gdii lecture 1 [compatibility mode].pdf

Upload: lee-tin-yan

Post on 01-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    1/132

    BEng in Civil EngineeringSubject (CSE410)

    Geotechnical Design II

    岩土工程設計II

    Jian-Hua YIN 殷建華Office: ZS909, Tel: 2766-6065Email: [email protected] 

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    2/132

    Outline of Lectures by JH YIN:Lecture 1: Consolidation of soils (1-D, 2-D and 3-D)

    Lecture 2: Pile foundation

    Lecture 3: Soil nailed slopeLecture 4: Excavation and soil reinforcement

    Lecture 5: Ground modification

    Essential References:(1) Lecture notes.

    (2) Das, Braja M. (2007). Principles of Foundation Engineering (6

    th

    edition),Thomson, United States (ISBN 0-534-40752-8) (or more updated version).

    (3) Craig, R.F. (2004). Soil Mechanics, 7th edition (6thor 5th edition), Spon

    Press, London and New York (ISBN 04-415-32702-2) (or more updated

    version).

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    3/132

    Review of Soil Mechanics

    (a) Terzaghi’s theory of one-dimensional consolidation

    A total of 8 assumptions are made in the theory:

    1 The soil is homogenous (ok for each layer )

    2 The soil is fully saturated (ok for soil underwater )

    3 The solid particles and water are incompressible (ok )

    4 Compression and flow are one-dimensional (vertical) (ok )

    5 Strains are small (ok for most civil engineering problems)6 Darcy’s law is valid at all hydraulic gradients (ok for water and

    common civil engineering problems)

    7 The permeability k and volume compressibility mv

    are constants

    through the process (approximate for a layer and small pressure)8 There is a unique relationship, independent of time, between void

    ratio and effective stress (approximate for a layer and silty soils, no

    good for soft clay)

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    4/132

     z v

    dz  z 

    vvdvv   z  z  z  z 

     z 

    uk 

     z 

    uu z 

     z 

    hk kiv   e

    w

    w

    e s

     z  z 

     

     )(

    )headtotalstatic(constant   sw

     s hu

     z  

    dz  z 

    uk 

     z 

    uk dz 

     z 

    vvdvv   e

    w

    e

    w

     z  z  z  z  2

    2

      

    The condition of continuity: net water

    coming out rate = volume compression rate

    V dxdydz 

     z 

    uk vdxdydvvdxdy   e

    w

    in z out  z  z 

    2

    2

     

    wv

    ve

    vee

    w

    ev

    ev

    e

    w

    e

    w

    ev

    e sv

    vvvv

    m

    k c

     z 

    uc

    u

     z 

    uk 

    um

    dxdydz t 

    umdxdydz 

     z 

    uk 

    V dxdydz 

     z 

    uk 

    dxdydz 

    umdxdydz 

    uum

    dxdydz t 

    mdxdydz t 

    mdxdydz 

    t t 

    dxdydz 

      

      

     

        

    ;

    )]([

    )(

    2

    2

    2

    2

    2

    2

    2

    2

    ''

     cv

    is the coefficient

    of consolidation

    dxdydz V V V 

    dxdydz V 

    vv       

    ,

    dxdydz V  v dxdydz V  

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    5/132

    2

    2

     z 

    u

    ct 

    u ev

    e

    wvv m

    k c

     

    The initial value of excess pore water pressure (initial condition):

    The boundary condition of excess pore water pressure:

    To obtain an analytical solution using the method of “separation

    of variables”:

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    6/132

    for ui=constant

    )12(

    2

      m M    

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    7/132

    for ui=constantTwo sides are

    free drainage

    One side is impermeable

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    8/132

    i

    e z 

    u

    uU    1

    i

    ed 

    i

    e

     H 

    i

     H 

    ei

     H 

    v

     H 

    ev

     H 

    v

     H 

    ve

     f 

    u

    dz u

    du

    dz u

    dz u

    dz uu

    dz m

    dz m

    dz 

    dz 

     s

     sU 

    2

    0

    21

    2

    0

    0

    0

    0

    '0

    '1

    0

    '0

    '

    0

    1

    0 12

    1

    )(

    )(

    )(

      

      

     

     

    )exp(2

    1 2

    0

    2   v

    m

    m

    T  M  M 

    U     

    Good approximate solution for the average degree of consolidation U :

    for ui=constant:

    i

    e

     H 

    i

     H 

    ei

     f 

    dz u

    dz u

    dz u

    dz uu

     s

     sU  2

    0

    2

    0

    0

    0

    1

    )(

    If ui is not constant:

     f t    sU  s   )12(2

      m M    

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    9/132

    848.0%90

    196.0%50

    v

    v

    T U 

    T U 

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    10/132

    Two sides are free drainage

    The bottom side is impermeable

     d is the maximum

    water drainage

    distance

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    11/132

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    12/132

     t B:t A=4:1

     d 

     d 

     

     t 50

     

     固結

    次固結

     

    蠕變

    (creep)

    lab EOP o

    creept 

    t C 

    h

    h

    ,

    log    

    lab EOP t  ,

    tcoefficiensecondaryis

    1log1

    1

    log 00   e

    e

    et 

    C    e

        

     

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    13/132

    X

    1.15X

     t 90

     固結

    次固結

     

    蠕變(creep)

    )(1

    9

    10;

    0

    0

    90

    0

    100

    0

    0

    0

     p s

     f 

     s p

     f 

     s p

     f 

     s

    r r r 

    aa

    aar 

    aa

    aar 

    aa

    aa

     EOP t 

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    14/132

    Why a clayey soil creeps?Creep is continuing deformation under constant loadCreep occurs under effective stress action

    Creep is due to –viscous adsorbed water (double layers) on clay

    plates

     –viscous re-arrangement and sliding of clay plates –viscous deformation of clay plates (small)

     –viscous deformation of clay skeleton (structure/frame

    like)

     Adsorbed water is NOT free water which

    cannot flow freely under gravity.

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    15/132

    Under

    particle

    contact

    force

    (effective

    stress)

    Creep movement !

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    16/132

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    17/132

    In-situ value of cv

    and c h

    Use large samples c h

    is horizontal coefficient of consolidationvh

      cc )4~2(

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    18/132

    Solution:

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    19/132

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    20/132

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    21/132

    (c) Correction for construction period

    • Previous solution/chart is suddenly applied load• Common real load is ramp loading (construction loading

    likes this) – linear increase and then constant

    • How to find a solution to this or make a correction?

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    22/132

     f cc

    ct corr t 

    c

     f t 

    t t corr t 

    c

     st 

    t U t 

    t  swhere

    t t  st  s

    t t  For 

     st 

    U t 

     swhere

     P 

     P t  st  s

    t t  For 

    )2

    ()2

    (

    )

    2

    ()(

    :

    )2

    ()2

    (

    )2

    ()(

    0

    ,

    '

    '

    ,

    't  P 

    t 2

    corr t  s ,

    ' P 

    corr t  s ,

    U from previous

    solution/chart

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    23/132

    Solution:

    u

    u

    '

    '

     

      

    0'   u 

    2

    '

    /43.29)81.93(

    mkN u

     

    kPa72.1443.2921'  

    kPa72.14

    '

     

    mm H m s vcf  110872.1494.0'    

    Suddenly applied loading case:

    Layer is open, thus, d =4m, for t =5 years

    73.0437.04

    54.122

     

      U d 

    t cT    vv

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    24/132

    Dam

    Sand

    This sand layer is an “artesian” layer with higher

    water pressure above ground surface

    This clay layer is a

    “aquitard” layer

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    25/132

    Suddenly applied loading:

    %2626.0)2

    42.1

    ()2(

    0621.04

    4.1)

    2(

    6.2811026.0

    )2

    42.1()

    2

    42.1(

    31.2071.06.28

    7.14

    7.14

    )2

    42.1

    ()42.1(

    242.10

    2242.1

    22

    242.1

    ,

    ct T 

    mmmm

     sU  s

    mm

     s s

     yearst t  For 

    t v

    v

     f t 

    t corr t 

    c

    42.1t 71.02

    42.1

    2

    6.28

    )2

    (

    t  s

    31.20

    )(,

    t  s corr t 

    kPa

    kPat  P 

     yearst t  For 

    c

    7.14'

    44.107.14)(

    242.10

    242.1'

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    26/132

    Solution:

    C c=0.32

    (a) One layer 3'3

    ,' /2.108.920;/2.98.919   mkN mkN  clayw sand  sat  sand          

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    27/132

    3m

    2'1

    2'0 /8.179)203(8.119;/8.119)32.10()62.9()217(   mkN mkN        

    C c=0.32

    )/log();/log(

    '0

    '1

    10'0

    '110

           eeC C ee cc

    00 11   eee

    ee o

    v

     

    mm H 

    e

    C  H 

    e

    ee H  s   cov f  1826000

    8.119

    8.179log

    855.01

    32.0log

    11'

    0

    '1

    00

     

      

    855.0)100

    8.119(32.088.0)

    100log(32.088.0 0

    '

      og ee 

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    28/132

     f cc

    t c

    t corr t c

     f t t 

    t corr t c

     st 

    t U t 

    t  swheret 

    t  st  st t  For 

     st 

    U t 

     swhere P 

     P t  st  st t  For 

    )2()2()2()(:

    )2

    ()2

    ()2

    ()(:0

    ,

    '

    '

    ,

    Good

    equations

    to use !

    335.0875.06

    5.226.1)

    2(

    ;5.22

    13

    2 22 

      U 

    t t c

    T  yearst 

    cv

    vc

    mm st t U t t  st  s  f cc

    t corr t  61182335.0)2

    ()2

    ()(,  

    (b) Two layers

    Method 1: Settlement is proportional to the thickness H For Layer H 1of 4.5m:

    For Layer H 2 of 1.5m:

    mm s f  5.13618265.4

    1  

    mm s f  5.4518265.1

    2  

    mm sU  sU d 

    t t c

    T   f c

    cv

    v 6.1125.136825.0825.0622.025.2

    5.226.1)

    2(

    1111221 

    mm sU  sU d 

    t t c

    T   f c

    cv

    v 1.445.4597.097.040.15.1

    5.226.1)

    2(

    2222222  

    mm s s s ccc 7.1561.445.11221 

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    29/132

    mm sU  sU d 

    t t c

    T   f c

    cv

    v 6.1188.143825.0825.0622.025.2

    5.226.1)

    2(

    1111221 

    mm sU  sU d 

    t t c

    T   f c

    cv

    v 8.380.4097.097.040.15.1

    5.226.1)

    2(

    2222222 

    )7.156(4.1578.386.11821   mmmm s s s ccc  

    2'

    1

    2'

    0

    /15.172)203(15.112;/15.112)25.22.10()62.9()217(   mkN mkN        

    mm H e

    C  H 

    e

    ee H  s   cov f  8.1434500

    15.112

    15.172log

    864.01

    32.0log

    111'

    0

    '

    1

    0

    1

    0

    11  

     

      

    864.0)100

    15.112log(32.088.0)

    100log(32.088.0 0

    '

      ee 

    Method 2: Settlements for H 1 of 4.5m and H 2 of 1.5m:

    2'

    1

    2'

    0 /75.202)203(75.142;/75.142)25.52.10()62.9()217(   mkN mkN        

    mm H e

    C  H eee H  s   cov f  0.401500

    75.14275.202log

    831.0132.0log

    112'

    0

    '

    1

    0

    2

    0

    12  

       

    831.0)100

    75.142log(32.088.0)

    100log(32.088.0 0

    '

      ee 

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    30/132

    vU 

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    31/132

    (d) Vertical drains (垂直排水井)

    • 1-D vertical consolidation of soft soils takes a long time:

    “primary consolidation” takes 3 years to 100 years and

    creep settlements takes even longer time.• This cases problems of continuing excessive

    settlement/deformation of ground or super-structures

    • How to solve this problem?

    • Use vertical drains plus pre-loading (預加荷載) – 

    commonly used in Hong Kong

    • Why?

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    32/132

    Pre-loading – 

    removed afterward

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    33/132

    Prefabricated band (vertical) drains (排水板)

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    34/132

    Drainage channels

    Geo-textile

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    35/132

    Purpose of Vertical Drains

    and Preloading

    (a) Vertical Drains 排水板

    • Speed up escaping/dissipation of excess porewater/ pressure due to preloading

    (b) Preloading預壓• Making the soil over-consolidated and reducing both

    post-construction “primary” and creep consolidation

    More accurately speaking, reducing instant compressionand creep

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    36/132

    Bedrock or soil

    Marine Deposits

    Water Table

    Pre-loading fill

    Sand fill

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    37/132

    Lo g(Pressure) (or Stress)

    Settlement/strain - large

    Set t lem ent/st ra in - sm all

    Large creep set tlem ent/s tra in

    Sm all creep set tlem ent

    Soil pressure/stress

     befo re co nstruc tio n

    Soil pressure/stress

    after construction

    Pre- loading to here

    Illustration of settlement/strain reduction using pre-loading technique:

    reduction in post-construction “primary” consolidation (instant)

    settlement/strain and reduction in “secondary” consolidation (creep)

    settlement/strain

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    38/132

    2

    2

    2

    2

    2

    2

    )1

    ( z 

    uc

    u

    r r 

    uc

    u ev

    eeh

    e

    )1)(1(1)1)(1()1( r vr v   U U U U U U   

    22 4);(;);(

     R

    t cT T  f U 

    t cT T  f U    hr r r 

    vvvv  

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    39/132

    )1)(1(1)1)(1()1( r vr v   U U U U U U   

    hr r r 

    vvvv

     Rn

     R

    t cT T  f U 

    t cT T  f U    ;

    4);(;);(

    22

    2R=D is different from other books

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    40/132

    vU 

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    41/132

    Solution:mm H m s v f  162106525.0

    '       mm s s s remain f montht  137251626  

    %8585.0162

    1375.0  

     f 

     year t 

     s

     sU 

    82.0)(;7.24

    )2.0(4

    5.09.7

    4

    ?)(2.0;2.02/4.0:

    222 

    r r r h

    d d 

    T  f U T ntrial nn R

    t cT 

    nnnr  Rmmr drainSand 

    82.00235.01

    85.011

    1

    1117.00235.0

    10

    5.07.422

     

    v

    r vv

    vU 

    U U U 

    t cT 

    v

    r r v

    U U U U U 

    1

    11)1)(1()1(

    ?)(20;202/40: nnnrRmmrdrainSand

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    42/132

    82.0)(;7.24

    )2.0(4

    5.07.4

    4

    ?)(2.0;2.02/4.0:

    222 

    r r r 

    h

    d d 

    T  f U T ntrial nn R

    t cT 

    nnnr  Rmmr drainSand 

    n Tr 

    Ur 

    5 0.988 0.98

    7.5 0.439 0.94

    10 0.247 0.74

    20 0.0618

    0.26

    0

    0.1

    0.20.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 2 4 6 8 10 12 14 16 18 20 22

    n

         U    r

    )(

    2.3564.0

    8.1

    564.0

    8.192.0

    ;9

     patten square

    m R

    mnr  R

    n

    How to make correction for construction period?

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    43/132

     f cc

    ct corr t 

    c

     f t 

    t t corr t 

    c

     st 

    t U t 

    t  swhere

    t t  st  s

    t t  For 

     st 

    U t 

     swhere

     P 

     P t  st  s

    t t  For 

    )2

    ()2

    (

    )2

    ()(

    :

    )

    2

    ()

    2

    (

    )2

    ()(

    0

    ,

    '

    '

    ,

    't  P 

    t 2

    corr t  s ,

    ' P 

    corr t  s ,

    U from previoussolution/chart

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    44/132

    有蠕變性質的土的固結沉降計算的簡化計算方法

    A simplified method for calculation of

    consolidation settlement of clayey soils with

    creep

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    45/132

    Settlement due to creep (not use of “secondary” consolidation)

       C e

    C  e 01

    lab EOP o

    creept 

    t C 

    h

    h

    ,

    log    

    t coefficienionconsolidat " "secondarycalled  soisC 

    e

    e

    et C 

    e

    e

     

      

     

    00 1log1

    1

    log  

    )log(time

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    46/132

    For Hong KongMarine Clays:

    C  e=0.3% to 1%

    C  e

    Wh l il ?

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    47/132

    Why a clayey soil creeps?Creep is continuing deformation under constant loadCreep occurs under effective stress action (discussed

    before)

    Creep is due to –viscous adsorbed water (double layers) on clay

    plates

     –viscous re-arrangement and sliding of clay plates

     –viscous deformation of clay plates (small)

     –viscous deformation of clay skeleton (structure/frame

    like)

     Adsorbed water is NOT free water which

    cannot flow freely under gravity.

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    48/132

    • Creep always exists under the action of

    effective stresses (loading), independent ofthe excess pore water (or pore pressure).

    • Therefore, creep has nothing to do with

    the“primary”consolidation.

    • And creep exists during and after “primary”

    consolidation.• Creep rate depends on stress/strain state:

     –Creep rate is large in a normally

    consolidated state.

     –Creep rate is small in an over-consolidated

    state.

    Bjerrum’s time line model apparent “pre consolidation

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    49/132

    Bjerrum s time line model, apparent pre-consolidation

     pressure”, ageing and “delayed compression” (Bjerrum 1967)

    A

    BC

    Path A 路径1:A>B

    Path B 路径2:A>C>B

    The creep rate at B is dependent on the

    stress-strain (or void ratio) state, not on theloading history (or path)B点的蠕变率只与应力-应变状态点有关,与怎样到达这点的历史或路径无关

    Vertical effective stress (t/m2)

       V  o   i   d  r  a   t   i  o

           (  e

          )

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    50/132

    A

    B

    C

    Path 1:A>B

    Path 2: A>C>B

    The creep rate at Point B is dependent on thestress-strain (or void ratio) state, not on theloading path.

    Vertical effective stress (t/m2)

       V  o   i   d  r  a   t   i  o

           (  e

          )

    Th t th d f 1D ttl t l l ti f

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    51/132

     field  EOP  field  EOP o

    e

     f v

     field  EOP  f v

     secondary primarytotalA

    t t  for  H t 

    e

    C S U 

    t t  for S U S S S 

    ,,

    ,

    """"

    )log(1

     

    Hypothesis A:This method is not correct since the creep

    settlement in the “primary” consolidation is not included. This

    method underestimates settlement (低估了沉降).

    There are two methods for 1D settlement calculation of

    soil with creep: Hypothesis A and Hypothesis B 

    Equation of Hypothesis A method:

    H th i B Thi th d i t i th ttl t

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    52/132

    Hypothesis B:This method is correct since the creep settlement

    in the “primary” consolidation is included. This method givescorrect settlement.

    Equations of Hypothesis B method:

     strainvertical  pressure porewater excessu

    water of weight unit ty permeabilik t  z 

    uk 

    conditioncontiniuty From

     z e

    w

     z e

    w

     

     

     

     

    ;

    ;;

    )1(

    :

    2

    2

    A constitutive model (stress-strain relation) is needed for t 

     z 

     

    Yin and Graham (1989 1994) developed a one dimensional

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    53/132

    Yin and Graham (1989, 1994) developed a one-dimensional

    elastic visco-plastic (1D EVP) model:

      

     

     

       

     

     

        /

    '')

    '()(exp

    '

     zo

     z ep

     zo z 

    o z 

     z  z 

    Vt V  

     

    totalB z  z e

     zo

    e s z ep

     zo z 

    o

    e s z 

    e s z 

     z 

     s

    e s z  z e s z  z  z 

    S  get u for and Solve

    uuV 

    Vt 

    t uu

    uuV t 

     pressure porewater  staticknownu

    uuuuuuknownis

    ,,,)2()1(

    )2())

    ()(exp

    )()(

    1

    ;;;

    '

    /

    '

    ''

       

     

     

       

      

      

         

      

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    54/132

    YIN J-H. and GRAHAM J.(1989). Viscous elastic plastic

    modelling of one-dimensional time dependent behaviour of clays.

    Canadian Geotechnical Journal, 1989,26:,199 - 209.

    YIN J H. and GRAHAM J. (1994). Equivalent times and elasticvisco-plastic modelling of time-dependent stress-strain

     behaviour of clays. Canadian Geotechnical Journal, 1994,31: 42

    - 52.

    YIN J H. and GRAHAM J. (1996). Elastic visco-plastic modelling

    of one-dimensional consolidation. Geotechnique, 1996, 46(3):

    515 - 527.

    Maxwell rheology model:

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    55/132

    Maxwell rheology model:

    modulus sYoung  E 

     E  E 

    Spring 

     z e

     z  z e

     z 

    '

    ;

    :''

        

      

     

    t coefficienviscous

    dashpot Viscous

     z v

     z 

    v

     z  z 

     

     

         

    '' ;

    :

    model  plasticviscoelasticanmodel veconstituti A

     E t 

     E 

    addition strainsconnectionSeries

     z  z  z 

     z  z v

     z 

    e

     z  z 

    :

    :)(

    ''

    ''

     

       

     

         

    Yin and Graham’s (1989, 1994) 1-D Elastic

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    56/132

      

     

     

     

       

     

        /

    '

    '

    '

    '

    )()(exp

     zo

     z ep

     zo z 

    o z 

     z  z 

    Vt V 

     

     

     Yin and Graham s (1989, 1994) 1 D Elastic

    Visco-Plastic (1-D EVP) model:

    Linear elastic spring (non-linear for 1-D EVP model)

    Linear visco dash-pot (non-linear for 1-D EVP model)

     z '  

     z '  Maxwell’s Rheoloical Model:

        

    ''

     z  z  z 

     E 

     

    Non-linear elastic strain rate; non-linear visco-plastic strain rate

    Linear elastic strain rate; linear visco-plastic strain rate

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    57/132

    Time (min)

    ototalB   H S  /

    )(kPaue

    ie   uu  

    o H 

    Hypothesis B (Simplified by Yin – 殷簡化計算方法):

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    58/132

    ionconsolidat "primary" of end at  settlement  final S 

    ionconsolidat of degreeaverageU 

    t any for S S U 

    S S S 

     f 

    v

    creep f v

    creep primarytotalB

    0)(

    ""

    Hypothesis B (Simplified by Yin  殷簡化計算方法):

    For details of this simplified method, please see:

    殷建华(2011). 从本构模型研究到试验和光纤监测技术研发。岩 土 工 程学报,

    第33卷 第1期, 1~16。

    Yin, Jian-Hua (2011). From constitutive modeling to development of laboratory testingand optical fiber sensor monitoring technologies. Chinese Journal of Geotechnical

    Engineering. Vol.33 No.1, 1~16.

    : Point to1 Point  4

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    59/132

    '

     z  Log  

    e

    cC 

    eC  ),('

     zp zp   tp

     z 5 

    ),( 2'

    2   z  z      

    ),( 3'

    3   z  z      

    ),( 4'

    4   z  z      ),( 5'

    5   z  z      

    1 2

    3

    45

     Normal

    consolidation

    Unload/ reload

    Over-consolidation '2

    tp

     z  

    6 ),( 6'

    6   z  z      

    tp

     z  

    tp

     z 5 

    z

    or  

    Figure 1. Relation and states of log(stress)-

    void ratio (or strain) from 1D straining

     H σ 

    σ 

    log e1

     H σ 

    σ 

    log e1

     s '  zp

     z4

    o

    c

    '  z1

     zp

    o

    e

     f 

     H 

    e

    C  s

    : Point to1 Point 

     z 

     z 

    o

    e f  '

    1

    '

    2log

    1

    2

     

     

     H 

    e

    C  s

    : Point to point dation Preconsoli

     zp

     z 

    o

    c f 

     zp zp

    '

    '

    4

    '

    log

    1

    4),(

     

     

      

    0log1

    )(56

    0log1

    )(64

    '

    6

    '

    5e

    '

    4

    '

    6e

     H e

    C :sreloading  Point to Point 

     H e

    C  s

    :unloading  Point to Point 

     z 

     z 

    o

     f 

     z 

     z 

    o

     f 

      

     

     

    C c and C e can be determined from (a) compression with time 24 hours (t 24) of

    duration or (b) compression at the end of primary consolidation in lab (t  EOP,lab)

    which is about a few minutes.

    Settlement due to creep (not use of “secondary” consolidation)

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    60/132

    Settlement due to creep (not use of secondary consolidation)

       C e

    C  e 01

    lab EOP o

    creept 

    t C 

    h

    h

    ,

    log    

    t coefficienionconsolidat " "secondarycalled  soisC 

    e

    e

    et C 

    e

    e

     

      

     

    00 1log1

    1

    log  

    )lg(t 

    In the simplified Hypothesis B method, the “equivalent time” te

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    61/132

    In the simplified Hypothesis B method, the equivalent time t e

    is used for creep:

    o

    e

    et 

    t t C ee 

    00 log 

    0

    o

    e

    o

    e

    o

    ee

    o

    eetp

     z 

    e1V 

     parameter creepat 

    timeequivalent t 

    t t C t 

    t t 

    t t 

    e

    e

    ee

    000

    00

    0

    logloglog11   

      

     

    If C c and C e can be determined from (a) compression with time 24 hours (t 24) of

    duration: t o=24 hours=1day.

    If C c and C e can be determined from (b) compression at the end of primary

    consolidation in lab (t  EOP,lab) which is about a few minutes: t o= t  EOP,lab

    (a) Final point is at a normally consolidated state :

    For example Point 4 (Figure 1)

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    62/132

    For example Point 4 (Figure 1)

    0)log(

    1 0

    ""

     

    e

    o

    eoe f 

    v

    creep primarytotalB

    t  for  H 

    t t 

    e

    C  sU 

     s s s

     

    oe  t t t   

    :usewhyisThis4.Point back toisaboveThe

    1day)t(log1

    log1

    )1

    11log(

    1log

    1log

    1

    :coupling pressure porewater noIf 

    '

    '

    4

    '

    1

    '

    0

    '

    '

    4

    '

    1

    '

    ""

     H e

    C  H 

    e

     H t 

    e

    C  H 

    e

    C  H 

    e

     s s s

     zp

     z 

    o

    c

     z 

     zp

    o

    e

    e

     zp

     z 

    o

    c

     z 

     zp

    o

    e

    creep primarytotalB

     

     

     

     

     

     

     

      

    oe   t t t   

    '

     z  Log  

    e

    cC 

    eC  ),('

     zp zp   tp

     z 5 

    ),( 2'

    2   z  z      

    ),( 3'

    3   z  z     

    ),( 4'

    4   z  z      ),( 5'

    5   z  z      

    12

    3

    45

    Normal

    consolidation

    Unload/ reload

    Over-consolidation'2

    tp

     z  

    6 ),( 6'

    6   z  z      

    tp

     z  

    tp

     z 5 

    z

    or  

    (b) Final point is at an over-consolidated state :

    For example Point 2 (Figure 1)'L'2

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    63/132

    p ( g )

    0)log(1 20

    ""

    e

    eo

    eoe f 

    v

    creep primarytotalB

    t  for  H t t 

    t t 

    e

    C  sU 

     s s s

     

    o

    ee

     zp

     z c zp z 

    t t 

    C    0

    '

    '

    loglog

    :)1994,1989GrahamandYin(

    "timeequivalent"thetoAccording

     

     

       

    e

    c

    e zp z 

    eC 

    cC 

     zp

     z 

    e zp z  C 

     zp

     z C 

    o

    e

     zp

     z 

    e

    c

    e

     zp z 

    o

    e

    t t t 

    t t 

      

     

     

      

     

       

       

       

      

    )(1010

    log)(log:abovetheFrom

    '

    ')()log()(

    0

    '

    '

    0

    '

    '

    o

     zp

     z C 

    oe   t t t   e

    c

    e zp z 

     

      

     

       )(10

    '

    ')(

     z  Log  

    e

    cC 

    eC  ),('

     zp zp   tp

     z 5 

    ),( 2'

    2   z  z      

    ),( 3'

    3   z  z      

    ),( 4'

    4   z  z      ),( 5'

    5   z  z      

    1 2

    3

    45

    Normal

    consolidation

    Unload/ reload

    Over-consolidation'2

    tp

     z  

    6 ),( 6'

    6   z  z      

    tp

     z  

    tp z 5 

    z

    or 

     

    C

    zC 

    ttt ec

    e zp z   

       

    )(10'

    2)( 2

    '

     z  Log  

    12

    Over-consolidation'2

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    64/132

    o

     zp

     z oe   t t t 

      ee   

     

    )(10'

    22

    o

     zp

     z C 

    ooee

    e

    t t t t t t t 

    e

    c

    e zp z 

    2)(10

    :)1b(in

    '

    '

    2)(

    2

    2

     

      

     

       

    0)log(1 2

    2

    0

    ""

    e

    eo

    ee f 

    v

    creep primarytotalB

    t  for  H t t 

    t t 

    e

    C  sU 

     s s s

     

    )1dayt(log1

    )log(1

    log1

    :coupling pressure porewater noIf 

    '

    1

    '

    2

    2

    2

    0

    '

    1

    '

    2

    ""

     H e

    C  H 

    t t 

    t t 

    e

    C  H 

    e

     s s s

     z 

     z 

    o

    e

    eo

    ee

     z 

     z 

    o

    e

    creep primarytotalB

     

     

     

       

    e

    cC 

    eC  ),('

     zp zp   tp

     z 5 

    ),( 2'

    2   z  z      

    ),( 3'

    3   z  z      

    ),( 4'

    4   z  z      ),(

    5

    '

    5   z  z     

    3

    45

    Normal

    consolidation

    Unload/ reload

    tp z  

    6 ),( 6'

    6   z  z      

    tp

     z  

    tp

     z 5 

    z

    or 

     

    (c) Final point is at an over-consolidated state from unloading :

    For example Point 4 to Point 6 (Figure 1)

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    65/132

    0)log(1 60

    ""

    e

    eo

    eoe f 

    v

    creep primarytotalB

    t  for  H t t 

    t t 

    e

    C  sU 

     s s s

     

    0log1 '

    4

    '

    6

      H e

    C  s

     z 

     z 

    o

    e f 

     

     

    o

     zp

     z C 

    oe   t t t   e

    c

    e zp z 

     

      

         )(10

    '

    ' 6)(

    6

    6

    o

     zp

     z C 

    ooee   t t t t t t t   e

    c

    e zp z 

    2)(10'

    '

    6)(

    6

    6

     

      

     

       

    )1c(0)log(

    1 6

    6

    0

    ""

    e

    eo

    ee f 

    v

    creep primarytotalB

    t  for  H 

    t t 

    t t 

    e

    C  sU 

     s s s

     

    '

     z  Log  

    e

    cC 

    eC  ),('

     zp zp   tp

     z 5 

    ),( 2'

    2   z  z      

    ),( 3'

    3   z  z      

    ),( 4'

    4   z  z      ),( 5'

    5   z  z      

    12

    3

    45

    Normal

    consolidation

    Unload/ reload

    Over-consolidation'2

    tp

     z  

    6 ),( 6'

    6   z  z      

    tp

     z  

    tp

     z 5 

    z

    or 

     

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    66/132

    o

     zp

     z C 

    oe

    e

    eo

    eecreep

    t t t 

    t  for  H t t 

    t t 

    e

    C  s

    e

    c

    e zp z 

      

     

       

     

    )(10

    0)log(1

    '

    '

    6)(

    6

    6

    6

    0

    6

    (d) Final point is at an over-consolidated state from reloading :

    For example Point 6 to Point 5 (Figure 1)

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    67/132

    0)log(1

    50

    ""

    e

    eo

    eoe f 

    v

    creep primarytotalB

    t  for  H t t 

    t t 

    e

    C  sU 

     s s s

     

    0log1 '

    6

    '

    5

      H e

    C  s

     z 

     z 

    o

    e f 

     

     

     H 

     H t 

    t t 

    e

    t t 

    e

    C  H 

    t t 

    t t 

    e

    C  s

    tp

     z 

    tp

     z 

    o

    eoe

    o

    eoe

    eo

    eoecreep

    )(

    )log(1

    )log(1

    )log(1

    5

    5

    0050

      

       

     

    )log(1

    );log(1

    5

    0

    5

    0   o

    eoetp

     z 

    o

    eoetp

     z t 

    t t 

    e

    t t 

    e

    C   

           

    '

     z  Log  

    e

    cC 

    eC  ),('

     zp zp   tp

     z 5 

    ),( 2'

    2   z  z     

    ),(3

    '

    3   z  z 

        

    ),( 4'

    4   z  z     ),( 5'

    5   z  z      

    12

    3

    45

    Normal

    consolidation

    Unload/ reload

    Over-consolidation'2

    tp

     z  

    6),(

    6

    '

    6   z  z     

    tp

     z  

    tp

     z 5 

    z

    or 

     

     z C 

    ttt   ec

    e zp z 

     

         

    )(10'

    5)( 5

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    68/132

    o

     zp

    oe   t t t 

     

    )(10'5

    o

     zp

     z C 

    ooee   t t t t t t t   e

    c

    e zp z 

    2)(10'

    '

    5)(

    5

    5

     

      

     

       

    )1d(0)log(1 5

    5

    0

    ""

    eeo

    ee

     f v

    creep primarytotalB

    t  for  H t t 

    t t 

    e

    C  sU 

     s s s

     

    )1dayt(log1

    )log(1

    log1

    :coupling pressure porewater noIf 

    '

    6

    '

    5

    5

    5

    0

    '

    6

    '

    5

    ""

     H e

    C  H 

    t t 

    t t 

    e

    C  H 

    e

     s s s

     z 

     z 

    o

    e

    eo

    ee

     z 

     z 

    o

    e

    creep primarytotalB

     

     

     

       

    Extension of the above method:

    (a) Have vertical drains

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    69/132

    (a) Have vertical drains

    The U v in (1a) … (1d) is replaced by the total U :

    toncondolidaiof degreeaverageradial

    r v

    r v

     )U  )(1U (11U 

     )U  )(1U (1U)(1

    (b) Multi-layers (n layers)Appling superposition principle

    n

    1ii,

    n

    1ii,""

    n

    1ii,   creep primarytotalBtotalB   s s s s

    layers! betweencontinuityconsider toneed:n

    1i

    i,""

     primary s

    2

    2 ;60.0085.0)1log(933.0;60.04   H 

    t C T U  for U T U  for U T    vvvvvvvv  

      

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    70/132

    2

    2

    22

    2

    2

    22

    2

    ;;

    ln44

    3

    )ln(

    )2

    exp(1

    e

    r r 

    w

     s

    w

    e

     s

    h

    r r 

    r t C T 

    r S 

    r n

    S n

    S n

     K 

     K 

    n

    n

    S n

    n

    m

    m

    T U 

     f cc

    t c

    t corr t c

     f t t 

    t corr t c

     st 

    t U t 

    t  swheret 

    t  st  st t  For 

     st 

    U t 

     swhere P 

     P t  st  st t  For 

    )2

    ()2

    (),2

    ()(:

    )2()2(,)2()(:0

    ,

    '

    '

    ,

     sr 2

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    71/132

    rw=rd=radius of well

    re=R=radius of column

    rs=radius of smear zone

    Smear zone: remoulded soil zone

    pushed by mandrel

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    72/132

    Band drain

    F 0

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    73/132

     f cc

    ct corr t 

    c

     f t 

    t t corr t 

    c

     st 

    t U t 

    t  swhere

    t t  st  s

    t t  For 

     st 

    U t 

     swhere

     P 

     P t  st  s

    t t  For 

    )2

    ()2

    (

    )2

    ()(

    :

    )2

    ()2

    (

    )2

    ()(

    0

    ,

    '

    '

    ,

    't  P 

    t 2

    corr t  s ,

    '

     P 

    corr t  s ,

    U from previoussolution/chart

    How to get U, Ur , Uv?(a) Use existing solutions, tables, figures,

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    74/132

    ( ) g , , g ,

    equations(b) Use new internet based tools for calculation

    of the coefficients of consolidation and

    porewater pressure in 1-D and 2-D cases

    • Tools are developed by JH Yin et al. at PolyU

    • http://www.cse.polyu.edu.hk/~civcal(Reclamation molulus)

    • Interactive calculations!

    • 1-D (oedometer condition) - ramp loading and varying

    with depth• 2-D axi-symmetric - ramp loading & vertical drain

    Internet based consolidation analysis

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    75/132

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    76/132

    Example 1 :

    H is 10m with double drainage in 1D straining. Other parameters are in the

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    77/132

    g g p

    following table. Calculate final settlements at different states at 5 years. The load issuddenly applied.

    07.0e

    C    5.0c

    C    018.0e

    C  

     

    21

    1eo

    oeV  

    )/(

    488.0

    2  yr m

    C v 

     )(1 dayt o    

    %1.0

    001.030kPa

    z1

    '

    z1

      

     

    %54.0

    0054.040kPa

    z2

    '

    z2

      

     

    %15.1

    0115.0

    60kPa

    zp

    '

    zp

     

      

    %68.8

    0868.0

    120kPa

    z4

    '

    z4

     

     

     

    %40.8

    0840.0

    100kPa

    z5

    '

    z5

     

     

     

    35%.7

    0735.0

    50kPa

    z6

    '

    z6

     

     

     

    Table 1 Parameters and stress-strain state of soil

    (1a) Settlement calculation for the case of loading and final stress-strain state is

    normally consolidated (loading from Point 1 to Point 4)

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    78/132

    858m.010)60

    120log

    2

    5.0

    30

    60log

    2

    07.0(

    log1

    log1 '

    '

    4

    '

    1

    '

      H 

    e

    C  H 

    e

    C  s

     zp

     z 

    o

    c

     z 

     zp

    o

    e f 

     

     

     

     

     

    0.352614.3/0979.04/T4U

    0976.05/488.05d/tCT,5m2/10d

    vv

    22

    vv

      

    0.406m0.2935)0.858(0.3526

    )(

      creep f vtotalB   s sU  s  

    0.2935m10)1

    1-53651log(2

    0.018

    )t

    tlog(

    1

    5yearst

    o

    eo

    0

    "

     H t 

    e

    C  s   e"creep

     

    ' z  Log  

    e

    cC 

    eC  ),('

     zp zp   tp

     z 5 

    ),( 2'

    2   z  z      

    ),( 3'3   z  z      

    ),( 4'

    4   z  z      ),( 5'

    5   z  z      

    12

    3

    45

    Normal

    consolidation

    Unload/ reload

    Over-consolidation '2

    tp

     z  

    6 ),( 6'6   z  z      

    tp

     z  

    tp

     z 5 

    z

    or 

     

    (1b) Settlement calculation for the case of loading and final stress-strain state is at an

    overconsolidated state (loading from Point 1 to Point 2)

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    79/132

    0437m.01030

    40log

    2

    07.0log

    1 '1

    '

    2

      H e

    C  s

     z 

     z 

    o

    e f 

     

      

    o

     zp

     z C 

    oe  t t t    e

    c

    e

     zp z 

     

      

     

       )(10

    '

    '

    2)(

    2

    2

     

    = )(163541)60

    40(10 018.0

    5.0

    018.0

    2)0115.00054.0(

    day

     

    0.352614.3/0979.04/T4U

    0976.05/488.05d/tCT,5m2/10d

    vv

    22

    vv

      

    0.047m0.090)0.0437(0.3526

    )(

      creep f vtotalB   s sU  s 

    0.090m10)163541

    163545365log(

    2

    0.018

    )t

    tlog(

    1

    5yearst

    e2o

    e2

    0

    "

     H t 

    e

    C  s   e"creep  

    '

     z  Log  

    e

    cC 

    eC  ),('

     zp zp   tp

     z 5 

    ),( 2'

    2   z  z      

    ),( 3'

    3   z  z      

    ),( 4'

    4   z  z      ),( 5'

    5   z  z      

    12

    3

    45

    Normalconsolidation

    Unload/ reload

    Over-consolidation'2

    tp

     z  

    6 ),( 6'

    6   z  z      

    tp

     z  

    tp

     z 5 

    z

    or 

     

    (1c) Settlement calculation for the case of unloading and final stress-strain state is

    at an overconsolidated state (unloading from Point 4 to Point 6)

    '

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    80/132

    133m.01012050log

    207.0log

    1 '4

    6

      H e

    C  s z 

     z 

    o

    e f 

        

    o

     zp

     z C 

    oe   t t t   e

    c

    e

     zp z 

     

      

     

       )(10

    '

    '

    6)(

    6

    6

     

    =

    )(10226.11)60

    05(10 9018.0

    5.0

    018.0

    2)0115.07350.0(

    day

     

    0.352614.3/0979.04/T4U

    0976.05/488.05d/tCT,5m2/10d

    vv

    22

    vv

      

    0.047m0.00])133.0[(0.3526

    )(

      creep f vtotalB   s sU  s 

    0.00m10)10226.11

    10226.15365log(

    2

    0.018

    )t

    tlog(

    1

    5yearst

    9

    9

    e6o

    e6

    0"

     H t 

    e

    C  s   e

    "creep

     

    '

     z  Log  

    e

    cC 

    eC  ),('

     zp zp   tp

     z 5 

    ),( 2'

    2   z  z      

    ),( 3'

    3   z  z      

    ),( 4'

    4   z  z      ),( 5'

    5   z  z      

    12

    3

    45

    Normal

    consolidation

    Unload/ reload

    Over-consolidation'2

    tp

     z  

    6 ),( 6'

    6   z  z      

    tp

     z  

    tp

     z 5 

    z

    or 

     

    (1d) Settlement calculation for the case of reloading and final stress-strain state is at

    an overconsolidated state (reloading from Point 6 to Point 5)

    '

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    81/132

    1054m.01050

    100log207.0log

    1 '6

    5

      H e

    C  s z 

     z 

    o

    e f 

        

    o

     zp

     z C 

    oe  t t t    e

    c

    e

     zp z 

     

      

     

       )(10

    '

    '

    5)(

    5

    5

     

    = )(18.761)60

    010(10 018.0

    5.0018.02)0115.0840.0(

    day

     

    0.352614.3/0979.04/T4U

    0976.05/488.05d/tCT,5m2/10d

    vv

    22

    vv

      

    0.081m0.1252)1054.0(0.3526

    )(

      creep f vtotalB   s sU  s 

    0.1252m10)18.761

    76.185365log(

    2

    0.018

    )

    t

    tlog(

    1

    5yearst

    e5o

    e5

    0

    "

     H 

    e

    C  s   e"creep

     

    '

     z  Log  

    e

    cC 

    eC  ),('

     zp zp   tp

     z 5 

    ),( 2'

    2   z  z      

    ),( 3'

    3   z  z      

    ),( 4'

    4   z  z      ),( 5'

    5   z  z      

    12

    3

    45

    Normal

    consolidation

    Unload/ reload

    Over-consolidation'2

    tp

     z  

    6 ),( 6'

    6   z  z      

    tp

     z  

    tp

     z 5 

    z

    or 

     

    Example 2:

    Calculate the curves of settlement and time for the case of loading and final stress-

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    82/132

    .infiniteisfieldthein, field  EOP t 

    Here we assume U v=0.987 is the end of primary consolidation in the field.T v=1.668, t  EOP,field =3118day.

    strain state is normally consolidated (loading from Point 1 to Point 4) usingHypothesis A and simplied Hypothesis B method.

    Solution:

     field  EOP 

     field  EOP o

    e f v

     field  EOP  f v

    ondary primarytotalA

    t t  for  H t 

    e

    C S U 

    t t  for S U 

    S S S 

    ,

    ,

    ,

    "sec"""

    )log(1

     

    )1a(0)log(1 0

    ""

     

    e

    o

    eoe f v

    creep primarytotalB

    t  for  H t 

    t t 

    e

    C  sU 

     s s s

     

    Curves of settlement and time from the two methods are shown in the following figure.

    Cv= 0.488 m^2/year  

    sf= 0.858 m

    t=(day) TV= Uv Uv*sf S_creep S_totalB S_"secondary" S_totalA

    1 5.34795E-05 0.008254 0.007082 0 0.007082 0 0.007082

    2 0.000106959 0.011673 0.010015 0.027093 0.010331 0 0.010015

    4 0.000213918 0.016508 0.014164 0.054185 0.015058 0 0.014164

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    83/132

    8 0.000427836 0.023346 0.02003 0.081278 0.021928 0 0.02003

    16 0.000855671 0.033016 0.028327 0.108371 0.031905 0 0.028327

    32 0.001711342 0.046691 0.040061 0.135463 0.046386 0 0.040061

    64 0.003422685 0.066031 0.056655 0.162556 0.067388 0 0.056655

    128 0.00684537 0.093382 0.080122 0.189649 0.097832 0 0.080122

    256 0.01369074 0.132062 0.113309 0.216742 0.141933 0 0.113309

    512 0.027381479 0.186764 0.160244 0.243834 0.205783 0 0.160244

    1024 0.054762959 0.264124 0.226619 0.270927 0.298177 0 0.226619

    1825 0.0976 0.352606 0.302536 0.293514 0.406031 0 0.3025362737.5 0.1464 0.431853 0.37053 0.309362 0.504128 0 0.37053

    4106.25 0.2196 0.528909 0.453804 0.32521 0.625811 0 0.453804

    6159.375 0.3294 0.640382 0.549448 0.341058 0.767855 0 0.549448

    9239.063 0.4941 0.760495 0.652505 0.356907 0.923931 0 0.652505

    13858.59 0.74115 0.869826 0.746311 0.372755 1.070543 0 0.746311

    20787.89 1.111725 0.94784 0.813247 0.388603 1.18158 0 0.813247

    31181.84 1.6675875 0.98677 0.846649 0.404451   1.245749   0   0.846649

    46772.75 2.50138125 0.99831 0.85655 0.420299 1.276139 0.015848213 0.87239870159.13 3.752071875 0.999923 0.857934 0.436148 1.294048 0.031696427 0.88963

    105238.7 5.628107813 0.999999 0.857999 0.451996 1.309995 0.04754464 0.905544

    157858 8.442161719 1 0.858 0.467844 1.325844 0.063392853 0.921393

    236787. 1 12. 66324258 1 0.858 0. 483692 1. 341692 0. 079241067 0. 937241

    355180.6 18.99486387 1 0.858 0.49954 1.35754 0.09508928 0.953089

    532770.9 28.4922958 1 0.858 0.515389 1.373389 0.110937493 0.968937

    799156.3 42.7384437 1 0.858 0.531237 1.389237 0.126785707 0.984786

    1198735 64.10766555 1 0.858 0.547085 1.405085 0.14263392 1.0006341798102 96. 16149833 1 0.858 0. 562933 1. 420933 0. 158482133 1. 016482

    2697153 144.2422475 1 0.858 0.578781 1.436781 0.174330346 1.03233

    4045729 216.3633712 1 0.858 0.59463 1.45263 0.19017856 1.048179

    6068594 324.5450569 1 0.858 0. 610478 1.468478 0.206026773 1.064027

    9102890 486.8175853 1 0.858 0. 626326 1.484326 0.221874986 1.079875

    13654335 730.2263779 1 0.858 0.642174 1.500174 0.2377232 1.095723

    20481503 1095.339567 1 0. 858 0. 658023 1. 516023 0.253571413 1. 111571

    30722255 1643.00935 1 0.858 0.673871 1.531871 0.269419626 1.12742

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    84/132

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    1 10 100 1000 10000 100000 1000000 10000000

       T  o   t  a   l

      s  e   t   t   l  e  m  e  n   t   (  m   )

    Time (day)

    Simplified Hypothesis B method (Yin)

    Hypothesis A method

    Example 3 :

    At a site in Hong Kong with a clay layer of 5 m thick. The bottom of the layer is

    permeable. The water table in the worst case is at the ground level. A uniform

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    85/132

    Solution :

     year mC dayt C 

    kPaemkN C C 

    voe

     zpo sat ec

    /1,1%;1

    ;50;2,/5.16;04.0;4.0

    2

    '3

     

      

    vertical pressure by fill is assumed to be applied suddenly in two stages. The firststage with pressure 45 kPa is applied and in 6 months later, the second stage of 155

    kPa is applied. Calculate and plot the time-settlement curve up 50 years using Yin’s

    simplified method (using the initial effective stress at the middle clay layer) since the

    first loading. Calculate the final total settlements at time of 0.5, 10, and 50 years

    since the first loading. Soil parameters are:

    m5

    m5.2)( year t 

    )(kPa p

    kPa45

    kPakPa 45155  

     year 5.0   year 2

     year 5.1

    2

    2 ;60.0085.0)1log(933.0;60.04   H 

    t C T U  for U T U  for U T    vvvvvvvv  

      

    0927.05725.61

    log4.050

    log04.0

    s

    50725.6145725.16;725.16)81.95.16(5.2

    45:1

    1f1

    ''''

    m H 

    kPakPa pkPa

    kPa Loading Stage

     f 

     zp zi z  zi

     

     

     

        

    '

     z  Log  

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    86/132

    )(

    128.00.03770927.0984.0;0824.00.03770927.0632.0(

    984.0101;632.0101101

    6.1

    5.2

    101;32.0

    5.2

    21:10;2

    ?0.03770927.0(:,5.0:

    )t

    log(1

    0927.0(:,5.00:

    4160.00377.00927.0319.0(

    00754.0)1

    1-5.03651log(

    21

    0.01)

    t

    tlog(

    1

    0.0377m5)1

    1-5.03651log(

    21

    0.01)

    t

    tlog(

    1

    )t-t(t5year .0t

    6.0319.014.3/08.04;080.05.2

    5.01

    5.0

    00634.0725.16

    50log

    21

    04.0log

    1;01854.0

    5021725.1621

    1111

    933.0

    6.1085.0

    933.0

    32.0085.0

    933.0

    085.0

    1

    2222

    1111

    00

    1111

    1111

    0

    e0

    0

    1

    0

    e0

    0

    1

    0e

    1221

    '

    '

    0

    1

    1

     filedataand curve see

    mm s sU  s

     H 

    t C 

     H 

    t C T  years yearsTime

    U  s sU  siscurve settlement timethe year t timeOther 

     H t 

    e

    C U  s sU  siscurve settlement timethe year t timeOther 

    m s sU  s

    e

     H t 

    e

    C  s

    ok U  H 

    t C T 

     yearstime At 

    e

    creep f v B

    v

    vvv

    vcreep f v B

    evcreep f v B

    creep f v B

    ecreep

    ecreep

    vv

    v

     zi

     zpe zp f 

    v

      

    )()

     

     

     

     

     

       

    e

    cC 

    eC 

    ),( '  zp zp   1

    2

    3

    Normal

    consolidation

    Over-consolidation

    1 f  s

    2 f  s

    1creep s

    2creep s

    Stage 1

    Stage 2

    ),( 2'

    2   zp zp     ),( 1'1   z  z     

    026080007540018540

    725.6145725.1645)81.95.16(5.2

    155:2

    111

    '

    1

    f

     z  kPanew

    kPa Loading Stage

     '

     z  Log  

    O lid ti

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    87/132

    02692.0725.61

    336.71log

    21

    04.002608.0log

    1

    71.336100.632577.22310725.6150

    10

    -

    1-logloglog

    -log1log1-log)11

    -log1

    log1

    log1

    log1

    log1

    ;log1

    :,

    02608.000754.001854.0

    '

    1

    '

    2

    0

    12

    1645.004.04.0

    2100634.002608.0

    0.04-0.4

    0.04-

    0.04-0.4

    0.4

    1

    '

    1

    ''

    2

    01

    '

    1

    ''

    2

    1

    '

    1

    0

    '

    0

    '

    2

    00

    1'

    1

    '

    2

    0

    '

    '

    2

    0

    '

    '

    2

    0

    '

    1

    '

    2

    0

    1

    '

    '

    2

    0

    2'

    1

    '

    2

    0

    12

    2

    '

    2

    111

    01

     z 

     zpe z  zp

    C C 

    e

    C C 

     z C C 

     zp zp

    ec

     zp z  z 

    ec

    e zp

    ec

    c zp

     zp z  z e

     zpc

     zpec

     zp z 

     z 

     zpe

     zp

     zpc

     zp

     zpc zp

     z 

     zpe z 

     zp

     zpc zp zp

     z 

     zpe z  zp

     zp zp

    creep f  z 

    e

    kPa

    C C 

    e

    C C 

    C C 

    e

    e

    e

    e

    e

    e

    eC 

    eC 

    e

    e

    are New

    ec zp z 

    ec

    e

    ec

    c

     

       

       

         

         

       

     

     

     

       

       

     

       

     

       

      

       

      

    )(

    e

    cC 

    eC 

    ),('

     zp zp   1

    2

    3

    Normal

    consolidation

    Over-consolidation

    1 f  s

    2 f  s

    1creep s

    2creep s

    Stage 1

    Stage 2

    ),( 2'

    2   zp zp     ),( 1'1   z  z     

    N

    kPanew

    kPa Loading Stage

    creep f  z 

     z 

    02608.000754.001854.0

    725.6145725.1645)81.95.16(5.2

    155:2

    '

    111

    '

    1

       

     

    '

     z  Log  Over-consolidation

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    88/132

    m H t 

    e

    C U  s sU  s

    U  H 

    t C T 

     yrst  yrsand 

    m H t 

    e

    C U  s sU  s

    ok T U  H 

    t C T 

     yrst timeloading  yearstimetotal  At 

    m

     H e

    e

    C  H S 

    kPa

    are New

    evcreep f v B

    vv

    v

    evcreep f v B

    vvv

    v

     zp

     z c

     z 

     zpe

     f  f 

     z 

     zp zp

     zp zp

    v

    326.05)

    1

    3655.9log(

    21

    001.0326.0981.0)

    t

    log(

    1

    326.0(

    981.0101101;52.15.2

    5.91

    )5.9(10

    183.05)1

    3655.1log(

    21

    001.0326.05529.0)

    tlog(

    1326.0(

    6.05529.014.3/24.0414.3/4;24.05.2

    5.11

    )5.1(2

    326.0506519.05)06435.000084.0(

    5)336.71

    725.216log

    3

    4.0

    725.61

    336.71log

    3

    04.0(

    )log1

    log1

    (

    725.216155725.61

    ;02692.0;71.336

    :,

    00

    22222

    933.0

    52.1085.0

    933.0

    085.0

    2222

    00

    22222

    2222

    ' 2

    '

    2

    0' 1

    '

    2

    022

    '

    2

    2

    '

    2

    2'

    2

     

     

     

     

     

     

     

      

     

      

      

    e

    cC 

    eC 

    ),('

     zp zp   1

    2

    3

    Normal

    consolidation

    1 f  s

    2 f  s

    1creep s

    2creep s

    Stage 1

    Stage 2

    ),( 2'

    2   zp zp     ),( 1'1   z  z     

    '

     z  Log  Over-consolidationHtCUU

    iscurve settlement timethe year t timeOther 

    Summary

    e )l (09270(

    :,5.00:

    :

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    89/132

    e

    cC 

    eC 

    ),('

     zp zp   1

    2

    3

    Normal

    consolidation

    1 f  s

    2 f  s

    1creep s

    2creep s

    Stage 1

    Stage 2

    m s s s

     yrsand  yrst  At 

    m s s s

     yrst  At 

     H t 

    e

    C U U 

     s sU  s sU  s s s

    iscurve settlement timethe year t timeOther 

     H t e

    C U  s sU  s s

     B B B

     B B B

    evv

    creep f vcreep f v B B B

    evcreep f v B B

    454.0326.0128.0

    :102

    265.0183.00824.0

    :2

    )

    t

    log(

    1

    326.00.03770927.0

    ((

    :,5.0:

    )t

    log(1

    0927.0(

    21

    21

    00

    21

    22211121

    00

    1111

     

     

     

    ))

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    90/132

    0.04

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    91/132

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    92/132

    '

    i H 

    0.269 187.5x0.269

    Empirical equations to fit a measured settlement-time curve in the

    field and find the final settlement Sf (or )S 

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    93/132

    Hyperbolic equation method:

    Find parameter :

    Find final settlement:

    2

    22

    1

    1

    1

    )(

    )(

    t  s s s s

     s s s s

    d d 

    d d 

     

     

    Empirical equations to fit a measured settlement-time curve in the

    field and find the final settlement Sf (or )S 

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    94/132

    Hyperbolic equation method:

    Find parameter :

    Find final settlement:

    )(;1

    )(

    1

    )(:)()(

    )(

    1

    )()()(

    d d 

    d d d t 

    d d d t d t d 

    d d t 

     s s A B

     s s s s

     Band  s s

     A xt vs y s s

    t  Plot 

     Bx A yt  s s s s s s

     s s

     s s

    t  s s s s

      

      

     

    0 025

    0.03

    0.035

    Data

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    95/132

    y = 0.0149x + 0.0066

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

    Time (year)

       t   /   (   s   t  -   s   d   )

    Data

    Linear (Data)

    d t    s s

    );(;1

    ;)(

    1

    )(

    )(

    1

    )(

    d d 

    d d 

    d d d t 

     s s A B

     s s s s

     Band  s s

     A

     Bx A yt  s s s s s s

      

     

    0066.0)(

      d  s s A

       

    0149.0)(

    1

      d  s s B

    0d  s

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    96/132

    )1)((

    )1)((

    )1)((

    2

    1

    2

    1

    d d 

    t d d 

    d d t 

    e s s s s

    e s s s s

    e s s s s

     

     

     

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    97/132

    time (years) Set (cm)

    Set

    (prediction 1) t/(st-sd)

    Set (prediction

    2)

    0 0 0 0

    0.226 22.45 22.26519974 0.010067 22.67391697

    0.302 26.7   26.7 0.011311 27.207697440 425 30 35 32 22375862 0 014003 32 8629422

    t  s s s s d d t 

    )( 

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    98/132

    0.425 30.35 32.22375862 0.014003 32.8629422

    0.488 33.34 34.48516325 0.014637 35.18080627

    0.533 35.81 35.92092809 0.014884 36.65321111

    0.61 39.08 38.09188759 0.015609 38.88074447

    0.665 40.54 39.4571216 0.016404 40.28227883

    0.754 44.09 41.39960169 0.017101 42.27737095

    0.814 45.72 42.55338369 0.017804 43.462939030.89 46.95 43.86525718 0.018956 44.8114395

    0.92 47.02 44.34270318 0.019566 45.3023439

    0.998 48.02 45.49074971 0.020783 46.4830323

    1.06 48.19 46.31805672 0.021996 47.33410735

    1.168 48.63 47.60669616 0.024018 48.66017864

    1.373 49.72 49.63014421 0.027615 50.7434113

    1.402 49.88   49.88 0.028107 51.00073482

    1.44 50.1 50.19572156 0.028743 51.325919592 53.70756979 54.94505495

    2.5 55.71214989 57.01254276

    3 57.13379008 58.47953216

    3.5 58.19449265 59.57446809

    4 59.01623055 60.42296073

    4.5 59.67158239 61.09979633

    6 61.02694237 62.5

    6.5 61.34850754 62.83228613

    7 61.62684428 63.11992786

    8 62.08456815 63.59300477

    9 62.4453037 63.96588486

    10 62.7369245 64.26735219

    t t 

     s s s s

     s s

     s s

     s s s s

     s s

     s s

    d d 

     

      

     

     

      

     

     

     

     

     

    1

    1

    12

    1

    12

    1

    1

    12

    1

    1

    1

    1

    1

    )(

    1

    1

     

    0d  s

    Dt= 1.1

    Dt/t1= 3.642384 t 

    t  s s s s d d t 

    )( 

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    99/132

    t1/Dt= 0.274545

    (s1-sd)/(s2-s1) 1.151855

    (s2-s1)/(s1-sd) 0.868165

    alfa= 0.438742s_infinite= 65.48946

     A= 0.0066

    B= 0.0149alfa= 0.442953

    s_infinite= 67.11409   t 

     s s

     s s

     s s

     s s

     s s s s

     s s

     s s

    d d 

     

      

     

     

      

     

     

     

     

     

    1

    1

    12

    1

    12

    1

    1

    12

    1

    1

    1

    1

    1

    )(

    1

    1

     

    0d  s

    0 2 4 6 8 10 12

    Tim e (year)

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    100/132

    0

    10

    20

    30

    40

    50

    60

    70

       S   e   t   t   l   e   m   e   n   t   (   c   m   )

    Data

    Prediction 1

    Prediction 2

    0.035

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    101/132

    y = 0.0149x + 0.0066

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

    Time (year)

           t       /       (     s       t    -     s       d       )

    Data

    Linear (Data)

    (2-D problem)

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    102/132

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    103/132

    See paper by:

    Zhu, G.F. and Yin, J.-H. (2001). Consolidation of soil with vertical and horizontal

    drainage under ramp load. Geotechnique, Vol.51, No.2, pp.361-367.

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    104/132

    r w=r d=radius of wellr e=R=radius of column

    r s=radius of smear zone

    Smear zone: remoulded

    soil zone pushed by

    mandrel

     sr 2

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    105/132

    Band drain

    No covered here

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    106/132

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    107/132

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    108/132

    See Figures later on this approach

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    109/132

    ln3

    )ln(

    )2

    exp(1

    2222

    SS n K S nn

    m

    m

    T U 

    h

    r r 

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    110/132

    )!4

    :(

    ;;

    ln44

    )ln(

    22

    2222

    before R

    t C T  fromdifferent isthisnote

    t C T 

    r S 

    r n

    S n K nS S n

    m

    r r 

    e

    r r 

    w

     s

    w

    e

     s

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    111/132

    See proof later

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    112/132

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    113/132

    o p3 p

    2 p

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    114/132

    o

    1 p

    2

    00

    0

    33

    0

    22

    0

    11

    00

    0

    33

    0

    22

    0

    110

    0

    33

    0

    22

    0

    11

    332211332211321

    333222111

    332211

    );(

    )()(

    ;;

    ;;

     Hp M S 

     p

     pU 

     p

     pU 

     p

     pU U 

    US S  p

     pU 

     p

     pU 

     p

     pU  Hp M 

     p

     pU 

     p

     pU 

     p

     pU 

     Hp M U  Hp M U  Hp M U S U S U S U S S S S 

    S U S S U S S U S 

     Hp M S  Hp M S  Hp M S 

    v

    v

    vvvt t t t 

    t t t 

    vvv

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    115/132

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    116/132

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    117/132

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    118/132

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    119/132

    Vacuum preloading

    m

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    120/132

      S S  f    S S  f 

    m H  29.4

    vm

    vm

      suv

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    121/132

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    122/132

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    123/132

    24

    02.002067.0  

     scm K  K md r 

     zone smear awiththisdo Re

    h s s s /105.0;5.02/

    :

    6

    without

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    124/132

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    125/132

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    126/132

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    127/132

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    128/132

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    129/132

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    130/132

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    131/132

  • 8/9/2019 GDII Lecture 1 [Compatibility Mode].pdf

    132/132

    Fully coupled consolidation modelling programs in CSE:

    ABAQUS (3-D finite element program)

    Plaxis (2-D finite element program)