future physics with cbm paweł staszel jagiellonian university physics motivation detector concept...

34
Future Physics with CBM Paweł Staszel Jagiellonian University Physics motivation Detector concept Feasibility study Status

Upload: emma-cross

Post on 04-Jan-2016

214 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Future Physics with CBM

Paweł StaszelJagiellonian University

Physics motivation Detector concept Feasibility study Status

Page 2: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 2

CBM (Compressed Baryonic Matter)

net-baryon density created in central Au+Au

Page 3: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 3

Diagram fazowy QCD

Page 4: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 4

QCD Phase Diagram scan with A+Acollisions

Y.B Ivanov et al., Phys. Rev. C 73, 044904 (2006)

3 component hydrodynamics + hadron gas EOS:

Critical Point reached at trajectory for ~30 AGeV (s

NN=7.74)

Phase Boundary reached already at ~10 AGeV (s

NN=4.72)

Page 5: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

How to explore interesting regions of the QCD Phase Diagram

Lattice QCD calculations:Fedor & Katz,Ejiri et al.

Freeze-out phase can be studied by measurement of „soft” hadrons production (bulk observables)

Information about earlier phases is carried by rare probes:

• High pT particles

• Particles decaying into leptons• Particles build up of heavy quarks (J/ψ, D, Λ

c ....)

and by collective motion (flow) of the created soft medium. (e .g. v

2 is

sensitive to the quanta interaction just after the medium formation)

large advantage from simultaneous flow measurement of “ordinary” hadrons and rare probes

Page 6: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Future projects to explore phase diagram at large

RHIC energy-scan ................................ bulk observablesNA61@SPS ......................................... bulk observables

MPD@NICA ........................................ bulk observables

CBM@FAIR ........................................ bulk and rare observables

Page 7: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 7

Experymental arguments for Phase Transition at low SPS energy

NA49 (QM 2004)

None monotonic behaviour of K+/+ ratio

Effective temperature shows plateau in the range of SPS energy

Page 8: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 8

Kaon spectra versus hadronic models

UrQMD and HSD models can describe p+p and light Ion data (C+C).

Description of kaon spectra in central Au+Au and Pb+Pb requires contribution from strong parton-parton interactions in the early phase

E. Bratkovskaya et al. PRL 92, 032302 (2004)

Page 9: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 9

Hadrons in dense medium (->+-)

NA60, Nucl. Phys. A 774 (2006) 67

broadening of spectral function (Rapp-Wambach)

contradiction with mass drop scenario (Brown-Rho scaling)

excess by factor of 4 over the “cocktail” with 25% systematic uncertainty !

Page 10: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 10

Updates on +- results

Good pair excess description for M > 1 GeV assuming thermal QGP (q+qbar → contribution

J. Rappert et al. PLB 100, 162301 (2008)

For M up to ~0.9 MeV Teff

scales with

M → radial flow on hadronic levelFor M > 1 GeV partonic contribution

Page 11: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 11

Open charm in dense medium

A. Mishra et al., Phys. Rev. C 69, 015202 (2004)

Reduction in the effective mass of D-meson can open D-Dbar decay channel for charmonium states → possible scenario for the J/Ψ suppression, CBM=> simultaneous measurement of J/Ψ and D-mesons

Page 12: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 12

J/Ψ suppression

Anomalous J/ψ suppresion (AS) on SPS, L – effective path in medium

NA50, QM 2005

NA60 evidenced same effect in In+In

Better scaling is obtained in Npart

; onset already at Npart

~90,

At lower energies (larger μB) one can expect onset of AS for more central collisions

→ dependency on energy density and μB Important measurement of open charm to verify other scenarios

Page 13: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 13

Event-by-event fluctuations

[NA49 collaboration, arXiv:0810.5580v2 [nucl-ex]]

• observation might become enormously difficult

• correlation length of sigma field, may become rather small for a finite lifetime of the fireball

• large acceptance needed!

2

2

pt

pt

pt zN

Z=Φ

N

=ittipt

ttpt

pp=Z

pp=z

1

[Stephanov, Rajagopal, Shuryak, PRD60, 114028 (1999)]

fluctuations, correlations with large acceptance and particle identification

K. Grebieszków on Thursday

Page 14: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 14

CBM: Physics topics and Observables

Onset of chiral symmetry restoration at high B and tracing medium properties in time • in-medium modifications of hadrons (,, e+e-(μ+μ-), D)

Deconfinement phase transition at high B

• excitation function and flow of strangeness (K, )• excitation function and flow of charm (J/ψ, ψ', D0, D,

c)

charmonium suppression, sequential for J/ψ and ψ' ? corelated with open charm ?

The equation-of-state at high B

• collective flow of hadrons• particle production at threshold energies (open charm)

QCD critical endpoint• excitation function of event-by-event fluctuations (K/π,...)

predictions? clear signatures?→ be prepared to measure "everything": bulk particles and rare probes → probing medium with known overall characteristics→ systematic studies! (pp, pA, AA, energy)

Page 15: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 15

CBM Detector (->e+e-)

TRDs(4,6,8 m)

STS ( 5 – 100 cm)

Page 16: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 16

CBM Detector (->+-)

beam

ABSORBER(1,5 m)

TRDs(4,6,8 m)

TOF(10 m)

ECAL(12 m)

STS ( 5 – 100 cm)

magnet

PSD(~15 m)

Page 17: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 17

Silicon Tracking System – heart of CBM

Challenge: high track density: 600 charged particles in 25o @10MHz

Tasks:• track reconstruction: 0.1 GeV/c < p 10-12 GeV/c p/p ~ 1% (p=1 GeV/c)• primary and secondary vertex reconstruction (resolution 50 m)

V0 track pattern recognition

c = 312 m

radiation hard and fast silicon pixel and strip detectors

self triggered FEE

high speed DAQ and trigger

online track reconstruction!

Page 18: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 18

Silicon Tracking Performance

momentum resolution1.3%

(tracks pointing to primary vertex)

[%

]

p [GeV/c]

central Au+Au 25 AGeV (UrQMD)

700 reconstructed tracks

X-Z view

Y-X view

<1 % ghost tracks

96%

[%

]

p [GeV/c]

reconstruction efficiency

momentum resolution

Cellular Automaton and Kalman Filter,

50 ms on Pentium 4

A. Bubak, 19:40 on Wednesday

Page 19: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Hyperons: PID from decay topology in STS

Page 20: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 20

Simulation: bulk particles and hyperons

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y0 0.5 1 1.5 2 2.5 3 3.5 4

[G

$V/c

]T

p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y0 0.5 1 1.5 2 2.5 3 3.5 4

[G

$V/c

]T

p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y0 0.5 1 1.5 2 2.5 3 3.5 4

[G

$V/c

]T

p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

incl. TOF

10 35AGeV

Λ Ξ Ω

Page 21: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 21

ρ,ω,φ

ρ, ω, φ J/ψ, ψ'

Signal and background yields from physics event generators (HSD, UrQMD) Full event reconstruction based on realistic detector layout and response

Feasibility studies for dilepton measurements

Electron id:RICH and TRD

Muon id:segmented hadron absorber+ tracking system

125(225) cm iron,15(18) det. layers

π suppression:

factor 104

dominant background: e from π0 Dalitz

125 cm Fe: 0.25 ident. /event

dominant background: μ from π, K decay (0.13/event)

J/ψ

200k events 4 1010 events

4 108 events 3.8 1010 events

Page 22: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 22

STS: 8 stations double-sided Silicon micro-strip sensors (8 0.4% X0)

MVD: 2 stations MAPS pixel sensors (0.3% X0, 0.5% X

0) at z = 5cm and 10cm

no K and π identification, proton rejection via TOF

~ 12k D+ + 26k D- 10 weeks data taking reduced interaction

rate 105/s:

Open charm measurement

D → K π π, cτ= 317 μm109 centr. ev.

eff = 2.6%

S/B = 2.4 (D-) 1.1 (D+)

D0 → K π, cτ= 123 μm1010 centr. ev.

eff = 4.4%

S/B = 6.4 (D0) 2.1 (D0)

_

and~ 7k D0 + 20k D0

Page 23: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 23

Performance summary

Maximum beam intensity: 109 ions/s10 weeks of Au-beam at 25 AGeV beam energy

• Minimum bias collisions can be recorded with 25kHz→ unlimited statistics for bulk observables (K, )→ 106 mesons, 108 , 106 (spectra, flow, correlations, fluctuations)

• Open charm trigger will allow for 100kHz → 104 open charm hadrons• Charmonium trigger with max. beam intensity: 10MHz→ 106 J/• (charm production, spectra, flow measurement)

Page 24: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 24

Status

CBM Collaboration undergoes (phase) transition

simulation → prototyping

Page 25: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 25

Double and triple GEM detectors2 Double-sided silicon microstrip detectors Radiation tolerance studies for readout electronics Full readout and analysis

chain:

Front-end board with self-triggering n-XYTER chip Readout controller

Data Acquisition System

online

offline

Go4

AnalysisDetector

signals

Successful test of CBM prototype detector systems with free-streaming read-out electronics using proton beams at GSI, September 28-30, 2008

GSI and AGH Krakow VECC Kolkata KIP Heidelberg

Page 26: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 26

CBM hardware R&D

RICH mirror

n-XYTER FEB

Silicon microstrip detector

MVD: Cryogenic operation in vacuum RPC R&D

Forward Calorimeter

GEM

dipole magnet

Page 27: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 27

90 pages, available at www.gsi.de/fair/experiments/CBM

CBM Progress Report 2008

Content:• Micro Vertex Detector

• Silicon Tracking System

• Ring Imaging Cherenkov Detector

• Muon System

• Transition Radiation Detectors

• Resistive Plate Chambers

• Calorimeters

• Magnet

• FEE and DAQ

• Physics Performance

• Software and Algorithms

Page 28: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 28

CBM CollaborationChina:Tsinghua Univ., BeijingCCNU WuhanUSTC Hefei

Croatia:

University of SplitRBI, Zagreb

Portugal: LIP Coimbra

Romania: NIPNE BucharestBucharest University

Poland:Krakow Univ.Warsaw Univ.Silesia Univ. KatowiceKraków AGH(Inst. Nucl. Phys. Krakow)

LIT, JINR DubnaMEPHI MoscowObninsk State Univ.PNPI GatchinaSINP, Moscow State Univ. St. Petersburg Polytec. U.

Ukraine: INR, KievShevchenko Univ. , Kiev

Univ. MannheimUniv. MünsterFZ RossendorfGSI Darmstadt

Czech Republic:CAS, RezTechn. Univ. Prague

France: IPHC StrasbourgGermany: Univ. Heidelberg, Phys. Inst.Univ. HD, Kirchhoff Inst. Univ. Frankfurt

Hungaria:KFKI BudapestEötvös Univ. BudapestIndia:Aligarh Muslim Univ., AligarhIOP BhubaneswarPanjab Univ., ChandigarhGauhati Univ., Guwahati Univ. Rajasthan, JaipurUniv. Jammu, JammuIIT KharagpurSAHA KolkataUniv Calcutta, KolkataVECC Kolkata

Univ. Kashmir, SrinagarBanaras Hindu Univ., Varanasi

Korea:Korea Univ. SeoulPusan National Univ.Norway:Univ. Bergen

Kurchatov Inst. MoscowLHE, JINR DubnaLPP, JINR DubnaCyprus:

Nikosia Univ.

55 institutions, > 400 members

Dubna, Oct 2008

Russia:IHEP ProtvinoINR TroitzkITEP MoscowKRI, St. Petersburg

Page 29: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 29

Hadrons in dense medium (->e+e-)

Top SPS: excess of e+e- pairs around 0.5 GeV (by factor of ~2.8)40AGeV: the excess rised up to ~4 → strong dependency on

B

Rapp-Wambach – in-medium modification

Rapp: “dropping mass” according to Brown-Rho scaling scenario

Thermal model

Page 30: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 30

Elliptic flow at RHIC (√SNN

= 200 GeV)

gPHENIX, PRL.98:162301,2007

baryons mezonsn 3 2

KET = m

T - m

Page 31: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

• all particles flow (even these with charm!) → strong interactions

• scaling if taking the underlying number of quarks into account!→quark combine to hadrons at a later stage (hadronization via coalescence)

data can only be explained assuming a large, early built up pressure in a nearly ideal liquid (low viscosity!)

→ sQGP

Page 32: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Elliptic flow at SPS

data at top SPS support hypothesis of early development of collectivity• influence of hadronic rescattering phase, resonance decay? • lack of complete thermalization, viscosity effect?• larger pt-range needed

Pb+Pb collisions, √sNN

= 17.3 GeV

[NA49, G. Stefanek, PoS CPOD2006:030,2006]

Page 33: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel Konwersatorium PTF oddział katowicki, Katowice 25.02.2009 33

In parallel, in time steps of 10-100s in SIS100/300 proton/heavy ion beams are accelerated to high energy: 90GeV – protons, 45GeV – heavy ions

High energy proton and heavy ion beam are gradually extracted for HADES+ and CBM experiments

Page 34: Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

Paweł Staszel 31st Mazurian Lakes Conference, Piaski 1.09.2008 34

Mapping the QCD phase diagram with heavy-ion collisions

net baryon density: B 4 ( mT/2h2c2)3/2 x [exp((B-m)/T) - exp((-B-m)/T)] baryons - antibaryons

Lattice QCD calculations:Fedor & Katz,Ejiri et al.

SIS300