genecdiversityofplantsandanimalsinachangingarcccrgc/igert/assets/pdf/greenlandposters/manthey.pdf ·...

1
Gene$c Diversity of Plants and Animals in a Changing Arc$c Joseph D Manthey – NSF CCHANGE IGERT Trainee Department of Ecology and EvoluEonary Biology & Biodiversity InsEtute University of Kansas Introduc$on Ideally, conservaEon pracEces should protect areas of a species that harbor the most geneEc diversity 1 . Because sampling geneEc diversity across the range of a species is both Eme and monetarily expensive, these methods are oOen impracEcal; this necessitates a proxy for geneEc diversity when empirical data are difficult to aSain. Recently, VanDerWal and colleagues (2009) 2 found a posiEve relaEonship between environmental suitability and abundance in mulEple species. Because larger populaEon sizes tend to exhibit higher levels of geneEc diversity, the aforemenEoned results suggest we may find a relaEonship between environmental suitability and geneEc diversity. Here I invesEgate the relaEonship between environmental suitability and geneEc diversity in ten plant and animal species of the arcEc (Fig. 1, Table 1). Methods 1) Literature search IdenEfy phylogeographic studies 311 that contain: Many populaEons sampled GeneEc diversity informaEon Locality informaEon (i.e. Lat/Long) 2) Measuring environmental suitability (4step analysis) Create ecological niche models (ENMs) for each species using environmental data using the program Maxent 12 Extract environmental data (19 bioclimaEc layers 13,14 ) from points with geneEc diversity data and 1000 background points from ENMs Perform a principal components analysis on all points from the ten datasets Measure the mulEvariate Euclidean distance to the center of the niche centroid (closer to 0 = beSer environmental suitability) 3) ProjecEons of future climate scenarios for V. uliginosum and C. tetragona Two species with strongest correlaEons between environmental suitability and geneEc diversity were further modeled Models of environmental suitability for current and two scenarios of future climate change were created Using A1b (relaEvely extreme) and B2a (relaEvely conservaEve) scenarios under HadCM3 model Results & Discussion 8 of 10 species (Table 1) indicated a negaEve relaEonship between distance to niche centroid and geneEc diversity (i.e. beSer environmental suitability = higher diversity). 4 species showed a significant relaEonship (Fig. 2). Species with bigger samples (> 30 populaEons) idenEfied significant relaEonships between geneEc diversity and environmental suitability, suggesEng that many populaEons need to be sampled for the needed power to uncover this relaEonship. V. uliginosum is a food source in the Fort Yukon area of Alaska 15 (asterisk in Fig. 3) and shows a slight improvement in this area for environmental suitability. C. tetragona has been used as a wood source in certain areas of Greenland 16 . This species shows a northward movement of environmental suitability in the future (Fig. 4), with relaEvely low environmental suitability except in high arcEc. This study idenEfied a negaEve correlaEon between geneEc diversity and environmental suitability. This relaEonship is paramount to more easily understanding the factors influencing arcEc species. Using the correlaEon between geneEc diversity and environmental suitability, conservaEon biologists may be able to infer hotspots of geneEc diversity in focal species for contemporary distribuEons, as well as how these relaEonships may change under varying scenarios of future climate change. Acknowledgements This research was part of the NSF CCHANGE IGERT class – Climate Change in Greenland and the ArcEc. I would like to thank Andres LiraNoriega and Jorge Soberon for discussion of methodologies and results. References 1 Evans SR, BC Sheldon. 2008. Interspecific paSerns of geneEc diversity in birds: correlaEons with exEncEon risk. ConservaEon Biology 22: 10161025. 2 VanDerWal J, LP Shoo, CN Johnson, SE Williams. 2009. Abundance and the environmental niche: environmental suitability esEmated from niche models predicts the upper limit of local abundance. The American Naturalist 174: 282291. 3 Galbreath KE, JA Cook, AA Eddingsaas, EG DeChaine. 2011. Diversity and demography in Beringia: mulElocus tests of paleodistribuEon models reveal the complex history of arcEc ground squirrels. EvoluEon 65: 18791896. 4 Weksler M, HC Lanier, LE Olson. 2010. Eastern Beringian biogeography: historical and spaEal geneEc structure of singing voles in Alaska. Journal of Biogeography 37: 14141431. 5 Galbreath KE, JA Cook. 2004. GeneEc consequences of Pleistocene glaciaEons for the tundra vole (Microtus oeconomus) in Beringia. Molecular Ecology 13: 135148. 6 Sonsthagen SA, SL Talbot, KT Scribner, KG McCracken. 2011. MulElocus phylogeography and populaEon structure of common eiders breeding in North America and Scandinavia. Journal of Biogeography 38: 13681380. 7 Wennerberg L, G Marthinsen, JT Lioeld. 2008. ConservaEon geneEcs and phylogeography of southern dunlins (Calidris alpine schinzii). Journal of Avian Biology 39: 423437. 8 Eidesen PB, T Carlsen, U Molau, C Brochmann. 2007a. Repeatedly out of Beringia: Cassiope tetragona embraces the ArcEc. Journal of Biogeography 34: 15591574. 9 Ehrich D, IG Alsosa, C Brochmann. 2008. Where did the northern peatland species survive the dry glacials: cloudberry (Rubus chamaemorus) as an example. Journal of Biogeography 35: 801814. 10 Westergaard KB, IG Alsos, M Popp, T Engelskjon, KI Flatberg, C Brochmann. 2011. Glacial survival may maSer aOer all: nunatak signatures in the rare European populaEons of two westarcEc species. Molecular Ecology 20: 376393. 11 Eidesen PB, IG Alsos, M Popp, O Stensrud, J Suda, C Brochmann. 2007b. Nuclear vs. plasEd data: complex Pleistocene history of a circumpolar key species. Molecular Ecology 16: 39023925. 12 Phillips SJ, RP Anderson, RE Schapire. 2006. Maximum entropy modeling of species geographic distribuEons. Ecological Modelling 190: 231259. 13 obtained from the Worldclim database (www.worldclim.org): Annual mean temperature, mean diurnal temperature range, max temperature of warmest month, min temperature of coldest month, annual precipitaEon, precipitaEon of warmest quarter, precipitaEon of coldest quarter 14 Hijmans RJ, SE Cameron, JL Parra, PG Jones, A Jarvis. 2005. Very high resoluEon interpolated climate surfaces for global land areas. InternaEonal Journal of Climatology 25: 19651978. 15 Mathews RF. 1992. Vaccinium uliginosum. In: Fire Effects InformaEon System [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research StaEon, Fire Services Laboratory (Producer). Available: hSp://www.fs.fed.us/database/feis/ (Accessed February 2012). 16 Moerman DE. 1998. NaEve American Ethnobotany. Timber Press, Portland, OR. Table 1 – Species in this study (Species), population sample size (N), regression equation (RE), Pearson’s correlation (R 2 ), Pearson Product Moment Correlation of ungrouped data two-sided significance (p). X and Y variables in the regression equation are as shown in Figure 2. Species N RE R 2 p Animals Spermophilus parryii 33 y = -0.0128x + 0.1364 0.150 0.026 Microtus abbreviatus 8 y = -0.0401x + 0.3969 0.388 0.099 Microtus oeconomus 14 y = -0.0089x + 0.3031 0.053 0.431 Somateria mollissima 11 y = -0.0003x + 0.0059 0.171 0.207 Calidris alpina 8 y = -8E-5x + 0.0022 0.012 0.800 Plants Cassiope tetragona 62 y = -0.0080x + 0.1184 0.215 < 0.001 Rubus chamaemorus 41 y = -0.0041x + 0.1273 0.094 0.051 Sagina caespitosa 14 y = -0.0161x + 0.1139 0.227 0.085 Arenaria humifusa 11 y = 0.0101x + 0.0414 0.136 0.264 Vaccinium uliginosum 54 y = -0.0067x + 0.1809 0.338 < 0.001 Figure 2 (Above) – RelaEonship between distance to niche centroid and geneEc diversity in four species with a significant relaEonship between the two variables. Cassiope tetragona (A), Rubus chamaemorus (B), Spermophilus parryii (C), and Vaccinium uliginosum (D). Figure 1 (Above) – 256 populaEon samples (map) and 10 species used (photos) in this study. Note: only one Microtus species shown. Species with red dots were invesEgated further under scenarios of climate change (see Methods). Figures 3 (leO) and 4 (below) – Maps of distance to niche centroid for V. uliginosum in Alaska (Fig. 3) and C. tetragona in Greenland (Fig. 4) under different condiEons: A) contemporary, B) 2080s using a relaEvely extreme model of climate change (A1), and C) 2080s using a more conservaEve model of climate change (B2). Equidistant breaks were used to visualize distance to niche centroid, where blue, green, yellow, orange, and red span the breaks from nearest to furthest from the niche centroid. In Fig. 3, the asterisk represents the Fort Yukon area, where this plant is used as a local food source. In Fig. 4, gray areas indicate ice sheets.

Upload: duongtu

Post on 17-Sep-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GenecDiversityofPlantsandAnimalsinaChangingArcccrgc/IGERT/assets/pdf/GreenlandPosters/Manthey.pdf · GenecDiversityofPlantsandAnimalsinaChangingArcc! JosephDManthey–NSFCCHANGEIGERTTrainee

Gene$c  Diversity  of  Plants  and  Animals  in  a  Changing  Arc$c  Joseph  D  Manthey  –  NSF  C-­‐CHANGE  IGERT  Trainee  

Department  of  Ecology  and  EvoluEonary  Biology  &  Biodiversity  InsEtute  University  of  Kansas  

Introduc$on    Ideally,  conservaEon  pracEces  should  protect  areas  of  a  species  that  harbor  the  most  geneEc  diversity1.    Because  sampling  geneEc  diversity  across  the  range  of  a  species  is  both  Eme  and  monetarily  expensive,  these  methods  are  oOen  impracEcal;  this  necessitates  a  proxy  for  geneEc  diversity  when  empirical  data  are  difficult  to  aSain.    Recently,  VanDerWal  and  colleagues  (2009)2  found  a  posiEve  relaEonship  between  environmental  suitability  and  abundance  in  mulEple  species.    Because  larger  populaEon  sizes  tend  to  exhibit  higher  levels  of  geneEc  diversity,  the  aforemenEoned  results  suggest  we  may  find  a  relaEonship  between  environmental  suitability  and  geneEc  diversity.    Here  I  invesEgate  the  relaEonship  between  environmental  suitability  and  geneEc  diversity  in  ten  plant  and  animal  species  of  the  arcEc  (Fig.  1,  Table  1).    

Methods    1)  Literature  search  

§  IdenEfy  phylogeographic  studies3-­‐11  that  contain:  §  Many  populaEons  sampled  §  GeneEc  diversity  informaEon  §  Locality  informaEon  (i.e.  Lat/Long)    

2)  Measuring  environmental  suitability  (4-­‐step  analysis)  §  Create  ecological  niche  models  (ENMs)  for  each  species  using  

environmental  data  using  the  program  Maxent12  §  Extract  environmental  data  (19  bioclimaEc  layers13,14)  from  points  

with  geneEc  diversity  data  and  1000  background  points  from  ENMs  §  Perform  a  principal  components  analysis  on  all  points  from  the  ten  

datasets  §  Measure  the  mulEvariate  Euclidean  distance  to  the  center  of  the  

niche  centroid  (closer  to  0  =  beSer  environmental  suitability)    

3)  ProjecEons  of  future  climate  scenarios  for  V.  uliginosum  and  C.  tetragona  §  Two  species  with  strongest  correlaEons  between  environmental  

suitability  and  geneEc  diversity  were  further  modeled  §  Models  of  environmental  suitability  for  current  and  two  scenarios  of  

future  climate  change  were  created    §  Using  A1b  (relaEvely  extreme)  and  B2a  (relaEvely  

conservaEve)  scenarios  under  HadCM3  model    

Results  &  Discussion    §  8  of  10  species  (Table  1)  indicated  a  negaEve  relaEonship  between  distance  to  niche  

centroid  and  geneEc  diversity  (i.e.  beSer  environmental  suitability  =  higher  diversity).  

§  4  species  showed  a  significant  relaEonship  (Fig.  2).  

§  Species  with  bigger  samples  (>  30  populaEons)  idenEfied  significant  relaEonships  between  geneEc  diversity  and  environmental  suitability,  suggesEng  that  many  populaEons  need  to  be  sampled  for  the  needed  power  to  uncover  this  relaEonship.  

§  V.  uliginosum  is  a  food  source  in  the  Fort  Yukon  area  of  Alaska15  (asterisk  in  Fig.  3)  and  shows  a  slight  improvement  in  this  area  for  environmental  suitability.  

§  C.  tetragona  has  been  used  as  a  wood  source  in  certain  areas  of  Greenland16.    This  species  shows  a  northward  movement  of  environmental  suitability  in  the  future  (Fig.  4),  with  relaEvely  low  environmental  suitability  except  in  high  arcEc.  

 This  study  idenEfied  a  negaEve  correlaEon  between  geneEc  diversity  and  environmental  suitability.    This  relaEonship  is  paramount  to  more  easily  understanding  the  factors  influencing  arcEc  species.    Using  the  correlaEon  between  geneEc  diversity  and  environmental  suitability,  conservaEon  biologists  may  be  able  to  infer  hotspots  of  geneEc  diversity  in  focal  species  for  contemporary  distribuEons,  as  well  as  how  these  relaEonships  may  change  under  varying  scenarios  of  future  climate  change.  

Acknowledgements    This  research  was  part  of  the  NSF  C-­‐CHANGE  IGERT  class  –  Climate  Change  in  Greenland  and  the  ArcEc.    I  would  like  to  thank  Andres  Lira-­‐Noriega  and  Jorge  Soberon  for  discussion  of  methodologies  and  results.      

       

References    1Evans  SR,  BC  Sheldon.    2008.    Interspecific  paSerns  of  geneEc  diversity  in  birds:  correlaEons  with  exEncEon  risk.    ConservaEon  Biology  22:  1016-­‐1025.  2VanDerWal  J,  LP  Shoo,  CN  Johnson,  SE  Williams.    2009.    Abundance  and  the  environmental  niche:  environmental  suitability  esEmated  from  niche  models  predicts  the  upper  limit  of  local  abundance.    The  American  Naturalist  174:  282-­‐291.  3Galbreath  KE,  JA  Cook,  AA  Eddingsaas,  EG  DeChaine.    2011.    Diversity  and  demography  in  Beringia:  mulElocus  tests  of  paleodistribuEon  models  reveal  the  complex  history  of  arcEc  ground  squirrels.    EvoluEon  65:  1879-­‐1896.  4Weksler  M,  HC  Lanier,  LE  Olson.    2010.    Eastern  Beringian  biogeography:  historical  and  spaEal  geneEc  structure  of  singing  voles  in  Alaska.    Journal  of  Biogeography  37:  1414-­‐1431.  5Galbreath  KE,  JA  Cook.    2004.    GeneEc  consequences  of  Pleistocene  glaciaEons  for  the  tundra  vole  (Microtus  oeconomus)  in  Beringia.    Molecular  Ecology  13:  135-­‐148.  6Sonsthagen  SA,  SL  Talbot,  KT  Scribner,  KG  McCracken.    2011.    MulElocus  phylogeography  and  populaEon  structure  of  common  eiders  breeding  in  North  America  and  Scandinavia.    Journal  of  Biogeography  38:  1368-­‐1380.  7Wennerberg  L,  G  Marthinsen,  JT  Lioeld.    2008.    ConservaEon  geneEcs  and  phylogeography  of  southern  dunlins  (Calidris  alpine  schinzii).    Journal  of  Avian  Biology  39:  423-­‐437.  8Eidesen  PB,  T  Carlsen,  U  Molau,  C  Brochmann.    2007a.    Repeatedly  out  of  Beringia:  Cassiope  tetragona  embraces  the  ArcEc.    Journal  of  Biogeography  34:  1559-­‐1574.  9Ehrich  D,  IG  Alsosa,  C  Brochmann.    2008.    Where  did  the  northern  peatland  species  survive  the  dry  glacials:  cloudberry  (Rubus  chamaemorus)  as  an  example.    Journal  of  Biogeography  35:  801-­‐814.  10Westergaard  KB,  IG  Alsos,  M  Popp,  T  Engelskjon,  KI  Flatberg,  C  Brochmann.    2011.    Glacial  survival  may  maSer  aOer  all:  nunatak  signatures  in  the  rare  European  populaEons  of  two  west-­‐arcEc  species.    Molecular  Ecology  20:  376-­‐393.  11Eidesen  PB,  IG  Alsos,  M  Popp,  O  Stensrud,  J  Suda,  C  Brochmann.    2007b.    Nuclear  vs.  plasEd  data:  complex  Pleistocene  history  of  a  circumpolar  key  species.    Molecular  Ecology  16:  3902-­‐3925.  12Phillips  SJ,  RP  Anderson,  RE  Schapire.  2006.  Maximum  entropy  modeling  of  species  geographic  distribuEons.  Ecological  Modelling  190:  231-­‐259.  13obtained  from  the  Worldclim  database  (www.worldclim.org):  Annual  mean  temperature,  mean  diurnal  temperature  range,  max  temperature  of  warmest  month,  min  temperature  of  coldest  month,  annual  precipitaEon,  precipitaEon  of  warmest  quarter,  precipitaEon  of  coldest  quarter  14Hijmans  RJ,  SE  Cameron,  JL  Parra,  PG  Jones,  A  Jarvis.    2005.  Very  high  resoluEon  interpolated  climate  surfaces  for  global  land  areas.  InternaEonal  Journal  of  Climatology  25:  1965-­‐1978.  15Mathews  RF.    1992.    Vaccinium  uliginosum.    In:  Fire  Effects  InformaEon  System  [Online].    U.S.  Department  of  Agriculture,  Forest  Service,  Rocky  Mountain  Research  StaEon,  Fire  Services  Laboratory  (Producer).    Available:  hSp://www.fs.fed.us/database/feis/  (Accessed  February  2012).  16Moerman  DE.    1998.    NaEve  American  Ethnobotany.    Timber  Press,  Portland,  OR.  

Table 1 – Species in this study (Species), population sample size (N), regression equation (RE), Pearson’s correlation (R2), Pearson Product Moment Correlation of ungrouped data two-sided significance (p). X and Y variables in the regression equation are as shown in Figure 2. Species N RE R2 p Animals Spermophilus parryii 33 y = -0.0128x + 0.1364 0.150 0.026 Microtus abbreviatus 8 y = -0.0401x + 0.3969 0.388 0.099 Microtus oeconomus 14 y = -0.0089x + 0.3031 0.053 0.431 Somateria mollissima 11 y = -0.0003x + 0.0059 0.171 0.207 Calidris alpina 8 y = -8E-5x + 0.0022 0.012 0.800 Plants Cassiope tetragona 62 y = -0.0080x + 0.1184 0.215 < 0.001 Rubus chamaemorus 41 y = -0.0041x + 0.1273 0.094 0.051 Sagina caespitosa 14 y = -0.0161x + 0.1139 0.227 0.085 Arenaria humifusa 11 y = 0.0101x + 0.0414 0.136 0.264 Vaccinium uliginosum 54 y = -0.0067x + 0.1809 0.338 < 0.001

Figure  2  (Above)  –  RelaEonship  between  distance  to  niche  centroid  and  geneEc  diversity  in  four  species  with  a  significant  relaEonship  between  the  two  variables.    Cassiope  tetragona  (A),  Rubus  chamaemorus  (B),  Spermophilus  parryii  (C),  and  Vaccinium  uliginosum  (D).    

Figure  1  (Above)  –  256  populaEon  samples  (map)  and  10  species  used  (photos)  in  this  study.    Note:  only  one  Microtus  species  shown.    Species  with  red  dots  were  invesEgated  further  under  scenarios  of  climate  change  (see  Methods).  

Figures  3  (leO)  and  4  (below)  –  Maps  of  distance  to  niche  centroid  for  V.  uliginosum  in  Alaska  (Fig.  3)  and  C.  tetragona  in  Greenland  (Fig.  4)  under  different  condiEons:  A)  contemporary,  B)  2080s  using  a  relaEvely  extreme  model  of  climate  change  (A1),  and  C)  2080s  using  a  more  conservaEve  model  of  climate  change  (B2).    Equidistant  breaks  were  used  to  visualize  distance  to  niche  centroid,  where  blue,  green,  yellow,  orange,  and  red  span  the  breaks  from  nearest  to  furthest  from  the  niche  centroid.    In  Fig.  3,  the  asterisk  represents  the  Fort  Yukon  area,  where  this  plant  is  used  as  a  local  food  source.  In  Fig.  4,  gray  areas  indicate  ice  sheets.