fundamental bounds for power consumption at the physical layer: 'waterslide curves...

79
Fundamental bounds for power consumption at the physical layer: "waterslide curves" and the price of certainty Anant Sahai based on joint work with student Pulkit Grover Wireless Foundations Department of Electrical Engineering and Computer Sciences University of California at Berkeley Support from NSF and Sumitomo Electric LIDS Seminar: Apr 28th, 2008 Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 1 / 31

Upload: others

Post on 10-May-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Fundamental bounds for power consumption at thephysical layer: "waterslide curves" and the price of

certainty

Anant Sahaibased on joint work with student

Pulkit Grover

Wireless FoundationsDepartment of Electrical Engineering and Computer Sciences

University of California at Berkeley

Support from NSF and Sumitomo Electric

LIDS Seminar: Apr 28th, 2008

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 1 / 31

Page 2: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Shannon tells us:

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 2 / 31

Page 3: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Shannon tells us:

Delay: needed for laws of large numbers to apply

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 2 / 31

Page 4: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Shannon tells us:

Delay: needed for laws of large numbers to apply

Power: needed to apply the laws of large numbers

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 2 / 31

Page 5: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

The promise of the waterfall curve

0 0.5 1 1.5 2 2.5 3 3.5−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

Power

log

10(⟨

Pe ⟩

)Uncoded transmission BSCShannon Waterfall BSCShannon Waterfall AWGN

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 3 / 31

Page 6: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

The new problem

Classical goal: arbitrarily low probability of error.Classical assumption: not delay sensitive at all.New twist: minimizetotal power consumption

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 4 / 31

Page 7: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

The new problem

Classical goal: arbitrarily low probability of error.Classical assumption: not delay sensitive at all.New twist: minimizetotal power consumptionImportant technology trends

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 4 / 31

Page 8: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

The new problem

Classical goal: arbitrarily low probability of error.Classical assumption: not delay sensitive at all.New twist: minimizetotal power consumptionImportant technology trends

“Moore’s law” allows billions of transistors, and but only mildly reducespower-consumption per transistor.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 4 / 31

Page 9: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

The new problem

Classical goal: arbitrarily low probability of error.Classical assumption: not delay sensitive at all.New twist: minimizetotal power consumptionImportant technology trends

“Moore’s law” allows billions of transistors, and but only mildly reducespower-consumption per transistor.

New short-range applications: in-home networks, dense meshes,personal-area networks, UWB, between-chip communication,on-chipcommunication, etc.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 4 / 31

Page 10: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Review of key prior work

Ephremides, Wireless Communications Magazine, 2002 Power consumption crucial across networking layers Many related papers.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 5 / 31

Page 11: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Review of key prior work

Ephremides, Wireless Communications Magazine, 2002 Power consumption crucial across networking layers Many related papers.

Howard, Schlegel, and Iniewski, EUARASIP Wireless Comm/Net, 2006 Empirical study Found uncoded is often better

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 5 / 31

Page 12: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Review of key prior work

Ephremides, Wireless Communications Magazine, 2002 Power consumption crucial across networking layers Many related papers.

Howard, Schlegel, and Iniewski, EUARASIP Wireless Comm/Net, 2006 Empirical study Found uncoded is often better

Cui, Goldsmith, Bahai, Journal of Wireless Comm, 2005 Semi-empirical with uncoded modulation Found larger-constellations and higher rates better

Massad, Medard, and Zheng, ISITA 2004 Information-theoretic with constant decoder power Found better to use higher rates

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 5 / 31

Page 13: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Review of key prior work

Ephremides, Wireless Communications Magazine, 2002 Power consumption crucial across networking layers Many related papers.

Howard, Schlegel, and Iniewski, EUARASIP Wireless Comm/Net, 2006 Empirical study Found uncoded is often better

Cui, Goldsmith, Bahai, Journal of Wireless Comm, 2005 Semi-empirical with uncoded modulation Found larger-constellations and higher rates better

Massad, Medard, and Zheng, ISITA 2004 Information-theoretic with constant decoder power Found better to use higher rates

Bhardwaj and Chandrakasan, Allerton 2007 Focus on receiver sampling cost in UWB Found lower-rates and adaptive sampling is better

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 5 / 31

Page 14: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Outline

1 Motivation and introduction2 Classical results revisited3 A model for decoder power consumption4 General lower bounds5 Asymptotic behavior near capacity6 Optimal choice of rate

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 6 / 31

Page 15: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

What should capacity-achieving mean?

minξTPT + ξCPC + ξDPD

ξT : net path loss (e.g.≈ 86dB for short-range)

ξC, ξD choice of weights for encoder and decoder power.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 7 / 31

Page 16: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

What should capacity-achieving mean?

minξTPT + ξCPC + ξDPD

ξT : net path loss (e.g.≈ 86dB for short-range)

ξC, ξD choice of weights for encoder and decoder power.

AssumePe → 0What happens to optimizingPT , PC, PD?

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 7 / 31

Page 17: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

What should capacity-achieving mean?

minξTPT + ξCPC + ξDPD

ξT : net path loss (e.g.≈ 86dB for short-range)

ξC, ξD choice of weights for encoder and decoder power.

AssumePe → 0What happens to optimizingPT , PC, PD?

PT stays bounded:weakly certainty achieving

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 7 / 31

Page 18: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

What should capacity-achieving mean?

minξTPT + ξCPC + ξDPD

ξT : net path loss (e.g.≈ 86dB for short-range)

ξC, ξD choice of weights for encoder and decoder power.

AssumePe → 0What happens to optimizingPT , PC, PD?

PT stays bounded:weakly certainty achieving PT , PC, PD all stay bounded:strongly certainty achieving

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 7 / 31

Page 19: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

What should capacity-achieving mean?

minξTPT + ξCPC + ξDPD

ξT : net path loss (e.g.≈ 86dB for short-range)

ξC, ξD choice of weights for encoder and decoder power.

AssumePe → 0What happens to optimizingPT , PC, PD?

PT stays bounded:weakly certainty achieving PT , PC, PD all stay bounded:strongly certainty achieving

What happens asξC, ξD → 0? Computationasymptotically free, but not actually free.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 7 / 31

Page 20: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

What should capacity-achieving mean?

minξTPT + ξCPC + ξDPD

ξT : net path loss (e.g.≈ 86dB for short-range)

ξC, ξD choice of weights for encoder and decoder power.

AssumePe → 0What happens to optimizingPT , PC, PD?

PT stays bounded:weakly certainty achieving PT , PC, PD all stay bounded:strongly certainty achieving

What happens asξC, ξD → 0? Computationasymptotically free, but not actually free. PT → C−1(R): capacity achieving.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 7 / 31

Page 21: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Decoding power vs communication range

1mm 10mm 1m 100m 10km−120

−100

−80

−60

−40

−20

0

20

40

60

Distance

γ (d

B)

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 8 / 31

Page 22: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Dense linear codes with brute-force decoding

0 10 20 30 40 50 60 70 80

−2

−4

−6

−8

−10

−12

−14

−16

−18

−20

−22

−24

Power

log 10

(⟨ P

e ⟩)Total powerOptimal transmit powerDecoding powerShannon waterfall

Decoding PowernR2nR, Error Prob 2−Esp(R,P)n

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 9 / 31

Page 23: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Convolutional codes with Viterbi decoding

0 10 20 30 40 50 60 70 80

−2

−4

−6

−8

−10

−12

−14

−16

−18

−20

−22

−24

Power

log 10

(⟨ P

e ⟩)Total powerOptimal transmit powerDecoding powerShannon waterfall

Decoding PowerLcR2LcR, Error Prob 2−Econv(R,P)Lc

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 10 / 31

Page 24: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Convolutional with “magical” sequential decoding

0 5 10 15

−2

−4

−6

−8

−10

−12

−14

−16

−18

−20

−22

−24

Power

log 10

(⟨ P

e ⟩)Shannon waterfallOptimal transmit powerDecoding powerTotal power

Decoding PowerLcR, Error Prob 2−Econv(R,P)Lc

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 11 / 31

Page 25: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Dense linear codes with “magical” syndrome decoding

0 5 10 15

−2

−4

−6

−8

−10

−12

−14

−16

−18

−20

−22

−24

Power

log 10

(⟨ P

e ⟩)Shannon waterfallOptimal transmit powerTotal powerDecoding power

Decoding Power(1− R)nR, Error Prob 2−Esp(R,P)n

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 12 / 31

Page 26: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Outline

1 Motivation and introduction2 Classical results revisited3 A model for decoder power consumption4 General lower bounds5 Asymptotic behavior near capacity6 Optimal choice of rate

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 13 / 31

Page 27: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

A new hope: iterative decoding

Make assumptions about the decoder rather than the code.

ComputationalNode

Y

Bj

i

Rich enough to capture LDPC, RA, Turbo, etc. codes.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 14 / 31

Page 28: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

A new hope: iterative decoding

Make assumptions about the decoder rather than the code.

ComputationalNode

Y

Bj

i

Rich enough to capture LDPC, RA, Turbo, etc. codes.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 14 / 31

Page 29: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

A new hope: iterative decoding

Make assumptions about the decoder rather than the code.

ComputationalNode

Y

Bj

i

Each consumesEnode energy per iteration and can sendarbitrary messagesto itsα + 1 neighbors.

Rich enough to capture LDPC, RA, Turbo, etc. codes.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 14 / 31

Page 30: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

A new hope: iterative decoding

Make assumptions about the decoder rather than the code.

ComputationalNode

Y

Bj

i

Each consumesEnode energy per iteration and can sendarbitrary messagesto itsα + 1 neighbors.

Run for a fixed number of iterationsi.

Rich enough to capture LDPC, RA, Turbo, etc. codes.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 14 / 31

Page 31: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

A new hope: iterative decoding

Make assumptions about the decoder rather than the code.

ComputationalNode

Y

Bj

i

Each consumesEnode energy per iteration and can sendarbitrary messagesto itsα + 1 neighbors.

Run for a fixed number of iterationsi.

Rich enough to capture LDPC, RA, Turbo, etc. codes.Power-consumption≥ iEnode per received sample.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 14 / 31

Page 32: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

How to lower-bound the number of iterations?

X XY iB i

7 8R o o t b i tN o d e

YY 721B B1 2 YY 8B X4 5 YY 4 5 B X9 1 0 YY 4 1 0Key concept:decodingneighborhood

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 15 / 31

Page 33: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

How to lower-bound the number of iterations?

X XY iB i

7 8R o o t b i tN o d e

YY 721B B1 2 YY 8B X4 5 YY 4 5 B X9 1 0 YY 4 1 0Key concept:decodingneighborhood

Decoding neighborhood sizen ≤ 1 + (α + 1)αi−1 ≈ αi.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 15 / 31

Page 34: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

How to lower-bound the number of iterations?

X XY iB i

7 8R o o t 5 b i tN o d e

YY 721B B1 2 YY 8B X4 5 YY 4 5 B X9 1 0 YY 4 1 0Key concept:decodingneighborhood

Decoding neighborhood sizen ≤ 1 + (α + 1)αi−1 ≈ αi.

Need to lower-bound averageprobability of bit error in termsof n.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 15 / 31

Page 35: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

How to lower-bound the number of iterations?

X XY iB i

7 8R o o t K b i tN o d e

YY 721B B1 2 YY 8B X4 5 YY 4 5 B X9 1 0 YY 4 1 0Key concept:decodingneighborhood

Decoding neighborhood sizen ≤ 1 + (α + 1)αi−1 ≈ αi.

Need to lower-bound averageprobability of bit error in termsof n.

Key insight:n is playing a roleanalogous to delay.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 15 / 31

Page 36: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Outline

1 Motivation and introduction2 Classical results revisited3 A model for decoder power consumption4 General lower bounds5 Asymptotic behavior near capacity6 Optimal choice of rate

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 16 / 31

Page 37: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

A local “sphere-packing” bound for the AWGN

Decoding neighborhood sizen ≤ 1 + (α + 1)αi−1 ≈ αi.

〈Pe〉 ≥ supσ2G>σ2

Pµ(n): C(G)<R

h−1b (δ(G))

2exp

(

−nD(σ2G||σ

2P) −

12φ(n, h−1

b (δ(G)))

(

σ2G

σ2P

− 1

))

C(G) = 12 log2(1 + PT

σ2G), δ(G): 1− C(G)

R

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 17 / 31

Page 38: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

A local “sphere-packing” bound for the AWGN

Decoding neighborhood sizen ≤ 1 + (α + 1)αi−1 ≈ αi.

〈Pe〉 ≥ supσ2G>σ2

Pµ(n): C(G)<R

h−1b (δ(G))

2exp

(

−nD(σ2G||σ

2P) −

12φ(n, h−1

b (δ(G)))

(

σ2G

σ2P

− 1

))

C(G) = 12 log2(1 + PT

σ2G), δ(G): 1− C(G)

R

µ(n) = 12(1 + 1

T(n)+1 + 4T(n)+2nT(n)(1+T(n)))

T(n) = −WL(−exp(−1)(1/4)1/n)

WL(x) solvesx = WL(x) exp(WL(x))

φ(n, y) = −n(WL

(

−exp(−1)( y2)

2n

)

+ 1)

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 17 / 31

Page 39: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

A local “sphere-packing” bound for the AWGN

Decoding neighborhood sizen ≤ 1 + (α + 1)αi−1 ≈ αi.

〈Pe〉 ≥ supσ2G>σ2

Pµ(n): C(G)<R

h−1b (δ(G))

2exp

(

−nD(σ2G||σ

2P) −

12φ(n, h−1

b (δ(G)))

(

σ2G

σ2P

− 1

))

C(G) = 12 log2(1 + PT

σ2G), δ(G): 1− C(G)

R

µ(n) = 12(1 + 1

T(n)+1 + 4T(n)+2nT(n)(1+T(n)))

T(n) = −WL(−exp(−1)(1/4)1/n)

WL(x) solvesx = WL(x) exp(WL(x))

φ(n, y) = −n(WL

(

−exp(−1)( y2)

2n

)

+ 1)

Double-exponential potential return on investments in decoding power!

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 17 / 31

Page 40: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Waterslide curves for general AWGN case

0 1 2 3 4

−2

−4

−8

−16

−32

−64

Power

log 10

(⟨ P

e ⟩)γ = 0.4γ = 0.3γ = 0.2Shannon limit

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 18 / 31

Page 41: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

A local “sphere-packing” bound for the BSC

〈Pe〉 ≥ supC−1(R)<g≤ 1

2

h−1b (δ(g))

22−nD(g||p)

(

p(1− g)

g(1− p)

)ǫ√

n

hb(p): Binary entropy function

δ(g): 1− C(g)R

D(g||p): KL Divergence

ǫ:√

1K(g) log( 2

h−1b (δ(G))

)

K(g): inf0<η<1−gD(g+η||g)

η2 .

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 19 / 31

Page 42: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

A local “sphere-packing” bound for the BSC

〈Pe〉 ≥ supC−1(R)<g≤ 1

2

h−1b (δ(g))

22−nD(g||p)

(

p(1− g)

g(1− p)

)ǫ√

n

hb(p): Binary entropy function

δ(g): 1− C(g)R

D(g||p): KL Divergence

ǫ:√

1K(g) log( 2

h−1b (δ(G))

)

K(g): inf0<η<1−gD(g+η||g)

η2 .

Double-exponentialactual returns observed byLentmaier, et al. 2005 forregular LDPC codes with iterative decoding!

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 19 / 31

Page 43: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Detailed look at BPSK case

1 2 3 4 5 6

−1

−2

−4

−8

−16

−32

Power

log(

⟨ Pe ⟩

)

γ = 0.4γ = 0.3γ = 0.2Shannon Waterfall

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 20 / 31

Page 44: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Detailed look at BPSK case

1 2 3 4 5 6 7 8

−2

−4

−8

−16

−32

Power

log

(⟨ P

e ⟩ )

Upper bound on total power

Lower bound on total power

Optimal transmit power

Shannon Waterfall

Optimal transmit powerat low ⟨ P

e ⟩

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 20 / 31

Page 45: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Deviations from Shannon

−3 −2 −1 0 1 2 30

5

10

15

20

25

30

log10

(γ)

Pop

t/C−

1 (R)

in d

B

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 21 / 31

Page 46: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Deviations from Shannon

0 0.2 0.4 0.6 0.8 1−30

−20

−10

0

10

20

30

Rate

Pow

er (

dB)

Normalized power gapOptimal transmit powerShannon limit

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 21 / 31

Page 47: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Deviations from Shannon

−3 −2 −1 0 1 2 3

−2

−4

−8

−16

−32

log10

(γ)

log 10

(⟨ P

e ⟩)

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 21 / 31

Page 48: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Sketch of proof

Pretend the code runs over channelG instead ofP.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 22 / 31

Page 49: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Sketch of proof

Pretend the code runs over channelG instead ofP.

δ(G) > 0 implies average probability of error ish−1b (δ(G)).

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 22 / 31

Page 50: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Sketch of proof

Pretend the code runs over channelG instead ofP.

δ(G) > 0 implies average probability of error ish−1b (δ(G)).

Channel needs only to misbehave for the decoding neighborhoods tocause a bit-error.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 22 / 31

Page 51: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Sketch of proof

Pretend the code runs over channelG instead ofP.

δ(G) > 0 implies average probability of error ish−1b (δ(G)).

Channel needs only to misbehave for the decoding neighborhoods tocause a bit-error.

ǫ/φ assure that the misbehavior is “typical” (even if n is small)

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 22 / 31

Page 52: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Sketch of proof

Pretend the code runs over channelG instead ofP.

δ(G) > 0 implies average probability of error ish−1b (δ(G)).

Channel needs only to misbehave for the decoding neighborhoods tocause a bit-error.

ǫ/φ assure that the misbehavior is “typical” (even if n is small)

Probability of an error event underP is lower-bounded by a convex-∪functionf of the probability underG.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 22 / 31

Page 53: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Sketch of proof

Pretend the code runs over channelG instead ofP.

δ(G) > 0 implies average probability of error ish−1b (δ(G)).

Channel needs only to misbehave for the decoding neighborhoods tocause a bit-error.

ǫ/φ assure that the misbehavior is “typical” (even if n is small)

Probability of an error event underP is lower-bounded by a convex-∪functionf of the probability underG.

Average probability underP is minimized byf of the average probabilityunder G.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 22 / 31

Page 54: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

The low Pe limit

Dominant term:D(G||P) term in exponent.

Pe ≈ exp(−D(C−1(R)||P)n) = exp(−D(C−1(R)||P)αi)

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 23 / 31

Page 55: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

The low Pe limit

Dominant term:D(G||P) term in exponent.

Pe ≈ exp(−D(C−1(R)||P)n) = exp(−D(C−1(R)||P)αi)

Take double logs of both sides.

ln ln1Pe

≈ ln D(C−1(R)||P) + i ln α

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 23 / 31

Page 56: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

The low Pe limit

Dominant term:D(G||P) term in exponent.

Pe ≈ exp(−D(C−1(R)||P)n) = exp(−D(C−1(R)||P)αi)

Take double logs of both sides.

ln ln1Pe

≈ ln D(C−1(R)||P) + i ln α

Minimize sumζ + γi whereγ = ξDEnode

σ2PξT ln α

andζ = PTσ2

P.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 23 / 31

Page 57: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

The low Pe limit

Dominant term:D(G||P) term in exponent.

Pe ≈ exp(−D(C−1(R)||P)n) = exp(−D(C−1(R)||P)αi)

Take double logs of both sides.

ln ln1Pe

≈ ln D(C−1(R)||P) + i ln α

Minimize sumζ + γi whereγ = ξDEnode

σ2PξT ln α

andζ = PTσ2

P.

Solved by:

f (R, ζ)/∂f (R, ζ)

∂ζ= γ

wheref (R, PTσ2

P) = D(C−1(R)||P).

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 23 / 31

Page 58: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Outline

1 Motivation and introduction2 Classical results revisited3 A model for decoder power consumption4 General lower bounds5 Asymptotic behavior near capacity6 Optimal choice of rate

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 24 / 31

Page 59: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

The waterfall curve revisited

0 0.5 1 1.5 2 2.5 3 3.5−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

Power

log

10(⟨

Pe ⟩

)

Uncoded transmission BSCShannon Waterfall BSCShannon Waterfall AWGN

Two gaps:(

C1−hb(Pe)

− C)

andgap = C − R.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 25 / 31

Page 60: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

The waterfall curve revisited

0 0.5 1 1.5 2 2.5 3 3.5−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

Power

log

10(⟨

Pe ⟩

)

Uncoded transmission BSCShannon Waterfall BSCShannon Waterfall AWGN

Two gaps:(

C1−hb(Pe)

− C)

andgap = C − R.

Pick a path to certainty:Pe → 0 soi ≈ln ln 1

Peln α +

ln 1D(C−1(R)||P)

ln α

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 25 / 31

Page 61: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

The waterfall curve revisited

0 0.5 1 1.5 2 2.5 3 3.5−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

Power

log

10(⟨

Pe ⟩

)

Uncoded transmission BSCShannon Waterfall BSCShannon Waterfall AWGN

Two gaps:(

C1−hb(Pe)

− C)

andgap = C − R.

Pick a path to certainty:Pe → 0 soi ≈ln ln 1

Peln α +

ln 1D(C−1(R)||P)

ln α

Let R → C and soi = logα ln 1Pe

+ 2 logα1

gap+ o(· · · ).

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 25 / 31

Page 62: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

The waterfall curve revisited

0 0.5 1 1.5 2 2.5 3 3.5−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

Power

log

10(⟨

Pe ⟩

)

Uncoded transmission BSCShannon Waterfall BSCShannon Waterfall AWGN

Two gaps:(

C1−hb(Pe)

− C)

andgap = C − R.

Pick a joint path to certainty:Pe = gapβ .

Let R → C . . .

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 25 / 31

Page 63: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Zoom into the neighborhood of capacity

−7.5 −7 −6.5 −6 −5.5 −5 −4.5 −4 −3.5

2

4

6

8

10

12

14

16

log10

(gap)

log 10

(n)

β = 2β = 1.5‘‘balanced’’ gapsβ = 0.75β = 0.5

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 26 / 31

Page 64: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Asymptotic scaling of iterations and gap

AssumePe = gapβ and BSC channel:

If β ≥ 1, i ≥ 2 log 1gap

+ log log 1gap

+ cβ .

If β ≤ 1, i ≥ 2β log 1gap

+ log log 1gap

+ cβ .

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 27 / 31

Page 65: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Asymptotic scaling of iterations and gap

AssumePe = gapβ and BSC channel:

If β ≥ 1, i ≥ 2 log 1gap

+ log log 1gap

+ cβ .

If β ≤ 1, i ≥ 2β log 1gap

+ log log 1gap

+ cβ .

Proved by takingg∗ = p + gapr and using careful Taylor expansions

aroundg = p.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 27 / 31

Page 66: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Asymptotic scaling of iterations and gap

AssumePe = gapβ and BSC channel:

If β ≥ 1, i ≥ 2 log 1gap

+ log log 1gap

+ cβ .

If β ≤ 1, i ≥ 2β log 1gap

+ log log 1gap

+ cβ .

Proved by takingg∗ = p + gapr and using careful Taylor expansions

aroundg = p.

Much better than semi-trivial bound ofΩ(log log 1gap

).

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 27 / 31

Page 67: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Asymptotic scaling of iterations and gap

AssumePe = gapβ and BSC channel:

If β ≥ 1, i ≥ 2 log 1gap

+ log log 1gap

+ cβ .

If β ≤ 1, i ≥ 2β log 1gap

+ log log 1gap

+ cβ .

Proved by takingg∗ = p + gapr and using careful Taylor expansions

aroundg = p.

Much better than semi-trivial bound ofΩ(log log 1gap

).

Much more optimistic than Khandekar-McEliece conjecturedΩ( 1gap

).

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 27 / 31

Page 68: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Outline

1 Motivation and introduction2 Classical results revisited3 A model for decoder power consumption4 General lower bounds5 Asymptotic behavior near capacity6 Optimal choice of rate

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 28 / 31

Page 69: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Assume a fixed message size

Suppose message very large, but not urgent.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 29 / 31

Page 70: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Assume a fixed message size

Suppose message very large, but not urgent.Why not increase rate?

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 29 / 31

Page 71: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Assume a fixed message size

Suppose message very large, but not urgent.Why not increase rate?

Advantage: fewer samples to process

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 29 / 31

Page 72: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Assume a fixed message size

Suppose message very large, but not urgent.Why not increase rate?

Advantage: fewer samples to process Disadvantage: need higher capacity and thus more power

Energy per message bit:1R

PTσ2

P+ max(1, 1

R)γi.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 29 / 31

Page 73: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Assume a fixed message size

Suppose message very large, but not urgent.Why not increase rate?

Advantage: fewer samples to process Disadvantage: need higher capacity and thus more power

Energy per message bit:1R

PTσ2

P+ max(1, 1

R)γi.

Optimize over the choice ofR asPe varies.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 29 / 31

Page 74: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Results for BPSK signaling

0.88 0.9 0.92 0.94 0.96 0.98 1−100

−80

−60

−40

−20

Ropt

log 10

(⟨ P

e ⟩)

γ = 100γ = 0.4γ = 0.1

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 30 / 31

Page 75: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Results for BPSK signaling

2 4 6 8 10 12 14 16 18 20

−60

−50

−40

−30

−20

−10

Energy per bit

log 10

(⟨ P

e ⟩)

Limiting value of optimal transmit power

neglecting the proessing energy

γ = 0.4γ = 0.1

γ = 1

Uncoded transmission

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 30 / 31

Page 76: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Concluding remarks

More details:arXiv:0801.0352

www.eecs.berkeley.edu/∼sahai/

Bounds can probably be tightened.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 31 / 31

Page 77: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Concluding remarks

More details:arXiv:0801.0352

www.eecs.berkeley.edu/∼sahai/

Bounds can probably be tightened.

Encoding power still needs to be better understood.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 31 / 31

Page 78: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Concluding remarks

More details:arXiv:0801.0352

www.eecs.berkeley.edu/∼sahai/

Bounds can probably be tightened.

Encoding power still needs to be better understood.

Is there a way around our model of decoding?

How to reconcile with “linear-time” codes like expanders?

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 31 / 31

Page 79: Fundamental bounds for power consumption at the physical layer: 'waterslide curves ...sahai/Presentations/... · 2008. 6. 24. · Fundamental bounds for power consumption at the physical

Concluding remarks

More details:arXiv:0801.0352

www.eecs.berkeley.edu/∼sahai/

Bounds can probably be tightened.

Encoding power still needs to be better understood.

Is there a way around our model of decoding?

How to reconcile with “linear-time” codes like expanders?

Expand scope to cover multiterminal problems and other components.

Anant Sahai (UC Berkeley) Low-Power Communication MIT LIDS 31 / 31