternofspeedupisalsoquitecomplex,reflectingthecontrolbybottomtopographyatsub-kmscales,sedimententrainment,subglaciallakefillingandflushing,andconduitreorganizations[e.g.,HewittandFowler;2008;Joughinetal.,2013].Emphasisshouldbeplacedondatasetsofhighqualityandresolutioninspaceandtime.Duringthepastdecade,Arcticsummershavebeentrendingtowardearliermeltingonsetandextrememaximumheatandduration[CrawfordandSerreze,2015].ThisfactwasevidencedmostprofoundlyonGrISbythesummer2012summermelt.AninteractivewebsiteattheNationalSnowandIceDataCenter(NSIDC)currentlytracks

Page 12: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

12

theareaextentofmelting.Figure6showsasummaryofthemeltextentof2012(orangecurve)incomparisontothedailymedianvaluesandtheirtypicaldeviancefromthemedian.Theplotclearlyshowssummer2012tobeextraordinaryinarealextent.Wenotethattheareaisfairlyeasytomeasurefromspaceusingemissivityorscatterometry.However,thevolumeofmelt,itssubglacialroutingandtime-scaleforflushingfromthesystemispoorlyknown,atbest.ModelsthatderiveIOM,assume,generally,thatwaterwillrunthroughthesysteminstantaneously,sinceroutingmodelsarenotdevelopedforoperationalSMBmodels.Thismeansthatwhileannualerrorsmaystaybelow20-25%,duringanygivenweek,orevenmonth,themelt(ME),run-off(RU)andre-freeze(RF)maybeinerrorbymorethan100%.Asweseekfuturesea-levelriseestimates,thismaybecomeanincreasingproblem,andthereisadesiretogetabettercontrolonthespace-timeevolutionoftheseroutingsystems.

Figure6.MeltextentmeasuredfromspaceduringSpringtoFallmonthsforGrIS(1980-2010)median,withsingleyear2012showninorangeand2017inblue(fromNSDICinteractivewebsite).NotethatinJuly2012themeltextentquadruplesoverthe30-yearmedian.

Arcticsummershavebegunearlier,lastedlongerandreachedmoreextremesurfacetemperaturesduringthepasttwodecadesCrawfordandSerreze[2015].Asaconsequence,wearelikelytoseetheroleofME,anditsfeedbackonD,andthepartitioningofRUandRFcomeunderincreasedscrutinyforthepurposesofmakingcorrectmodel-basedprojectionsoffuturesea-levelrise.TypicalevaluationsofthequalityofMEinSMBmodelsarequantifiedthroughinter-comparisonofspace-based

Page 13: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

13

melt-daysobservedinsatelliteimagestothosecapturedinthereanalysismodel.Suchinter-comparisonisshowninFigure7.Hereweseethatmelt-daysmaybediscrepantby±15days(thesearedaysinwhichmodelandobservationonanygivenpixeldisagree).Whilethemodelsinter-compareinareasonableway,theuncertaintyinroutingpath,time-lagandultimatepercentofexpulsiontotheseaisnottested.

Figure7.SummaryofcomparisonoftwoSMBmodelsandsatellite-detectedannualmeanofthetotalnumberofmeltdays(toppanel;basedonspacebornepassivemicrowavedata).BottompanelshowsthedifferencebetweenmodelsandtheT19HmeltandExtXPGRalgorithmsusedforprocessingspace-baseddatasets[Fettweisetal.,2011].ThemeannumberofGrISpixelswhenRCMandthealgorithmsdetectmelt(RCM=SAT),whenRCMdetectsmeltbuttheretrievingalgorithmsdonot(RCM>SAT)andwhenRCMdoesnotdetectmeltwhilethealgorithmsdo,(RCM<SAT)isalsolistedasapercentageofthenumberofGrISpixels°—summerdays.[ReproducedfromFettweisetal.,2011].

2.2.1.3 SMBAnalysiswithGNETData

Regardlessofthemethodsofconstruction,SMBconstituentswillcontributetoanytimeseriesrepresentationonmass-bearinggridsformedbysummingestimatesofSMB.TemporalchangestototalmassbalanceareusuallydominatedbySMB.GNETcanbeusedtotestbothtypes(intra-seasonalandsecular)ofmasschange.Insomeareas,wecanactuallytestSMBestimatesbycomparingelasticdisplacementtimeseriescomputedfromthemassgridstotheactualdisplacementsmeasuredbyGNETasinarecentpaperbyLiuetal.[2017].Forexample,amajorsnowfallevent,orrapidsequenceofevents,shouldproduceapredictablesignalintheelastictimeseriesatnearbyGPSstations.However,forthelengthscalesknownforsuchevents,thesignalislikelynotdetectedabovethenoiselevelatdistantstations.Giventwosuchmajorsnow

Page 14: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

14

falleventsamonthapartinthesamearea,onecanroughlypredictthecorrespondingsignalsinthede-trendedelasticdeflectionscomputedfromdailyorweeklySMBgridstobesimilarlyreflectedinthede-trendedGPStimeseries.Intheory,anysustainedchangeinSMBshouldhaveacorrespondingsignaturerecordedintheGNETtimeseriesfromwhichaloadingmassmaybeinvertedfor.Inpractice,allgeophysicalsourcesofloadingofthesolidEarthmustbecarefullyaccountedfor,suchastheatmosphere,oceanandlargescaleglobalhydrology[vanDametal.,1997;Bevisetal.,2012;AdhikariandIvins.,2016;Liuetal.,2017]

2.2.1.4 UseofGNETDataforFundamentalImprovementinSMBModeling

OneobviouswaytoimproveSMBestimatesistoincreasethepredictionskillofhybridnumericalweatherandsnowmodels.WenotethatoneofthelargeuncertaintiesinFigure5isthetotalprecipitation.Coupledweather-snowmodelsarebuiltaroundhigh-resolution,regionalnumericalweatherprediction(NWP)modelsthatareembeddedwithinaglobalmodel.Typically,thisisanECMWFmodel,suchasitslatestglobalreanalysis,ERA-InterimorERA-5.

Figure8.Illustrationofanensembleanalysiswith(green)andwithout(yellow)minimizationonthestatisticalrangeofanyindividualatmosphericmodelvariable.Theexampleanalysisexampleillustratestheimportanceforthe“forecastcycle”.TheuseoftheGNSSphasedelayinformationinthemodelthatisdataassimilative(“4D-Var”)hasthepotentialtogreatlytightenhindcastmodelsthatarecriticalforSMBmodelslikeRACMOandMAR.The50+GNETstationsolutionsfortroposphereparameterscansupplydatarequiredforvariationalminimizationinfourdimensions.Itisimportanttonotethatrelativelygreaterimprovementoccursinmodelestimates(4DVartrajectories)asthedistancetoobservationsisreduced.[Baueretal.,2015].

Page 15: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

15

Coupledweather-snowmodelslikeRACMO2andMARarequitesophisticatedintheircaptureoftheappropriatephysics,aweaknessisthattheylackdirectassimilationofthemeteorologicalobservationsacquiredwithintheirmodeldomains.GlobalmodelssuchasthoseoftheECMWFdoassimilateallavailablemeteorologicaldata,includingGPSdelaydata,usingvariationaldataassimilationmethodsknownas4DVarandensemble4DVar(En4DVar)Baueretal.[2015].AgeneralillustrationisshowninFigure8.WeadvocatethatconsiderableimprovementinSMBcanberealizedbyupgradingcoupledweather-snowmodelcodesthroughimplementationof4DVarmodulesthatdirectlyassimilategroundincludingGPSdelay,upperairandsatelliteobservations.BelowwegiveasynopsisofthegainsshouldberealizedusingGNETdata:

• improvedpredictionskillintheNWMcomponent• morereliableboundaryconditionsforthemulti-layeredsnowmodel• improvedmodelsofthestateofthesnow/firn/icelayersbeneaththesurface.

Towardthesegoalsthefollowingactionsarerequired:

• RoutinegenerationandassimilationofGPSdelayparametersfromGNET• DemonstratetheimpactofassimilatingGPSdelaydataintohighresolution,

regionalNWMs• GPSdelayparametersshouldberoutinelyestimated,innearly-real-timeand

usedtodemonstratethatthedelaydataimprovesthewatervaporfieldsandpredictionsforprecipitation

• Addressissuesthatarepertinenttoweather-snowassimilation.Asmanyoftheseissuesmaybeobscuretothoseunfamiliartoatmosphericprofilinganditsconsequencesforoperationalmodels,weofferthefollowingsectiononthetechnique.

2.2.1.5 GNETZenithTotalDelay:UseforRegionalAtmosphericModels

ThegoalistouseGNETGPSobservationstogenerateandassimilatezenithtotaldelay(ZTD;BennittandJupp,2012)togreatlyimprovethepredictionofsurfacemassbalance(SMB)overtheicesheetproducedbyregionalatmosphericmodels,likeMAR,RACMO,orWRFthatshowlargedifferences(Figure7).ZTDobservationsimplicitlyyieldtheverticallyintegratedwatervaporamount(precipitablewater)nottheverticalprofileofwatervaporlikeradiosondes.However,watervaporisconcentratedinthelowerpartoftheatmosphere–moisturecontent(specifichumidity)typicallydecreasesexponentiallywithheight.ZTDisavailableat~10minuteintervalsifdesiredincontrasttothetwicedailyradiosondeascents,sopotentiallydetailedtemporalbehaviorofmoistairintrusionsintoGreenlandcanbecapturedfromZTDusage.ZTDvaluesaffectedbysensoricingandsnowaccumulationwillhavetobescreenedoutbyarobustqualitycontrolprocedure.TheaccuracyofZTDvaluesinnorthernGreenland

Page 16: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

16

duringwintermaybeanissuewithannualprecipitablewatervaluesbeing4-5mmthere(RobaskyandBromwich,1994),withmuchsmallervaluesinwinter,comparabletotheuncertaintyattachedtovaluesinferredtoZTD.AtmosphericmotionfieldsofcomparableaccuracytothewatervaporinformationprovidedbytheGPSZTDwillbeneeded.ThisisgoingtobeachallengeforGreenland,largelysurroundedbydatasparseocean.ThedrydelayderivablefromZTDcorrespondstosurfacepressuresotheseobservationsimprovetheatmosphericcirculationdepiction.OneapproachthatwillhelpistousetheGPSobservationsinconjunctionwiththeautomaticweatherstations(GC-Net)ontheicesheet.TheGNETandGC-Netshouldbeviewedasanintegratednetwork.Additionalcomplementarydeploymentsmaybeneeded.Also,allavailablenon-AWSsurfaceobservationswillbeneeded.ZTDvaluesmaybeasignificantchallengetoassimilateaccuratelyasthesitesarelocatedinthecomplexcoastalenvironmentforgeodeticapplicationsratherthanmeteorologywheresamplingofbroadscaleconditionsisdesired.Mahfoufetal.[2015]hasstudiedthechallengesofZTDassimilation.Thesearepartlyresolutiondependent.Modelgridspacingofafewkmmayberequiredtoresolvethenecessaryterraindetailsandmaynotbeadequateforallsites.Consequently,adetailedevaluationoftheGPSsitesisneededtodeterminethosebestsuitedtocharacterizingatmosphericbehavior.TheMahfoufetal.[2015]studyofEuropeisforacasewhereinsummerthunderstormsshowthatGPSZTDassimilationimprovespredictionoflargeprecipitationevents–morethan0.5cm(waterequivalent)perday.Greenlandisaverydifferentenvironment.TheeventsofconcernforGreenlandaresynopticscalecyclones,frontsandhurricaneremnantsthatresultinlargemoistureflowsintotheisland.Thegreatestimpactseemslikelytobefromsitesonthewest,southandeastcoastsofGreenlandprobablyinthewarmerpartoftheyear.Multi-layeredairflowsassociatedwithmoistureintrusionsasaresultoflow-levelterrainblockingwillcomplicateeffectiveuseofZTDvalues.ThequestionofanassimilationapproachusedtoincorporateZTDobservationsintoregionalatmosphericmodelsisbeingdebated,themuchmorecomplex4DVARversussimplerapproacheslike3DVARand/orensembleapproaches.Perhapsthemostcompellingargumentfor4DVARcomesfromMahfoufetal.[2015]where4DVAR,likethatusedbytheglobalARPEGEmodelwitha6-hourassimilationwindow,wouldinclude10timesmoreZTDobservations(orequivalent)thantheir3DVARapproach.However,thereareotherstrategiesforsimplerdataassimilationapproachestoincorporatemoreZTDobservations.Ofequal,orgreater,importanceisthecarewithwhichZTDvaluesneedtobetreatedtoachieveaccurateassimilation.OurrecommendationisthatdataforZTD(andGC-Netvalues)fromGreenlandbeassimilatedfrom2007onwardintotheArcticSystemReanalysisversion3(ASRv3)for1979-2020at15kmwith71verticallevels.Ithasapan-Arcticdomainandextendsfrom~45°NtotheNorthPole.Theprimaryfocusistoexamineextremeweatherand

Page 17: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

17

climateconditionsinthePanArctic.AsecondarygoalistoachievebettersurfacemassbalanceestimatesfortheGreenlandicesheetforthelast14ofthe42yearstobecoveredbyASRv3.ProspectsforusingtheHIRLAMregionalmodel(Christensenetal.,2007)andits4DVARassimilationcapabilitytoperformaveryhighresolution(gridspacingofafewkm)ofGreenlandfrom2000onwardisquitepromising.AlldatawithinthedomainwillbeassimilatedincludingGNETZTDalsowiththegoalofbettersurfacemassbalanceestimatesfortheicesheet.Tosummarizeweemphasizetwokeyrecommendationsinthiswhitepaper:

1. ZTDobservationsfromthecomprehensiveGNETarrayaroundGreenlandshowgreatpromiseforimprovingsurfacemassbalance(andfirndensity)estimatesfromregionalatmosphericmodels.Thesedatahavehardlybeenexaminedbytheatmosphericsciencecommunityandtheirspatialandtemporalbehaviorarenotwellcharacterized;andthisknowledgeisneededtomakeeffectiveuseoftheseobservationsviadataassimilationintoatmosphericmodels.TwoormoregraduatestudentsshouldbesupportedtoevaluateGNETZTDdata,theirassimilationintoregionalatmosphericmodels,andcomparisonswithsimulationsproducedwithMARandRACMO2andreanalysisresultsproducedbyASRversion2.

2. SupporttheuseofGNETZTDinregionalreanalysesencompassingGreenland,ASRv3andtheHIRLAM-basedeffort.

2.2.1.6 ChangesinGrISdrivenbybothglacierdischargeandSMB

Inpractice,crustalmotionsrespondtothefullsetofloadchangesthatinevitablyinvolvebothicedischargeandSMB.WhiletheSMBchangeshavegreateramplitudesandclearcoherenceandfidelityintheirseasonality,changesinDoccursimultaneously,althoughthesechangestendtobeoflowerfrequencyintheirtemporaldomains.Observationsoficedischargevariationsaregovernedbychangesinglacierspeedandgeometry[Ahlstrømetal.,2013;Moonetal.2014;Joughinetal.,2013].However,itisaninescapablefactthattheSMBMEandDconstituentsareintimatelycoupled[e.g.,Palmeretal.,2011;PimentelandFlowers,2011;Schlegeletal.,2013].TherearerelativelynewandpromisingdirectionsthatGNETmightcontributetodisentanglingtheinterrelationshipsofcoupledicedischargesystems.IftheGNETtimeseriescanbeappropriatelyfiltered,theyshouldcontainsequentialloadsignalresponsesthataredrivenbythecouplingofMEandD.Approximately60%oftheGPSreceiversinGNETarecapableofmakingcontributionstoourunderstandingofthedischargeofGrISglaciersandicestreams.Khanetal.[2010]andLiuetal.[2017]recentlydiscussedcasesinwhichGPSdatahavebeenusedtoplaceconstraintsonglacierdynamics.Additionalresearchhasinvestigatedglacier

Page 18: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

18

flowbyusingGPStrackersonmovingglacierice.HeredatafromGNETstationsplayacriticalroleasreferencebasestationsAndersenetal.[2010].ThebestbedrockGNETreceiversforthisobservationareeitherveryclosetotheglacierterminusbeingstudied,orexistaspairsofreceivers,whereinoneisclosetotheterminusoftheglacier,andoneisatadistancefarenoughawaytobeunaffectedbyglacierchanges.AsimilargeodeticstrategywasusedbyDietrichetal.[2007]forJakobshavnIsbræ.

InFigure9,stationSRMPhasaverytightradiusofsensitivitywithrespectto4adjacentoutletglaciers,whileUPVK,havingacoastalbedrocklocation,ismoresensitivetobroad-scaleSMBfeaturessuchasPtot(seeFigure5).AnewtreatmentofGNETdatasensitivitybyAdhikarietal.[2017]employedthe3-DcrustalmotionstostudycoupledSMB-DonseasonaltimescalesforeachGNETstation.OneexamplefortheRinkGlacierinwestcentralGreenlandusedtheGPS-determined3-Dbedrockmotiontounambiguouslyisolatemasstransportinasolitarywavethatoccursonlyduringtheintensemeltseasonsof2010and2012(seeFigures5and6).Someofthebasicconceptsofemploying3-DmotionsaredescribedbyWahretal.[2013].Inthelatterpapertwofeatureswerehighlighted:horizontalmotionsdropoffmorequicklythandoverticalmotionsasonemovesawayfromthewater-iceloadcenter.Additionally,horizontalmotiondatacontaindifferentdiagnosticinformationaboutthelocationoftheloadsource(seeFigure9).Forstudyingglacier-specificSMB-Dcouplingthelatterfeatureiscritical.AsubtlefeaturetobeextractedfromtheWahretal.[2013]example(Figure9)isthefactthatthereisaninherentdirectionalanisotropytothehorizontaldisplacements,andthesecanbeusedtolocate,undercertainconditions,thephysicallocationandsizeofthechangingwaterload.Thisisnotanewdiscovery,asSauberetal.[2000]haspointedthisoutinregardstochangesinglaciermassinAlaska,andHekietal.[2004]hasusedthedensenetworkinJapantomeasuremountainsnowloadchanges,withtheadvantageofthelaterstudybeingboththeexistenceofdenseGPSnetworkandknowledgeoftheapproximatelocationandtimingoftheload.

Figure9.AnalysisofanormalizedSMBcontributiontoverticalcrustaldisplacementforSRMP(thickline)andUPVK(thinline)stations.Theinsetshowsazoom-indistancerangeof0–100km.ThisstudyconcludedthatmodeledSMBloadingbasedonRACMO2.3actuallyincreasedtheannualvarianceoftheGPSresiduals,whichmadeitdifficulttoestimatecontributionsfromtheannualvariabilityofglacialdynamicstothetotalicemassbalance.ThestudyrevealsthepotentialuseofGNETonevaluationofSMBmodels.(FromLiuetal.,2017).

Page 19: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

19

GNETstations,beingoriginallyplacedtomeasureGIA,arenotnecessarilyclosetotherapidlychangingoutletglaciers.Forthepurposesofusing3-Dcrustalmotions,thestationsclosesttooutletglaciersarethemostpromisingforprovidingnewconstraints.Adhikarietal.[2017]usedallthestationsthathadprocessed3-Dtime-seriesavailableandderivedasensitivitygradientmap(seeFigure10)forthesestations.Themainprinciplefollowsfromthatusedingeophysicalmodeldataassimilationforadjointsystems[e.g.,Trompetal.,2005;Larouretal.,2016].Eachstationmaybeinfluencedbyon-landmasschangesinitsimmediatelocalarea,includingatmosphericloadingandloadingfromice-snow-watermasssystems.Thelatterchanges,whentheyarelargeinamplitude,dominantlyoccurwithintheoutletglaciersystems,yetthefullSMBloading,includingthatoccurringonbedrockmustbealsocomputed.ItispossiblethatstationsmayhaveallthreeoftheircrustaldisplacementssensitivetomasschangesassociatedwithME-Dcoupledevents,ortolocalRUorPEinduced-changes.Figure10shows33stationswithmappedsensitivitytomassloadinginthevicinityofeachoftheGNETstationreceiversthathave3-componentdisplacementdataavailable.Hereathree-colorwheelisused.Cooltohotcolorsrepresentprogressivelyhighersensitivityzonesforthestations,suchthatatleast1%ofmaximumdisplacementinducedbyaunitloadappliedoveraunitareainthesezoneswouldberecordedinone(blue),two(green)andthree(red)componentsofthedisplacementvector,respectively.Thesearereferredtoaszonesofinfluence(ZOI)byAdhikarietal.[2017],anditisimportanttounderstandthatthesefullyaccountforloadvariationsoccurringata2-kmscale,sothesecanshowwhereapotentiallyMElubricatedicestreammightquicklylooseorgainmass.ForthemarineterminatingRinkGlacier,the3-Dmotionscapturealargewavetransitingdown-glacierduringsummer-to-wintermonthsduringtheintensemeltyearof2012(seeFigures5,6).Figure11showsthetrajectoryofthehorizontaldisplacementvectoroftheRINKstationduringthedown-

Figure10.Apredictionof3-Dcrustalmotionsfromasimplesinglediskwaterloadremoval.(a)showsthevertical(positiveupward)andhorizontal(positiveawayfromthedisccenter).Crustaldisplacementsarecausedbyremovingauniformdiscloadofradius20kmhavinga1-mwaterthickness.Predictionsaregivenasafunctionofthedistancetothecenterofthedisc.Theverticaldot-dashedlinemarkstheedgeofthedisc.ResultsarecomputedusingseismologicallyrealisticEarthmodel.(b)Theratiooftheverticaltohorizontaldisplacementsshownin(a).Notethedifferentpositioninframe(a)ofthepeakvalueswithrespectto0.[Wahretal.,2013].

Page 20: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

20

glaciertransitoftheME-Dmassejectionduringsummertowinterof2010and2012.NotethatthereisnoevidenceofthewaveduringyearsofnominalME.

Verticalmotionstendtoreflectmassgainsandlossesoverlargerregions,whilehorizontaloversmallerones.ThisisreflectedattheRinkGlacierbytheexcellentcomparisonof3°GRACE-masconbasedloading,Schlegeletal.[2016](redlineinFig.12a)andthe90-daymeanoftheverticalGPStime-series.Horizontalmotionsshownoclearcorrelation(lowertwoframesinFigure12a),beingmoresensitivetothe10-50

Figure11.ZOIsfor33GNETstations.Thecentermapinthetoppanelshowsmeasuredicesurfacevelocities,locationsofall54GNETstations(redcircles),and5regionsofGreenland(blackboxesdisplayingZOIs.TheZOIsarecomputedusinghigh-resolution(~2km,seeAdhikarietal.,2016)gradientmaps.Blue,green,andredsignifytheprogressivelyhighsensitivityzonesforthecorrespondingGPSstations,suchthatatleast1%ofmaximumdisplacementinducedbyaunitloadappliedoveraunitareainthesezoneswouldberecordedinone,twoandthreecomponentsofthedisplacementvector,respectively.Foreachregion,stationIDsarelisted(fromNorthtoSouth)onlyforthosestationsthathaveZOIs.Majoroutletglaciersarealsoshown[Adhikarietal.,2017].

Page 21: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

21

kmscaleloadingeventsandmorerapidshiftsinloadingstructurethan3months.The2-DplotofhorizontalpositionisshowninFigure12b,forallyearsofRINKdata,withamplitudestandoutatthe0.5–1.0cmlevelduringtheintensemeltyears.DuringthetwoyearsofintensemeltthetrajectoryisnorthingandeastingfromaboutJunetoOctober,andthenreversinginlateFalltoearlySpringofthefollowingyear.ThespatialdistributionoftheMARSMBloadingisshownbythebackgroundcolorsoftheframes(c)and(d)ofFigure12.

2.2.1.7 OtherpossiblesurfacemassbalancestudiesbenefitingfromGNET

InadditiontothefamiliaruseofGNETstationsasGPSreferencepointsforon-icestudiesandthemotionoftheGNETstationstoinfericedischargeandchangesiniceloadingofthecrust,thereareanumberofas-yetunexploitedtopicsthatcouldbenefitfromGNETGPSdata.

1. TousethetimeseriesofhorizontalGPSstationpositionstodeterminemassloss

overanunknownareathatwouldaffectaGPSstationatacertaindistancefromthelocusofmassloss.

Figure12.MasstransportwavesdetectedinhorizontaldisplacementsatRINK.(a)Componentsofdetrendeddailycrustaldisplacement(circles)measuredatRINKstation,with90-dayrunningmeans(blacklines).Models(redlines)derivedfromGRACE-basedsurfaceloadingreconciletheobservationsofverticaldisplacement,notabledeviationsoccurduringintensemeltyears(grayshadows)forthehorizontalcomponents.(b)Map-viewtrajectoriesofhorizontals.(Largeonlyin2010and2012.)Circlesshowmonthlystationpositions.(c)PatternofmassdeficittransitingtheRinkGlacierduring2012summer.About-7.1mofmonthlythinningovertheoptimaldomain(bluefillwithintheglaciertrunkoutlinedbywhiteline)isrequiredtoexplainthemeanmonthlydisplacement(redarrow).Alsoplottedarethemagnitudesandfulcrumpositionsofmonthlymassanomalies(circles)thatsatisfythemonthlydisplacementdata(arrows).Adown-glacierpropagationof(negative)massanomalyrepresentsthenegativephaseofthemasstransportwave.MeanmonthlySMBloadsareshowninthebackground.(d)Sameas(c),butforthefall/mid-winterseasonthatfollows.Itrequires+2.8mmonthlythickeningovertheoptimaldomain(redfillwithintheglaciertrunk)toexplainthemeanmonthlydisplacement(bluearrow).(e)Summaryof(c)and(d),revealingthesolitaryseasonalwaveoficemasstransport.

Page 22: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

22

2. TousemultipathreflectionsofGPS/GNSSsignalstoobtainsurfaceparameters(snowdepth,oceantides).Larsonetal.[2009]providesaproof-of-conceptandSiegfriedetal.[submitted]presentareal-worldapplicationinAntarcticaofthismethodology.TheGNETarchiveprovidesameanstodothisonalargescale.

3. TouseGPSseismologytoprovideinformationaboutcalvingmechanicsresolvedathigh(~1Hz)frequencies[e.g.,Hollandetal.,2016]

4. TouseGPSonthesurfaceofmarineterminatingglacierstoobservegrounding/hingelineflexure.SuchstudieswouldbenefitfromfixedreferenceGPSstationssuchasGNET.

5. TouseburiedGPSantennatoobtainsnowwaterequivalentabovetheantennaemployingthewavepropagationprinciplesinsnow-ice,asforexampleoutlinedbyNievinskiandLarson(2014).

6. TofurthercoupleGPSobservationswithremotesensingtounderstandthenearsurfacerheologyofthecrustaroundGreenland.[e.g.,KucharandMilne,2015]

7. Examinetheinfluenceoftides(fromGPS-IR)oniceloadsandGPSresponse(e.g.,DeJaunetal.,2010).

Theabovelistofnewprojectswould,inseveralcases,requiretargeteddensificationoftheGNETnetwork.SuchadditionstoGNETwouldnecessarilybetheresultofproposal-drivenscienceinvestmentsfromNSF,NASAorotherfundingagency,andarethereforenotaprimaryrecommendationofthisreport.

2.2.2 SupportforInterpretationofAltimetryGNETcanalsohelptocalibrateorcorrectthealtimetryusedtoformSMBestimates.Althoughnotyetexploited,someICESattrackshaveverycloseapproachestoGNETstations.CrustalupliftmeasuredattheseGNETsitescouldbeusedtocorrecttheupliftofthesnowsurfacemeasuredbyICESat,allowinganassessmentofthechangeofthethicknessoftheicesheet.AsimilarstudycouldbedonewithICESat-2,followingits2018launch.Inaddition,thegroundtrackpatternofICESat-2isexpectedtobemuchdenserthanthatofICESat,expandingthenumberofGNETstationsthatcouldbeusedinaltimetryvalidation.StationsintheGNETnetworkareonexposedbedrockneartheicesheetperiphery,andrecordchangesintherocksurfaceheighttoafewmillimetersperyear.ICESat-2tracksinsomecaseswillnaturallypasswithinafewtensofmetersofaspecificstation,andinothercases,ICESat-2canbepointedtowithinafewtensofmetersofagivenGNETstation(thepointingcontrolofICESat-2being~40m).TheroughterrainandsteepslopesnearmanyoftheGNETstationswillbroadenthelaserpulsereturnofICESat-2comparedtothereturnoveraflatsurface,andshouldyieldelevationprecisiontowithinafewtensofcentimeters.Giventhelocallyroughterrain,anintermediateheightproductwouldbeneededinordertocomparethesub-centimeterprecisionfromGNETtothenearbyICESat-2measurements.Inordertobridgethisscalegap,GNETstationscouldbesurveyedusingLIDAR,stereophotography,and/oratotalstationsurvey.Withthesedata,itwillbepossibletodeterminelocationofthe

Page 23: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

23

GPSmonument,theGPSantenna(anditsphasecenter)relativetotherocksurfaceinwhichtheantennawasinstalled.Theselocalarea,geodeticgradeDEMs,withaperturesofhundredsofmetersorevenakilometer,wouldenablethegenerationofepoch-specificDEMsusingWorldViewsatelliteimageryadjustedtothelocalantennaandrocksurfaceDEM.TheWorldViewDEMcouldhaveanapertureof10km,forexample,andallowtheGNETstation’sfootprinttobeextendedontotheicesheet,characterizingtheheightofthesurfacecrossedbyICESat-2’strackwithinadayorsooftheICESat-2measurement.

2.2.3 SupportforGRACEandtheTotalMassBalanceTimeSeriesTheotherwayinwhichGNETcanimproveourestimatesofMBistosupplementthemasschangeestimatesinferredfromGRACEandGRACE-FollowOn.Improvementsaretwo-fold:GRACEhasverylowresolution(250kmx250kmattheverybest)andcannotdealwithcomplicatedcoastlines,snowcoveredareasandsmallglaciersvs.icesheet,etc.Secondly,GRACEmasschangedeterminationisheavilyreliantonanaccurate“GIAcorrection”thatcanonlybeprovidedbyacombinedmodelingandGPS-determinedverticalmotionretrievedfromthesecularcomponentofthetimeseries.GRACEmeasuresbothiceandrockmasschangesassociatedwithGIA.TheverticalrockmassfluxisestimatedusingaGIAmodel,andthisisremovedfromthetotalmasschangesensedbyGRACEtoisolatetheicemasschange.TheproblemswiththisGIAcorrectionarethat(1)itcanbelargerthantheresultingestimateoficemasschangeinsomeregions,and(2)thepotpourriofcurrentmodelspredictdifferentratesofGIA.TheonlywayoutofthisproblemistoimprovetheobservationalconstraintsonGIA,sothattheGIAmodelsarebetterconstrainedbyawiderrangeofobservations.ThiswasoneoftheoriginalgoalsofGNET,andtherecentworkbyKhanetal.[2016]hasdemonstratedthaterrorsintheGIAcorrectiontraditionallyusedbytheGRACEanalysisgroupshaveledtomajorerrorsinmasschangeestimatesforspecificdrainagebasins.

2.3 Ionosphere,TroposphereThe ionosphere and troposphere affect GNSS signals traveling from satellites toreceivers.The ionosphereextends fromabout50-1000kmabove theEarth’ssurfaceand acts as a dispersivemedium for GNSS signals. Thus, the phase delay of a radiosignalintheionosphereisfrequency-dependentanddeterminedbythenumberoffreeelectronsintheionosphere.Dual-frequencyGNSSobservationscanbeusedtoestimateionosphericdelayandalsodeterminethetotalelectroncontent(TEC)alongthesignalpath [MisraandEnge,2011;Komjathyetal.,2016].Processesaffecting the ionosphereincludespaceweathereffectsduetosolarandgeomagneticactivity,loweratmosphericcoupling(suchasstratosphericwarming,tidalsignatures),andnaturalandman-madehazards (tsunamis, earthquakes, rocket launches).Hence, themonitoring of TEChasuses ranging from space weather monitoring [Basu et al., 2001; Coster et al., 2003;CosterandKomjathy,2008], largeandsmall-scaleweathermonitoringsuchasstudiesof global stratospheric warming signatures Goncharenko et al. [2010] to tsunami

Page 24: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

24

trackingKomjathyetal.[2016],andthunderstormsLayetal.[2013],andevaluationofco-seismic[CalaisandMinister,1998]orco-eruptiveenergyrelease[Heki,2006].Spanning60-85° north latitude, GNETpresents a unique opportunity to observe thehigh-latitudeionospherewithpiercepointsrangingfromabout55-90°northlatitude.Ground-based GNSSmeasurements can provide a complete latitudinal profile of theArctic ionosphere. Geomagnetic processes are commonly observed with magneticstations that are co-located with GNSS stations in some places, and benefit fromsharingresourcesbetweenthetwostationtypes.Forseveralyears,GNEThasbeenusedforionosphericstudieswithafocusonstudiesof the polar cap and auroral oval processes via TEC and scintillation observations[Durgonicsetal.,2017].Routineprocessinggenerateshourly tosub-hourlyTECmapsover Greenland for near-real time application. However, insufficient data access tomost GNET stations limits this to only 10-15 stations, which impacts the spatialresolution of the results.While real-time streaming capabilities should be the long-term target for all sites, data access on a sub-hourly basis would be extremelybeneficial.Anincrease inresolutioncanbeachievedbyadditionof inlandstations inregions that move less than a few mm per day (this stability requirement can berelaxedforstationsthatonlyobservetheionosphere)andupgradingfromGPS-onlytomulti-GNSSconstellationobservationsthatincludeallavailablesatelliteconstellations.Samplingratesof1HzforTECand50-60Hzforscintillationstudiesareidealforsuchstudies. To minimize the bandwidth requirement for scintillation applications,scintillationindicescanbecalculatedlocallyandthentransmitted,instatedoftherawGNSSobservations.To fullyenable scienceduring strongscintillationconditions, therawdata shouldbe stored locally in a ring-buffer such that on-demanddownload ispossible.Thiswouldnotonlybenefitnavigationorpotentiallypowergridprotection,butenablestreamliningofthesciencesuchthatroutineanomalydetection,catalogingandanalysisispossible;ultimatelyexpandingionospherestudiesfromevent-basedtoacontinuum.The troposphere, ranging up to about 9 km high at the poles, is a non-dispersivemediumandassuchitsimpactonaradiosignalisfrequencyindependent(MisraandEnge, 2011). The effect of the troposphere on GNSS signal propagation can beseparatedintodryandwetphasedelays.TheformeriscausedbydrygasessuchasN2andO2,and the latter isdue towatervapor. InstandardGPSpositioningprocessing,these delays are corrected with models and obliquity mapping functions. Howevermaking use of observations from the global network of GNSS receivers and localmeasurements of pressure and temperature, the dry andwet terms of delay can bederived,andfromthem,parameterssuchasthezenithprecipitablewatercontentcanbeestimated[Bevisetal.,1992].Water vapor estimation should be a standard product for GNET and would benefitsatellite mission validation and calibration (e.g., improvements to the troposphericmodelsusedforICESat-2rangedelaycorrection).Thecurrentlowtemporal,buthighspatialresolutionMODISwatervaporestimatescanbemergedwithGNSSproductsto

Page 25: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

25

improve temporal resolution.While GNET’s spatial layout makes it difficult to fullycapture the heterogeneity of the troposphere, moving to full constellation GNSStracking at high data rateswill increase the number of troposphere piercing points.The network should be densified along the coast as most of the water vapor isexpected there. However, interior Greenland stations will allow tracking of watervaporintheinterior.Recentmeltingeventsthataffectedtheicesheetinteriorcanbeexpected to increase thewatervaporconcentration in theatmosphere.Forexample,thin, lowlevel liquidcloudswererecentlyshowntooccuroverGreenlandfrequentlyand enhanced the 2012melting event [Bennartzetal.,2013]. The additional interiorGNSSstationsproposedforionospherestudiescouldalsobenefitclimateresearchfortracking the atmospheric water content and, using GNSS-reflectometry Larsonetal.[2009],recordsnowheight/snowwatercontent.Meteorologyinstrumentationshouldbe included at all stations as these observations at high temporal resolution can beusedinvalidationeffortsofnumericalweathermodels.AlloftheseapplicationswouldbeacompletelynewuseofGNETdata.

2.4 LargescalegeodesyGNETGPSstationsplayanimportantroleinrealizationofaccurateandstableglobalinternationalreferencesthatcanbeusedforobservingchangesinthegeospheresuchaschangesintheicesheets,sealevel,theEarth’stectosphereandstrainfieldacrosstheNorthAmericaplate.Asdiscussedabove,GNETalsoservesasaconsistentreferenceforindividualsurveysandcampaignstherebylinkingsuchdatatogether.Theimportanceofanaccuratereliableinternationalreferenceframe(suchastheInternationalTerrestrialReferenceFrame;ITRF)forsupportingasustainabledevelopmentofinternationalsocietyandinternationalcollaborationhavebeenacknowledgedbytheUnitedNations(Resolution69/266),andallnationsbenefitfromwell-coordinatedreferenceframedetermination.

2.4.1 GNSScoordinatetimeseriesandreferenceframes.Thecomputationofcoordinatetimeseriesisafundamentalandnon-trivialtaskthatiscrucialforobtainingthebestresultsforsubsequenttimeseriesanalysis.InthecomputationofcoordinatetimeseriesfortheGNETstationsthereareissuesrelatedtohandlingofGPSclockandorbiterrors,ionosphericdelays,andrelatedtopics.Furthermore,suchcomputationsaredependentonthestabilityofthereferenceframe.Changesincomputationstrategiesandreferenceframeinstabilitiesanduncertaintiesaffecttheresultingcoordinatessubstantially.OftenthereferenceframeneedstoberedefinedwhencoordinatetimeseriesforGNETstationsarecomputed.SuchstudieshavebecomemorepowerfulastheGNSSsatellitenetworkhasexpanded(GPS,GLONASS,and/orGALILEO)andthecorrespondingprocessingstrategieshavematured.Thesedevelopmentsareongoingamongmanyresearchgroupsaroundtheworld.Inaddition,asthenumberandlocationofreferencestationsgloballyhasevolved,theselectionofstationsusedinsecuringastablerealizationofthereferenceframehasalsoevolved.

Page 26: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

26

Tosatisfythestringentrequirementsforreferenceframedetermination,potentialreferencestationsrequirecontinuousdataseriesfromgeodeticGNSSreceiversequippedwithchokeringantennasmountedonstablemonuments.Bydesign,GNETstationshavethatquality.TheobservablesfromallGNETstationsareconvertedtothestandardRINEXdataformat.TheGNETrawdatahasbeenarchivedastwosetsofdata:UNAVCOandLuxemburgdata.TheseareonlinethroughtheUNAVCOwebsite,andtheDTUSpaceGPSdata,whicharestoredatDTUSpaceandonlyavailableonrequest.Thedataportalsmaybeusedforpost-processingandestimationofcoordinatetimeseries,orusedasreferencestationsfortemporaryGPSstationinstallationsforawiderangeofapplicationsdescribedabove.InordertomaximizethebenefitoftheGNETnetworkforcoordinatesystemstudiesorreferenceframedetermination,stationsshouldlogGALILEOandGLONASSsignalsaswellasGPS.Furthermore,GNETstationsmayneedtobeaugmentedbyreferenceclocks,metsensors,andothergeophysicalequipmentsuchmagnetometers,radiationsensorsetc.

2.4.2 MakingITRFavailabletotheusers.Tosupportresearchanddevelopmentprojectsitisessentialthatthereferenceframeisrealizedlocallyandmadeaccessibletoend-users.Today,thereferenceframesarerealizedusingpermanentlyoperatingGNSSreferencestationsforwhichthereferencecoordinatesandGNSSdataareappliedforaccurateandconsistentpositioningofvehicles/platforms/payloadsmappingthequantityofinterest(e.g.icesheet/glaciergeometry,velocities,etc.).Currently,theSDFEandDTUareoperatingGNSSstationsinGreenlandtofulfillthistaskasthenationalauthoritytorealizenewITRFslocallyanddefinetransformationstotheofficialnationalframe.ThemainchallengestomakingITRFsavailabletousersarethatthefewon-linereferencestationsdonotprovidesufficientcoveragetodefineandmaintainasufficientlydetailedreferenceframeinallpartsofGreenlandtosupportresearchanddevelopmentprojectsandauthoritytasks,andthatdatafromallexistingreferencestationshasnotyetbeenmadeavailabletotheusersintherequiredrateandformat.ThistaskrequiresreferencecoordinatessupplementedbyhigherrateGNSSdatafromtheGNSSstations.Currently,theSDFEandDTUaresupportingthistaskasthenationalauthority.ReferencecoordinatesareavailableforallGNETstations.Onlyaminorsubsetofthestations,however,canprovidehigherratedata.GNETstationscouldpotentially,underanupgrade,providethereferencecoordinatesandhigherrateGNSSdataneededtosupportgroundandairborneoperationsinresearchanddevelopmentprojectsovertheentireisland.ByupgradingGNETstationswithhigherratereceiversandcommunicationlinksthegapscanbefilled.Furthermore,stationsmayneedtobeupgradedwithmultiGNSS(asopposedtoGPS-only)receivers.Optimally,near-real-timedatamaybeneeded.

Page 27: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

27

2.4.3 GNSSreflectometry.AnalysesofthereflectedGNSSsignalsshownewinterestingapplicationsofGNETdataforstudyingchangesinsealevelandsnowaccumulation.Bothapplicationsmayprovidevaluablesupplementstotheexistingobservationnetworks,especiallyinGreenlandwheredeploymentofsuchinstrumentationischallenging.OnechallengeinimplementingGNSSreflectometryforsealevelwork,isthatonlyafewstationsarelocatedneartheoceanscapableofobtainingsealevelinformation.Forsnowaccumulationwork,moststationsarelocatedonbedrockontheperipheryoftheisland,andassuchareoutsideofGreenland’saccumulationarea.However,valuableestimatesofsnowheightandmassofprecipitation(snow/firndensification)isimportanttoassessintheablationzone,thusaddingtoourknowledgeofSMBprocesses.Additionally,theseapplicationsrequirereflectionsatverylowanglethatarenormallyeliminatedfromthedatastreambyanelevationmask.

ThisisanewapplicationofGNSSrecentlypresentedatconferences,butatpresentonlyafewGNETstationscanbeused.However,applicationtoGNETdatamaybedevelopedusingexistingdataacquiredbythenetworkundercertainconditions.Forbestresults,stationslocatedclosetotheoceanmaybeusedformonitoringsealevelandsupporttidalstudiesandstudiesofsealevelrise.Stationslocatedcloseto,oractuallyon,theicesheetmaybeusedformonitoringchangesintheicesheetsandsupportstudiesoficesheetmassbalanceandofsnow/firnproperties.Tosupportthiswork,morestationsinclosevicinitytotheoceanandtotheicesheetareneeded.

3 DataManagement

3.1 GeneralBackgroundForbroaderuseofGNETrawdata,itisrecommendedthatalldatabemadeavailableonline,withaminimaldelay,asfarasfeasible(afewstationslikeStationNORDarenotroutinelydownloadedforhigh-ratedata).Withjusttwoagenciesinvolved,itisprobablyeasiesttomaintaintheseparateUNAVCOandDTUsites,aslongasdataformats,RINEXversionsandsitemaintenancelogsaresimilarandwelldocumented.Itisrecommendedthatbothofthedatacentersprovidedoinumbersfortheirrespectiverawdata,forpropercitation.Havingclearformatsandsimpleaccesstoalldatawouldbenefitnumerousotherapplicationsfornon-expertGPSusers,e.g.inthemeteorologydomain,andalsomakesurethattheGNETdataisusedmuchmorewidelyforlocalGreenlandsurveying,bothforsocietyuseandmining/resourcedevelopment(thisisessentiallynothappeningtoday,mainlybecauseoflacktrainingforlocalnon-expertusers).

Page 28: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

28

3.2 AncillaryDataAbsoluterepeatedgravitydata,observedirregularlybothbyULuxandDTUSpace,shouldsimilarlybeassigneddoi’s,andalsobepostedwithinashortintervaloftheobservations(ideally<1year)onDTUSpaceandULuxwebsite,respectively.Theurgencyforthiskindofdataislower,andonlyscienceoriented.Thefinalprocessedgravityvaluesshouldbeprovidedalongwithestimatedstandarderrors,tidalcorrections,operatorissues,hardwaretype,andverticalgravitygradientused(ifany).Itislikelynotrelevanttoincludeindividualdropdataandsimilar,butimprovedaccesstodatawouldstimulatemorescientificinvestigationsofGNETandgravitychanges,andthusbetterGIAunderstanding.

3.3 GenerationofTimeSeriesAcentralGNETwebpageshouldprovidethenecessarydatalinkstoalldata,bothrawandprocessedGPSdata,aswellasgravity.Itcouldalsolinktoother3rdpartyrelevantwebsites,suchasthenationalGreenlandmonitoringsitewww.promice.dkandotherGreenlanddataportals.Itwouldalsoberelevanttoincludesomeresourcematerialforlocalnon-expertusers.Inadditiontotherawdataaccessdescribedabove,processedGPSdataintheformoftimeseriesofstandardizedlatitude,longitudeandheightsate.g.30secresolutionarerecommendedforprovisionbyoneormore“official”dataprocessingcenters.IthasbeenamajorlimitingfactorforthewidespreaduseofGNETdatathatonlythe“raw”GPSdataareavailable.Processingsuchdataarebeyondthecapabilityofmanyusers,e.g.forglaciologistsandothergeoscientistsprimarilyinterestedinusingGNETfordirectGreenlandmassbalanceestimation.A“level2”GNETproductshouldberoutinelyprovidedbyoneormoredatacenters(e.g.OSU,UNevada,UNAVCOand/orDTUSpace),usingawell-describedanddocumentedmethodology.Onlybyprovidingthe“Level-2”coordinateproductwillabroaderusercommunityreallybeabletoutilizeGNET(andANET)dataforinnovativescience.TheavailabilityofL2-datawouldnourishnewscientificadvances,possiblylendinggreaterstrengthforannualmassbalance,especiallywheninterwovenwithothersatellitedata.WiththehightemporalresolutionofGNET,itwouldthenalsobepossibletoturnthisupsidedown,andimprovesatellitemonitoringoficesheetchangesbyGRACE,altimetryandiceflowvelocitymapping.Thereisaparalleltosatellitemissionshere:imaginethattheGRACEteamonlyprovidedLevel-1data(satelliterangeandrange-ratedata);thiswouldhaveseverelylimiteduseofGRACEdatatoahandfulofusers.ForGRACEthe“competition”inprovidingthebetterLevel-2databyimprovedmethodologyhasindeedhelpedtogeneratebetterLevel-2products,forthebenefitsofallusers.Tobeabletobenefitfromthesatellite/phonelinedatacommunicationtomostGNETstations,theLevel-2processingshouldideallybesetupinanearreal-timefashion,

Page 29: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

29

withalatencyoffewdays,tomatchthepresent6-daynear-realtimeprocessingofSentinel-1iceoutletglaciervelocitydata,alreadyrunningroutinelyaroundtheentireGreenlandicesheet(e.g.,http://cryoportal.enveo.at/).Also,thereferencesystemandtidal/atmosphericcorrectionsappliedshouldbeagreeduponbetweenallprocessingcenters,tothedegreepossible.TheLevel-2GNETdataprovidersshouldbeprovidedsecurelong-termfundingforrunningtheroutineprocessingservice,justlikeUniversityofTexas,JPL,andGFZ(Germany)doesforGRACE.Givingthe10-yearexperienceinanalysingGNETdatabykeyPI’s,thisshouldnotrequirelargeresources(comparede.g.totheGNETmaintenancecosts),asstandardprocessingtoolssuchasGIPSY,GAMITandBerneseareavailableandapplicationsfornetworkanalysisproven.TheLevel-2processingcouldalsobeaugmentedwithotherparameters,suchasionosphereandatmosphericrelatedprocessing,butthismightbeabiggerchallenge(andpotentiallyfewerusers)thanthe“clean”L2coordinateproducts.Derivedhigher-levelproducts,suchasimprovedGIAmodels,wouldstillbe“pure”scienceandkeptoutoftheL2-service,althoughlinksandrecommendationsshouldbeprovidedontheGNETdataportal/website.

3.4 DataStreamandArchivingFundedbyNSFDatafromtheNationalScienceFoundation(NSF)-fundedGNETnetworkisdownloadedeitherthroughTeleGreenlandADSLmodems(3sites)orthroughIridiumsatellitemodems(38sites).GNETmakesuseoftwodifferenttypesofIridiummodemstoconnecttotheremoteGPSreceivers.Onetypeinvolvesdialing29remotesitesfromanIridiumdownloadhubbasedinBoulder,Colorado.Thisdownloadhubconsistsofonebasemodemforapproximatelyevery6remotesites.ThesecondinvolvesusingIridiumRouter-BasedUnrestrictedDigitalInternetworkingConnectivitySolutions(RUDICS)modem,whichusesmulti-protocolMobileOriginated(MO)andMobileTerminated(MT)circuitswitcheddataconnectivity.InthecaseofRUDICSmodem,dataareroutedthroughanethernettunnelmaintainedatUNAVCO.TheRUDICSmodemprovidesahigherbandwidthconnection,andthuscanpassthroughhigherGPSdatarates.Themaintradeoffisthetwo-foldincreaseincostfortheRUDICSmodem.Thedial-upandRUDICSIridiummodemsrequireaserverandautomatedscriptstoaccesstheGPSdataandreceiverstateofhealthinformation.Onceconnected,ascriptlooksforthelastsuccessfullyarchivedfile,andproceedstoretrieveallremainingwholedatafiles.Iftheconnectionisinterrupted,thedownloadscriptwillreattempttheretrievalonthenextconnection,whichoftenoccursmultipletimesperday.Enoughbandwidthoverheadismaintainedtocatchupondatathatmighthavebeenmissedordelayedduetotechnicalissueswiththesite,regardlessofthedurationofthecommunicationsoutage.

Page 30: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

30

Rawdatainreceiver-specific,binarycompressedformatfilesdownloadedfromtheGPSreceiversthroughtheIridiumnetworkorADSLmodemsarepromptlyarchivedatUNAVCO.Additionally,therawdataareconvertedtoRINEX2.11andpostedasdailyfilesontheUNAVCOpublicftpserver,whichisaccessibleviaanonymousftp.DataqualitychecksareperformedwithTEQC[EsteyandMeertens,1999],andresultingsummaryfilesarearchivedalongwiththeobservationandnavigationfiles.OngoingdataprocessingisperformedbythePIteamatOhioStateUniversity,whichyieldspositionestimatesandotherancillaryinformation.UnliketheGeodesyAdvancingGeosciencesandEarthScope(GAGE)Facilityprocessingsystem,whichproducesdailyGNSSsolutionsfor>1700continuousstationsincludingtheNSF-fundedPlateBoundaryObservatory,TLALOCNet(Mexico),andCOCONet(panCaribbean),neitherdailypositionestimatesandtheirassociateduncertaintiesnorvelocityestimatesandtheiruncertaintiesareprovidedbyOSUtoUNAVCOforpublicationonitswebsite.IridiumserviceisprovidedatsubsidizedDepartmentofDefenseratestotheNSF.Iridiumcostsareapproximately$285/monthperdevice.Thiscostisnotcurrentlybasedondatausage,butinsteadisasetcosttoNSFthatisdividedequallyamongusers.TheDODratesarecurrentlyunderreviewandweanticipatechangesittheratestructureinthecomingmonths.

4 Bestconfigurationmovingforward

4.1 EvaluationofGNETstationsAnecessarydetailofthisreportistoestablishtherelativemeritsoftheGNETstationsastheyhaverecordedscientificdatasince2007.GiventhattheoriginalscientificgoalofGNETwastoretrievetheGIAsignalandimprovemodels,thismustbeoneofthemaincriteriaweusetowardaquantitativeevaluationofperformance.Additionally,asthedataclearlyhaveshown,apresent-daymassbalancecomponentispresentinthetimeseriesofcrustalmotionsrecordedateachofthestationsthatisusefulformakingconnectionstoSMBandD,orin-other-words,theongoingmassbalanceofcoastalGreenland[Jiangetal.,2010;Bevisetal.,2012].Inordertomakethiscomparisoninabothstraightforwardandintelligibleway,werelyheavilyonthreerecentanalysesofGIAandSMB-Dresponses.ApowerfulsourceofconstraintonGIAmodelscomesfromrelativesea-level(RSL)datasets,asthesesamplethecrustalandsea-levelresponsesatdifferenttimesduringtheGIAprocess.ArecentmodelofthistypeisthemodelbyLecavalieretal.[2014](seeFigure2a).AnalternativemodelforcomparisonisonethathasbeenheavilyinfluencesbytheGPSdatafromGNETbyKhanetal.[2016](Figure2b).WealsorelyontheZOIanalysisofAdhikarietal.[2017](Figure11).Weadoptthefollowingscoringtechniquefor40oftheGNETstationsandpresenttheseresultsonTable1.GIAisevaluatedintwoways.First,thestationhasanintrinsicrelativevalueinisolatingtheviscoelasticsignalbyitsproximitytocrustthatisbothfreefrompresent-dayicesheetchangesandnearplaceswherethepasticesheetadvancesoverland.Wetermthislattercategory“GIA-merit”.ForevaluationofastationsvalueinmeasuringSMB-D,weusetwocriteria:thelocationofthemappedZOI

Page 31: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

31

(Figure11)andthelocationofthestationwithrespecttoannualaveragesofoutletglaciervelocity(seeFigure11,inset).Thirdly,astationmayalsobeshowntobeofvalueinhelpingtosortoutdifferencesinRSLvs.GNET-weightedGIAmodelsolutions(Figures2and3).Thelaterevaluationcategoryweterm“GIA-discrepancy”,andthescoringsystemisslightlydifferentthanthatforGIA-meritorSMB-D.Fortheformer,scoresareeither0or2,foreachstation,whilethelattertwocanscore0,1and3.Ascoreof3inthelattercasesmeansthatthestationlacksambiguityinitssensitivity,andtherefore,meritinevaluatingthesignaturesrelatedtoeitherGIAortoSMB-D.Table1.Scoresfor40oftheexistingGNETstations.A‘*’indicatesthatadditionalinformationmaybefoundinBevis

etal.[2012]orAdhikarietal.[2017].

Northwest GIA-merit SMB-D GIA-discrepancyHRGD 1 3 0KMOR 3 0 2KAGZ 3 0 2SCBY 3 3 2THU2 3 0 2DSKG 3 3 0

Northeast KMPJ 3 0 0NORD 3 1 0NRSK 3 0 0JBLG* 3 0 0LBIB 1 3 0DMHN 3 0 0GROK 1 3 0LEFN 1 3 0

EastCentral DANE 3 0 0HMBG 1 3 0MSVG 3 1 0DGJG 1 3 0SCOR 3 0 0VFDG 1 3 0KUAQ 3 3 2MIK2 3 0 2

SouthGreenland KSNB 3 1 0KELY 3 0 0KULU 3 1 0KBUG 3 1 2KAPI 3 0 2HJOR 3 0 2TIMM 3 0 2NNVN 3 1 0SENU 3 1 0NUUK* 3 0 2

WestCentralGreenland KULL 3 0 2UPVK 1 3 2

Page 32: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

32

RINK 1 3 0QEQE 3 0 0AASI* 3 0 0ILUL* 3 1 0SRMP* 1 3 2KAGA 1 3 0

ForinterpretingthescoresshowninTable1,itisadvisedthatatotaladdedscoreisinappropriatetoemployforevaluation.Forexample,Adhikarietal.[2017]showedthemeritsofthesensitivityoftheRINKstationtoSMB-Dwithveryhighfidelityduringextrememeltyears,whereas,stationHMBGwouldhaveidenticaltotalscore,eventhoughnodemonstrationofhorizontalcrustalmotionsensitivityhasyetbeenfullycarriedout.Also,itmightbetemptingtoaddthetwoGIArelatedscores,butsomedifferencescouldbeduetolateralheterogeneityinmantleviscosity,orsomeotherpartoftheicehistory,thatiscurrentlyunderdevelopment[GlennMilne,personalcommunication,July2017].Obviously,thistableismosthelpfuloncedecisionsaremadeastothepreferredapproachtothefutureofGNET:toisolateSMB-Dononehand,orGIAontheother.TheultimatedecisionregardingtherelativeweightingofthescoresinTable1shouldbeguidedbytheacceptanceofviablescienceprojectsselectedbytheNationalScienceFoundation.

4.2 AddingstationstotheexistingnetworkManydisciplineswouldbenefitfromtheadditionofstationstothenetwork,buttheadditionwouldbetargeted.TheGlacialIsostaticAdjustmentcommunityhaspointedoutahandfulofkeylocationswheretheadditionofonlyafewnewstationswouldhelpconstrainGIAestimates.TheDynamicMassBalance(iceflow)communitywouldalsosuggesttargeteddensificationofthenetwork,butdrivenbyspecificsciencegoalsandlikelytargetingspecifickeyoutletglaciers.Thetroposphericandionosphericcommunitieswouldalsobenefitfromadensernetworkalongthecoast.Tobenefitreflectometrystudiesofsealevel,newstationswouldneedtobeclosertotheoceanthanexistingstations,allowingmultipathreflectionsfromtheoceansurface.Anotherdesireexpressedbymultiplegroupswastohavestationsaddedontheinlandice.Boththereflectometrycommunity(forstudiesofaccumulationandfirndensification)andthetropospheric/ionosphericcommunityexpressedthisdesire.Suchstationswouldposeuniquechallenges,dependingonwheretheywereplacedontheicesurface.Inparticular,stabilitywouldbeasignificantproblem.Intheablationzone,icewouldmeltoutfromunderneathanchorsandmonuments,increasingthechallenge-thishasbeenhandledwithvaryingdegreesofsuccessbyshorter-termcampaigngroups,butmaintainingalong-termstationundersuchconditionswouldbedifficult.Intheaccumulationzonetheproblemissimpler,butnolessaproblemtobesolved-inparticulartheantennawouldneedtoberaisedperiodicallytokeepaheadoftheaccumulatingsnow,andonallpartsoftheicesheet,theiceisflowing,resultinginsignificantchangesinthepositionofastationoverthecourseofevenoneyear.Thesechallengesaresignificantbutarenotimpossibletoovercome.

Page 33: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

33

4.3 Detailedsitecharacterizationofexistingsites,additionalmeasurementsSeveralgroupsexpressedadesireforamoredetailedsitecharacterizationofexisting(andfuture)GNETsites.Thesitecharacterizationsrangedfromdetailedtopographicalsurveyingviaterrestriallidarorstructure-from-motionphotography,toadditionalatmosphericandgeophysicalmeasurements.Gravitymeasurementsexistatsomesites,butexpandedmeasurementsatotherGNETsitesisdesirable.Finally,agreaterunderstandingofthemeteorologicalconditionsatthesiteswasdesired.Thiscouldtaketheformofanythingfromafull-scaleweatherstation(unlikely)toamicro-meteorologicalstation,someofwhichcanplugdirectlyintotheGPSloggerpoweranddatastreams.

4.4 ExpandedskycoverageanddataaccessforexistingsitesThereareseveralimprovementsthatcanbemadetothenetworkwithouttheneedforadditionalstationsormeasurementsatexistingstations,butwhichwilladdvaluetothedataformultipleusers.ManyofthegroupsexpressedthatlimitingthedatacollectiontotheGPSconstellationwasaproblem,andwantedGLONASSandGALLILEOcoverageaswell,makingthenetworktrulyGNSSandnotonlyGPS.Manyapplicationsincludingspaceweather,geodesy,andothersneedaccesstodatainnear-real-timeforittobeuseful,sorapidaccesstodataisessential.Inadditiontofastaccesstothedata,manyapplicationswouldbenefitfromhigher-ratedatathanwhatiscurrentlyavailablethroughGNET.Finally,traditionalGPSusagerequiresthatthesignalpathbetweensatelliteandgroundstationbeasinglestraightline,andanyinterferencewiththisisaproblem.Forthisreason,itiscommontolimitdatacollectiontoonlysatellitesthatareaboveacertainangleinthesky,reducingtheriskofmultipathreflections.Foruserswhoutilizethemultipathreflectionsforadded-valuedataproducts,however,theselow-anglemeasurementsareessential.Thus,removingthemaskingforlow-angledataisdesirable.

Page 34: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

34

5 REFERENCES:

Adhikari,S.andE.R.Ivins,(2016),Climate-drivenpolarmotion:2003–2015,ScienceAdv.,doi:10.1126/sciadv.1501693.

Adhikari,S.,E.R.Ivins,andE.Larour,(2016),ISSM-SESAWv1.0:mesh-based

computationofgravitationallyconsistentsea-levelandgeodeticsignaturescausedbycryosphereandclimatedrivenmasschange,Geosci.ModelDev.,9,1087–1109,doi:10.5194/gmd-9-1087-201.

Adhikari,S.,E.R.IvinsandE.Larour(2017),Masstransportwavesamplifiedbyintense

GreenlandmeltanddetectedinsolidEarthdeformation,Geophys.Res.Letters,44,doi:10.1002/2017GL073478.

Ahlstrøm,A.P.,S.B.Andersen,M.L.Andersen,H.Machguth,F.M.Nick,I.Joughin,C.H.

Reijmer,R.vandeWal,J.P.Boncori,andJ.E.Box(2013),Seasonalvelocitiesofeightmajormarine-terminatingoutletglaciersoftheGreenlandicesheetfromcontinuousinsituGPSinstrument,EarthSyst.Sci.Data,5(2),doi:10.5194/essd-5-277-2013.

Alexander,P.M.,M.Tedesco,N.-J.Schlegel,S.B.Luthcke,X.Fettweis,andE.Larour,

(2016),GreenlandIceSheetseasonalandspatialmassvariabilityfrommodelsimulationsandGRACE(2003–2012),TheCryosphere,10,1259-1277,doi:10.5194/tc-10-1259-2016.

Andersen,M.L.,etal.,(2010),SpatialandtemporalmeltvariabilityatHelheimGlacier,

EastGreenland,anditseffectonicedynamics,J.Geophys.Res.,115,F04041,doi:10.1029/2010JF001760.

Basu,S.etal.,(2001),Ionosphericeffectsofmajormagneticstormsduringthe

InternationalSpaceWeatherPeriodofSeptemberandOctober1999:GPSobservations,VHF/UHFscintillations,andinsitudensitystructuresatmiddleandequatoriallatitudes,J.Geophys.Res.Sp.Phys.,106(A12),30,389–30,413,doi:10.1029/2001JA001116.

BauerP.,A.ThorpeandG.Brunet,(2015),Thequietrevolutionofnumericalweather

prediction,Nature,525,47-55.Bennartz,R.,M.D.Shupe,D.D.Turner,V.P.Walden,K.Steffen,C.J.Cox,M.S.Kulie,N.

B.Miller,andC.Pettersen,(2013),July2012Greenlandmeltextentenhancedbylow-levelliquidclouds,Nature,496(7443),83–86,doi:10.1038/nature12002.

Bennitt,G.V.andA.Jupp,(2012),OperationalassimilationofGPSzenithtotaldelay

observationsintotheMetOfficeNumericalWeatherPredictionModels,MonthlyWeatherReview,140,2706-2719,doi:10.1175/MWR-d-11-00156.1.

Page 35: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

35

Bevis,M.,etal.,(2012),BedrockdisplacementsonGreenlanddrivenbyicemassvariations,climatecyclesandclimatechange,Proc.Nat.Acad.Sci.,109,11,944-11,948, doi/10.1073/pnas.1204664109.Bevis,M.,S.Businger,T.A.Herring,C.Rocken,R.A.Anthes,andR.H.Ware,(1992),GPS

Meteorology:RemotesensingofatmosphericwatervaporusingtheGlobalPositioningSystem,J.Geophys.Res.,Atmos,97,15,715-15,801.

Bevan,S.L.,A.Luckman,S.A.KahnandT.Murray,(2015),Seasonaldynamicthinningat

HelheimGlacier,EarthPlanetarySci.Lett.,415,47–53,doi:10.1016/j.epsl.2015.01.031.

Bos,M.S.,N.T.Penna,T.F.Baker,andP.J.Clarke,(2015),Oceantideloading

displacementsinwesternEurope:2.GPS-observedanelasticdispersionintheasthenosphere,J.Geophys.Res.SolidEarth,120,6540–6557,doi:10.1002/2015JB011884.

Calais,E.,andJ.B.Minster,(1998),GPS,earthquakes,theionosphere,andtheSpace

Shuttle,Phys.EarthPlanet.Inter.,105(3–4),167–181.Christensen,O.B.,M.Drews,J.H.Christensen,K.Dethloff,K.Ketelsen,I.Hebestadtand

A.Rinke,2007:TheHIRHAMRegionalClimateModelVersion5(beta).TechnicalReport06-17,DanishMeteorologicalInstitute,Copenhagen.

Coster,A.J.,J.C.Foster,P.J.Erickson,(2003),MonitoringtheIonospherewithGPS,GPS

World, Vol.l4, No.5,42-45.Coster,A.andA.Komjathy,(2008),SpaceWeatherandtheGlobalPositioningSystem,

SpaceWeather,6,doi:10.1029/2008SW000400.Crawford,A.andM.Serreze,(2015),AnewlookatthesummerArcticFrontalZone,J.

Climate,28,737-753,doi:10.1175/JCLI-D-14-00447.1Das,S.B.,Joughin,I.,Behn,M.D.,Howat,I.M.,King,M.A.,Lizarralde,D.,andBhatia,

M.P.,(2008),FracturepropagationtothebaseoftheGreenlandicesheetduringsupraglaciallakedrainage,Science,320,778–781.

DeJuan,J.,P.Elósegui,M.Nettles,T.B.Larsen,J.L.Davis,G.S.Hamilton,L.A.Stearns,

M.L.Andersen,G.Ekström,A.P.Ahlstrøm,S.A.KhanandR.Forsberg,(2010),SuddenincreaseintidalresponselinkedtocalvingandaccelerationatalargeGreenlandoutletglacier.Geophys.Res.Lett.,37,L12501,doi:10.1029/2010GL043289.

Dietrich,R.,H.-G.Maas,M.Baessler,A.Rülke,A.Richter,E.Schwalbe,andP.Westfeld,

(2007),JakobshavnIsbræ,WestGreenland:Flowvelocitiesandtidalinteractionof

Page 36: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

36

thefrontareafrom2004fieldobservations,J.Geophys.Res.,Surface112,F03S21,doi:10.1029/2006JF000601.

Durgonics,T.,A.Komjathy,O.Verkhoglyadova,E.B.Shume,H.-H.Benzon,A.J.Mannucci,M.D.Butala,P.Høeg,andR.B.Langley,(2017),Multi-instrumentobservationsofageomagneticstormanditseffectsontheArcticionosphere:Acasestudyofthe19February2014storm,RadioSci.,52(1),146–165,doi:10.1002/2016RS006106.

Enderlin,E.M.,I.M.Howat,S.Jeong,M.-J.Noh,J.H.vanAngelenandM.R.vandenBroeke,(2014)AnimprovedmassbudgetfortheGreenlandicesheet,Geophys.Res.Lett.,41,866–872,doi:10.1002/2013GL059010.

Ekman,M.,(1991)Aconcisehistoryofpostglaciallandupliftresearch(fromitsbeginningto1950),TerraNova,3,358-365,doi:10.1111/j.1365-3121.1991.tb00163.x.

EsteyL.H.andC.M.Meertens(1999)TEQC:Themulti-purposetoolkitforGPS/GLONASSdata,GPSSolutions,3,42-49,doi:10.1007/PL00012778

Fettweis,X.,M.Tedesco,M.vandenBroeke,andJ.Ettema(2011),Meltingtrendsover

theGreenlandicesheet(1958–2009)fromspacebornemicrowavedataandregionalclimatemodels,TheCryosphere,5,359–375,doi:10.5194/tc-5-359-2011.

Goncharenko,L.P.,A.J.Coster,J.L.Chau,andC.E.Valladares, (2010),Impactof

suddenstratosphericwarmingsonequatorialionizationanomaly,J.Geophys.Res.,115,AOOG07,doi:10.1029/20lOJAO15400.

Hanna,E.,F.Navarro,F.Pattyn,C.M.Domingues,X.Fettweis,E.R.Ivins,R.J.Nicholls,C.

Ritz,B.Smith,S.Tulaczyk,P.L.Whitehouse&H.J.Zwally,(2013),Icesheetmassbalanceandclimatechange,Nature,497,51-59,doi:10.1038/nature12238,2013.

Heki,K.,(2004),inTheStateofthePlanet:FrontiersandChallengesinGeophysics,150

editedbyR.S.J.SparksandC.J.Hawkesworth,pp.177–196.Heki,K.,(2006),Explosionenergyofthe2004eruptionoftheAsamaVolcano,central

Japan,inferredfromionosphericdisturbances,Geophys.Res.Lett.,33,L14303,doi:10.1029/2006GL026249.

Heki,K.,(2004),DenseGPSarrayasanewsensorofseasonalchangesofsurfaceloads.

inTheStateofthePlanet:FrontiersandChallengesinGeophysics(editedbySparks,R.S.J.,andHawkesworth,C.J.),177-196.

Herring,T.A.,T.I.Melbourne,M.H.Murray,M.A.Floyd,W.M.Szeliga,R.W.King,D.A.

Phillips,C.M.Puskas,M.Santillan,andL.Wang,(2016),PlateBoundary

Page 37: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

37

Observatoryandrelatednetworks:GPSdataanalysismethodsandgeodeticproducts,Rev.Geophys.,54,759–808,doi:10.1002/2016RG000529.

Hewitt,I.J.,andA.C.Fowler,(2008),Seasonalwavesonglaciers.Hydrol.Process.,22,

4653919-3930. Holland,D.M.,D.Voytenko,K.Christianson,T.H.Dixon,M.J.Mel,B.R.Parizek,I.

Vaňková,R.T.Walker,J.I.Walter,K.NichollsandD.Holland.(2016),AnintensiveobservationofcalvingatHelheimGlacier,EastGreenland,Oceanography,29,46-61.

Hurkmans,R.T.W.L.,J.L.Bamber,C.H.Davis,I.R.Joughin,K.S.Khvorostovsky,B.S.

Smith,andN.Schoen(2014),Time-evolvingmasslossoftheGreenlandIceSheetfromsatellitealtimetry,TheCryosphere,8,1725–1740,doi:10.5194/tc-8-1725-2014.

Jiang,Y.,T.H.DixonandS.Wdowinski(2010),AcceleratingupliftintheNorthAtlantic

regionandanindicatoroficeloss.NatureGeosci.,3,404–407.Joughin,I.,S.B.Das,G.E.Flowers,M.D.Behn,R.B.Alley,M.A.King,B.E.Smith,J.L.

Bamber,M.R.vandenBroeke,andJ.H.vanAngelen.(2013),Influenceofice-sheetgeometryandsupraglaciallakesonseasonalice-flowvariability,TheCryosphere,7,1185-1192,doi:10.5194/tc-7-1185-2013.

Khan,S.A.,I.Sasgen,M.Bevis,T.vanDam,J.Bamber,J.Wahr,M.Willis,K.Kjaer,B.

Wouters,V.Helm,B.Csatho,K.Fleming,A.Bjork,A.Aschwanden,P.Knudsen,P.KulpersMunneke,(2016),Similaritiesbetweenpost-LastGlacialMaximumandpresent-daymasslossfromtheGreenlandicesheet,ScienceAdvances,2,e1600931.

Khan,S.A.,L.Liu,J.Wahr,I.Howat,I.Joughin,T.vanDam,andK.Fleming,(2010),GPS

measurementsofcrustalupliftnearJakobshavnIsbræduetoglacialicemassloss,J.Geophys.Res.,SolidEarth,115,B09405,doi:10.1029/2010JB007490.

Khan,S.,J.Wahr,M.Bevis,I.VelicognaandE.Kendrick,(2010),Spreadoficemassloss

intonorthwestGreenlandob-servedbyGRACEandGPS,Geophys.Res.Lett.,37,L06501,doi:10.1029/2010GL042460.

Komjathy,A.,Y.-M.Yang,X.Meng,O.Verkhoglyadova,A.J.Mannucci,andR.B.Langley,

(2016),Reviewandperspectives:Understandingnatural-hazards-generatedionosphericperturbationsusingGPSmeasurementsandcoupledmodeling,RadioSci.,51,doi:10.1002/2015RS005910.

Kuchar,J.andG.A.Milne,(2015),Theinfluenceofviscositystructureinthelithosphere

onpredictionsfrommodelsofglacialisostaticadjustment,J.Geodynamics,86,1–9,doi: 10.1016/j.jog.2015.01.002.

Page 38: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

38

Larour,E.,J.Utke,A.Bovin,M.Morlighem,andG.Perez,(2016)AnapproachtocomputingdiscreteadjointsforMPI-parallelizedmodelsappliedtoIceSheetSystemModel4.11,Geosci.ModelDev.,9,doi:10.5194/gmd93907.

Larson,K.M.,E.D.Gutmann,V.U.Zavorotny,J.J.Braun,M.W.Williams,andF.G.

Nievinski,(2009),CanwemeasuresnowdepthwithGPSreceivers?,Geophys.Res.Lett.,36(17),L17502,doi:10.1029/2009GL039430.

Lay,E.H.,X.-M.Shao,andC.S.Carrano,(2013),Variationintotalelectroncontent

abovelargethunderstorms,Geophys.Res.Lett.,40,1945–1949,doi:10.1002/grl.50499.

Lecavalier,B.S.,etal.,(2014),AmodelofGreenlandicesheetdeglaciationconstrained

byobservationsofrelativesealevelandiceextent,QuaternarySci.Rev.,102,54—84,doi:10.1016/j.quascirev.2014.07.018

Liu,L.,S.A.Khan,T.vanDam,J.H.Y.Ma,andM.Bevis,(2017),Annualvariationsin

GPS-measuredverticaldisplacementsnearUpernavikIsstrøm(Greenland)andcontributionsfromsurfacemassloading,J.Geophys.Res.,SolidEarth,122,677–691,doi:10.1002/2016JB013494.

Misra,P.andP.Enge,(2011)GlobalPositioningSystem:Signals,Measurementsand

Performance,Ganga-JamunaPress,ed.2.Mahfouf,J.-F.,F.Ahmed,P.Moll,andF.N.Teferle,(2015)Assimilationofzenithtotal

delaysintheAROMEFranceconvectivescalemodel:arecentassessment.TellusA,67,26106,doi:10.3402/tellusa.v67.26106.

Moon,T.,I.Joughin,B.Smith,M.R.vandenBroeke,W.J.vandeBerg,B.Noël,andM.

Usher(2014),DistinctpatternsofseasonalGreenlandglaciervelocity,Geophys.Res.Lett.,41,7209–7216,doi:10.1002/2014GL061836.

Murray,T.,M.Nettles,N.Selmes,L.M.Cathles,J.C.Burton,T.D.James,S.Edwards,I.

Martin,T.O’Farrell,R.Aspey,I.Rutt,andT.Baugé,(2015)Reverseglaciermotionduringicebergcalvingandthecauseofglacialearthquakes,Science,349,305–308,doi:10.1126/science.aab0460.

Nievinski,F.G.andK.M.Larson,(2014),Inversemodelingofgpsmultipathforsnow

depthestimation,parti:Formulationandsimulations.IEEETrans.Geosci.RemoteSensing,52,6555–6563.

Noël,B.,W.J.vandeBerg,S.Lhermitte,B.Wouters,H.Machguth,I.Howat,M.Citterio,

G.Moholdt,J.T.M.LenaertsandM.R.vandenBroeke,(2017),AtippingpointinrefreezingacceleratesmasslossofGreenland’sglaciersandicecaps,NatureCommunications,8,(14730),doi:10.1038/ncomms14730.

Page 39: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

39

Palmer,S.,A.Shepherd,P.Nienow,andI.Joughin,(2011),SeasonalspeedupoftheGreenlandIceSheetlinkedtoroutingofsurfacewater.EarthPlanet.Sci.Lett.,302,423-428.

Peltier,W.R.(1998),Postglacialvariationsinthelevelofthesea:Implicationsfor

climatedynamicsandsolid-Earthgeophysics,Rev.Geophys.,36,603—689,doi:10.1029/98RG02638.

Pimentel,S.andG.E.Flowers,(2011),Anumericalstudyofhydrologicallydriven

glacierdynamicsandsubglacialflooding,Proc.Roy.Soc.A,467,537–558,doi:10.1098/rspa.2010.0211.

Robasky,F.M.,andD.H.Bromwich,(1994)Greenlandprecipitationestimatesfromthe

atmosphericmoisturebudget.Geophys.Res.Let.,21,2495-2498,doi:10.1029/94GL01915.

Rogozhina,I.,J.M.Hagedoorn,Z.Martinec,K.Fleming,O.Soucek,R.Greve,andM.

Thomas,(2012),EffectsofuncertaintiesinthegeothermalheatfluxdistributionontheGreenlandIceSheet:Anassessmentofexistingheatflowmodels,J.Geophys.Res.,Surface117,F02025,doi:10.1029/2011JF002098.

Rosenau,R.,E.Schwalbe,H.-G.Maas,M.Baessler,andR.Dietrich(2013),Grounding

linemigrationandhigh-resolutioncalvingdynamicsofJakobshavnIsbræ,WestGreenland,J.Geophys.Res.EarthSurf.,118,382–395,doi:10.1029/2012JF002515.

Sauber,J.,G.Plafker,B.F.MolniaandM.A.Bryant,(2000),Crustaldeformation

associatedwithglacialfluctuationsintheeasternChugachMountains,Alaska,J.Geophys.Res.,SolidEarth,105,8055-807.

Schlegel,N-J.,E.Larour,H.Seroussi,M.Morlighem,andJ.E.Box,(2013),Decadal-scale

sensitivityofnortheastGreenlandiceflowtoerrorsinsurfacemassbalanceusingISSM,J.Geophys.Res.-EarthSurf.,118,doi:10.1002/jgrf.20062.

Schlegel,N.-J.,D.N.Wiese,E.Y.Larour,M.M.Watkins,J.E.Box,X.FettweisandM.R.van

denBroeke,(2016)ApplicationofGRACEtotheevaluationofaniceflowmodeloftheGreenlandIceSheet,TheCryosphere,10,1965-1989,doi:10.5194/tc-10-1965-2016.

Shepherd,A.,etal.,(2012),Areconciledestimateoficesheetmassbalance,Science,

338,1183-1189.Sole,A.J.,D.W.F.Mair,P.W.Nienow,I.D.Bartholomew,M.A.King,M.J.Burke,andI.

R.Joughin(2011),SeasonalspeedupofaGreenlandmarine-terminatingoutletglacierforcedbysurfacemelt–inducedchangesinsubglacialhydrology,J.Geophys.Res.,-EarthSurface,116,doi:10.1029/2010JF001948.

Page 40: GNET 2017 Forward - Dartmouth Collegeice/GNET_workshop_materials/GNETwhitepaper... · GNET 2017 Forward: ... 23 2.3 Ionosphere, Troposphere ... , UNAVCO, and DTU. Each station consists

40

Tedesco,M.,Alexander,P.,Bell,R.,BriggsK.,DasI.,MacFerrin,M.,Hanna,E.,Koenig,L.,Overeem,I.,Rennermalm,A.,(2016),UnderstandingthefundamentalprocessescontrollingthesurfacemassbalanceoftheGreenlandicesheetandimprovingestimates.WorkshopReport,LDEO-ColumbiaUniversity.

Tedstone,A.J.,P.W.Nienow,N.Gourmelen,A.Dehecq,D.GoldbergandE.Hanna

(2015)Decadalslowdownofaland-terminatingsectoroftheGreenlandIceSheetdespitewarming,Nature,526,692-697,doi:10.1038/nature15722.

Tromp,J.,C.Tape,andQ.Liu,(2005),Seismictomography,adjointmethods,time

reversalandbanana-doughnutkernels,Geophys.J.Int.,160,195-216.VanDam,T.M.,J.Wahr,Y.Chao,andE.Leuliette,(1997),Predictionsofcrustal

deformationandofgeoidandsea-levelvariabilitycausedbyoceanicandatmosphericloading,Geophys.J.Int,99,507-517.

vandeWal,R.S.W.,W.Boot,M.R.vandenBroeke,C.J.P.P.Smeets,C.H.Reijmer,J.J.

A.Donker,andJ.Oerlemans(2008),Largeandrapidmelt-inducedvelocitychangesintheablationzoneoftheGreenlandIceSheet,Science,321,2008–2011,doi:10.1126/science.1158540.

vandenBroeke,M.R.,E.M.Enderlin,I.M.Howat,P.K.Munneke,B.P.Y.Noël,W.J.van

deBerg,E.vanMeijgaard,andB.Wouters,(2016),OntherecentcontributionoftheGreenlandicesheettosealevelchange,TheCryosphere,10,1933–1946,doi:10.5194/tc-10-1933-2016.

Wahr,J.,S.A.Khan,T.vanDam,L.Liu,J.H.vanAngelen,M.R.vandenBroeke,andC.M.

Meertens,(2013),TheuseofGPShorizontalsforloadingstudies,withapplicationstonorthernCaliforniaandsoutheastGreenland,J.Geophys.Res.SolidEarth,118,doi:10.1002/jgrb.50104.

YangQ.,S.Wdowinski,andT.H.Dixon,(2013),Annualvariationofcoastalupliftin

Greenlandasanindicatorofvariableandacceleratingicemassloss,Geochem.Geophys.Geosyst.,14,1569–1589,doi:10.1002/ggge.20089.