future devices for information technology 2003. 4. 4. songcheol hong

70
Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Upload: loraine-freeman

Post on 25-Dec-2015

221 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Future devices for Information Technology

2003. 4. 4.

Songcheol Hong

Page 2: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Contents

Electronic Devices (processing devices)High speed devices(digital, analog, RF)High power devicesMemory devices

Optical Devices QWLD, QDLD

Optical communication devicesGaN based Devices

Display

Page 3: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

High speed devicesHigh speed devices

Digital, Analog(RF)DSP upto Microwave frequencies

IEEE MTT Vol. 50, N0. 3, 2002 p900

Page 4: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Power dissipation/ MIPS

Page 5: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Digital circuits expands to Analog domain

Page 6: Future devices for Information Technology 2003. 4. 4. Songcheol Hong
Page 7: Future devices for Information Technology 2003. 4. 4. Songcheol Hong
Page 8: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Trends in Transmitter Architecture(Mobile)

DC-DC converter

Vector Modulator

High Speed DSP (7GHz)

Bias control Supply voltage

control

DSP SDR

One Chip Radio

ACPR(dBc)

DSVPA

AverageEfficiency(%)

Year

2000 2003 2006 2009

0

40

60

80

SmartPA -45

-50

-55

2012

20

DigitalPredistor

Direct RFSynthesis

Page 9: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Smart PA

Heterodyne type

Base/gate bias voltage control

GaAs based PA

DACIin

Qin

VCO1

IF VGA

VCO2

Up-Mixer

PARFout

Gate/base bias control

Page 10: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Dynamic supply voltage (DSV) PA

Direct conversion

Supply Voltage Control Dynamic Supply Control

DSP clock speed ~ 10MHz

GaAs PA + CMOS DC-DC converter SiGe BiCMOS

DAC & ADCcontroller

Iin

Qin

RFoutPA

BiasController

VCO

Page 11: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Digital Predistorer

Digital predistorter

SiGe BiCMOS PA or CMOS switching PA

RFoutPA

BiasController

VCO

DAC & ADCcontroller

Iin

Qin

Digitalpre-

distorter

Amplitude

Phase

Page 12: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Direct RF synthesis

Direct RF Synthesis

DSP clock speed ~ 7 GHz

CMOS Switching PA and controller

Digital Phase &Amplitude Mod.

Iin

Qin

Phase

Amplitude/Ramping

RFoutSynthesizer/

VCO

AmplitudeModulator

SwitchingPA

RFoutIin

Qin Filter

SwitchingPA

BandpassDelta-SigmaModulator

DSP

Page 13: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

High speed Power Devices

• MESFET/ HEMT High Efficiency / high Linearity Temperature stability Negative bias Develop

Enhancement FET

• MOSFET/LDMOS Low Efficiency Temperature Stability Single bias

Page 14: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

•HBT

High Efficiency / High Linearity

Single bias

High power density

Bad temperature stability

introduce Ballast R, careful bias circuit

Page 15: Future devices for Information Technology 2003. 4. 4. Songcheol Hong
Page 16: Future devices for Information Technology 2003. 4. 4. Songcheol Hong
Page 17: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Typical InGaP Emitter HBT Structure

Page 18: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Fig. 1. A cross-section of IBM's SiGe HBT structure, which was used to obtain a record-breaking ft value of 350 GHz. Credit: IBM.

Page 19: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

HBT comparison High power v.s. Digital

Page 20: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Circuit design : Power combine : Unit transistor

Power transistor (FETs)

Page 21: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

HBT with Ballast R ( Via hole and Air bridge)

8 finger Rb=50

12 finger Rb=50

Page 22: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Power Cell64 finger

Page 23: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Conventional 구조(1) Poly gate 와 drain metal 의 저항이 클것으로 예상(2) Source metal 이 drain metal 을 덮는 구조이므로 Cds 가 클것으로 예상

Conventional 구조

MOS power cell

Page 24: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

FET vs. HBT (size)

HBT’s (being vertical in structure) consume less die area than an equivalent FET based production technology

Example> take a PA line-up for GSM (Pout=35dBm, Vbat=3.2V)

Page 25: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Ballasting• HBT devices must be BALLASTED to ensure thermal stability

• Thermal run-away is avoided if a sufficiently large ballast resistance is placed

in either the emitter or the base of the HBT

• In a multi-finger array, one device may be hotter than other. The hotter device

will experience a drop in Vbe (-2mV/oC) which will cause it to draw even more

current from a fixed-base-voltage supply… thus it will get even hotter. The end

result is finger burn-out

Page 26: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Ballasting (conti…)• Three methods are available to ballast your circuit

Page 27: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

HBT bias circuit• Diode-bias and current-mirror circuits can be seen here:

• The key differences are:

- Diode bias requires the diode to draw current, which can be significant

- Current mirror does not track as well over temperature

- Current mirror has the “2 Vbe” reference-voltage issue

Page 28: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

CMOS and LDMOS power TR

IEEE EDL, Vol. 21, No.2, p81, YueTan et al.

Page 29: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

High power LDMOS

Page 30: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Conclusions I High speed digital and analog devices1. Submicron CMOS(0.18um) is

covering upto 10Gbps and 10GHz range.2. Submicron CMOS(0.05um) will be covering upto 40 Gbps and 40 Ghz range. 3. Digital part will dominate Analog and RF4. Finally, only power amp in RF with digital control

will survive5. LDMOS+CMOS will be a winner in Power applications6. SiGe may be used in high speed digital and 10-60 GHz range RF.7. GaAs HBT is used in Power and Low noise application

1- 40 GHz8. InP HBT and HEMT are used in high frequencies(above 30Ghz)

Page 31: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Figure 7.4: Simplified DRAM schematic.

DRAM

Page 32: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

DRAM design rule

Page 33: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Figure 7.7: Vertical stacked capacitor: Top - SEM photograph of the storage plate.

Bottom - Solid model and grid of the simulated structure (only the material POLY1 is

displayed).

Page 34: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Figure 7.6: Process flow of the vertical stacked capacitor.

Page 35: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

FINFET

Page 36: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Nono MOSFET

Page 37: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Quantum Dot Flash memory

Page 38: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Figure 1. Schematic cross section of a FRAM unit cell [1T/1C]

FRAM

Page 39: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Conclusion II Memory

DRAM: Design rule becomes smaller, Ferroelectric Materials make C smaller, New Structures

Nonvolatile Memory: Flash Nano-flash, QD flash FRAM MRAM

Page 40: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

QWLD, QDLD

Page 41: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Self-assembled QDs

Page 42: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

AFM image of QD

Page 43: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Figure 2. TEM micrograph showing the core of a 5-QWR Laser. The wires are positioned inside the 2D optical waveguide in an asymmetric configuration in order to maximize the overlap of the optical mode with

Quantum wire grown on V groove

Page 44: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

LD, VCSEL, LED

Page 45: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

VCSEL

Page 46: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Why Blue? GaN ?

Page 47: Future devices for Information Technology 2003. 4. 4. Songcheol Hong
Page 48: Future devices for Information Technology 2003. 4. 4. Songcheol Hong
Page 49: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

LD, LED ---Conclusion III

Laser diode

QWQD ---- High power LD

VCSEL

QW QD ---- Low threshold Current

Blue light sources --- GaN

Storage illumination

Page 50: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Ref.) Tutorials, Agilent, 2000 OE conference

Distance Fiber Solution

100m installed MMF No solution. (FP laser can go 65m)

300m new MMF850-nm VCSEL on new MMF

No solution for installed MMF

2Km SMF Uncooled 1300-nm FP laser

10km SMF Uncooled, Isolated 1300-nm DFB

40km SMFTraditional telecom-style cooled Isolated, externally

modulated DFB

Method to overcome limit

42.5 Gb/s WWDM with installed MMF & SMF

10 Gb/s TDM with SMF & 1300nm LD

Expected 10 Gigabit Ethernet solution

Standard & ApplicationsOptical communication devices

Page 51: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Ref) TRW and Velocium, 2002 IEEE MTT-S workshop.

Property of GaAs/InP HEMT at TRW

Material property of electrical device

Page 52: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

BVCEO vs. Ft

TRW and Velocium, 2002 IEEE MTT-S workshop.Ref) Inphi inc., 2002 IEEE MTT-S workshop.

Ge Si GaAs InP

e- mobility (cm2/V-s) 3900 1400 8500 5400

h+ mobility (cm2/V-s) 1900 450 400 200

Bandgap (eV) 0.66 1.12 1.42 1.34

Thermal Cond(W/cm-C) 0.58 1.30 0.55 0.68

Property of Si/GaAs/InP HBT

Material property of electrical device

Page 53: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Ref) NTT., 2002 IEEE MTT-S workshop.

Optical Rx & Tx

Digital & Analog IC

Page 54: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Optical Rx & Tx

Which technology is used

Pre-amp

155Mbps CMOS

622Mbps

2.5Gbps

10Gbps

40Gbps

post-amp CDR DeMUX MUX LD-Driver

SiGe/GaAs

PD

InP

InP InP/GaAs

Si / SiGe Si/SiGe HEMT

InP

InP

InP

CMOSSi BJT

InP/GaAs InP/GaAs InP/GaAs InP/GaAs

SiGe/GaAs CMOS

Si BJT

HEMT

Page 55: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

40 Gbps MUX/DeMUX

Inphi inc., 2002 IEEE MTT-S workshop. AMCC., 2002 IEEE MTT-S workshop.

40 Gbps CDR+DeMUX1:4 DeMUX 4:1 MUX

With InP HBT, GPPO connector

Clock Data Recovery

1:16 DeMUX

With SiGe HBT, Ball Gray package

Electrical package

High speed modules (40 Gbps)

Page 56: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Fig. 2. A 100 Gbit/s selector IC fabricated using InP-based HEMT technology. Credit: NTT.

Page 57: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Aluminum Nitride package of NTT Si MEMS of SOPHIA wireless

Electrical package

High speed modules( > 40 Gbps)

Page 58: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

AGERE SYSTEM

Tunable EML Module- SOA Integrated- 2-Section DBR- Front PD Integrated

Monolithic IntegrationMonolithic IntegrationMonolithic IntegrationMonolithic Integration

Page 59: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Fig. 1. Photoreceivers fabricated using hybrid manufacturing (a) and ELT integration (b).

Page 60: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

WG-PD ChipWG-PD Chip

Responsivity : 0.84 ~ 0.95 A/Wby two Aspherical lenses

The total coupled CPW lines : characteristic impedence of 50 ohm

CPW line

Front end IC Chip

Ceramic CPW

V-Connector

Near Field Diameter : 2 m

Cavity Resonance in PKG Housing

40Gbps modules in NTT40Gbps modules in NTT40Gbps modules in NTT40Gbps modules in NTTWaveguide type PIN-TIAWaveguide type PIN-TIA

Page 61: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Optical Communication Devices --Conclusion IV

LD + Modulator High speed VCSEL arrayWDM

PD+TIA integration

TIA and LD/Modulator Drive

Optical chip set

Page 62: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Fig. 1. GaN-on-silicon platform technology offers a broad range of applications, including microelectronic and optoelectronic products, optical sensors and high-voltage rectifiers

GaN applications

Page 63: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

<< Back to article

Fig. 1. A typical layer structure used for the fabrication of AlGaN/GaN HEMTs

Figure 1

AlGaN/GaN HEMTs

Page 64: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Fig. 3. Power performance of a 0.36 mm wide AlGaN/GaN FET at 30 GHz, showing 2.3 W output power, 38% PAE and 8.8 dB gain. Credit: NEC.

Page 65: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Fig. 2. Comparison of the potential power delivered by HEMTs that have been fabricated in GaAs, SiC and GaN.

High power Transistor– base station amplifier

Page 66: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

High power/speed devices Conclusion V

LDMOS

MESFET

SiC MESFET/MOSFET

GaN HEMT

Page 67: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Display devices --- Organic LED

Page 68: Future devices for Information Technology 2003. 4. 4. Songcheol Hong
Page 69: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Conclusion-VI

Display

LCD OLED CRT Plasma Projection LED

Page 70: Future devices for Information Technology 2003. 4. 4. Songcheol Hong

Conclusions

Conclusion I --- high speed digital analog

Conclusion II --- high density memory

Conclusion III ---LD,LED

Conclusion IV ---Optical communication device

Conclusion V --- high voltage

Conclusion VI--- dispaly