gas dynamics project report

18
MECH 6111 Gas Dynamics Project Report: Numerical investigation of inviscid and viscous supersonic flow over a diamond head airfoil Submitted to: Dr. Wahid Ghaly November 30, 2015 Name Student ID Email address Jay Adhvaryu 40002804 [email protected] Nishant Patel 27853378 [email protected]

Upload: nishant-patel

Post on 16-Apr-2017

410 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Gas Dynamics Project report

MECH 6111 Gas Dynamics

Project Report:

Numerical investigation of inviscid and viscous supersonic flow over a diamond head airfoil

Submitted to: Dr. Wahid Ghaly

November 30, 2015

Name Student ID Email address Jay Adhvaryu 40002804 [email protected] Nishant Patel 27853378 [email protected]

Page 2: Gas Dynamics Project report

ConcordiaUniversity GasDynamics November30,2015

pg.2

Abstract In this project we have simulated a steady-state supersonic flow over a diamond head airfoil for two types of fluids – (i) viscous and (ii) inviscid. The angle of attack is zero. We have compared the results and explain the reasons for the differences observed in simulation results. At first we considered the case of inviscid flow and got the results that includes coefficient of drag and lift. Then viscous flow is taken into consideration for the same airfoil. It includes the study of flow behavior, drag characteristics and variation of velocity along the airfoil. The simulation is carried out on commercial CFD code. The outcomes of both the viscous and inviscid flow are compared in the end.

Page 3: Gas Dynamics Project report

ConcordiaUniversity GasDynamics November30,2015

pg.3

TableofContents1. Introduction………………………………….………………………………………….….6

1.1. Supersonic Airfoils………………………………………………………………....….6 1.2. Airfoil Terminology…………………………………………………………………….6

2. Simulation…………………………………………………….….…………………………7 2.1. Introduction 2.2. Pre-processing…………………………………………………………………………..7

2.2.1. GeometryofAirfoil……………………………………………………………….7 2.2.2. Meshing…………………………………………………………………………..8 2.2.3. Selectionofsolver………………………………………………………………..9 2.2.4. BoundaryConditions………………………………………….………………….9 2.2.5. TurbulenceModel…………………………………………….…………………10

2.3. Post-processing……………………………………………………….………………..10 3. Results and Discussion…………………………………………………………………11

3.1. Mach Number………………………………………………………....………………11 3.1.1. Inviscid Flow…………………………………………..………..………………11 3.1.2. Viscous Flow……………………………………………………...……………13

3.2. Drag and Lift Coefficients……………………………………………………………14 3.2.1. Inviscid Flow…………………………………………………..………..………14 3.2.2. Viscous Flow…………………………………………………….………..……15

4. Conclusion………………………………………………………………………...………16 References…………………………………………………………………………………….18

Page 4: Gas Dynamics Project report

ConcordiaUniversity GasDynamics November30,2015

pg.4

ListofFigures2.1AirfoilGeometry……………………………………………………………………………...72.2Meshgeneratedoncontrolsurface…………………………………………………………82.3MeshandAirfoil(zoomed) ………………………………………………………………….93.1Machnumbervariationoverdiamondheadairfoil……………………………………….113.2Machnumbervariationalongthechordlength…………………………………………..123.3Machnumbervariationoverdiamondheadairfoil…………………………………….…133.4Machnumbervariationalongthechordlength………………………………………...…14 4.1Totalpressurevariationalongthechordlengthoftheairfoil(InviscidFlow) ……………164.2Totalpressurevariationalongthechordlengthoftheairfoil(ViscousFlow) ……………17

Page 5: Gas Dynamics Project report

ConcordiaUniversity GasDynamics November30,2015

pg.5

ListofAcronyms𝑐"-Coefficientoflift

𝑐$ -Coefficientofdrag𝑐%-skinfrictioncoefficient

Pa–Pascal

m–Meter

M–MachK–Kelvin

Page 6: Gas Dynamics Project report

ConcordiaUniversity GasDynamics November30,2015

pg.6

Chapter1Introduction

1.1SupersonicAirfoilsAnairfoilisbasicallytheshapeofawingthatcreatesanaerodynamicforcewhichhelpstheplanetogettherequiredlift.Theairfoilsdesignedfortheexposuretosupersonicflowsarecalledsupersonicairfoils.Supersonicairfoilshavesharpedgeinthefronttoavoidformationofdetachedbowshocksinfrontoftheairfoilasitmovesintheair[1]whereasthesubsonicairfoilsaregenerallyroundedinthefrontpart.Thesharpedgeinthesupersonicairfoilsmakesitmoresensitivetotheangleofattack.1.2AirfoilTerminologySomeofthetermsassociatedwiththeairfoilsanddefinedasfollows:

• LeadingEdge:Itisthepointatthefrontoftheairfoilwhichhasmaximumcurvatureorminimumradius.[2]

• TrailingEdge:Itisdefinedsimilarlyasleadingedgeattherearendoftheairfoil.• ChordLength:Thelengthofthelineconnectingtheleadingedgeandtrailingedgeis

knownaschordlengthoftheairfoil.• MeanCamberLine:Itisthelinemidwaybetweentheupperandthelowersurfaces.• AngleofAttack:Theanglebetweentheflowdirectionandchordlineisknownasthe

angleofattack.

Page 7: Gas Dynamics Project report

ConcordiaUniversity GasDynamics November30,2015

pg.7

Chapter2Simulation

2.1IntroductionIntheessenceofthetechnology,anewtool,computationalfluiddynamics(CFD)isveryusefultoanalyzethefluidsystem.Thedifferentialandintegralformsofequationsarefirstdiscretizedsothatthecomputercanunderstandthemandthenvariousschemesaredeveloped(numericalmethods)tosolvetheproblemandoutputismadeavailablebythesoftwareisvariouswayssuchasgraphsandanimation.ComputationalFluidDynamics’simulationprocessisdividedintotwoparts-(i)Pre-processingand(ii)Post-processing.HerewehaveusedICEMCFD16.2Academic,Fluent16.2AcademicandCFDPost16.2.2.2Pre-processingPre-processingisthephaseofsimulationinwhichwedefinethegeometryofasobject,controlvolumeorcontrolsurface,mesh,etc. 2.2.1GeometryofAirfoil

Wehaveconsideredadouble-wedge(diamond-head)airfoilasshowninFig3.1.Ithasachordlengthof20mandthicknessof2m.Consequently,thethicknesstochordratiois1:10.

Fig2.1AirfoilGeometry

TheairfoilgeometryismadeinICEMCFD16.2Academic.ThefigureshownabovewasmadeinCatiav5r19.

Page 8: Gas Dynamics Project report

ConcordiaUniversity GasDynamics November30,2015

pg.8

2.2.2MeshingForthesoftwaretocarryoutcalculationsbynumericalmethods,weneedtodefinethesmallareawhichwillbeconsideredaselementalareaforcalculationpurpose.Thistaskisaccomplishedbycreatingmeshinthecontrolvolumeor,asinthiscase,oncontrolsurface.ThisprocessisknownasMeshing.Here2-Dmono-blockstructuredmeshisgeneratedusingICEMCFD16.2Academic.Inordertogetagoodmeshqualityandhencebetterflowvisualization,H-gridisused.

Fig2.2Meshgeneratedoncontrolsurface

Thefigureaboveshowstheairfoilonthecontrolsurfaceandthemeshgenerated.Theorthogonalmeshqualityattainedhereis0.98.

Page 9: Gas Dynamics Project report

ConcordiaUniversity GasDynamics November30,2015

pg.9

Fig2.3MeshandAirfoil(zoomed)Thisfigureshowsclearlythatthemeshdensityishigherneartheairfoilforbetterandpreciseresults.2.2.3SelectionofsolverTherearetwotypesofsolveravailableinFluent16.2Academic,(i)PressureBasedSolverand(ii)DensityBasedSolver.Inoursimulation,DensityBasedSolverischosendueit’shigheraccuracyincalculationsofsupersonicflow.ThePressureBasedSolverontheotherhandgivesbetterresultsforincompressibleandsubsonicflows.2.2.4BoundaryConditionsTheflowoverairfoilhasbeenanalyzedat10kmaltitudewheretheambientpressureis26500Paandtemperatureis223.5K.[3]TheairfoilisexposedtothesupersonicflowatM=3.5.Angleofattackistakentobezero.

Forthefirstpart,theflowisconsideredtobeinviscidandinthesecondpartitisviscouswhereviscosityiscalculatedbytheSutherlandLaw(ThreeCoefficientMethod).

Page 10: Gas Dynamics Project report

ConcordiaUniversity GasDynamics November30,2015

pg.10

2.2.5TurbulenceModelTurbulencemodelisimportanttoanalyzeviscousflowfield.Inthisproject,wehaveusedK-ωSSTmodelforthepurposeasitishighlyaccurateforboundarylayersimulationandhighpressuregradient.

2.3Post-processingThesolutiondatagatheredafteriterationsareconvergedandrepresentedingraphicalform.Inthisproject,CFDPostisusedforthispurpose.

Page 11: Gas Dynamics Project report

ConcordiaUniversity GasDynamics November30,2015

pg.11

Chapter3

ResultandDiscussionInthissection,resultsfromFluentandCFDPostlikeMachnumber,CoefficientofpressureandTotalpressureareshownforinviscidandviscousflows.3.1Machnumber 3.1.1InviscidFlow

Fig3.1showsthevariationofmachnumberasthesupersonicflow(M=3.5)flowsoverthediamondheadairfoil.

Fig3.1Machnumbervariationoverdiamondheadairfoil

TheFig3.2showsthevariationofmachnumberalongthechordlengthoftheairfoil.Astheangleofattackiszero,thevariationpatternissymmetricalongthechordline.Theincidenceofflowontheairfoil’sleadingedgeseesasharpdropinmachnumber.Thisisdueagenerationofanattachedobliqueshockwaveattheapexoftheairfoil.Theflowisstillsupersonic.

Page 12: Gas Dynamics Project report

ConcordiaUniversity GasDynamics November30,2015

pg.12

Fromtheapexoftheairfoiltothepointofmaximumthickness,machnumberremainsalmostconstant.Theflowdirectionisparalleltothesurfaceoftheairfoilnow.Afterthepointofmaximumthickness,theflowpassesovertherearpartofthefoilwhereitsthicknessstartsdecreasing.Duethisabruptchangeinflowdirection,expansionoftheflowtakesplaceandastheflowissupersonic,thereisagreataccelerationwhichresultsinaveryhighmachnumberintheflowoverthesecondhalfoftheairfoilandtheflowisagainparalleltoitssurface.Atthetrailingedgeoftheairfoil,theflowathighmachnumberfromtheupperandlowerportionoftheairfoilencounterseachotherandthereisagainanobliqueshockwavegenerated.Thisneutralizestheraiseinmachnumberandthemachnumberagaingoesbackto3.5.

Fig3.2Machnumbervariationalongthechordlength

Heretheblackdotsindicatethemachnumbervariationalongthelowersurfaceandthoseinredshowsthesamealongtheuppersurfaceoftheairfoil.

Page 13: Gas Dynamics Project report

ConcordiaUniversity GasDynamics November30,2015

pg.13

3.1.2ViscousFlow Fig3.3showsthevariationofmachnumberwhenaviscoussupersonicflow(M=3.5) flowsoveradiamondheadairfoil.

Fig3.3Machnumbervariationoverdiamondheadairfoil

Asseeninthefigures3.3and3.4,justlikeininviscidflow,thereisasharpdropinmachnumberwheninflowsovertheapexoftheairfoilandthereisanincreaseinitwhenitpassesoverthesecondhalfoftheairfoil.Butitcanbeclearlyseenthatwhentheviscousflowpassesovertheincreasingthicknessanddecreasingthicknessoftheairfoil,themachnumberisnotconstantbutisdecreasingallalongthepathsteadily.Eventheraiseinmachnumberwhenthethicknessstartsdecreasingisnotsohighasthatintheinviscidflow.Anotherremarkablethingobservedisasleevealongtheairfoilwithverysmallmachnumber.Thisisbecauseoftheviscosityofthefluid.Aboundarylayerisgeneratedwherethevelocityofthefirstlayerofairthatcomesincontactofthesurfacereducestozero.

Page 14: Gas Dynamics Project report

ConcordiaUniversity GasDynamics November30,2015

pg.14

Fig3.4Machnumbervariationalongthechordlength

3.2DragandLiftCoefficients 3.2.1InviscidFlow

Astheangleofattackiszero,flowisinviscidandtheairfoilissymmetricalongchordlength,therewillbenoliftforcegenerated,sotheliftcoefficientcanbeexpectedtobezero.Belowaretheresultsderivedfromthesimulationscarriedout,whichagreeswiththeexpectation.

𝑐$ = 0.012076 c. = −4.137x1034≈0

Page 15: Gas Dynamics Project report

ConcordiaUniversity GasDynamics November30,2015

pg.15

3.2.2ViscousFlow

Unlikeinviscidflow,inviscousflow,thereisananotherformofdragcalledskinfrictiondragduetoviscouseffect.Theliftforcewillstillbezeroduetosymmetryandzeroangleofattack.Theresultsofthesimulationsareshownbelow.

TotalCoefficientofDrag𝑐$ = 0.014211 c. = 1.0147x1035≈0 𝑐% =0.0022281101

Page 16: Gas Dynamics Project report

ConcordiaUniversity GasDynamics November30,2015

pg.16

Chapter4Conclusion

Inthepresentwork,numericalstudywascarriedoutoverDiamondHeadairfoilinviscousandinviscidmediumatsupersonicMachnumberof3.5.Fromthedetailsoftheanalysiswecometothefollowingconclusion:

• Duetoviscousflowthereisalossintotalpressure.Itisclearlyseenfromthetotalpressurevariationalongthechordlengthoftheairfoil(asshownisFig4.1),thatininviscidflowthetotalpressureisconstantalongthechordlengthaftertheshockformationandaftertheexpansionoccurs.Ontheotherhand,inviscousfluid(asshowninFig4.2),duetoviscousdissipationthereisacontinuouslossintotalpressurealongthesurfaceoftheairfoilaftertheshockisformed.

Fig4.1Totalpressurevariationalongthechordlengthoftheairfoil(InviscidFlow)

Page 17: Gas Dynamics Project report

ConcordiaUniversity GasDynamics November30,2015

pg.17

Fig4.2Totalpressurevariationalongthechordlengthoftheairfoil(ViscousFlow)

• Fromtheobservationofdragcoefficient,wecansaythatdragcontributionduetoviscousflowis𝑐% = 0.0022281101,whichisnotassignificantaswavedrag.Thatiswhyinmostof2-Dsupersoniccasesviscouseffectisneglected.

• ThereisalsoremarkabledifferenceintheMachnumbervariationalongthechordlengthininviscidandviscousflows.Thereasonforacontinuousandsteadydecrementinthemachnumberobservedinviscousflowalongtheairfoilsurfaceistheresultofviscousdissipation.

Page 18: Gas Dynamics Project report

ConcordiaUniversity GasDynamics November30,2015

pg.18

References [1] Courant & Friedrichs. Supersonic Flow and Shock Waves. Pages 357:366. Vol I.New York: Inter science Publishers, inc, 1948 [2] Houghton, E. L.; Carpenter, P.W. (2003). Butterworth Heinmann, ed. Aerodynamics for Engineering Students (5th ed.). ISBN 0-7506-5111-3. p.18 [3] James E. A. John and Theo G. Keith, Gas Dynamics. Page 281 Third Edition. Pearson Education, Inc., ISBN 0-13-120668-0