ft4 data analysis summary (ssi-arc) · ft4 data analysis summary (ssi-arc) doug isaacson, chester...

16
1 FT4 Data Analysis Summary (SSI-ARC) Doug Isaacson, Chester Gong, Scott Reardon, Confesor Santiago 12 DEC 2016 Abstract Standards for Unmanned Aircraft System (UAS) Detect-and-Avoid (DAA) systems are currently being developed under the auspices of the RTCA Special Committee 228 (SC-228). To support the development of these standards, a series of flight tests has been conducted at NASA’s Armstrong Flight Research Center (NASA-AFRC). The fourth in this series of flight test activities (Flight Test 4, or simply FT4) was conducted during the Spring and Summer of 2016. FT4 supported the objectives of numerous organizations working toward UAS DAA Minimum Operational Performance Standards (MOPS) and UAS DAA Radar MOPS. The summary provided herein is limited to the objectives, analysis and conclusions of the NASA Ames Research Center (NASA-ARC) SSI team toward the refinement of UAS DAA MOPS. This document provides a high-level overview of FT4 and the SSI-ARC objectives, a summary of the data analysis methodology and recommendations for UAS DAA MOPS refinements based on the data analysis results. A total of 72 encounters were flown to support SSI-ARC objectives. Test results were generally consistent with acceptable UAS DAA system performance and will be considered in broader SC-228 requirements validation efforts. Observed alert lead times indicated acceptable UAS DAA alerting performance. Effective interoperability between the UAS DAA system and the Traffic Alert and Collision Avoidance System (TCAS) was observed with one notable exception: TCAS Resolutions Advisories (RA) were observed in the absence of any DAA alert on two occasions, indicating the need for alert parameter refinement. Findings further indicated the need for continued work in the areas of DAA Well Clear Recovery logic and alert stability for Mode-C-only intruders. Finally, results demonstrated a high level of compliance with a set of evaluation criteria designed to provide anecdotal evidence of acceptable UAS DAA system performance. System Under Test: JADEM FT4 was conducted at NASA-AFRC between April and June of 2016. NASA’s Ikhana research aircraft and Ground Control Station (GCS) were equipped with the necessary hardware, displays and software to evaluate three prototype UAS DAA systems: NASA Daedalus, NASA Java Architecture for Detect and Avoid Extensibility and Modeling (JADEM) and General Atomics Aeronautical Systems, Inc. Conflict Prediction and Display System (CPDS). While each system was developed to be as consistent with the developing SC-228 MOPS as practical, there were key differences in their implementation that preclude aggregating FT4 results across the systems under test (SUTs). This document provides the analysis methodology and results for flight testing of the NASA SSI-ARC- developed JADEM system. Alerting Criteria The FT4 JADEM implementation employed the same alerting criteria and display symbology utilized in the NASA Part Task 6 (PT6) study, as shown in Table 1. Alerting hysteresis, as defined in the draft DAA MOPS, was implemented for FT4 (minimum 4-second alert persistence unless superseded by higher priority alert).

Upload: others

Post on 25-Mar-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: FT4 Data Analysis Summary (SSI-ARC) · FT4 Data Analysis Summary (SSI-ARC) Doug Isaacson, Chester Gong, Scott Reardon, Confesor Santiago 12 DEC 2016 Abstract Standards for Unmanned

1

FT4DataAnalysisSummary(SSI-ARC)DougIsaacson,ChesterGong,ScottReardon,ConfesorSantiago12DEC2016

AbstractStandardsforUnmannedAircraftSystem(UAS)Detect-and-Avoid(DAA)systemsarecurrentlybeingdevelopedundertheauspicesoftheRTCASpecialCommittee228(SC-228).Tosupportthedevelopmentofthesestandards,aseriesofflighttestshasbeenconductedatNASA’sArmstrongFlightResearchCenter(NASA-AFRC).Thefourthinthisseriesofflighttestactivities(FlightTest4,orsimplyFT4)wasconductedduringtheSpringandSummerof2016.FT4supportedtheobjectivesofnumerousorganizationsworkingtowardUASDAAMinimumOperationalPerformanceStandards(MOPS)andUASDAARadarMOPS.Thesummaryprovidedhereinislimitedtotheobjectives,analysisandconclusionsoftheNASAAmesResearchCenter(NASA-ARC)SSIteamtowardtherefinementofUASDAAMOPS.Thisdocumentprovidesahigh-leveloverviewofFT4andtheSSI-ARCobjectives,asummaryofthedataanalysismethodologyandrecommendationsforUASDAAMOPSrefinementsbasedonthedataanalysisresults.Atotalof72encounterswereflowntosupportSSI-ARCobjectives.TestresultsweregenerallyconsistentwithacceptableUASDAAsystemperformanceandwillbeconsideredinbroaderSC-228requirementsvalidationefforts.ObservedalertleadtimesindicatedacceptableUASDAAalertingperformance.EffectiveinteroperabilitybetweentheUASDAAsystemandtheTrafficAlertandCollisionAvoidanceSystem(TCAS)wasobservedwithonenotableexception:TCASResolutionsAdvisories(RA)wereobservedintheabsenceofanyDAAalertontwooccasions,indicatingtheneedforalertparameterrefinement.FindingsfurtherindicatedtheneedforcontinuedworkintheareasofDAAWellClearRecoverylogicandalertstabilityforMode-C-onlyintruders.Finally,resultsdemonstratedahighlevelofcompliancewithasetofevaluationcriteriadesignedtoprovideanecdotalevidenceofacceptableUASDAAsystemperformance.

SystemUnderTest:JADEMFT4wasconductedatNASA-AFRCbetweenAprilandJuneof2016.NASA’sIkhanaresearchaircraftandGroundControlStation(GCS)wereequippedwiththenecessaryhardware,displaysandsoftwaretoevaluatethreeprototypeUASDAAsystems:NASADaedalus,NASAJavaArchitectureforDetectandAvoidExtensibilityandModeling(JADEM)andGeneralAtomicsAeronauticalSystems,Inc.ConflictPredictionandDisplaySystem(CPDS).WhileeachsystemwasdevelopedtobeasconsistentwiththedevelopingSC-228MOPSaspractical,therewerekeydifferencesintheirimplementationthatprecludeaggregatingFT4resultsacrossthesystemsundertest(SUTs).ThisdocumentprovidestheanalysismethodologyandresultsforflighttestingoftheNASASSI-ARC-developedJADEMsystem.

AlertingCriteriaTheFT4JADEMimplementationemployedthesamealertingcriteriaanddisplaysymbologyutilizedintheNASAPartTask6(PT6)study,asshowninTable1.Alertinghysteresis,asdefinedinthedraftDAAMOPS,wasimplementedforFT4(minimum4-secondalertpersistenceunlesssupersededbyhigherpriorityalert).

Page 2: FT4 Data Analysis Summary (SSI-ARC) · FT4 Data Analysis Summary (SSI-ARC) Doug Isaacson, Chester Gong, Scott Reardon, Confesor Santiago 12 DEC 2016 Abstract Standards for Unmanned

2

OmnibandsGuidance

TheJADEMsystemprovidesguidancetotheUASpilotintheformofheading/altitudebands,thecolorofwhichindicatesthelevelofalertthatwouldresultiftheownshipweretoinitiateaturn/altitude-changetotheheading/altitudedepicted.Greenbandingindicatesaturn/altitudechangetothedepictedheading/altitudeisnotpredictedtoresultinaLossofWellClear(LoWC).Yellowbandingindicatesaturn/altitude-changeispredictedtocauseaDAACorrectiveAlert(i.e.potentialLoWCinthenext25-55s).Lastly,redbandingindicatesaturn/altitude-changeispredictedtocauseaDAAWarningAlert(i.e.potentialLoWCinthenext25sorless).Figure1depictssampleOmnibandsguidanceaswouldbedisplayedintheUASGCS;a“Corrective”DAAAlertisdisplayedfortheonlydisplayedintruder.TheguidanceillustratedinFigure1indicatesviablemaneuverstoremainwellclearareavailableinboththeheading(~15degreesleftorright)andaltitude(+600ftor-400ft)bands.

Table1:JADEMFT4AlertingCriteria

Page 3: FT4 Data Analysis Summary (SSI-ARC) · FT4 Data Analysis Summary (SSI-ARC) Doug Isaacson, Chester Gong, Scott Reardon, Confesor Santiago 12 DEC 2016 Abstract Standards for Unmanned

3

Figure1:SampleJADEMOmnibandsGuidance

Omnibandsguidanceformultipleintrudersisproducedbyformingtheunionofindividualomnibandsguidanceforeachintruderwithinthefieldofregard,withhigherpriorityalertsoverridinglowerprioritieswhenalertsdifferbetweenintrudersforagivenheading/altitudelevel.Additionally,thefollowingassumptionsandparameterswereusedintheJADEMguidanceandalertinglogicforFT4:

1. Ownshipassumedtoexecuteturnsataconstantrateof3deg/s2. Ownshipassumedtoclimbordescendatconstantrateof1000ft/min3. Omnibandsheadingguidancelimitedwithin+/-100degreesofcurrentownshipheading4. Omnibandsheadingguidanceprovidedwith1degreeresolution/discretization5. Omnibandsaltitudeguidancelimitedwithin+/-3000feetofcurrentownshipaltitude6. Omnibandsaltitudeguidanceprovidedwith100ftaltitudediscretization

WellClearRecoveryGuidance

WellClearRecovery(WCR)guidancereferstoguidancethatisprovidedtotheUASpilottoregainWellClearfromallintruders.JADEMwasconfiguredforFT4toprovideWCRguidancewhennoallowableownshipmaneuverispredictedtoremainwellclearofallintruders.ItshouldbenotedthatthisimplementationexceedstheminimumMOPSrequirements(whichonlyrequiresWCRguidancewhenaLoWChasalreadyoccurred).Figure2illustratesWCRguidanceasimplementedinJADEMforFT4;theredhorizontalbandingindicatesnoviablemaneuversarepredictedtoremainWellClear,andthegreenWCR“wedge”indicatestheadviseddirectionandroughmagnitudeofhorizontalmaneuverthatwillresultinregainingWellClearinasafeandtimelymanner.Determinationofa“safeandtimely”maneuverisdictatedbyevaluationofaWCRcostfunction.

HeadingBands

AltitudeBands

Page 4: FT4 Data Analysis Summary (SSI-ARC) · FT4 Data Analysis Summary (SSI-ARC) Doug Isaacson, Chester Gong, Scott Reardon, Confesor Santiago 12 DEC 2016 Abstract Standards for Unmanned

4

TheJADEMWCRcostfunctionforFT4considersanumberoffactors,butismostinfluencedbytheproximityofthepredictedClosestPointofApproach(CPA)totheacceptedNMACvolumeandsecondarilybythedesiretomaintainconsistentWCRguidance(changesinturndirectionincuracostpenalty).Finally,verticalJADEMWCRguidancewasnotprovidedforFT4topreventtheUASpilotfrommaneuveringverticallynearthecollisionavoidanceboundaryagainstcooperativeintruders(whichmaydegradeTrafficAlertandCollisionAvoidanceSystem(TCAS)IIperformance)andduetoverticalstateestimationuncertaintiesforintruderstrackedsolelybytheradar(i.e.non-cooperativeintruders).

Figure2:SampleWCRGuidance

TrafficAlertandCollisionAvoidanceSystem(TCAS)InteroperabilityImplementation

OneoftheprimaryobjectivesofFT4wastoevaluatetheUASDAA-TCASInteroperabilityconceptdevelopedsinceFT3.ThefollowingfourheuristicssummarizetheDAATCASInteroperabilityConceptasimplementedinJADEMforFT4:

1. AnyintruderwithanactivecorrectiveResolutionAdvisory(RA)isremovedfromallDAAguidancecalculations

a. HorizontalDAAguidancewillbeshownfornon-RAaircraftb. AllDAAverticalguidanceissuppressedduringacorrectiveRA

2. DuringapreventiveRA,TCASguidanceisaninputtotheDAAverticalguidancetoensureanyverticalDAAguidanceisconsistent(e.g.DONOTCLIMB)withtheRAguidance

3. Anytimeownship’scompliancewithacorrectiveRAleadstoasecondaryDAAWarningalert(maneuvernow),DAAguidanceshallreverttowellclearrecoveryinordertobemoredirectwithguidance,e.g.:

a. CompliancewithTCAS‘DESCEND’RAleadstoasecondaryDAAWarningb. RatherthanshowthepilotfullOmnibandssuggestiveguidance,limitedsuggestive

guidanceisdisplayed(e.g.maneuverleft)

HighBound

LowBound

Page 5: FT4 Data Analysis Summary (SSI-ARC) · FT4 Data Analysis Summary (SSI-ARC) Doug Isaacson, Chester Gong, Scott Reardon, Confesor Santiago 12 DEC 2016 Abstract Standards for Unmanned

5

FT4ObjectivesandMethodologyforJADEMAnalysisEachoftheFT4systemsundertest(SUTs)wasevaluatedindependently,andeachaccordingtoobjectivesandanalysismethodologiestailoredtotheirspecificimplementationofthedraftSC-228UASDAAMOPSrequirements.ThissectiondescribestheFT4objectives,scenariodevelopmentandanalysismethodologydevelopedandemployedfortheJADEMsystemundertest.

SSI-ARCFT4ObjectivesandScenarioGeneration

Asetofhigh-leveltestobjectivesweredevelopedtosupportthedevelopmentoftheSC-228UASDAAMOPS.Thefollowingfourhigh-leveltestobjectiveswereusedtoguidetheFT4planning,conductandanalysisofJADEMalertingandguidancelogic:

1. ValidateDAArequirementsinstressingcasesthatdriveMOPSrequirements,including:High-speedcooperativeintruder,Low-speednon-cooperativeintruder,highverticalclosurerateencounter,andModeC/S-onlyintruder(i.e.withoutADS-B).

2. ValidateTCAS/DAAalertingandguidanceinteroperabilityconceptinthepresenceofrealisticsensor,trackingandnavigationalerrorsandinmultiple-intruderencountersagainstbothcooperativeandnon-cooperativeintruders.

3. Validate“WellClearRecovery”guidancerequirementsinthepresenceofrealisticsensor,trackingandnavigationalerrors.

4. ValidateDAAalertingandguidancerequirementsinthepresenceofrealisticsensor,trackingandnavigationalerrors.

Insupportoftheseobjectives,aseriesofencounterswerescriptedtoaddresseachobjective.Thedevelopmentofeachscenariorequiredidentificationof:theprimaryhigh-levelobjectivebeingaddressed,theencountergeometry,intruderequipage,datacollectionrequirements,encountermethodology(includingpilotinstructions),checkstoensuredataquality,draftMOPSreference,andevaluationcriteriatodeterminewhetherornotthetestobjectivesweremet.AsamplescenariotemplateresultingfromthisprocessisincludedasFigure3.TheSSI-ARCteamsubsequentlycoordinatedwithAFRCflighttestpersonneltorefinethescenariosoutlinedinthetemplatesforproductionofflight“testcards”providingthelevelofdetailnecessarytotrainownshipandintruderpilotsandexecutethescriptedscenarioonthedayoftheflight.Intotal,72testcardsweredevelopedandflownforFT4JADEManalysis;asampletestcardisincludedasFigure4.

Page 6: FT4 Data Analysis Summary (SSI-ARC) · FT4 Data Analysis Summary (SSI-ARC) Doug Isaacson, Chester Gong, Scott Reardon, Confesor Santiago 12 DEC 2016 Abstract Standards for Unmanned

6

Figure3:Sam

pleFT4ScenarioTemplate

Page 7: FT4 Data Analysis Summary (SSI-ARC) · FT4 Data Analysis Summary (SSI-ARC) Doug Isaacson, Chester Gong, Scott Reardon, Confesor Santiago 12 DEC 2016 Abstract Standards for Unmanned

7

Figure4:Sam

pleFT4TestCard

Page 8: FT4 Data Analysis Summary (SSI-ARC) · FT4 Data Analysis Summary (SSI-ARC) Doug Isaacson, Chester Gong, Scott Reardon, Confesor Santiago 12 DEC 2016 Abstract Standards for Unmanned

8

AnalysisMethodology

Theanalysismethodologywasdesignedtoaddressthe“evaluationcriteria”identifiedforeachscenariotemplate.Assuch,thefollowingkeyeventdatawereextractedfromtherecordedflighttestdataforeachtestcard:

• FirstTrack:Firstrecordedtrackforeachintruderintheencounter• DAAPreventiveAlert:Onset(s)ofDAAPreventivealert(s)(foreachnewoccurrence)• DAACorrectiveAlert:Onset(s)ofDAACorrectivealerts(s)(foreachnewoccurrence)• DAAWarningAlert:Onset(s)ofDAAWarningalerts(s)(foreachnewoccurrence)• LoWC:OnsetofeachnewLossofWellClear(maybemultipleLoWCsand/orLoWCfor

multipleintruders)• RegainWellClear:firsttimeatwhichWellClearisregainedafteraLoWCevent.• ClosestPointofApproach:time(s)atwhichminimumslantrangeisachievedduringthe

encounterforeachintruder• TCASEvent:TimeofinitialTCASPreventiveorCorrectiveAlertandanyassociated

guidance(orTCASallclearmessage)• WellClearRecovery:OnsetofWCRguidanceandassociateddirection(e.g.turnright)as

wellasanychangestodirectionofguidance• FinalAlert:Thelastrecordedalertforeachintruderintheencounter• LastTrack:Lastrecordedtrackforeachintruderintheencounter

Theseeventswereloggedtoadatabasethatwasusedintheanalysistodetermineifeventsoccurredinthepropersequence(e.g.TCASCorrectiveRAswereprecededbyDAAcorrectiveorwarningalerts)andwithappropriatetiming,asdictatedbyeachencounter’sevaluationcriteria.Table2includestheextractedeventsfromasingleFT4JADEMencounter.

Table2:SampleEncounterEventTableCycleCount Intruder Time ClockTime Event

191 N3GC 1461942437.39 15:07:17 FIRST_TRACK

198 N3GC 1461942445.37 15:07:25 DAA_PREVENTATIVE

203 N3GC 1461942450.38 15:07:30 DAA_CORRECTIVE

208 N3GC 1461942455.41 15:07:35 DAA_PREVENTATIVE

215 N3GC 1461942462.35 15:07:42 DAA_CORRECTIVE

233 N3GC 1461942480.40 15:08:00 DAA_WARNING

257 n/a 1461942504.39 15:08:24 WCR_TURN_RIGHT

258 N3GC 1461942505.38 15:08:25 LOWC

270 N3GC 1461942518.39 15:08:38 TCAS_CLIMB

291 N3GC 1461942539.39 15:08:59 CPA

291 N3GC 1461942539.39 15:08:59 TCAS_LEVEL_OFF

296 N3GC 1461942544.36 15:09:04 TCAS_AA_CLEAR

297 N3GC 1461942545.39 15:09:05 DAA_PREVENTATIVE

297 N3GC 1461942545.39 15:09:05 REGAIN_WC

300 N3GC 1461942548.40 15:09:08 FINAL_ALERT

308 N3GC 1461942556.36 15:09:16

LAST_TRACK

Page 9: FT4 Data Analysis Summary (SSI-ARC) · FT4 Data Analysis Summary (SSI-ARC) Doug Isaacson, Chester Gong, Scott Reardon, Confesor Santiago 12 DEC 2016 Abstract Standards for Unmanned

9

Alsosupportingtheassessmentofevaluationcriteriawereaircraftstatedata,alertingthreatparameterdata,intruderrelativestatedata,andomnibandsguidancedata.ExamplesofdataplotsforeachoftheseareshowninFigures5-8.

Figure5:SampleAircraftStateDataPlots

Figure6:SampleAlertingThreatParameterDataPlots

Page 10: FT4 Data Analysis Summary (SSI-ARC) · FT4 Data Analysis Summary (SSI-ARC) Doug Isaacson, Chester Gong, Scott Reardon, Confesor Santiago 12 DEC 2016 Abstract Standards for Unmanned

10

Figure7:SampleIntruderRelativeStateDataPlots

Figure8:SampleOmnibandsDataPlots

Page 11: FT4 Data Analysis Summary (SSI-ARC) · FT4 Data Analysis Summary (SSI-ARC) Doug Isaacson, Chester Gong, Scott Reardon, Confesor Santiago 12 DEC 2016 Abstract Standards for Unmanned

11

Ineachoftheaircraftstateplots(Figure5),relativestateplots(Figure6)andalertingthreatdataplots(Figure7),thecolorofthefilled-circlemarkerstransposedonthedataplottraceindicatesthetypeofDAAalert:DAApreventive(black),DAAcorrective(orange),andDAAwarning(red)alerts.Additionally,thebackgroundcolorcodingontheOmnibandsdataplots(refertoFigure8)isconsistentwiththeOmnibandscoloringpredictingnoLoWC(green),LoWCwithin25-55s(yellow)andLoWCwithinthenext25s(red)attheindicatedheading/altitude.Lastly,theOmnibandsdataplotsalsoindicatewhenWCRguidance(yellowtrianglemarkers)and/orTCASRAs(magentatrianglemarkers)arepresent.OmnibandsdataplotswereusedtoassessDAA-TCASinteroperability.

Finally,videorecordingsoftheUASDAAJADEMdisplaywerereviewedtoprovideanyadditionaldetailsnecessarytoassesstheperformanceoftheDAAsystemagainstthescenarioevaluationcriteria.

ResultsScenarioEvaluationCriteriaCompliance

ThefirstelementoftheanalysisfocusedonevaluationoftheBooleanevaluationcriteriaforeachscenario.Eightevaluationcriteriawereassessedaspartofthisanalysis(FT4JADEMcompliancewitheachcriterionisprovidedinparenthesis)

1. ADAACorrectiveAlertisissuedtotheUASPilot(94%)2. OwnshipremainsWellClearofintruders(90%)3. DAAAlertsareremovedonceclearofthreat(100%)4. DAAAlertsandGuidanceareprovidedtotheUASPilotfollowingtheexpirationofaTCAS

RA,ifappropriateaccordingtotheDAAalertingthresholds(100%)5. DAAAlertsandGuidanceareremovedforintruderswithCorrectiveTCASRAGuidance

(90%)6. WellClearRecoveryGuidanceisprovidedwhennoviablemaneuversarepredictedto

remainwellclearofallintruders(100%)7. UASPilotmaneuversinresponsetoWCRguidanceandregainsWellClear(100%)8. UASPilotmaneuversinresponsetoandconsistentwithcorrectiveTCASRAguidance

(100%)

Dataanalysisdemonstratedagenerallyhighlevelofcompliancewiththeevaluationtestcriteria,withafewnotableinstancesofnon-compliance.Thesenon-complianceswereevaluatedonacase-by-casebasisasfollows:

FailuretoProvideCorrectiveAlert:AllcasesinwhichaDAACorrectivealertwasnotissuedpriortohigherpriorityalertsoccurredduetotheDAACorrectiveandWarningAlertshavingthesameHMDthreshold.ScenariosdevelopedtoevaluateTCASinteroperabilitywerescriptedwithintrudersmaneuveringtointerceptthecourseoftheUASownshipwithinclosetemporalproximitytothepredictedCPA.TheresultofthisisthatthepredictedmodifiedtauoftheseencounterswasgenerallybelowtheDAAWarningAlertthresholdpriortotheinterceptmaneuver,whilethepredictedHMDdidnotmeettheHMDcriterionforDAACorrective.AstheintruderturnedtointercepttheUASownship,thepredictedHMDrapidlydecreasedinvalueuntilitmettheDAAWarningalertHMDthresholdandaDAAWarningAlertwasissuedwithoutapriorcorrectivealertduetothe

Page 12: FT4 Data Analysis Summary (SSI-ARC) · FT4 Data Analysis Summary (SSI-ARC) Doug Isaacson, Chester Gong, Scott Reardon, Confesor Santiago 12 DEC 2016 Abstract Standards for Unmanned

12

lowmodifiedtauvalueatthetimeofthemaneuver.WhileincreasingtheDAACorrectiveAlertHMDvalueinthesecaseswouldleadtothepreferredalertsequencing(DAACorrectiveAlertprecedingDAAWarningAlert),itisunclearifsuchachangeisnecessary.IncreasingtheDAACorrectiveAlertHMDvalueshouldbeconsideredinthecontextofthetradeoffbetweenincreasedDAACorrectiveAlertrateandtherateofoccurrenceofencountersinactualoperationsthatwouldotherwiseleadtotheundesirablealertsequence.Thesenon-compliancesarebelievedtobeanartifactofacarefullyplannedtestmaneuverandareexpectedtobeuncommoninactualoperations;ananalysisofencountersanticipatedinactualoperationsisnecessarytocorroboratethisexpectation.

FailuretoRemainWellClear:TheevaluationcriteriatoremainwellclearonlyappliedtomitigatedencountersinwhichpilotswereinstructedtofollowDAAguidance.Forsuchencounters,UASpilotswereinstructedto:1)postponemaneuversuntilaDAAWarningAlerthadbeenissued,2)maneuvertotheedgeofthegreenguidancebandinthedirectionoftheirchoice(ifmorethanoneoptionwasprovided),and3)toonlymaneuveronce(nocorrectionstoinitialmaneuverallowed).TheseinstructionswereprovidedwiththeintentionofisolatingJADEMperformancefromthepilot’sabilitytoaccommodateshortcomingsinDAAsystemperformanceinremainingWellClear(e.g.byaddinghis/herownexcessmaneuverbuffersormakingadjustmentstotheinitialmaneuvertocounterpoorJADEMtrajectorypredictionsorguidanceinstabilities).SuchpilotresponsetoaDAACorrectiveAlertinoperationaluseofJADEMwouldbeconsistentwithapilotassessingthepredictedLoWC,anddelayingmaneuveringpendingfurtherdevelopmentoftheencounteroruntilahigherprioritytaskiscompleted.WhiledelayingUASmaneuveringtoavoidLoWCuntilaDAAWarningAlertisreceivedshouldgenerallynotleadtoLoWC,suchdelayswouldresultinhigherrateofLoWC(acceptableratesofLoWCinthiscasearebeyondthescopeofFT4).Thepilotinstructiontoonlymaneuveronceforagivenencounterremovesthepilot’sabilitytoreacttotheuncertaintiesofdevelopingencountersandartificiallyincreasestherateofLoWC;refinementstoUASmaneuverstoremainWellCleararetobeexpectedinactualuseofaDAAsystem.GiventhepilotinstructionsintheuseofJADEMinFT4,itissomewhatsurprisingthatLoWCsonlyoccurredin2ofthe20mitigatedencounters.Bothinstancesweretheresultofmodestintruderaccelerations:increasedgroundspeedinonecaseandaslowlyarcingturntowardtheUASinthesecond.ItislikelythatbothLoWCswouldhavebeenavoidedwithearlierownshipmaneuvering(inresponsetotheinitialDAACorrectivealerts)andtheallowanceofmaneuveradjustmentstoaccountformaneuveringintruders.

FailuretoRemoveDAAGuidanceforIntruderswithCorrectiveRAGuidance:TheTCASinteroperabilityconceptimplementedforFT4requiredthatintrudersinvolvedinaTCAScorrectiveRAberemovedfromconsiderationforDAAAlertingandGuidanceconsideration.WhilethiswasimplementedintheJADEMsoftware,3instancesofconcurrentJADEMDAAandTCASRAguidancewereobservedduringFT4.Eachoftheseinstancesweredeterminedtobetheresultofasoftwareissueunrelatedtotheinteroperabilityconceptandisconsideredatestartifactnotindicativeofsystemperformance.

DAAAlertTiming

DAAalerttimingwasanalyzedtoassesstheefficacyofJADEMDAAalertsinarealisticenvironment,includingstressingencountergeometriesandsurveillancesensorerror.TheDAAalerttiminganalysiswaslimitedtounmitigatedencounterstoremovetheinfluenceofpilotactionsontheresultsandbecausesomeofthemetricsarereferencedtoinitialLossofWellClear.

Page 13: FT4 Data Analysis Summary (SSI-ARC) · FT4 Data Analysis Summary (SSI-ARC) Doug Isaacson, Chester Gong, Scott Reardon, Confesor Santiago 12 DEC 2016 Abstract Standards for Unmanned

13

DAAAlertLeadTime:Figures9and10providehistogramsofDAACorrectiveAlertleadtimeandDAAWarningAlertleadtime,respectively.Leadtimeisdefinedastheelapsedtimebetweentheinitialalertofagivenpriority(e.g.firstDAAWarningalertissuedtotheUASpilotduringanencounter)andtheinitialLoWC.TheobservedmeanDAACorrectivealertleadtimewas46sandthemeanDAAWarningalertleadtimewas23s.TheleadtimeforDAACorrectivealertsintheabsenceofaDAACorrectivealertwasassignedthesameleadtimeastheDAAWarningalert;thatis,thefirsttimeatwhichallthealertingthresholdsfortheDAACorrectivealertaremet.Whentheseencountersareexcludedfromtheanalysis,themeanDAACorrectivealertleadtimeishigher:49s.

LeadTime,tLEAD(s)

Figure9:DAACorrectiveAlertLeadTimeHistogram

LeadTime,tLEAD(s)

Figure10:DAAWarningAlertLeadTimeHistogram

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Frequency

Frequency

Page 14: FT4 Data Analysis Summary (SSI-ARC) · FT4 Data Analysis Summary (SSI-ARC) Doug Isaacson, Chester Gong, Scott Reardon, Confesor Santiago 12 DEC 2016 Abstract Standards for Unmanned

14

DAAAlertTransitionTime:Alerttransitiontimeisdefinedastheelapsedtimebetweenagivenalertprioritylevelandthenexthighestalertprioritylevel(e.g.transitiontimebetweeninitialDAACorrectivealertandinitialDAAWarningalert).Table3providesthemeantransitiontimesbetweenalertprioritylevels;theresultsareconsistentwithexpectationsgiventhemodifiedtauvaluesforeachalertlevel,asspecifiedinTable1.NofirmconclusionscanbedrawnfromthemeantransitiontimesinTable3duetothelimitedsamplesizeandoperationalcoverageoftheFT4encounterset.

Table3:DAAAlertTransitionTime

AlertTransition MeanTransitionTime(s)

DAAPreventivetoDAACorrective 3.2s

DAACorrectivetoDAAWarning 24.9s

DAAWarningtoWellClearRecovery 19.3s

WellClearRecoverytoTCAS 9.7s

DAATCASInteroperability

Asdiscussedintheprecedingevaluationcriteriacompliancesection,compliancewiththerequiredelementsoftheDAA-TCASinteroperabilityconceptswaslargelymet,withfewexceptionsbeingtheresultofJADEMsoftwareimplementationissues.Ofnote,twoscenariosresultedincorrectiveTCASRAswhileJADEMdeemedtheownshipWellClearoftheintruderwithgreenbandingguidanceatthetimeofthecorrectiveTCASRA.FurtheranalysisbySC-228personnelandTCAS-IIexpertsconcludedthatsuch“WellClearRAs”observedinFT4aretheresultofincompatibilitybetweenDAACorrectiveAlertHMDthreshold(0.75nm)andhowHMDisused(orinthiscase,NOTused)tofilterTCASRAs.Inthesetwocases,itwasconcludedthatTCASdidnotconsiderHMDinissuingacorrectiveRAduetothecloseproximityoftheintruderandtheexpectederrorintheHMDprediction.BasedonthisfindingandconsistentobservationswithallsystemsundertestinFT4,itisrecommendedthattheMOPSAlertingrequirementsberefinedtoconsiderTCASemploymentoftheHMDfilterandtomitigateitsimpactonalertingperformance.

ModeCIntruderGuidanceStability

AnalysisofJADEMguidancestabilityforintruderslackingADS-Bequipmentwasconsideredasecondarypriorityofthedataanalysis.WhenModeCsurveillanceistheonlyavailablebearingsourcefortheDAAsystem,ahighdegreeofbearinguncertaintyistobeexpected.Unfortunately,onlythreeFT4JADEMencountersincludedintruderswithtranspondersbutwithoutADS-Bequipage.Further,theJADEMguidancefortheseencounterswasbasedonafusiontrackthatincludedradarsurveillance(i.e.,haslowbearingerrorwithintheradardetectionrange).Thus,whiletheobservedguidancedemonstratedexcellentstabilityforthesethreeencounters,moreanalysisisneededtodrawanyconclusionsaboutthestabilityofJADEMDAAguidanceforModeCIntruders.However,itisunclearifthisshouldbeconsideredapriorityforfurtherinvestigationgiventheexpectationthatintruderswillgenerallybewithinradarrangepriortotheprescribedalertingthresholds(i.e.bearingerrorisnotexpectedtoinfluenceDAAalerting).

Page 15: FT4 Data Analysis Summary (SSI-ARC) · FT4 Data Analysis Summary (SSI-ARC) Doug Isaacson, Chester Gong, Scott Reardon, Confesor Santiago 12 DEC 2016 Abstract Standards for Unmanned

15

WCRPerformance

WhileWCRperformancemettheobjectivecriteriaprescribedinthescenarioevaluationcriteria,FT4UASpilotparticipantssubjectivelyassessedWCRperformanceaslackinginanumberofareas.First,WCRguidancestabilitywasdeemedpoorforintruderslackingADS-Bequipage;suchencountersdemonstratedmultiplechangesintheWCRguidancedirectionthatpilotsfounddistractingorlackinginformativevalue.Second,UASpilotsobjectedtoWCRguidancethatprescribedturnstoheadingsaftofthecurrentUAScourse;suchturnswouldrequiresignificantdeviationfromplannedrouteofflight,wouldresultinsignificanttimeincloseproximityforhead-onencountergeometries,andoftenplacenon-cooperativeintrudersoutsidethesurveillancevolume.

ConcludingRemarksandRecommendationsFT4providedauniqueopportunitytoevaluatetheperformanceofaprototypeUASDAAsystem(NASAJADEM)acrossarangeofencounterconditionsandinarealisticflightenvironmentincludingsurveillancesystemerrors.However,aswithallflighttests,FT4wasatightlycontrolledexperimentwithpriorpilotknowledgeofencountergeometryandintruder“escape”procedures.Assuch,whiletheperformanceoftheUASDAAsystememployedinFT4isevaluatedforthepurposeoffurtheringMOPSdevelopment,theresultsmustbeconsideredinthecontextofFT4andincombinationwithresultsfromotherUASDAAexperiments(e.g.NASAPT5andNASAPT6,wheretheUASpilotshadnoadvanceknowledgeofencountersandintruderactions).However,whereashuman-in-the-loopsimulationsusemodelsofaircraftdynamics,surveillancesensorsandatmosphericphenomena,flighttestoffersaglimpseattheperformanceoftheprototypeUASDAAsystemunderreal-worldconditions;itisthroughthislensthattheperformanceoftheprototypeUASDAAsystemisassessed.DAAsystemperformancewasassessedacrossfivecategoriesofmetrics:AlertTiming,UASDAA-TCASInteroperability,ModeCIntruderAlertStability,WellClearRecoverPerformanceandabroadsetofScenarioEvaluationCriteria.

ObservedalertleadtimesindicatedacceptableUASDAAalertingperformance;meanDAACorrectiveandDAAWarningalertleadtimeswere46and23secondsrespectively.Excludingencountersthatincludedturnstowardtheintruder(withtheexplicitpurposeofcreatingimmediateTCASRAs),theDAACorrectiveAlertleadtimeincreasedto49s.Thesemeanleadtimesareconsistentwith(albeitslightlybelow)theMOPSaveragealertleadtimes(Section2.2.4.3.4.),andareindicativeofacceptablealertingthresholdsimplementedwithinJADEMforFT4.

FT4included29JADEMscenariostoinvestigatetheUASDAA-TCASinteroperabilityconcept.Resultsindicateeffectiveinteroperabilityacrosstherangeoftestconditionswithonenotableexceptioncase:the“WellClearRA”.Observedforasmallnumberofscenarios(andacrossallsystemsundertest),UASpilotswerepresentedwithaTCASRAwhiletheUASDAAsystemhaddeterminedtheintrudertobeWellClear.ItwasdeterminedthatsuchRAswereduetosuppressionoftheHorizontalMissDistance(HMD)criteriontestwhenTCASdeemedtheintruderbearinginformationtobeofinsufficientquality.BecauseTCASdoesnothaveaqualitybearingsurveillancesource(e.g.ADS-Borairborneradar),suchcasesaretobeexpected,anditisrecommendedfurtheranalysisbeconductedtodeterminetherateofoccurrenceofsuchRAsintheNASandpotentialmitigations,ifneeded.

Observationsonthestabilityofalertsfor“ModeC-onlyIntruders”werelimitedtoasinglescenarioinFT4.Assuch,moredataisnecessarytodrawfirmconclusionsontheacceptabilityofUASDAA

Page 16: FT4 Data Analysis Summary (SSI-ARC) · FT4 Data Analysis Summary (SSI-ARC) Doug Isaacson, Chester Gong, Scott Reardon, Confesor Santiago 12 DEC 2016 Abstract Standards for Unmanned

16

systemperformanceforsuchintruders.TheconcernregardingalertinstabilityforMode-C-onlyintrudersstemsfromthepoorbearinginformationderivedfromtransponderrepliesalone.However,giventheairborneradarequipagerequirementandtypicalradardetectionrange,itisunclearifsuchintrudersrepresentacredibleconcernregardingalertingstability;bearingerrorshouldbeanon-issueoncetheintruderiswithinradardetectionrange.FurtheranalysisofModeCintruderalertstabilityshouldthusconsiderradardetectionrangeandthebearingperformanceofanintegratedintrudertrack.

NinescenarioswereconductedtoassesstheperformanceofUASDAAWellClearRecovery(WCR)guidancetotheUASpilot.WhileobservationsindicatedeffectiveWCRguidanceforADS-Bequippedintruders,guidancewasdeemedlargelyineffectiveforotherintrudersforanumberofreasons.First,UASpilotsindicated(anddataconfirmed)somedirectionalinstabilityinWCRguidance;itisrecommendedthatadditionalheuristicsand/orhysteresisbeincludedinWCRlogictopreventfrequentchangesinthedirectionalWCRguidance.Second,WCRguidanceoccasionallyincludedturnswellbeyond90degreesfromthecurrentcourse;UASpilotsfoundthisobjectionableandineffective.ItisrecommendedthatWCRdirectionalguidancebelimitedtoturnsoflessthansomereasonablebound(e.g.90degreesfromcurrentcourse).

Finally,abroadsetofscenarioevaluationcriteriawerecollectedtoassesshigh-levelUASDAAsystemperformance.CompliancewithscenarioevaluationcriteriaisconsideredindicativeofacceptableUASDAAperformance.FT4JADEMscenarioevaluationcriteriacomplianceexceeded90%andnon-complianceswereassessedtobeeithertestartifactsortheresultsofa(sincecorrected)softwarecodingerror.Whilenoacceptancethresholdforevaluationcriteriacompliancewasestablished,theobservedhighlevelofcomplianceprovidesanecdotalevidenceforrequirementsvalidationofthealertingparameters,WCRguidancelogicandTCASinteroperabilityconceptimplementedwithinJADEMforFT4.Finally,itisimportanttoreiteratethattheresultspresentedhereinarebasedonalimitedsetofscriptedscenariosexecutedinatightlycontrolledflighttestenvironmentwithwell-rehearsedandlimitingpilotproceduresforuseofthesystemundertest;theresults,conclusionsandrecommendationsincludedinthisdocumentprovidekeyinsightsandanecdotalevidence,butrepresentasmallfractionoftheanalysesnecessarytofullyvalidatetheSC-228UASDAAMOPSrequirements.