fundamental mechanisms, predictive modeling, and novel … · 2019. 12. 12. · stage 1. discharge...

52
Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion AFOSR MURI Review Meeting Andrey Starikovskiy Princeton University November 6, 2012

Upload: others

Post on 27-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Fundamental Mechanisms, Predictive Modeling,

    and Novel Aerospace Applications of Plasma Assisted Combustion

    AFOSR

    MURI Review Meeting

    Andrey Starikovskiy Princeton University

    November 6, 2012

  • Main Tasks

    Thrust 1. Experimental studies of nonequilibrium air-fuel plasma kinetics using advanced non-intrusive diagnostics

    Task 1: Low-to-Moderate (T=300-800 K) temperature, spatial and time-dependent radical species concentration and temperature measurements in nanosecond pulse plasmas in a variety of fuel-air mixtures pressures (P=0.5-5 atm), and equivalence ratios

    Task 4: Moderate-to-high (T=800 – 1800 K) temperature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures up to 10 bar

    Task 5: PAC oxidation and combustion initiation at high pressure, high temperature conditions (RCM)

    Thrust 2. Kinetic model development and validation Task 8: Development and validation of a predictive kinetic model of non-equilibrium plasma fuel oxidation

    and ignition Task 9: Mechanism Reduction and Dynamic Multi-time Scale Modeling of Detailed Plasma-Flame Chemistry

    Thrust 3. Experimental and modeling studies of fundamental nonequilibrium discharge processes

    Task 10: Characterization and Modeling of Nanosecond Pulsed Plasma Discharges

    Thrust 4. Studies of diffusion and transport of active species in representative two-dimensional reacting flow geometries

    Task 13: Ignition and flameholding in high-speed non-premixed flows Task 14: High Fidelity Modeling of Plasma Assisted Combustion in Complex Flow Environments

  • PAC: New Dimensions in Combustion

    P, atm

    0.02 1 40

    T, K

    250

    2500

    S/I

    f

    0.1

    3.0

    E/n

    10

    B/S

    0.1

    1

    3

    0.3

  • What is Different at High P

    N2 + e N2(C3Pu) + e

    N2(C3Pu) + O2 N2 + O(

    3P) + O(1D)

    N2(C3Pu) N2 (B

    3Pg) + hn

    N2(B3Pg) + O2 N2 + O(

    3P) + O(3P)

    H2 + {O(3P); O(1D)} OH + H

    HO2; H2O2 …….

  • Plasma Assisted Oxidation P = 1atm; T = 300-800 K

  • Discharge Development

    1 10 100 10001E-3

    0,01

    0,1

    1

    ion

    O2(4.5 eV)

    O2(dis)

    N2(el)

    O2(a+b)

    O2(v)

    N2(v)

    tr+rot

    N2:O

    2 = 4:1

    En

    erg

    y l

    os

    s f

    rac

    tio

    n

    E/N, Td

    E/n, Td

    I, A

  • Influence of Vibrational Excitation on Low-Temperature Kinetics

    N2 + e = N2(C3) + e

    N2(C3) + O2 = N2 + O + O

    O2 + e = O + O + e

    N2 + e = N2(v) + e

    N2(v) + HO2 = N2 + HO2(v)

    HO2(v) = O2 + H

    Synergetic Effect of High and Low Electric Fields

  • Influence of Vibrational Excitation on Low-Temperature Kinetics

    Measured and calculated OH decay time. P = 1 atm.

    a) 3%H2 + air; b) 0.3%C4H10 + air.

  • 3000K

    1000K

    300K

    0.01atm 1atm 100atm

    Flames

    (Ju, Sutton)

    Flow Reactors

    (Yetter,

    Adamovich)

    Shock Tube

    (Starikovskiy)

    RCM

    (Starikovskiy)

    MW+laser

    (Miles)

    JSR

    (Ju) Streamer

    (Adamovich)

  • Forrestal Gas and Plasma Dynamic Lab 9 Months Ago

  • Forrestal Gas and Plasma Dynamic Lab 4 Months Ago

  • Forrestal Gas and Plasma Dynamic Lab 0 Months Ago

  • 3000K

    1000K

    300K

    0.01atm 1atm 100atm

    Flames

    (Ju, Sutton)

    Flow Reactors

    (Yetter,

    Adamovich)

    Shock Tube

    (Starikovskiy)

    RCM

    (Starikovskiy)

    MW+laser

    (Miles)

    JSR

    (Ju) Streamer

    (Adamovich)

  • Rapid Compression Machine: P = 10-70 atm, T = 650-1200 K

  • Driving chamber

    Speedcontrol

    chamber

    Combustionchamber

    Oil reservoirPiston lock chamber

    g

    N2

    Fast active valve

    P=30 bar of N2

    P=1 bar

    Solenoid

    Piston

    Oil

    Scheme of the RCM

  • Pressure Measurements

    Kistler 6025B

    piezoelectric

    pressure transducer

    - range 0-250 bar

    - linearity 0.1%

    0

    10

    20

    30

    40

    50

    60

    70

    80

    -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50

    Time (ms)

    Pre

    ss

    ure

    (b

    ar)

    compression ignition delay

  • Temperature Calculations

    • We assumed adiabatic core presence during measurement time.

    • i- initial values, c- values after compression.

    • Uncertainty < 2K

    ( ) 1ln (ln )

    ( )

    c

    i

    T

    c

    i T

    p Td T

    p T

  • Gas Compression in RCM

    Ini tial pos i tion

    Co l d g a s

    Ho t g a s (c o re )

    Final pos i tion

    Bottom plate

    Piston

    Piston

    Length of the pis ton s trok e

    Clearance height

  • Useful Range of Time

    0

    4

    8

    12

    16

    20

    165 170 175 180 185 190 195

    Time, ms

    Pre

    ssu

    re, b

    ar

    6mm, 1032K, 12.21 bar

    9mm, 1025 K, 11.95 bar

  • Useful Range of Time

    0

    5

    10

    15

    20

    25

    30

    0 30 60 90 120 150 180

    Time (ms)

    Pre

    ssur

    e (b

    ar)

    13mm, 958 K,19.77 bar

    9mm, 967 K, 20.87 bar

  • Useful Range of Time

    0

    50

    100

    150

    200

    250

    0,9 0,95 1 1,05 1,1

    1000/T(K)

    Au

    toig

    nit

    ion

    de

    lay

    tim

    e,

    ms

    9mm

    13mm

    clearance

    height, mm

    time, ms

    6

  • SDBD Plasma Ignition at High Pressure

    ICCD images of the

    discharge at 1 atm dry air.

    Negative polarity of the high-

    voltage electrode, 22 kV, 25

    ns duration, f = 40 Hz

    [Kosarev et al, 2009].

    Mixture C2H6:O2=2:7 at 1 bar

    and ambient initial

    temperature was

    successfully ignited in ~100

    ms in relatively large volume

    [Sagulenko et al, 2009].

  • Rapid Compression Machine: Plasma-Assisted Ignition

  • Plasma RCM: Electrode Geometries

    localized

    nanosecond

    spark

    nanosecond

    SDBD

  • Plasma RCM: Regimes of Discharge Development

  • PAC at High Pressure: ER = 0.4

    T2 = 794 K

    P2 = 32.0 bar

    Propane

    Surface DBD

    E < 50mJ

  • High-Pressure PAC: Lean Conditions

  • High Pressure PAC: Discharge Before Compression Stroke

    T2 = 836 K, P2 = 40 bar. Discharge before compression

  • High-Pressure PAC: Lean Conditions

    Discharge 20 ms before compression

  • PAC at High Pressure: ER = 1

    T2 = 713 K

    P2 = 26.5 bar

    Propane

    Surface DBD

    E < 50mJ

  • High-Pressure PAC: ER = 1

  • High Pressure PAC: ER = 1 Discharge 20 ms Before Compression

    T2 = 672 K, P2 = 20 bar

  • High Pressure PAC: ER = 1 Discharge 20 ms Before Compression

  • Comparison of Different Types of Discharges

  • Plasma-Assisted Ignition at High Pressures

    CH4 + O CH3 + OH CH3 + OH CH2O+H2 CH3 + O2 CH2O + OH CH3 + O2 +M CH3O2 + M

    T2 = 672 K, P2 = 20 bar. T2 = 794 K, P2 = 32 bar

    Ignition delay time for

    modified mixtures, f=1.0,

    EGR=30%. Discharge 20ms

    before compression stroke

  • Kinetics of Ignition Development

    Stage 1. Discharge in

    Methane‐Air mixture at temperature ~ 330 K, 1 atm.

    Production of metastable

    components. Stage 2. Fast adiabatic

    compression to a

    temperature of 800‐950 K. Metastable components

    decomposition and ignition

    development.

  • 3000K

    1000K

    300K

    0.01atm 1atm 100atm

    Flames

    (Ju, Sutton)

    Flow Reactors

    (Yetter,

    Adamovich)

    Shock Tube

    (Starikovskiy)

    RCM

    (Starikovskiy)

    MW+laser

    (Miles)

    JSR

    (Ju) Streamer

    (Adamovich)

  • Shock Tube with Discharge Section. U ≤ 150 kV, M ≤ 3 – MIPT

    Test Section of the Shock Tube 0.5 0.6 0.7 0.8

    100

    101

    102

    103

    104

    105

    I

    II

    III

    autoignition

    autoignition, experimentautoignition, calculations

    PAI, calculations

    PAI, calculations

    PAI, experiments

    PAI, experiments

    PAIPAI

    Ign

    itio

    n d

    ela

    y t

    ime

    , s

    1000/T5, K

  • PAC Kinetics at High T, Low P

    Shock Tube with Discharge Section. U ≤ 500 kV, M ≤ 5 – Princeton

  • Hypersonic Shock Tunnel - MIPT

    4.0 4.5 5.0 5.5 6.0 6.5

    108

    109

    1010

    Inte

    nsi

    ty,

    W/k

    g

    Velocity, km/s

    Non-equilibrium Peak

    Intensity, CO:N2=7:3

  • Discharge Formation and Flame Stabilization in High Speed Flow - SCRAMJets

  • Princeton Shock Tube/Shock Tunnel

    Operating regimes for Princeton’s combustion-driven Shock Tube/Shock Tunnel in Air

    Comparison with others

  • 3000K

    1000K

    300K

    0.01atm 1atm 100atm

    Flames

    (Ju, Sutton)

    Flow Reactors

    (Yetter,

    Adamovich)

    Shock Tube

    (Starikovskiy)

    RCM

    (Starikovskiy)

    MW+laser

    (Miles)

    JSR

    (Ju) Streamer

    (Adamovich)

  • Physics of Nonequilibrium

    Systems Laboratory

    DBD Discharges Development

  • Physics of Nonequilibrium

    Systems Laboratory

    DBD Discharges: 20 kV, 10kHz, 10th pulse

    10 Torr 50 Torr

    100 Torr 200 Torr

  • DBD Discharges: 20kV, 10kHz, 10 Torr Pulse N5

  • DBD Discharges: 20kV, 10kHz, 100th pulse

    100 Torr 200 Torr

    10 Torr 20 Torr 50 Torr

  • DBD Discharges: 20 kV, 10kHz ICCD gate 50 ns

    Side view: T0=500 K, ϕ=0.3 Side view: T0=300 K, ϕ=0.0, pulse#10

    End view: T0=500 K, ϕ=0.3 End view: T0=300 K, ϕ=0.0

    200 Torr -

    instabilities

  • Major International Collaborations and International Projects

    Nickolay Aleksandrov (MIPT, Russia) Sergey Pancheshnyi (ABB, Austria) Svetlana Starikovskaya (LPP, France) PROJECTS: PARTNER UNIVERSITY FUND “Physics and Chemistry of Plasma-Assisted Combustion” (Princeton-LPP) RUSSIAN FEDERAL PROGRAM “Plasma-Assisted Combustion Ultra-Lean Fuel-Air Mixtures for Energy Devices Efficiency Increase” (Princeton-MIPT)

  • PUBLICATIONS BOOKS Aeronautics and Astronautics. Edited by: Max Mulder; TUDelft, The Nethrlands . ISBN 978-953-307-473-3. 2011

    A.Starikovskiy, N.Aleksandrov

    Plasma-Assisted Ignition and Combustion

    http://www.intechopen.com/books/show/title/aeronautics-and-astronautics

    http://www.intechopen.com/books/show/title/aeronautics-and-astronauticshttp://www.intechopen.com/books/show/title/aeronautics-and-astronauticshttp://www.intechopen.com/books/show/title/aeronautics-and-astronauticshttp://www.intechopen.com/books/show/title/aeronautics-and-astronauticshttp://www.intechopen.com/books/show/title/aeronautics-and-astronauticshttp://www.intechopen.com/books/show/title/aeronautics-and-astronauticshttp://www.intechopen.com/books/show/title/aeronautics-and-astronautics

  • PUBLICATIONS - 2012 A.Starikovskiy, N.Aleksandrov. Plasma-assisted ignition and combustion. Progress in Energy and Combustion Science (2012), doi:10.1016/j.pecs.2012.05.003 N.L.Aleksandrov, E.M.Anokhin, S.V.Kindysheva, A.A.Kirpichnikov, I.N.Kosarev, M.M.Nudnova, S.M.Starikovskaia and A.Yu.Starikovskii. Plasma decay in air and O2 after a high-voltage nanosecond discharge. J. Phys. D: Appl. Phys. 45 (2012) 255202 (10pp) A.Starikovskiy, N.Aleksandrov, A.Rakitin. Plasma-Assisted Ignition and Deflagration-to-Detonation Transition. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, Jan. 9-12, 2012. AIAA-2012-829 A.Starikovskiy, A.Rakitin, G.Correale, A.Nikipelov, T.Urushihara, T.Shiraishi. Ignition of hydrocarbon-air mixtures with non-equilibrium plasma at elevated pressures. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, Jan. 9-12, 2012. AIAA-2012-828 A.Yu. Starikovskiy, S.V.Pancheshnyi, A.E.Rakitin. Periodic Pulse Discharge Self-focusing and Streamer-to-Spark Transition in Under-critical Electric Field. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, Jan. 9-12, 2012. AIAA-2012-665 N.Aleksandrov, E.Anokhin, S.Kindusheva, A.Kirpichnikov, I.Kosarev, M.Nudnova, S.Satikovskaia, and A.Starikovskiy. Plasma Decay in Air Excited by High-Voltage Nanosecond Discharge. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, Jan. 9-12, 2012. AIAA-2012-511 M.Nudnova, S.Kindusheva, N.Aleksahdrov, A.Starikovskiy. Fast Nonequilibrium Plasma Thermalization in N2-O2 Mixtures at Different Pressures. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, Jan. 9-12, 2012. AIAA-2012-510 A.Yu. Starikovskiy, V.P. Zhukov, V.A. Sechenov. Ignition Delay Times of Jet-A/Air Mixtures. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, Jan. 9-12, 2012. AIAA-2012-501 M.M.Nudnova, A.Yu.Starikovskiy. Ozone formation in pulsed SDBD at wide pressure range. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, Jan. 9-12, 2012, AIAA-2012-407 A. Starikovskiy. Kinetics of Plasma-Assisted Oxidation and Ignition below Self-Ignition Threshold. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, Jan. 9-12, 2012. AIAA-2012-244

  • SUMMARY Major Results

    1. Rapid Compression Machine is assembled;

    2. Plasma Shock Tube is assembled;

    3. Shock Tunnel is assembled;

    4. Plasma assisted ignition demonstration up to P = 40 atm;

    5. DBD discharge development is analyzed

    Future Plans

    1. High-temperature kinetics of PAC;

    2. High-pressure kinetics of PAC;

    3. Physics of pulsed discharges – nano- and picosecond scale;

    4. Kinetics of nonequilibrium plasma – role of plasma density;

    5. Plasma-assisted flame stabilization for GTEs and SCRAMJets.