general relativity and the cupratesstring13/horowitz.pdf · general relativity and the cuprates...

41
General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H. and J. Santos, 1302.6586

Upload: others

Post on 23-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

General Relativity and the Cuprates

Gary Horowitz UC Santa Barbara

G.H., J. Santos, D. Tong, 1204.0519, 1209.1098

G.H. and J. Santos, 1302.6586

Page 2: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

See: www.simonsfoundation.org

Page 3: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H
Page 4: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

Gauge/gravity duality can reproduce many properties of condensed matter systems, even in the limit where the bulk is described by classical general relativity: 1)  Fermi surfaces 2)  Non-Fermi liquids 3)  Superconducting phase transitions 4)  … It is not clear why it is working so well.

Page 5: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

Can one do more than reproduce qualitative features of condensed matter systems? Can gauge/gravity duality provide a quantitative explanation of some mysterious property of real materials? We will argue that the answer is yes!

Page 6: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

Many previous applications have assumed translational symmetry. But: Momentum conservation + nonzero charge density => Infinite DC conductivity Can have effective momentum nonconservation in a probe approximation (Karch, O’Bannon, 2007) or by adding a lattice.

Page 7: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

Plan: Calculate the optical conductivity of a simple holographic conductor and superconductor with lattice included. A perfect lattice still has infinite conductivity. So we work at nonzero T and include dissipation. (Earlier work by: Kachru et al; Maeda et al; Hartnoll and Hofman; Zaanen et al, Siopsis et al, Flauger et al) Main result: We will find surprising similarities to the optical conductivity of the cuprates.

Page 8: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

Simple model of a conductor

Suppose electrons in a metal satisfy If there are n electrons per unit volume, the current density is J = nev. Letting E(t) = Ee-iωt, find J = σ E, with where K=ne2/m. This is the Drude model.

mdv

dt= eE �m

v

�(!) =K⌧

1� i!⌧

Page 9: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

Re(�) =K⌧

1 + (!⌧)2, Im(�) =

K!⌧2

1 + (!⌧)2

Note:

(1) For (2) In the limit : This can be derived more generally from Kramers-Kronig relation.

⌧ ! 1

Re(�) / �(!), Im(�) = K/!

!⌧ � 1, |�| ⇡ K/!

Page 10: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

Our gravity model

We start with just Einstein-Maxwell theory: This is the simplest context to describe a conductor. We require the metric to be asymptotically anti-de Sitter (AdS)

S =

Zd

4x

p�g

R+

6

L

2� 1

2Fµ⌫F

µ⌫

ds

2 =�dt

2 + dx

2 + dy

2 + dz

2

z

2

Page 11: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

Want finite temperature: Add black hole Want finite density: Add charge to the black hole. The asymptotic form of At is

µ is the chemical potential and ρ is the charge density in the dual theory.

At = µ� ⇢z +O(z2)

Page 12: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

Introduce the lattice by making the chemical potential be a periodic function: We numerically find solutions with smooth horizons that are static and translationally invariant in one direction.

µ(x) = µ [1 +A0 cos(k0x)]

Page 13: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

0 �2

� 3 �2

2�

0

1

2

3

4

x

⇥⇤ �x⇥Charge density for A0 = ½, k0 = 2, T/µ = .055

Solutions are rippled charged black holes.

!

!

z

Page 14: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

To compute the optical conductivity using linear response, we perturb the solution

Boundary conditions:

ingoing waves at the horizon

δgµν normalizable at infinity

δAt ~ O(z), δAx = e-iωt [E/iω + J z + …]

induced current

Conductivity

gµ⌫ = gµ⌫ + �gµ⌫ , Aµ = Aµ + �Aµ

Page 15: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

Using Ohm’s law, J = σE, the optical conductivity is given by Since we impose a homogeneous electric field, we are interested in the homogeneous part of the conductivity σ(ω).

�(!, x) = limz!0

�F

zx

(x, z)

�F

xt

(x, z)

Page 16: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

0 5 10 15 20 25

0.2

0.4

0.6

0.8

1.0

⇥⇤T

Re��⇥

0 5 10 15 20 25

0

1

2

3

4

5

6

⇥⇤TIm��⇥

Review: optical conductivity with no lattice (T/µ = .115)

Page 17: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

With the lattice, the delta function is smeared out

0 10 20 30 400

5

10

15

20

25

30

⇥�T

Re�

0 10 20 30 40

0

5

10

15

20

⇥�T

Im�

Page 18: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

The low frequency conductivity takes the simple Drude form:

�(!) =K⌧

1� i!⌧

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

10

15

20

25

30

⇥⇤T

Re��⇥

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.4514

15

16

17

18

⇥⇤T

Im��⇥

Page 19: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

Intermediate frequency shows scaling regime:

⇥⇥⇥⇥⇥⇥⇥⇥

⇥⇥⇥⇥⇥⇥⇥

⇥⇥⇥⇥⇥⇥

⇥⇥⇥⇥⇥

⇥⇥⇥⇥

⇥⇥⇥⇥

⇥⇥⇥⇥

⇥⇥⇥

⇥⇥

⇥⇥

⇥⇥

⇥⇥

⇥⇥

��������

�������

������

�����

����

����

����

���

��

��

��

��

��

⇤⇤⇤⇤⇤⇤⇤⇤

⇤⇤⇤⇤⇤⇤⇤

⇤⇤⇤⇤⇤⇤

⇤⇤⇤⇤⇤

⇤⇤⇤⇤

⇤⇤⇤⇤

⇤⇤⇤⇤

⇤⇤

⇤⇤

⇤⇤

⇤⇤

⇤⇤

⇤⇤

⌅⌅⌅⌅⌅⌅⌅⌅

⌅⌅⌅⌅⌅⌅⌅

⌅⌅⌅⌅⌅⌅

⌅⌅⌅⌅⌅

⌅⌅⌅⌅

⌅⌅⌅⌅

⌅⌅⌅⌅

⌅⌅

⌅⌅

⌅⌅

⌅⌅

⌅⌅

⌅⌅

0.01 0.02 0.04 0.08 0.12

10

50

20

30

15

⌅�⇥

⇥⇤⇥�C|�| = B

!2/3+ C

Lines show 4 different temperatures: .033 < T/µ < .055

Page 20: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

Comparison with the cuprates (van der Marel, et al 2003)

Bi2Sr2Ca0.92Y0.08Cu2O8+�

Page 21: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

What happens in the superconducting regime?

We now add a charged scalar field to our action: Gubser (2008) argued that at low temperatures, charged black holes would have nonzero Φ.

Hartnoll, Herzog, G.H. (2008) showed this was dual to a superconductor (in homogeneous case).

S =

Zd

4x

p�g

R+

6

L

2� 1

2Fµ⌫F

µ⌫ � 2|(@ � ieA)�|2 + 4|�|2

L

2

Page 22: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

The scalar field has mass m2 = -2/L2, since for this choice, its asymptotic behavior is simple: This is dual to a dimension 2 charged scalar operator O with source ϕ1 and <O> = ϕ2. We set ϕ1 = 0. For electrically charged solutions with only At nonzero, the phase of Φ must be constant.

� = z�1 + z2�2 +O(z3)

Page 23: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

We keep the same boundary conditions on At as before: Start with previous rippled charged black holes with Φ = 0 and lower T. When do they become unstable? Onset of instability corresponds to a static normalizable mode of the scalar field. Tc depends on the charge e of Φ. Larger e makes it easier to condense Φ giving higher Tc.

µ(x) = µ [1 +A0 cos(k0x)]

Page 24: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

0.05 0.10 0.15 0.20

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T��

� L

Critical temperature as function of charge

A0 = 0 A0 = .8 A0 = 2

Lines correspond to different lattice amplitudes.

For fixed e, increasing A0 increases Tc (Ganguli et al, 2012)

Page 25: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

Having found Tc, we now find solutions for T < Tc numerically. These are hairy, rippled, charged black holes.

!

!"0#

z

From the asymptotic behavior of Φ we read off the condensate as a function of temperature.

Page 26: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

0.02 0.04 0.06 0.08 0.10 0.120.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Têm

HeXO\L1ê2êm

Condensate as a function of temperature

Lattice amplitude grows from 0 (inner line) to 2.4 (outer line).

Page 27: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

In the homogeneous case, the zero temperature limit is known to take the form and near r = 0. With the lattice, the scalar field becomes more homogeneous on the horizon at low T, and S ~ T2.4 independent of the lattice amplitude.

ds

2= r

2(�dt

2+ dxidx

i) +

dr

2

g0r2(� log r)

� = 2(� log r)1/2

Page 28: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

We again perturb these black holes as before and compute the conductivity as a function of frequency. Find that curves at small ω are well fit by adding a pole to the Drude formula The lattice does not destroy superconductivity (Siopsis et al, 2012; Iizuka and Maeda, 2012)

�(!) = i⇢s!

+⇢n⌧

1� i!⌧

Superfluid component

Normal component

Page 29: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

Fit to: �(!) = i⇢s!

+⇢n⌧

1� i!⌧

superfluid density normal fluid density

0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

TêTc

r sêm

0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

TêTc

r nêm

Page 30: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

The dashed red line through ρn is a fit to: with Δ = 4 Tc. This is like BCS with thermally excited quasiparticles but:

(1) The gap Δ is much larger, and comparable to what is seen in the cuprates.

(2) Some of the spectral weight remains uncondensed even at T = 0 (this is also true of the cuprates).

⇢n = a+ be��/T

Page 31: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

The relaxation time rises quickly as the temperature drops:

0.0 0.2 0.4 0.6 0.8 1.020

40

60

80

100

120

T�Tc

⇥�

Line is a fit to with Δ1 = 4.3 Tc The scattering rate drops rapidly below Tc, another feature of the cuprates.

⌧ = ⌧1e�1/T

Page 32: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

Intermediate frequency conductivity again shows the same power law: |�(!)| = B

!2/3+ C

⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥

⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥

�� � � � �������������������������������������������������������������������������������������������������

⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤

⌅⌅

⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅

0.01 0.02 0.05 0.10 0.20 0.50

10.0

5.0

2.0

20.0

3.0

30.0

15.0

7.0

⌅�⇥

⇥⇤⇧ ⇥�C

T/Tc = 1, .97, .86, .70

Coefficient B and exponent 2/3 are independent of T and identical to normal phase.

Page 33: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

8 samples of BSCCO with different doping. Each plot includes T < Tc as well as T > Tc. No change in the power law. (Data from Timusk et al, 2007.)

Page 34: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

The Ferrell-Glover-Tinkham sum rule states:

Z 1

0+d!Re[�N (!)� �S(!)] =

2⇢s

normal phase

superconducting phase

Does this hold in our gravitational model?

Page 35: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

0 1 2 3 40.0

0.5

1.0

1.5

2.0

wêm

ReHsL

0 1 2 3 40.0

0.1

0.2

0.3

0.4

0.5

wêm2 p‡ 0+w

êm ReHs

N-sSL

Yes

Blue: T = Tc Red: T = .7 Tc

2

Z !

0+d!Re[�N (!)� �S(!)]

ρs

Page 36: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

For T < Tc, Re[σ] is reduced over a range of ω extending up to the chemical potential. This is also true for the cuprates, but not for conventional superconductors. In BCS, Re[σ] is reduced over a much smaller range of frequency: 2Δ = 3.5 Tc << µ.

Page 37: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

Resonances

At larger frequencies, the optical conductivity has resonances. In the bulk, this is due to quasinormal modes of the charged black hole.

Quasinormal modes: modes that are ingoing at the horizon and normalizable at infinity. Only exist for a discrete set of complex frequencies.

They correspond to poles in retarded Green’s functions (Son and Starinets, 2002).

Page 38: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

One can determine the quasinormal mode frequency by fitting One finds:

�(!) =GR(!)

i!=

1

i!

a+ b(! � !0)

! � !0

!0/µ = 1.48� 0.42i

Page 39: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

Preliminary results on a full 2D lattice (T > Tc) show very similar results to 1D lattice.

!

!

z

The optical conductivity in each lattice direction is nearly identical to the 1D results.

Page 40: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

Our simple gravity model reproduces many properties of cuprates:

•  Drude peak at low frequency •  Power law fall-off ω-2/3 at intermediate ω •  Rapid decrease in scattering rate below Tc •  Gap 2Δ = 8 Tc

•  Normal component doesn’t vanish at T = 0 •  Sum rule holds only if one includes

frequencies of order chemical potential

Page 41: General Relativity and the Cupratesstring13/horowitz.pdf · General Relativity and the Cuprates Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, 1204.0519, 1209.1098 G.H

But key differences remain

•  Our superconductor is s-wave, not d-wave •  Our power law has a constant off-set C •  …