fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects...

104
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2017 From caloric restriction to cardiovascular health: a protective role for Sirt3 and Sirt6 in atherothrombosis Gaul, Daniel S Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-152396 Dissertation Published Version Originally published at: Gaul, Daniel S. From caloric restriction to cardiovascular health: a protective role for Sirt3 and Sirt6 in atherothrombosis. 2017, University of Zurich, Faculty of Science.

Upload: others

Post on 07-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

Zurich Open Repository andArchiveUniversity of ZurichMain LibraryStrickhofstrasse 39CH-8057 Zurichwww.zora.uzh.ch

Year: 2017

From caloric restriction to cardiovascular health: a protective role for Sirt3and Sirt6 in atherothrombosis

Gaul, Daniel S

Posted at the Zurich Open Repository and Archive, University of ZurichZORA URL: https://doi.org/10.5167/uzh-152396DissertationPublished Version

Originally published at:Gaul, Daniel S. From caloric restriction to cardiovascular health: a protective role for Sirt3 and Sirt6 inatherothrombosis. 2017, University of Zurich, Faculty of Science.

Page 2: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

FromCaloricRestrictiontoCardiovascularHealth:

AProtectiveRoleforSirt3andSirt6inAtherothrombosis

Dissertation

zur

ErlangungdernaturwissenschaftlichenDoktorwürde(Dr.sc.nat.)

vorgelegtder

Mathematisch-naturwissenschaftlichenFakultät

der

UniversitätZürich

von

DanielS.Gaul

aus

Deutschland

Promotionskommission

Prof.Dr.MichaelO.Hottiger(Vorsitz)

Prof.Dr.ChristianM.Matter(LeitungderDissertation)

Prof.Dr.IanFrew

PDDr.MichaelPotente

Zürich,2017

Page 3: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured
Page 4: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

I

Acknowledgements

IwouldliketothanktheFoundationforCardiovascularResearchinZurich,theSwiss National Science Foundation, the University Research Priority Program

Integrative Human Physiology at the University of Zurich, the Hartmann-MüllerFoundation, the University of Zurich, the National Institute of Health (USA),SystemsX, theEuropeanResearchCouncil, theÉcolePolytechniqueFédéraledeLausanne, and the Swiss Heart Foundation in Bern for funding the projectspresentedinthisdissertation.Furthermore, I would like to thank my supervisor, Christian Matter, forproviding me with this interesting research topic, for his continuous supportthroughoutmytimeinZurich,foralwaysrespectingmyopinion,andforgivingme the freedom to follow my ideas, which helped me a lot to become anindependentresearcher.IwouldalsoliketothankthemembersofmyPhDcommittee,MichaelHottiger,IanFrew,andMichaelPotente,fortheirinterestinmyproject,theirsupport,andtheirscientificinputintheannualPhDcommitteemeetings.Moreover I would like to thank Thomas Lüscher for giving me the chance towork in the Center for Molecular Cardiology, for providing the lab andinfrastructure,andforhisinputatthelabmeetings.IamgratefultoallmycolleaguesattheCMCfortheirsupportintheconductionofexperimentalprocedures,manydiscussions,whichhelpedmetoadvancemyprojects, but also for somewell-needed distraction in stressful times. I wouldespecially liketothankJulienWeberforhelpingmewhereverhecouldandforbeingagoodfriendinandoutsidethelab,StephanWinnikforhisguidanceinthebeginning of my PhD, Lambertus vanTits for his support and great help inwriting grants, andNatacha Calatayud and Lisa Pasterk for their experimentalinputas‘mystudents’andmanyfunnyhours.I would like to thank Natacha Calatayud, Jürgen Pahla and Julien Weber forcarefullyproofreadingthisdissertation.Lastbutnotleast,Iwouldliketothankmyfamilyandfriendsfortheirsupportandencouragementinthepast4.5years.IespeciallywouldliketothankAKformovingtoZurich,keepingupwithmylab-inducedmoods,andmakingmytimeinSwitzerlandevenmoreenjoyable.

Page 5: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

II

Tableofcontents

1 ABSTRACT.........................................................................................................1

2 ZUSAMMENFASSUNG.......................................................................................3

3 LISTOFABBREVIATIONS...................................................................................5

4 INTRODUCTION.................................................................................................8

4.1 Relevanceofcardiovasculardisease.............................................................................................8

4.2 Theendothelium..................................................................................................................................9Arterialwall...........................................................................................................................................................9Functionoftheendothelium..........................................................................................................................9EndothelialDysfunction................................................................................................................................10

4.3 Atherosclerosis..................................................................................................................................11Initiationofatherosclerosis.........................................................................................................................11Leukocyteinfiltration.....................................................................................................................................11Plaqueprogressionandrupture................................................................................................................13

4.4 Arterialthrombosis..........................................................................................................................14Tissuefactorandthecoagulationcascade............................................................................................14Platelets................................................................................................................................................................15

4.5 NeutrophilsinAtherothrombosis...............................................................................................17Normalneutrophilfunction.........................................................................................................................17Neutrophilsinatherosclerosis...................................................................................................................17Neutrophilsinthrombosisandischaemia-reperfusioninjury.....................................................18Neutrophilextracellulartrapsandcardiovasculardisease...........................................................18

4.6 Sirtuins-mediatorsofcaloricrestriction.................................................................................19Sirtuinsincardiovasculardisease............................................................................................................20Sirtuin3incardiovasculardisease...........................................................................................................21Sirtuin6incardiovasculardisease...........................................................................................................23

5 HYPOTHESESANDRESEARCHAIMS.................................................................26

5.1 TheroleofSirt3inatherothrombosis.......................................................................................26

5.2 TheroleofSirt6inarterialthrombosis.....................................................................................27

6 RESULTS..........................................................................................................28

6.1 DeletionofSirt3doesnotaffectatherosclerosisbutacceleratesweightgainand

impairsrapidmetabolicadaptationinLDLreceptorknockoutmice:implicationsfor

cardiovascularriskfactordevelopment...............................................................................................28

6.2 MildendothelialdysfunctioninSirt3knockoutmicefedahigh-cholesteroldiet:

protectiveroleofanovelC/EBP-β-dependentfeedbackregulationofSOD2..........................51

Page 6: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

III

6.3 LossofSirt3acceleratesarterialthrombosisbyincreasingformationofneutrophil

extracellulartrapsandplasmatissuefactoractivity......................................................................73

6.4 EndothelialSirt6deficiencyacceleratesarterialthrombosisbyupregulatingtissue

factorandpro-inflammatorycytokines...............................................................................................74

7 DISCUSSION....................................................................................................75

7.1 Mainfindings......................................................................................................................................75Sirt3inatherosclerosis..................................................................................................................................75Sirt3inendothelialfunction........................................................................................................................75Sirt3inarterialthrombosis..........................................................................................................................76Sirt6inarterialthrombosis..........................................................................................................................77

7.2 Keyfindingsincomparisontocurrentliterature..................................................................77AddedvalueofourSirt3loss-of-functiondata....................................................................................77AddedvalueofourSirt6loss-of-functiondata....................................................................................78

7.3 Potentiallimitations........................................................................................................................79

7.4 Implicationsandoutlook...............................................................................................................81Sirt3reduceschancesofcardiovascularriskfactordevelopment.............................................81Sirt3protectstheendotheliumfrommitochondrialROS...............................................................81Sirt3regulatesNETformation....................................................................................................................81Sirt6protectstheendotheliumfrominflammationandapro-thromboticstate.................82

7.5 Conclusions.........................................................................................................................................82

8 REFERENCES...................................................................................................83

9 CURRICULUMVITAE........................................................................................96

Page 7: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured
Page 8: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

1

1 AbstractBackground: Cardiovascular disease (CVD) represents amajor health burdenand is the world’s leading cause of mortality. The most common pathologicalconditions in CVD are endothelial dysfunction and atherosclerosis. The mostfrequent complication is arterial thrombosis, which may lead to myocardialinfarction and stroke. Atherogenesis is characterised by the occurrence ofchronic inflammatory processes and involvement of reactive oxygen species(ROS). Recently, ROS-mediated formation of neutrophil extracellular traps(NETs) was associated with atherothrombosis and subsequent major adversecardiovascularevents.Sirtuinsarea familyofsevenNAD+-dependentproteindeacetylases thatplayabeneficialrole inmetabolismandage-relatedprocessesandareactivateduponcaloricrestriction.Sirtuin3(Sirt3)islocatedinmitochondria,whereitgovernsmitochondrialmetabolism.MitochondriaaremajorproducersofROSandSirt3protectsthecellfromROSbyactivatingsuperoxidedismutase2(SOD2)andbyincreasing transcription of SOD2 and Catalase, the main mitochondrial ROSscavengers. Sirtuin 6 (Sirt6) is located in the nucleus, where it regulatesinflammation,DNAmaintenance,andglucoseandlipidmetabolism.Sirt6inhibitsinflammationbyinteractingwithsubunitsofnuclearfactorkappaB(NF-κB)andactivatorprotein1(AP-1)andsubsequentlydeacetylatinglysine9ofHistone3(H3K9) to attenuate NF-κB- and AP-1-mediated transcription of pro-inflammatorygenes.Currentstudiessuggestthatthismechanismmayalsooccurinendothelialcells.NF-κBandAP-1alsoregulatetheexpressionoftissuefactor(TF),acentralinitiatorofbloodcoagulation.Ofnote,thefunctionsofSirt3inatherosclerosisandendothelialfunction,aswellas the roles of Sirt3 and Sirt6 in arterial thrombosis, have not yet beeninvestigated.Methods:Sirt3-deficient(Sirt3-/-)micewereusedtoinvestigatethecausalroleof Sirt3 in vascular disease. For assessing atherosclerosis, Sirt3-/- mice werecrossbredwith low-density lipoprotein receptor (LDL-R)depletedmice and8-week-oldmaleswere feda1.25%(w/w)high-cholesteroldiet for12weeks toinduce atherosclerosis. Atherosclerosis was evaluated in thoracoabdominalaortae en faceand in cross sections of aortic roots. In addition,metabolic rateand systemic oxidative stress were assessed using indirect calorimetry andquantificationoftheoxidativestressmarkermalondialdehyde.To induce endothelial dysfunction, 8-week-old Sirt3-/- mice were fed a 1.25%(w/w) high-cholesterol diet for 12 weeks. Subsequently, aortic rings wereisolated and endothelium-dependent relaxation assessed in an organ chamberbath.MoleculareffectsofSirt3deficiencywereanalysedusingasiRNA-mediatedknockdownofSirt3inculturedhumanaorticendothelialcells(HAECs).For thrombosis experiments, 16-week-old Sirt3-/- mice were stimulated by anintraperitoneal injectionof5mg/kg lipopolysaccharide(LPS).To investigate invivo timeto thromboticocclusion,miceweresubjectedto laser-induced invivocarotid thrombosis.Toexamineexvivoclottingproperties,bloodwasanalysedusing rotational thromboelastometry (ROTEM). Moreover, neutrophils wereisolatedfrombonemarrowandstimulatedwithLPStoassessformationofNETs.

Page 9: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

2

CD14+ leukocytes from patients suffering from acute ST-elevation myocardialinfarction(STEMI)wereanalysedfortranscriptionlevelsofSirt3andSOD2.Finally,endothelium-specificSirt6deletioninmicewasgeneratedusingtheVE-cadherinpromoter and carotid thrombosiswas induced as described above toinvestigate the effects of endothelial Sirt6 loss-of-function in thrombosis. Tostudy the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6knockdownwasperformedinculturedHAECs.Results:AbsenceofSirt3didnotaffectatherosclerosisbut increasedsystemicoxidative stress, accelerated weight gain and impaired adaptation to rapidchangesinnutrientsupply.LossofSirt3causedmildendothelialdysfunctionandincreasedoxidativestressinendothelialcells.Sirt3-deficientHAECswereprotectedfromROS-inducedcelldeath via a C/EBP-β-dependent rescuemechanism that induced expression ofSOD2.Time to thrombotic carotid occlusion was cut in half in Sirt3-/- mice. Clotformation was accelerated and clot stability increased compared to controls.Furthermore,increasedlevelsofactivesolubleTFweremeasuredinthebloodofSirt3-/- mice. In neutrophils, Sirt3 deletion decreased SOD2 transcription andincreased NET formation. In parallel, leukocytes of STEMI patients exhibitedreducedtranscriptionofSirt3andSOD2.Specific deletion of Sirt6 in mouse endothelium decreased time to carotidthromboticocclusionby45%.In linewiththese invivo findings,knockdownofSirt6inHAECsincreasedtranscriptionofpro-inflammatorytargetsofNF-κBandAP-1aswellasamountandactivityofTF.Conclusions:Deletion of Sirt3 increases systemic and cellular ROS levels, andsolubleTF levels in theblood,and thus favoursdevelopmentofcardiovascularmetabolicriskfactors,endothelialdysfunction,andarterialthrombosis.Endothelium-specific deletion of Sirt6 accelerates arterial thrombosis by anincrease in pro-inflammatory signalling, increased TF presence and activity inendothelialcells.TheseresultssuggestthatendogenousSirt3andSirt6bearthepotentialtoaidinthe prevention of endothelial dysfunction, and arterial thrombosis and maketheminterestingtargetsforfuturetherapeutictesting.

Page 10: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

3

2 ZusammenfassungHintergrund: Kardiovaskuläre Krankheiten (KVK) stellen eine massiveGesundheitsbelastung dar und sind weltweit die Haupttodesursache. Die amhäufigsten auftretenden Krankheitserscheinungen bei KVK sind endothelialeDysfunktion und Arteriosklerose. Die häufigste Komplikation ist arterielleThrombose,diezueinemHerzinfarktoderSchlaganfallführenkann.DieBildungvon Arteriosklerose wird typischerweise von Entzündungsreaktionen und derFormationvon reaktivenSauerstoffspezies (RSS)begleitet.UnlängstwurdedieBildung sogenannter neutrophil extracellular traps (deutsch: neutrophileextrazelluläre Fallen, NETs) in Zusammenhang mit KVK und ihren negativenFolgeerscheinungengebracht.Die Sirtuine sind eine Proteinfamilie bestehend aus sieben NAD+-abhängigenDeacetylasen.SiewerdendurchKalorienrestriktionaktiviertundhabenwichtigevorteilhafte Funktionen im Stoffwechsel und bei altersbedingten Krankheiten.Sirtuin 3 (Sirt3) befindet sich in den Mitochondrien, wo es den dortigenStoffwechsel steuert. Mitochondrien sind Haupterzeuger von RSS und Sirt3beschützt die Zelle vor diesen reaktiven Substanzen in dem esSuperoxiddismutase 2 (SOD2) aktiviert und die Transkription von SOD2 undCatalase, den zwei wichtigsten RSS-Inaktivatoren in Mitochondrien, fördert.Sirtuin 6 (Sirt6) befindet sich im Zellkern und reguliert dortEntzündungsreaktionen, Reparatur von DNS-Schäden, sowie Glukose- undFettmetabolismus.Sirt6hemmtEntzündungenindemesmitUntereinheitenvonNuklearem Faktor kappa B (NF-κB) und Aktivatorprotein 1 (AP-1) interagiertundanschliessendLysin9anHiston3(H3K9)deacetyliert,wasdieNF-κBundAP-1 bedingte Transkription entzündungsfördernder Gene bremst. AktuelleStudien suggerieren, dass dieser Mechanismus auch in Endothelzellen abläuft.NF-κB und AP-1 regulieren ausserdem die Expression von Tissue Factor(deutsch:Gewebefaktor;TF),einemHauptinitiatorderBlutkoagulation.DieBedeutungvonSirt3 inArterioskleroseundEndotheldysfunktionsowiedieRollevonSirt3undSirt6inarteriellerThrombosesindbishernichtbekannt.Methoden:DieRollevonSirt3inKVKwurdeinMäusenmiteinemSirt3-Defizit(Sirt3-/-)untersucht.UmeinenEffektaufArterioskleroseevaluierenzukönnen,wurden Sirt3-/--Mäuse mit zusätzlicher Deletion des low-density lipoprotein(Lipoproteinmit niedriger Dichte) Rezeptors (LDL-R) gezüchtet und ab einemAlter von 8 Wochen für 12 Wochen mit einer cholesterinreichen Nahrung(1.25% Cholesterin (w/w)) gefüttert, um Arteriosklerose zu verursachen.Arteriosklerosewurde in thorakoabdominellenAortaeenfaceund inSchnittenvon Aortenwurzeln beurteilt. Zusätzlich wurde die Stoffwechselrate undsystemischer oxidativer Stress mittels indirekter Kalorimetrie undQuantifizierungdesoxidativenStressmarkersMalondialdehydgemessen.Weiterhin wurden 8 Wochen alte Sirt3-/--Mäuse für 12 Wochen mit einercholesterinreichen Nahrung gefüttert um die Endothelfunktion zubeeinträchtigen.AortenringewurdenisoliertundendothelabhängigeRelaxationineinemOrganbadgetestet.UmmolekulareAuswirkungeneinesSirt3-Verlusteszu untersuchen, wurde in menschlichen Aortaendothelzellen (MAEZs) mittelskleinerRNS-FragmentedieSirt3-Proteinexpressiongehemmt.

Page 11: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

4

Zur Untersuchung von arterieller Thrombosewurden 16Wochen alte Sirt3-/--Mäuse intraperitonealmit5mg/kgLipopolysaccharid (LPS) injiziert. IndiesenMäusen wurde daraufhin mittels Laserbestrahlung Thrombose in der rechtenKarotis ausgelöst, und die Zeit bis zum thrombotischen Verschluss in vivogemessen. Das Blut der Sirt3-/--Mäuse wurde mittels Thromboelastometrie(ROTEM) ex vivo auf seine Gerinnungseigenschaften untersucht. ZusätzlichwurdenNeutrophileausdemKnochenmarkderMäuseisoliertundmitLPSzurBildung von NETs angeregt. CD14+-Leukozyten aus Patienten, die an einemakutenMyokardinfarktmitST-Hebung(STEMI)littenwurdenaufTranskriptionvonSirt3undSOD2getestet.Abschliessend wurde unter Verwendung des vaskulären endothelialenCadherinpromotors eine endothelzellspezifische Deletion von Sirt6 in Mäusengeneriert, indenenwiebeschriebenThromboseausgelöstwurde,umdieRollevon endothelialem Sirt6 in dieser Erkrankung zu studieren. Um Effekte aufmolekularer Ebene zu untersuchen wurde die Sirt6-Expression in HAECsunterdrückt.Ergebnisse: Arteriosklerosewar in Abwesenheit von Sirt3 nicht verändert. InSirt3-/--Mäusen konnten allerdings erhöhte Werte systemischen oxidativenStresses, beschleunigte Gewichtszunahme und schlechte Anpassung anVeränderungenimNahrungsangebotfestgestelltwerden.InEndothelzellenverursachtederSirt3-VerlusterhöhtenoxidativenStress,undschwacheendothelialeDysfunktion.EinC/EBP-β-abhängigerMechanismus,derSOD2-Expressioninduzierte,schützteHAECsvorZelltoddurcherhöhteRSS.DiethrombotischeVerschlusszeitinSirt3-/--MäusenverkürztesichimVergleichzu Kontrolltieren um die Hälfte einhergehend mit einer beschleunigtenGerinnselbildungunderhöhterGerinnselstabilität.AusserdemkonntenerhöhteTF-Spiegel im Blut der Sirt3-/--Mäuse gemessen werden. Deletion von Sirt3 inNeutrophilenverringertedieTranskriptionvonSOD2underhöhtedieBildungvon NETs. Parallel dazu zeigten Leukozyten von STEMI-Patienten eineverringerteGentranskriptionvonSirt3undSOD2.Fehlendes Sirt6 inEndothelzellen verringertedie Zeit bis zum thrombotischenVerschlussderKarotisinMäusenum45%.EntsprechenddieserBeobachtungenin vivo zeigte sich in HAECs mit verringerter Sirt6-Expression eine erhöhteMengeundAktivitätvonTF,sowieeineAktivierungNF-κBundAP-1regulierter,entzündungsfördernderGene.Schlussfolgerungen:DeletionvonSirt3erhöhtsystemischesowiezelluläreRSSund TF-Spiegel im Blut und fördert daher die Entwicklung kardiovaskulärerRisikofaktoren,endothelialeDysfunktionundarterielleThrombose.Endothelzellspezifisches Fehlen von Sirt6 beschleunigt arterielle Thrombosedurch Entzündungsreaktionen und erhöht Präsenz und Aktivität von TF inEndothelzellen.DieResultatesuggerieren,dassendogenesSirt3undSirt6dasPotentialinsichtrageninderPräventionundakutenVersorgungendothelialerDysfunktionundarteriellerThromboseunterstützendzuwirken.DiesmachtsiezuinteressantenKandidatenfürzukünftigetherapeutischeTests.

Page 12: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

5

3 Listofabbreviations

129 Inbredmousestrain129

AceCS2 AcetylcoenzymeA-synthase

ACh Acetylcholine

ACS Acutecoronarysyndromes

ADP Adenosinediphosphate

AP-1 Transcriptionfactoractivatorprotein1

ATP Adenosinetriphosphate

BMI Bodymassindex

c-JUN AP-1transcriptionfactorsubunit

c-MYC Cellularhomologuetoviralmyelocytomatosisoncogene

C57BL/6 InbredmousestrainC57black6

cAMP Cyclicadenosinemonophosphate

CAT Catalase

CCR2 C-Cchemokinereceptortype2

CD14 Clusterofdifferentiation14

cGMP Cyclicguanosinemonophosphate

CoA CoenzymeA

COX Cyclooxygenase

CtIP C-terminalbindingproteininteractingprotein

CVD Cardiovasculardisease

CXCR2 C-X-Cmotifchemokinereceptor2

DNA Deoxyribonucleicacid

DSB DNAdouble-strandbreak

E-selecting Endothelialselectin

ELISA Enzyme-linkedimmunosorbentassay

eNOS Endothelialnitricoxidesynthase

FX CoagulationfactorX

FXa ActivatedcoagulationfactorX

G3BP Ras-GAPSH3domainbindingprotein

GCN5 Generalcontrolnon-repressedprotein5

GDH Glutamatedehydrogenase

H3 Histone3

H2O2 Hydrogenperoxide

HIF1α Hypoxia-induciblefactor1-alpha

I-TAC Interferon-inducibleT-cellalphachemoattractant

ICAM-1 Intercellularadhesionmolecule1

Page 13: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

6

IDH2 Isocitratedehydrogenase2

IL Interleukin

IFN-γ Interferongamma

IP-10 Inducibleprotein10

K Lysine

LCAD Long-chainacylCoAdehydrogenase

LDL Low-densitylipoprotein

LDL-R Low-densitylipoproteinreceptor

LPS Lipopolysaccharide

M-CSF Macrophage-stimulatingfactor

MCP-1 Monocytechemoattractantprotein1

Mig Monokineinducedbygammainterferon

MMP Matrixmetalloproteinase

NET Neutrophilextracellulartrap

NO Nitricoxide

NAD+ Oxidisedformofnicotinamideadeninedinucleotide

NADH Reducednicotinamideadeninedinucleotide

NADPH Reducednicotinamideadenosinedinucleotidephosphate

NF-κB NuclearfactorkappaB

NFATc2 NuclearfactorofactivatedT-cells2

NOS Nitricoxidesynthase

O2- Superoxide

ONOO- Peroxynitrite

oxLDL Oxidizedlow-densitylipoprotein

Pi Inorganicphosphate

P-selectin Plateletselectin

PARP1 Poly[ADP-ribose]polymerase1

PCSK9 Proproteinconvertasesubtilisin/kexintype9

RNA Ribonucleicacid

ROS Reactiveoxygenspecies

ROTEM Rotationalthromboelastometry

RT-PCR Real-timequantitativepolymerasechainreaction

SDH Succinatedehydrogenase

Sirtuin Silentinformationregulator2protein

Sirt3 Sirtuin3

Sirt6 Sirtuin6

SMC Smoothmusclecell

SNF2H Sucrosenonfermenting2homologue(SMARCA5)

Page 14: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

7

SOD2 Endothelialsuperoxidedismutase(MnSOD)

SREBP Sterol-regulatoryelementbindingprotein

STAT3 Signaltransducerandactivatoroftranscription3

STEMI ST-elevationmyocardialinfarction

SYTOX SYTOXgreennucleicacidstain

TCA Tricarboxylicacid

TF TissueFactor(FIII;CD142;Thromboplastin)

TFPI Tissuefactorpathwayinhibitor

Thcell Thelpercell

Tie2 TEKreceptortyrosinekinase(Angiopoietin-1receptor)

TNF-α Tumournecrosisfactoralpha

VCAM-1 Vascularcelladhesionmolecule1

VE-Cadh Vascularendothelialcadherin(Cadherin-5)

VSMC Vascularsmoothmusclecell

vWF VonWillebrandfactor

WB WesternBlot

WT Wildtype

Page 15: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

8

4 Introduction

4.1 Relevanceofcardiovasculardisease

Cardiovascular disease (CVD) is the leading cause of deathworldwide (Figure

1).1 Between 2005 and 2015, the number of global CVD deaths increased by

12.5%toatotalnumberof17.9milliondeathsin2015.Morethan85%ofthese

deathswerecausedbyischemicheartdiseaseandstroke.2Interestingly,anage-

standardisation of cardiovascular deaths in the past decade shows, that the

global burden of cardiovascular mortality in relation to the total world

population decreased by 15.6%.2 This may mainly be due to the fact that

cardiovascular care is improving,but cannotkeeppacewith thegrowthof the

globalpopulation.3,4At the same time,however,many risk factors forCVDare

increasing,particularlyobesity,diabetesmellitus,andage.5-7Thus,inthefuture,

theprevalenceofCVDislikelytoriseagainandthecostsfortreatmentwillgrow

substantially.8,9 This emphasises the urgent need for novel strategies to

effectivelypreventCVD.

Figure 1. Top 10 causes of death globally 2015. Source: World Health Organisation

(http://www.who.int/mediacentre/factsheets/fs310/en/).

Page 16: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

9

4.2 Theendothelium

Arterialwall

The normal arterial vessel wall consists of three layers (Figure 2). The

outermost layer of the wall, the tunica externa (externa), mainly consists of

connective tissue like collagen, which stabilizes and anchors the vessel to

surrounding organs. The middle layer, the tunica media (media), is mainly a

smooth muscle cell (SMC) layer and is separated from the externa by the

external elasticmembrane. Contraction of the SMCs regulates vessel diameter,

determines regional blood flow, and systemic blood pressure. The innermost

layer of an artery, the tunica intima (intima), consists of endothelial cells

supportedbytheinternalelasticmembrane.

Figure 2. Structure of the vascularwall. AdaptedfromPearsonEducation,2011and‘Medical

GalleryofBlouseMedical2014’.10

Functionoftheendothelium

Theendotheliumisacellmonolayer,whichphysicallyseparatesthebloodfrom

the restof thevessel.Asopposed toother tissues, ithas theunique feature to

maintain blood in a liquid state. The endothelium regulates constriction and

dilatation of the vessel, proliferation, and migration of SMCs, and platelet

adhesion and aggregation. It controls thrombogenesis and fibrinolysis via

endogenousautacoids,nitricoxide, and lipidmediators, suchasprostacyclin.11

Additionally, it acts as a semipermeable barrier that controls the exchange of

ions and macromolecules between blood and surrounding tissues via tight

Page 17: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

10

junctions.12Theendotheliumalsotriggerstherecruitmentandextravasationof

leukocytes,forexampleaftertissuedamage,viaexpressionofcytokinesandcell

adhesionmolecules.13,14

EndothelialDysfunction

Endothelial dysfunction is an early hallmark of atherogenesis and can predict

outcomeinCVD.15-17However,itisnowknownthatendothelialdysfunctioncan

alsobearesultofthrombosisanditisstillunderdebate,whetheritisatruerisk

factororratherasurrogateendpoint.18,19Animportantmeasureofendothelial

function is its ability to trigger dilatation of vessels upon stimulation with

acetylcholine (ACh).20 The normal reaction of the endothelium in response to

ACh is to releasenitricoxide (NO),which causes relaxationof theSMCsof the

tunicamedia.21 Inadysfunctionalendothelium,theabilitytorelaxthevessel is

impaired. This observation was first made in hypertensive rats and

hypercholesterolemicrabbitsandverysoonthereafterinhumanatherosclerotic

coronaryarteries.22-24

While the endothelium can be stressed by many different factors, such as

hypertension, atherosclerosis, hypercholesterolemia, diabetes, and obesity, all

these stimuli may trigger endothelial dysfunction by an increase in reactive

oxygen species (ROS).25,26 ROS can be free radicals that possess unpaired

electrons,likesuperoxide(O2-)orNO,ortheycanbecompoundswithoxidising

effects,suchashydrogenperoxide(H2O2).27ROSareconstantlyproducedinall

cell types, mainly by mitochondrial proteins, xanthine oxidase, NADH/NADPH

oxidase, and nitric oxide synthase (NOS).27,28 In physiological conditions, ROS

playimportantrolesinvariouscellsignallingprocessesandredoxcontrol.26The

presence of O2- is regulated via a group of antioxidant enzymes called the

superoxide dismutases, which catalyse the conversion of O2- into oxygen and

H2O2. H2O2 is subsequently converted to water by catalase or glutathione

peroxidase.29,30 However, when the generation of ROS in the endothelium is

increased by external stressors or can not be detoxified, these highly reactive

compoundsreadilyinflictoxidativedamageonDNA,RNA,proteins,andlipids.31

Intheendothelium,vasodilatationcanbe impairedbyO2-,whichdecreasesthe

bioavailability of NO by reducing it to peroxynitrite (ONOO-), and inhibits

guanylyl cyclase, a direct target of NO.32 ONOO- furthermore also inhibits

guanylyl cyclase, inactivates endothelial NOS (eNOS), increases levels of

superoxide by inhibiting SOD, and promotes endothelial dysfunction by

inhibitingprostacyclinsynthase.32Ofnote,ROSalsoplayaroleinatherosclerosis

Page 18: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

11

and thrombosis, for example via oxidising low-density lipoprotein (LDL) to

oxidised LDL (oxLDL), as will be discussed in the following sections. In

endothelialcells,thepresenceofoxLDLimpairsNOproduction.33

4.3 Atherosclerosis

Atherosclerosisisaprogressivediseasethatischaracterisedbyachronicvessel

inflammationaswellasaccumulationoflipidsandfibrouselementsinlarge

arteries.34

Initiationofatherosclerosis

The initiation of atherosclerosis is mediated by the endothelium, which is

activatedby risk factors asdescribedabove.Endothelialdysfunction results in

leaky tight junctions that permit circulating apolipoprotein B-containing

lipoproteins,especiallyLDL,toenterthesubendothelialspaceinthevesselwall

andpromoteintimalthickening.35,36Furthermore,LDLcanbeoxidisedbyROSto

form oxLDL. oxLDL induces endothelial expression of pro-atherothrombotic

genessuchasintercellularadhesionmolecule1(ICAM-1),vascularcelladhesion

molecule 1 (VCAM-1), Cyclooxygenase 2 (COX-2), and tissue factor (TF) and

activates SMCs and macrophages.37 While the endothelium would resist firm

adhesionwithleukocytesinhealthyconditions,inadysfunctionalendothelium,

ROS, inflammatory signals, and oxLDL trigger an increase in cellular adhesion

molecules, which recruit leukocytes, especially monocytes and T lymphocytes

(T-cells),totheendothelium.38AlthoughVCAM-1ismostlikelythepredominant

adhesion molecule (Figure 3A), triggering this effect due to its selectivity for

monocytesandT-cellsandits increasedpresenceinendothelialcellsatsitesof

earlyatheroma,alsoICAM-1,P-selectin,andE-selectinplayimportantroles.39,40

Leukocyteinfiltration

Once leukocytes are bound to the endothelium, they enter the intima by

diapedesis.40Initially,chemoattractionofleukocytestotheintimamaybecaused

byoxLDL,whichtriggersapoptosisofSMCsviaformationofROS,whichinturn

signals phagocytic cells to clear the cell debris.41,42 This depends mostly on

monocytechemoattractantprotein-1(MCP-1)andCXCchemokines,suchas IP-

10,Mig, and I-TAC, that are expressed by atheroma-associated cells, including

theendothelium,SMCsandmacrophages(Figure3).43-45

Monocytesplayapredominantroleintheatheroscleroticlesion.Onceinsidethe

thickened intima, they develop characteristics of macrophages and start

Page 19: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

12

endocytosis of not only dead cells, but also LDL and oxLDL. The uptake of

lipoproteins is mediated by an increase in scavenger receptors, whichmainly

resultsfrommacrophagecolony-stimulatingfactor(M-CSF)overexpressionthat

increases cytokine and growth factor production in macrophages.34,46 The

accumulation of lipid droplets in their cytoplasm eventually transforms

macrophages into foamcells.47 These cells produceROSandpro-inflammatory

cytokines that amplify the inflammatory response in the plaque, matrix

metalloproteinases(MMPs)thatareabletodestabilisetheplaquebydegrading

extracellularmatrix,andTFthattriggersthromboticcomplicationsuponplaque

rupture(Figure3A).48-51

Figure 3. Leukocyte infiltration of the vascular intima and its effects in atherosclerosis.Adhesionmolecules such as vascular cellular adhesionmolecule 1 (VCAM-1) expressedby theactivated endothelium facilitate leukocyte adhesion. A: Monocytes migrate into the intimafollowingagradientofmonocytechemoattractantprotein1(MCP-1)thatinteractswiththeirC-Cchemokine receptor type 2 (CCR2). Then, monocytes turn into macrophages that expressscavenger receptors to ingest modified lipoprotein particles, such as oxLDL. Mediated bymacrophage colony-stimulating factor (M-CSF) macrophages accumulate lipid droplets whichgive them characteristics of a foam cell, that is releasing ROS, expressing TF, matrixmetalloproteinases(MMPs)andcytokines,andeventuallyundergoesapoptosis.B: T lymphocytes are migrating into the intima following interactions of their C-X-C motifchemokine receptor 3 (CXCR3) with interferon-gamma (IFN-γ) inducible protein 10 (IP-10),monokine induced by gamma interferon (Mig), and interferon-inducible T-cell alphachemoattractant(I-TAC).Antigens,suchasoxLDL,causetheT-cellstoactivatemacrophagesandtodifferentiateintoThelpercells(Th1orTh2),thatproduceinterleukins1(IL-1),4and10,IFN-γ andtumournecrosisfactor(TNF).AdaptedfromLibby,Nature,2002.34

Page 20: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

13

oxLDLnotonlyaffectsmacrophagesbutalsostimulatesplaqueresidentT-cells

alongwithotherantigens.TheseT-cellscanthenactivatemacrophagesdirectly

via CD40-CD154 interaction, or differentiate into T helper (Th) 1 or 2 cells,

which further amplify the inflammation in the lesion by releasing cytokines

(Figure3B).52-54

Plaqueprogressionandrupture

Stimulatedbylipidsandlipoproteins,macrophagesandSMCsaccumulateinthe

subendothelial layer of the arterial wall. Subsequently, they may undergo

apoptosis or necrosis and form the necrotic core, which further enhances

inflammation and recruitment of additional leukocytes.55-58 These processes

establish a vicious cycle that promotes progression and growth of an

atheroscleroticlesion(Figure4).

In an advanced atherosclerotic lesion, SMCsmigrate to the intimawhere they

formacollagen-richfibrouscapthatseparatestheatheroscleroticcorefromthe

vessel lumenandstabilisestheplaque.ThiscapcanrupturemediatedbySMC-

apoptosisanddestabilisingfactors,suchasMMPs,whichsubsequentlyexposes

highly thrombogenic core material to the blood, causing thrombosis (Figure

4).59,60

Figure4.Development of endothelial dysfunction andprogression to atherothrombosis.Excess reactive oxygen species (ROS) oxidise low-density lipoprotein (LDL) to oxLDL whichtransmigrates in the tunica intima, leading to endothelial activation. Circulating monocytesadhere to the activated endothelium, transmigrate into the subendothelial space anddifferentiate intomacrophages.ROS, generated fromendothelial cells, vascular smoothmusclecells (VSMCs) and macrophages further promote the oxidization of LDL particles, which aretakenupbymacrophagesthatinturndifferentiateintofoamcells(FC).Accumulatingfoamcellsformfattystreaks.VSMCsmigrateintothearterialintimaformingafibrouscap,whichcoversthelipid-rich core of the progressing atheroma. Apoptosis of plaque-resident cells contributes tofibrous cap thinning and eventual plaque rupture. Figure created by Dr. Stephan Winnik,UniversityHospitalZurich.

Page 21: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

14

4.4 Arterialthrombosis

Bloodcoagulationisacentralmechanisminwoundrepairthatisindispensable

tosealadamagedvessel,preventblood loss,and initiatethehealingprocess.61

However, in occurrence of atherosclerosis, coagulation can be triggered

pathologicallybyruptureofanatheroscleroticplaqueorplaqueerosion,which

is characterised by an absence of the endothelium.62,63 In these cases,

coagulation may lead to thrombosis of an artery. Arterial thrombosis is the

occlusionof an arteryby ablood clot andhence anobstructionof oxygenand

nutrientflowtotheadjacenttissues.ItisthemajorcomplicationinCVDandmay

leadtostrokeormyocardialinfarction.64

Tissuefactorandthecoagulationcascade

Thecoagulationcascadeconsistsof anumberof inactive soluble factors in the

blood that subsequently activate each other to generate clot stabilising fibrin

moleculesandthrombin,whichinitiatesplateletaggregation.Acentralactivator

ofthecoagulationcascadeistissuefactor(TF).TFisaproteinof47kDathatis

constitutivelyexpressed incellsof theadventitiaandSMCsof themedia,while

itsexpressionislatentbutcanbeinducedinleukocytesandtheendothelium.65-

67Originally,theendotheliumwasthoughttobeanaturalbarrierseparatingTF

intheinnervascularwallfromtheothercoagulationfactorsinthebloodstream,

but it is now known that TF also exists in the blood in form of latent TF

microparticlesandasanalternativelysplicedsolubleform.68-71

OnceactiveTFgetsincontactwithblooditbindstocoagulationfactorVII(FVII),

whichissubsequentlyactivatedtoFVIIa.TheinteractionofTFandFVIIinitiates

theextrinsiccoagulationcascade(Figure5).TheTF:FVIIacomplexactivatesFX

andFIX.FIXainitiatestheintrinsiccoagulationcascade,whichfurtheramplifies

thisprocessbyformingacomplexwithFVIIIathatalsoactivatesFX.FXabindsto

FVaand theFXa:FVa complex cleavesprothrombin to thrombin,whichplaysa

central role in the coagulation cascade.72 Thrombin activates platelets by

cleaving protease-activated receptors, cleaves fibrinogen to soluble fibrin

monomers,andactivatesFXIII,whichlinksthesemonomerstoaclot-stabilising

fibrin polymer (Figure 5).73,74 Furthermore, thrombin enhances the intrinsic

pathway by activating FXI, which in turn activates FIX.75,76 More recently,

coagulationfactorFXII,thathadbeenthoughttohavenofunctionincoagulation

invivo,hasbeenidentifiedasanimportantinitiatoroftheintrinsicpathway,asit

isabletoactivateFXI.77

Page 22: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

15

Figure 5. The coagulation cascade. Formation of the TF:FVIIa complex initiates clotting byactivatingFXandFIX.Alternatively,FXIcanactivateFIX.Theprothrombinasecomplex(FVa:FXa)activates prothrombin (PT). Thrombin activates various proteases and cofactors. Thrombincleaves fibrinogen (Fbg) to soluble monomers (SFM), which are cross-linked by FXIIIa, andactivatesprotease-activatedreceptors(PARs)onplatelets,whichleadstotheformationofaclot.FromMackmanetal.,ATVB,2007.72

To keep homeostasis in physiological conditions, the coagulation cascade is

regulatedbyanumberof inhibitors.Among themost important regulatorsare

TF pathway inhibitor (TFPI) which inhibits the TF:FVIIa complex and FXa;

Protein C which is inhibiting FVa and FVIIIa; and antithrombin which is

inhibitingthrombin,FXa,FIXaandFVIIa.78-80

Platelets

Plateletsarefragmentsofmegakaryocyteswithoutanucleusthatareshedinthe

processofmegakaryocytematurationeitherinbonemarroworthelung.81The

life cycle of a platelet is limited to 5-7 days duringwhich it decreases in size.

After this time,orafteractivationand incorporation intoabloodclot,platelets

are cleared by neutrophils andmacrophages and disposed of via the spleen.82

Plateletspossessacharacteristicreceptor-richcellmembraneandgranulesthat

containadhesionmoleculesandplateletagonists.

In healthy conditions, the endothelium and platelets do not favour adhesion.

Both cell types are negatively charged and the endothelium produces

prostacyclinandNO,whichraisecyclicadenosinemonophosphate (cAMP)and

Page 23: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

16

cyclicguanosinemonophosphate(cGMP)levelsinplatelets.83,84cAMPandcGMP

stimulate protein kinases A and C to phosphorylate platelet agonist receptors,

whichkeepsplateletsinactivated.

However, the subendothelialmatrix containsmanyproteins,which are able to

activateplateletsandfacilitatebinding.Uponvascularinjury,suchastherupture

ofanatheroscleroticplaque,thesubendothelialmatrixisexposedtoplateletsin

the blood. Platelet binding to the vascular wall is then facilitated most

prominentlybyglycoproteinand integrinreceptorbinding tocollagenandvon

Willebrandfactor(vWF).82Firmadhesion,whichleadstoaflattenedshapeofthe

platelets, is additionally catalysed by atherosclerosis associated endothelial

dysfunction,which limits theavailabilityof thephysiologicalplatelet inhibitors

prostacyclinsandNO.85Secondarytofirmadhesionofplateletsistheiractivation

byagonists,suchascollagen,ADP,ThromboxaneA2,andthemostpotentplatelet

activatorthrombin(Figure6).86

Figure 6. Role of platelets in haemostasis and thrombosis. Upon endothelial activation ordamage, platelets are able to bind to the endothelium or the subendothelial matrix. Thisincreasingly takesplaceuponvascular injury,wherematrix-derivedproteins, suchas collagen,are exposed to the blood. Once a platelet gets activated, its shape shifts and it recruits moreplatelets that begin to aggregate and form a thrombus. RBC: Red blood cell. Adapted fromHolinstatetal.,CancerMetastasisRev,2017.82

Activated platelets undergo key structural changes induced by an agonist-

mediated increase in calcium levels, and increase their surface area

approximatelyby4-fold.Additionally,activatedplateletsexternaliseallcontents

oftheirgranules,whichareladenwithplateletadhesionmolecules,suchasvWF,

p-selectin, and fibrinogen, as well as platelet agonists, mostly ADP. These

proteins recruitmore platelets and cause them to aggregate. The platelets are

further linked to each other and stabilised by fibrinogen and fibrinmolecules

from the coagulation cascade.87 Finally, activated platelets also provide an

effectivecatalyticsurfacefortheactivationofthecoagulationcascade.88

Page 24: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

17

4.5 NeutrophilsinAtherothrombosisThischapterisbasedon:

GaulDS,SteinS,MatterCM.Neutrophilsincardiovasculardisease.EurHeartJ2017;38(22):1702-4

As leukocytes are involved in inflammatory responses of the body, it is no

surprise that they are also involved in chronic inflammatory diseases, like

atherosclerosis. In the past,many atherothrombosis studies focused especially

on the role of monocyte/macrophages and T-cells. However, more recently,

neutrophilshavegainedalotofinterestandemergedasintriguingnewplayers

inatherothrombosis.89

Normalneutrophilfunction

Neutrophils are polymorphonuclear leukocytes that form the initial defence

against pathogens and protect the host bymediating inflammatory and innate

immune responses.90 Neutrophils have developed distinct mechanisms to be

able to defend their host: phagocytosis, apoptosis, externalisation of anti-

pathogenic granule content, release of ROS, and formation of neutrophil

extracellulartraps(NETs).91Thesepowerfulimmuneresponsescanbetriggered

by pathogens, such as bacterial lipopolysaccharide (LPS), cytokines, and other

inflammatory cells or stimuli. However, they can be detrimental in a disease

context.

Neutrophilsinatherosclerosis

Neutrophils are recruited to an atherosclerotic lesion by macrophage-derived

chemokinesandtransmigrateintothelesionviaoxLDL-dependentupregulation

ofICAM-1andincreasedcontractilityofendothelialcells.92-94

Once insidea lesion, theneutrophilsstarttoreacttotheongoinginflammation

with the intention to resolve it, but eventually they worsen the outcome.

Degranulated proteins recruit more monocytes by facilitating adhesion to the

endothelium, promote plaque instability by breaking down collagen, and

catalyse lipoprotein oxidation.95-99 The same effects are caused by release of

ROS.100Finally,neutrophilsintheatheromareadilyundergoapoptosisandthus

release signals that yet again recruit monocyte/macrophages into the plaque

(Figure7).101,102

Page 25: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

18

Neutrophilsinthrombosisandischaemia-reperfusioninjury

In endothelial damage-mediated thrombosis, neutrophils have been shown to

initiatethrombusformationbybeingthefirstcell-typephysicallypresentatthe

siteofdamageandprovidingTFtotriggercoagulation.67Theneutrophil-derived

proteinases cathepsin G and elastase furthermore degrade TFPI, the main

inhibitor of the extrinsic coagulation pathway.103 Finally, ROS released by

neutrophilsatthesiteofthrombusformationcanactivateplatelets(Figure7).104

Neutrophils do not only aggravate thrombotic processes, they also play an

important role in the processes following the dissolution of a thrombotic

occlusion. If a coronary artery is occluded, a quick reperfusion is essential to

savethemyocardialtissuefromischaemia.105Afterreperfusion,neutrophilsare

recruitedtotheinfarctedtissuebydyingcellsanddamagedextracellularmatrix,

where they clear dead cells and recruitmonocytes that degrade the damaged

matrix.106 While this is initially beneficial, secondary effects by activated

neutrophils, such as degranulation and ROS release, damage intact cells and

extracellularmatrix,whichmay increase infarct size. Indeed, reperfusionwith

neutrophil-deprived blood reduced injury in dogs and reperfusion injury is

associatedwithrecurrentatherosclerosisinmiceandpatients.107-109

Neutrophilextracellulartrapsandcardiovasculardisease

NETshaveonlyrecentlygottenintofocusofresearch,butalreadynowitisclear

that NET formation occurs in a remarkable number of diseases where

neutrophils are involved, indicating that its importance may have been

overlookedinthepast.89

NETs consist of externalised neutrophil DNA and granular proteins, which

enable them to kill pathogens.110 They can be triggered by pathogen-derived

endotoxins, like LPS, or by P-selectin expressed in activated platelets and

endothelialcells.111,112

There are currently two models of NETs discussed: NETs containing nuclear

DNA that are released during a programmed cell death, and NETs containing

mitochondrialDNAthatcanbereleasedbyviableneutrophils.113,114Whileboth

mechanisms of NET formation may exist, both hypotheses agree that the

formationofNETsdependsonthegenerationofROS.115,116

NETshavebeenidentifiedinhumanatheroscleroticlesions,wheretheypromote

atherogenesis and are associated with a severe atherothrombotic state, likely

Page 26: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

19

due to release of granular proteins, ROS and pro-thrombotic factors (Figure

7).117,118 Furthermore, NETs can be induced by the activated endothelium and

aresusceptibletoNET-mediatedcelldeath.112

Figure7.Effectsofneutrophilsinatherosclerosis,thrombosis,andischaemia-reperfusion

injury.NETs:neutrophilextracellulartraps;ROS:reactiveoxygenspecies;oxLDL:oxidisedlow-densitylipoprotein.FromGauletal.,EurHeartJ,2017.89

NETsdemonstratestrongpro-thromboticproperties.Indeed,theuseofDNAseI

to degrade NETs in animals reduced thrombosis, myocardial infarction, and

ischemicstroke.119-122Importantly,NETsalsooccurinhumancoronarythrombi,

where they are associated with coronary infarct size.123-125 When neutrophils

release DNA, this huge molecule acts as a surface that binds TF, FXII, and

granularproteins,likeTFPIinhibitorscathepsinGorelastase,andthusactivates

both the extrinsic as well as the intrinsic coagulation pathway.103,126,127

Furthermore, NETs bind vWF, fibronectin, and fibrinogen, all of which are

triggeringplateletbindingandaggregation.112,128

Finally, NETs are also implicated in ischaemia-reperfusion injury in rats and

degradation of NETs is discussed to be therapeutically used to decrease the

severityofthisinjury(Figure7).129

4.6 Sirtuins-mediatorsofcaloricrestriction

Silentinformationregulator2proteins(sirtuins)areaproteinfamilyconsisting

ofsevenmembers(Sirt1-7)thatarehighlyconservedbetweenspeciesandoccur

in different cellular compartments (Figure 8A).130 All sirtuins exhibit protein

Page 27: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

20

deacetylase activity, but some of the members also act as ADP-ribosylases

and/or deacylases of succinyl, malonyl, glutaryl or long-chain fatty acyl

groups.131 Regardless of their functions, all sirtuins are dependent on the

cofactor NAD+ and, consequently, sirtuin activity is increased in times of low

nutrient availability (Figure 8B).132 Interestingly, caloric restriction has been

shown to prolong life span and delay onset of age-related diseases in many

species,includingmammals.133-135Whenfirststudiesinyeastshowedthatmany

oftheseeffectsmaybemediatedbythesirtuinsin1999,manyresearcherstook

an interest in deciphering the underlying molecular mechanisms.136 It is now

knownthatsirtuinspossessmanybeneficialrolesinsurvivalandaging(Figure

8B), and some of them have been associated with longevity in mice and

humans.137,138 To date, the only efficient way to activate sirtuins is by caloric

restriction.139

Figure8. The sirtuin family of proteindeacetylases.A:Thesirtuin familyconsistsofsevenmembers that are distributed in different cell compartments. While Sirt2 is found in thecytoplasm, Sirt1 canbeboth located in cytoplasmand thenucleus. Sirt6 andSirt7 arenuclearproteins and Sirt3-5 are located in the mitochondria. B: Sirtuins are NAD+-dependentdeacetylases that target histone and nonhistone proteins (left upper box) to regulate a widerangeofcellularfunctionssuchascellularsenescence,survival,DNArepair,metabolism,andcellcycle progression. Because sirtuins require NAD+ for their catalytic activity, their enzymaticactivityishigherinsituationsofenergydistress.Figure8AwasretrievedfromtheDenuLabattheUniversity of Wisconsin-Madison (http://devriesgen677s09.weebly.com/sirtuin-family.html) and

Figure8BwasadaptedfromOellerichetal.,CircRes,2012.140

Sirtuinsincardiovasculardisease

Sirtuins take over particularly interesting roles in CVD, as they are positively

influencing a number of cardiovascular risk factors, such as the metabolic

syndrome.141,142 Metabolic syndrome is triggered by high-caloric diets and

physical inactivity and is characterised by the combination of high blood

pressure, obesity, inflammation, glucose intolerance, and dyslipidaemia, all of

whichareassociatedwithdevelopmentofCVDanddiabetes.143Sirt1, thebest-

Page 28: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

21

characterisedmember of the sirtuins, for instance, is able to improve glucose

tolerance and lipid homeostasis and thus confers atheroprotection.144-146

However, sirtuins are also directly involved in endothelial function,

atherosclerosis, and thrombosis.141 This dissertation is focusing on the role of

Sirtuin3andSirtuin6inCVD.

Sirtuin3incardiovasculardisease

Sirtuin 3 (Sirt3) is a mitochondrial deacetylase, which affects acetylation of

hundreds of mitochondrial proteins and thereby maintains mitochondrial

functionandhomeostasis.131,147-149

In times of low energy, NAD+ levels rise and activate Sirt3, which in turn

deacetylates and thus activates long-chain acyl CoA dehydrogenase (LCAD),

acetylcoenzymeA-synthetase2(AceCS2),glutamatedehydrogenase(GDH),and

isocitratedehydrogenase2(IDH2)(Figure9).150-152LCADandAceCS2generate

acetyl coenzyme A (Acetyl-CoA) via oxidation of fatty acids and conversion of

acetate, respectively.150,151 GDH and IDH2 are involved in the generation ofα-

ketoglutarate.152-154 Both acetyl-CoA and α-ketoglutarate are important

substratesinthetricarboxylicacid(TCA)cycleandhenceactivateit,whichleads

to improved regeneration of NADH from NAD+. NADH is needed to fuel the

oxidative phosphorylation cascade to generate energy in form of adenosine

triphosphate(ATP).

Sirt3isnotonlyindirectlyprovidingNADHfortheoxidativephosphorylation,it

isalsoabletoactivatecomplexI,IIIandVofthiscascadedirectly,andcomplexII

viadeacetylationofsuccinatedehydrogenase(SDH)(Figure9).155-158Againthis

leads to an increased generation of ATP and the cell can keep up energy

productioninabsenceofnutrientswiththesemechanisms.

During thesynthesisofATP in theoxidativephosphorylationcascade,ROSare

generatedasby-products.159Infact,mitochondriaareamajorsourceofcellular

ROS, as approximately 1-2% of all oxygen that is consumed by oxidative

phosphorylation isconverted tosuperoxide(O2-)due to leakage.160 Superoxide

dismutase 2 (SOD2) is the main scavenger of O2- in mitochondria. It directly

converts O2- to hydrogen peroxide (H2O2), which is furthermore converted to

water by catalase (CAT) or glutathione peroxidase.29,30 Sirt3 stimulates this

processbyactivatingtranscriptionfactorFoxo3a,whichupregulatesexpression

of SOD2 and CAT (Figure 9).161 Moreover, Sirt3 deacetylates SOD2 directly at

Page 29: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

22

lysine(K)58,89and122,whichareadjacenttotheactivesiteofSOD2,andthus

increasesitsenzymaticactivityandcapacitytoscavengeO2-.162,163

Figure9.TheroleofSirt3inmitochondrialhomeostasis.Sirt3ismaintainingmitochondrialhomeostasis in lowenergy conditionson three levels: (1)Byactivatingenzymes that generatesubstrates for the tricarboxylic acid (TCA) cycle, it is facilitating regeneration of reducednicotinamideadeninedinucleotide(NADH);(2)BydirectandindirectactivationofcomplexesI,II,III,andVitisincreasingoxidativephosphorylationandgenerationofadenosinetriphosphate(ATP);(3)Byactivatingsuperoxidedismutase2(SOD2)andtranscriptionallyupregulatingSOD2andCatalase (CAT), it is scavenging reactiveoxygen species (ROS).GLUT: glucose transporter;LCAD: long-chain acyl CoA dehydrogenase; AceCS2: acetyl coenzyme A-synthetase 2; IDH2:isocitrate dehydrogenase 2; GDH: glutamate dehydrogenase; SDH: succinate dehydrogenase;ADP: adenosine diphosphate; Pi: inorganic phosphate.Adapted fromHoutkooperetal.,NatRevMolCellBiol,2012.145

AnexcessofROSinthemitochondriamayinducemitochondrialdysfunctionand

apoptosis,leadingtoageingandage-relateddiseases.28Consequently,deletionof

Sirt3inmiceacceleratesdevelopmentofdiabetes,metabolicsyndrome,andage-

related hearing loss, and induces pulmonary artery hypertension.153,156,164,165

Interestingly, these effects in Sirt3-depleted mice are only obvious, if an

additional stressor, such as a chronic high fat diet is used to challenge the

system.148,164Along these lines,Sirt3 isable topreventcardiachypertrophyby

decreasing ROS levels via SOD2 and CAT, and by regulating themitochondrial

Page 30: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

23

permeability transition pore to prevent mitochondrial dysfunction.161,166 Sirt3

also protects cultured endothelial cells from mitochondrial ROS and

cardiomyocytes from stress-induced apoptosis.167,168 Finally, Sirt3 has been

associatedwithlongevityinhumans.137,169

Prior to the work presented in this dissertation, the role of Sirt3 in

atherosclerosis, endothelial function, and arterial thrombosis had not been

investigated.

Sirtuin6incardiovasculardisease

Sirtuin6(Sirt6)isanuclear-locatedsirtuinthatactsasdeacetylase,deacylaseof

long-chain fatty acyl groups, and as ADP-ribosyltransferase.170 Sirt6 exerts a

wide range of effects on metabolism, inflammation, and ageing. Indeed, a

constitutiveglobaldeletionofSirt6inmiceleadstoanaging-likephenotypeand

severe hypoglycaemia, which causes 60% of the animals to die at an age of

approximately4weeks,andtherestwithin1year.171,172OverexpressionofSirt6,

on the otherhand, is able to increase lifespan inmalemice andprotects from

consequences of diet-induced obesity.173 Of Sirt6’s molecular functions, the

deacetylationoflysinesofhistone3(H3)areespeciallywellcharacterisedandto

date, the lysines (K) 9, 18 and 56 of H3 have been identified as deacetylation

targets.174-176

Sirt6mediatesglucosehomeostasisviaH3deacetylation-dependentinhibitionof

expression of HIF1α-dependent glycolytic genes, and via direct acetylation of

general control non-repressed protein 5 (GCN5), which controls hepatic

gluconeogenesis.177,178Inthesamefashion,Sirt6actsasatumoursuppressorby

inhibitingaerobicglycolysisintumourcells.179Sirt6isfurthermoreimplicatedin

tumour suppression, as it represses NF-κB-mediated gene-transcription of

survivin- and c-MYC-mediated ribosomal biogenesis in cancer cells (Figure

10).179,180 Interestingly in some studies, Sirt6 has been shown to play an

oncogenic role.181,182 This is likely due to the function of Sirt6 as a keeper of

genomicstability.170

Sirt6playsanimportantroleinthemaintenanceofgenomicstabilitybyaffecting

telomerestructureandfunctionandbymediatingDNArepair.Viadeacetylation

ofH3K9andH3K56,Sirt6facilitatestheproperassociationofWernersyndrome

protein(WRN)withtelomericchromatinandhenceregulatesadequatecapping

of telomeres.174,183,184 Additionally, Sirt6 is involved in DNA repair, especially

double-strand break (DSB) repair. It ADP-ribosylates poly [ADP-ribose]

Page 31: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

24

polymerase1(PARP1),aproteinmediatingbaseexcisionandDSBrepair.171,185

Furthermore,itprotectsfromDSBandimproveshomologousrecombination,by

deacetylating C-terminal binding protein interacting protein (CtIP), stabilises

DNA-dependentproteinkinaseatchromatinforDSBrepair,andrecruitssucrose

nonfermenting2homologue (SNF2H) toDNA-breaksites tomediate repair.186-

188 These observations highlight a beneficial role of Sirt6 in ageing, which is

furthermore supported by the notion that Sirt6 can translocate into the

cytoplasminstressconditionswhereitpromotesdephosphorylationofRas-GAP

SH3domainbindingprotein(G3BP),whichregulatesstructureanddynamicsof

stressgranules(Figure10).189

Figure 10. Sirt6 cellular functions and their impact on organismal biology and disease.

Sirt6primarily functionsasanH3K9andH3K56histonedeacetylase thatdecreaseschromatinaccessibility for transcription factors such as nuclear factor kappa (NF-κB) or c-JUN to theirrespectivepromotersand thus inhibitsexpressionof their targetgenes.Sirt6canalsoregulateproteinactivity throughdirector indirectdeacetylation,deacylation,andADP-ribosylation.Viathesemechanisms,Sirt6 ismediating stress response,DNArepair, glucosemetabolism, cancer,telomeremaintenance, lipidmetabolism,andinflammation.Solidarrow:Sirt6directlymodifiesthe protein or directly affects histone deacetylation at the promoters of target genes. Dashedarrow: Sirt6 deacetylation activity is necessary, but is not direct. Red arrows: Histonedeacetylation. P (phosphorylation), Ac (acetylation) and R (ADP-ribosylation). Adapted fromKugeletal.,TrendsBiochemSci,2014.170

Page 32: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

25

Sirt6 also has beneficial functions in preventing the development ofmetabolic

CVDriskfactors.Notonlymayitbeatherapeutictargettoimprovediabetesdue

to its involvement in glucosemetabolism, it also positively affects blood lipid

levels.190-192 By deacetylation of H3K9 and H3K56, Sirt6 inhibits FoxO3-

dependentexpressionofproproteinconvertasesubtilisin/kexintype9(PCSK9)

gene, which is promoting degradation of LDL-receptor, and of the sterol-

regulatoryelementbindingprotein(SREBP)gene,akeyregulatorofcholesterol

biosynthesis(Figure10).191-193

Sirt6 canalso regulate inflammatory responsesand,dependingon the context,

actspro-oranti-inflammatory.Acylatingalong-chainfattyacyllysine,Sirt6can

catalysethehydrolysisoflysineK19andK20oftumournecrosisfactor-α(TNF-

α), triggering TNF-α secretion from the cell.194 TNF-α is an important pro-

inflammatory mediator that triggers transcription of NF-κB- and AP-1-

dependent pro-inflammatory genes. On the other hand, Sirt6 is able to inhibit

exactlythesetwotranscriptionfactors.ByassociationwithNF-κBsubunitRelA

(p65)andAP-1subunitc-JUN,Sirt6deacetylatesH3K9andrepressestheactivity

ofNF-κB-andAP-1(Figure10).195,196

The interaction of Sirt6 and c-JUN is also thought to protect from cardiac

hypertrophy and heart failure.197,198 In a mouse model of atherosclerosis,

deletion of one Sirt6-allele caused endothelial dysfunction and increased

atherosclerosis.199 In vitro studies suggest, that these effects are triggered by

increased expression of VCAM-1 and induction of pro-inflammatory cytokines

viaNF-κBinendothelialcells.199,200

However,theroleofSirt6inarterialthrombosisremainselusive.

Page 33: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

26

5 Hypothesesandresearchaims

Having inmindtherolesofSirt3andSirt6 inmetabolicsyndrome,ageing,and

stress, we hypothesised that these two proteins are protective in the

development and propagation of CVD. Therefore, we aimed to investigate the

effect of loss of Sirt3 on atherosclerosis, endothelial dysfunction, and arterial

thrombosis.BecausetheroleofSirt6inendothelialfunctionandatherosclerosis

was already under investigation, we focused on determining the effect of

endothelialspecificlossofSirt6onarterialthrombosis.

5.1 TheroleofSirt3inatherothrombosis

Hypothesis

Loss of Sirt3 accelerates atherosclerosis, causes endothelial dysfunction, and

increasesarterial thrombosisby impairingSirt3-mediatedanti-oxidantdefence

mechanisms.

Specificaims

Sirt3inatherosclerosis

a. Characterisation of the effect of Sirt3 deficiency on atherosclerosis in

LDL-receptorknockoutmicefedahigh-cholesteroldiet

b. Assessmentof theeffectof Sirt3deficiencyon systemicoxidative stress

and metabolism in LDL-receptor knockout mice fed a high-cholesterol

diet

Sirt3inendothelialfunction

c. EvaluationoftheeffectoflossofSirt3onendothelialfunctioninmicefed

ahigh-cholesteroldiet

d. UnravellingofthemoleculareffectofSirt3deficiencyonculturedhuman

aorticendothelialcells

Sirt3inarterialthrombosis

e. Assessment of the effect of loss of Sirt3 on arterial thrombosis inmice

stressedwithbacteriallipopolysaccharide

f. Characterisation of the cell type and mechanism by which Sirt3 may

influencearterialthrombosis

Page 34: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

27

5.2 TheroleofSirt6inarterialthrombosis

Hypothesis

Endothelium-specificlossofSirt6promotesthrombosisbyactivatingNF-κBand

AP-1mediatedpro-inflammatorypathwaysinendothelialcells.

Specificaims

a. Generation and characterisation of endothelium-specific Sirt6 knockout

mice

b. EvaluationoftheeffectofendotheliallossofSirt6onarterialthrombosis

c. Assessmentof themolecular effectsof Sirt6deficiencyonhumanaortic

endothelialcells

Page 35: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

28

6 Results

6.1 Deletion of Sirt3 does not affect atherosclerosis but accelerates

weight gain and impairs rapid metabolic adaptation in LDL receptor

knockoutmice:implicationsforcardiovascularriskfactordevelopment

Authors:

StephanWinnik,Daniel S. Gaul, Frédéric Preitner, Christine Lohmann, Julien

Weber,Melroy X.Miranda, Yilei Liu, Lambertus J. van Tits, JoséMaríaMateos,

Chad E. Brokopp, Johan Auwerx, Bernard Thorens, Thomas F. Lüscher, and

ChristianM.Matter

Statusofthemanuscript:

Publishedin: BasicResearchinCardiology2014Jan;109(1):399.

Publishedonline: 27December2013

DOI: 10.1007/s00395-013-0399-0

PMID: 24370889

License: Open access article under the terms of the Creative

CommonsAttributionLicense

AuthorcontributionsDanielS.Gaul:

- Planning, data acquisition, analysis, statistical evaluation, and

interpretationoftherevisionexperimentsforBasicResCardiol.

- Contributionstotheindividualfigures:

o Figure4:contributedsubfigures4B,C,D,E,F,GandI

o SupplementalFigure1(S1):contributedthewholefigure

o SupplementalFigure2(S2):contributedthewholefigure

o SupplementalFigure3(S3):contributedthewholefigure

- Editingandproofreadingofthemanuscript

Page 36: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

29

Page 37: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

30

Page 38: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

31

Page 39: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

32

Page 40: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

33

Page 41: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

34

Page 42: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

35

Page 43: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

36

Page 44: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

37

Page 45: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

38

Page 46: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

39

Page 47: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

40

Page 48: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

41

Page 49: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

42

Page 50: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

43

Page 51: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

44

Deletion of Sirt3 does not affect atherosclerosis but

accelerates weight gain and impairs rapid metabolic

adaptation in LDL receptor knockout mice – Implications for

cardiovascular risk factor development

Stephan Winnik1, 2, Daniel S. Gaul1, Frédéric Preitner3, Christine Lohmann1,

Julien Weber1, Melroy X. Miranda1,6, Yilei Liu1, Lambertus J. van Tits1, José

María Mateos4, Chad E. Brokopp5, Johan Auwerx6, Bernard Thorens3, Thomas

F. Lüscher1,7, and Christian M. Matter1,7

1) Division of Cardiology, Dept. of Medicine, University Hospital Zurich, Zurich, Switzerland and Cardiovascular

Research, Institute of Physiology, University of Zurich, Zurich, Switzerland

2) Division of Cardiology and Department of Medicine, GZO – Regional Health Centre Wetzikon, Wetzikon, Switzerland

3) Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland

4) Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland

5) Swiss Center for Regenerative Medicine, University Hospital Zurich, Zurich, Switzerland;

6) Laboratory of Integrative Systems Physiology, School of Life Science, Ecole Polytechnique Fédérale de Lausanne,

Lausanne, Switzerland

7) Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland

Running title: Sirt3 in Atherosclerosis & Metabolism

Key words: Sirtuins; Sirtuin 3; atherosclerosis; metabolism; oxidative stress

SUPPLEMENTAL MATERIAL

Page 52: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

Winnik S., Gaul D.S. et al., Sirt3 in Atherosclerosis & Metabolism, Supplemental Material

45

Figure S1: Loss of Sirt3 does not increase aortic oxidative DNA damage.

Figure S1: Eight-week old male LDLR-/- and LDLR-/-Sirt3-/- mice were fed a high-

cholesterol diet (1.25% w/w) for 12 weeks before aortae were harvested. Aortic DNA

was isolated and relative oxidative damage of genomic (A) and mitochondrial DNA

(B) was assessed using quantitative PCR. (A) Lesion frequency and the resulting

copy number of ß-Globin served as surrogate for genomic DNA damage. (B) Lesion

frequency and the resulting copy number of a 117bp mitochondrial DNA fragment

served as surrogate for mitochondrial DNA damage. Box plots show interquartile

ranges, whiskers indicate minima and maxima.

Page 53: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

Winnik S., Gaul D.S. et al., Sirt3 in Atherosclerosis & Metabolism, Supplemental Material

46

Figure S2: Loss of Sirt3 does not affect aortic expression levels of major

NADPH regenerating enzymes.

Figure S2: Eight-week old male LDLR-/- and LDLR-/- Sirt3-/- mice were fed a high-

cholesterol diet (1.25% w/w) for 12 weeks before mice were harvested and mRNA

was isolated. Aortic expression analyses of the key NADPH regenerating enzymes

were assessed using quantitative PCR. (A) Malic enzyme. (B) NADPH

transhydrogenase. (C) Glucose-6-phosphate dehydrogenase (Glc-6-phosphate

dehydrogenase). (D) 6-Phosphogluconate dehydrogenase. (E) Isocitrate

dehydrogenase 2 (IDH2). Box plots show interquartile ranges, whiskers indicate

minima and maxima.

Page 54: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

Winnik S., Gaul D.S. et al., Sirt3 in Atherosclerosis & Metabolism, Supplemental Material

47

Figure S3: Sirt3 deficiency leads to hepatic global mitochondrial

hyperacetylation both after high-cholesterol diet and normal chow.

Figure S3: Eight-week old male Sirt3-/-, Sirt3-/- LDLR-/-, and wiltdtype mice,

respectively, were fed a high-cholesterol diet (1.25% w/w) or normal chow for 12

weeks before mice were harvested. Mitochondrial protein was isolated from livers (A

& B) and gastrocnemius muscle, respectively, electrophoretically separated and

probed with anti-acetyl lysine (α-AcK). (A) Hepatic mitochondrial protein acetylation

after 12 weeks of high-cholesterol diet. (B) Hepatic mitochondrial protein acetylation

after 12 weeks of normal chow. (C) Gastrocnemic mitochondrial protein acetylation

after 12 weeks of high-cholesterol diet. ATP-synthase subunit ß (ATPB) served as

loading control. Data are presented as means ± SEM with superimposition of

individual data points.

Page 55: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

Winnik S., Gaul D.S. et al., Sirt3 in Atherosclerosis & Metabolism, Supplemental Material

48

Figure S4: Loss of Sirt3 does not affect epididymal white adipose tissue, liver

or spleen mass in LDLR-/- mice.

Figure S4: Eight-week old male LDLR-/- and LDLR-/-Sirt3-/- mice were fed a high-

cholesterol diet (1.25% w/w) for 12 weeks before mice were harvested. (A)

Epididymal white adipose tissue (WAT) mass. (B) Liver mass. (C) Spleen mass. Data

are presented as means ± SEM with superimposition of individual data points.

Page 56: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

Winnik S., Gaul D.S. et al., Sirt3 in Atherosclerosis & Metabolism, Supplemental Material

49

Figure S5: Loss of Sirt3 does not affect metabolic substrate preference or food

intake.

Figure S5: After a 12-week high-cholesterol diet (1.25% w/w) different metabolic

parameters were assessed in individually-caged LDLR-/- and LDLR-/-Sirt3-/- mice

during five light cycles. (A) Respiratory quotient averaged per day/night (left panel);

respiratory quotient drop during fasting, determined by subtracting the individual, fed

(Night 3) to fasted (Night 4) averages (center panel, « Delta N3 vs. N4 ») and

respiratory quotient rebound upon refeeding, determined by subtracting refed (Night

5) to fasted (Night 4) averages (right panel, « Delta N4 vs. N5 »). (B) Cumulative,

real-time feeding (left panel) and total feeding (right panel) over the whole

experiment. (C) Body weights before (Day 0), during (Day 3) and after (Day 5) the

experiment. Data are presented as means ± SEM, with superimposition of individual

data points in « Delta » panels. N=Night, D=Day. *) p<0.05 compared with LDLR-/-

Sirt3-/- mice.

Page 57: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

Winnik S., Gaul D.S. et al., Sirt3 in Atherosclerosis & Metabolism, Supplemental Material

50

SUPPLEMENTARY METHODS

Tissue harvesting and processing

Mice were anesthetized using isoflurane. After medial thoraco- and laparotomy the

left ventricle was punctured and blood was drawn. Thereafter, the right atrium was incised and the vascular system was rinsed briefly with cold normal saline (0.9% w/v)

before organs were explanted. For histological examination, tissue was embedded in

OCT (optimal cutting temperature) compound (Tissue-Tek) and immediately frozen on dry ice; for biochemical analyses samples were snap frozen in liquid nitrogen. All

samples were stored at -80°C until analysis.

Page 58: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

51

6.2 MildendothelialdysfunctioninSirt3knockoutmicefedahigh-

cholesteroldiet:protectiveroleofanovelC/EBP-β-dependent

feedbackregulationofSOD2

Authors:

Daniel S. Gaul*, StephanWinnik*, Giovanni Siciliani, Christine Lohmann, Lisa

Pasterk, Natacha Calatayud, Julien Weber, Urs Eriksson, Johan Auwerx,

LambertusJ.vanTits,ThomasF.Lüscher,andChristianM.Matter

*Contributedequally

Statusofthemanuscript:

Publishedin: BasicResearchinCardiology2016May;111(3):33.

Publishedonline: 12April2016

DOI: 10.1007/s00395-016-0552-7

PMID: 27071400

License: Open access article under the terms of the Creative

CommonsAttributionLicense

AuthorcontributionsDanielS.Gaul:

- Planning, data acquisition, analysis, statistical evaluation, and

interpretationofexperiments

- Contributionstotheindividualfigures:

o Figure1:contributedsubfigures1AandC

o Figures3and4:contributedthewholefigures

o SupplementalFigures3and4(S3andS4):contributedthewhole

figureS3andsubfiguresS4A-S4D

o Supervision of visiting PhD student Lisa Pasterk and Master

student Natacha Calatayud, who, in collaboration with DSG

contributedFigure5,S4EandS5.

- Editingandproofreadingofthemanuscript

Page 59: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

52

Page 60: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

53

Page 61: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

54

Page 62: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

55

Page 63: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

56

Page 64: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

57

Page 65: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

58

Page 66: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

59

Page 67: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

60

Page 68: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

61

Page 69: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

62

Page 70: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

63

Page 71: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

64

Page 72: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

65

Page 73: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

66

Page 74: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

67

MildendothelialdysfunctioninSirt3knockoutmicefedahigh-cholesteroldiet

ProtectiveroleofanovelC/EBP-ß-dependentfeedbackregulationofSOD2

StephanWinnik1,2*#,DanielS.Gaul2,5*,GiovanniSiciliani2,ChristineLohmann2,LisaPasterk2,NatachaCalatayud2,JulienWeber2,UrsEriksson2,3,JohanAuwerx4,

LambertusJ.vanTits2,ThomasF.Lüscher1,2,5,ChristianM.Matter1,2,5#

*Equalcontribution

1UniversityHeartCenterZurich,DepartmentofCardiology,UniversityHospitalZurich,Zurich,Switzerland2CenterforMolecularCardiology,UniversityofZurich,Schlieren,Switzerland3DivisionofCardiologyandDepartmentofMedicine,GZORegionalHealthCenterWetzikon,Wetzikon,Switzerland4LaboratoryofIntegrativeSystemsPhysiology,SchoolofLifeScience,EcolePolytechniqueFédéraledeLausanne,Lausanne,Switzerland5ZurichCenterforIntegrativeHumanPhysiology,UniversityofZurich,Zurich,Switzerland

SupplementaryMaterial/OnlineResource

Runningtitle:Sirt3inEndothelialFunction

Keywords:Sirt3,oxidativestress,SOD2,C/EBP-ß,endothelialfunction

#Correspondence:StephanWinnik,M.D.,Ph.D.UniversityHeartCenterZurichDepartmentofCardiologyUniversityHospitalZurichRaemistr.100,8091ZurichSwitzerlandE-mail:[email protected]

ChristianM.Matter,M.D.UniversityHeartCenterZurichDepartmentofCardiologyUniversityHospitalZurichRaemistr.100,8091ZurichSwitzerlandE-mail:[email protected]

Page 75: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

Gaul D.S., Winnik S. et al., Sirt3 in Endothelial Function, Supplemental Material

68

FigureS1–Aorticrelaxationisendothelium-andnitricoxide(NO)-dependent

Figure S1 – Relaxation of aortic rings from wild-type and Sirt3-/- mice in

response to sodiumnitroprusside (SNP) following a normal diet (A) or a high

cholesteroldiet(B).(C)Relaxationofaorticringsfromwild-typeandSirt3-/-mice

fedanormaldietinresponsetoacetylcholine(ACh)afterpreincubationwithL-

nitroarginine methyl ester (L-NAME), an inhibitor of endothelial nitric oxide

synthase. n = 9 to 11 per group, quantification of the areas under the curve

(AUC), boxplots show interquartile ranges, whiskers indicate minima and

maxima.

Relaxation to sodium nitroprusside (SNP)

Re

laxa

tion

[% p

reco

ntra

ctio

n]

1E-0

9

3E-0

9

1E-0

8

3E-0

8

1E-0

7

3E-0

7

1E-0

6

3E-0

6

1E-0

5

3E-0

5

1E-0

4

-20

0

20

40

60

80

100

120

SNP [mM]

wildtype

Sirt3 k.o.

Area under the curve

WT

Sirt3

ko

050

700

800

900

1000

1100

AU

C [arb

itra

ry u

nits]

A)

p=0.5457

B)

p=0.5453

Relaxation to sodium nitroprusside (SNP) Area under the curve

1E-0

9

3E-0

9

1E-0

8

3E-0

8

1E-0

7

3E-0

7

1E-0

6

3E-0

6

1E-0

5

3E-0

5

1E-0

4

SNP [mM]

-20

0

20

40

60

80

100

120Re

laxa

tion

[% p

reco

ntra

ctio

n]

wildtype

Sirt3 k.o.

WT

Sirt3

ko

0

200

400

600

AU

C [arb

itra

ry u

nits]

p=0.1569

C)

Area under the curve

1E-0

9

3E-0

9

1E-0

8

3E-0

8

1E-0

7

3E-0

7

1E-0

6

3E-0

6

1E-0

5

3E-0

5

1E-0

4

ACh [mM]

-80

0

-60

-40

-20

20

40

Re

laxa

tion

[% p

reco

ntra

ctio

n]

wildtype

Sirt3 k.o.

WT

Sirt3

ko

0

50

600

800

1000

1100

1200

700

900

AU

C [arb

itra

ry u

nits]

Relaxation to acetylcholine (ACh)

following L-NAME (0.3 mM)

normal diet

high-cholesterol diet

hnormal diet

Page 76: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

Gaul D.S., Winnik S. et al., Sirt3 in Endothelial Function, Supplemental Material

69

FigureS2–BodyweightdoesnotdifferbetweenSirt3-/-andwildtypecontrols

Figure S2 – (A) Body weights ofwild-type and Sirt3-/- mice before subjecting

themtoorganchamberexperiments.

A)

wild

type

Sirt3

k.o.

0

20

40

60

weig

ht [g

]

n.s.

body weight

Page 77: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

Gaul D.S., Winnik S. et al., Sirt3 in Endothelial Function, Supplemental Material

70

FigureS3–Expressionofglutathioneperoxidase,xanthineoxidase,thioredoxin1

and 2, and thioredoxin-dependent peroxide reductase are unaltered following

transientknockdownofSirt3

Figure S3 – Expression analyses of (A) glutathione peroxidase, (B) xanthine

oxidase, (C) thioredoxin 1, (D) thioredoxin 2, (E) thioredoxin-dependent

peroxide reductase (PRDX3), and (F, G) NADPH oxidase subunits p47phox and

p22phox inHAECfollowingtransientknockdownofSirt3,usingquantitativePCR

(A,C-G leftpanel)andwesternblotanalysis (B,Grightpanel), respectively.At

least three independent experiments in biological triplicates were performed.

Scr=scrambledcontrol.

rela

tive m

RN

A e

xpre

ssio

n

Glutathione peroxidase

0.0

0.5

1.0

1.5 p=0.4667

scr

siSirt

3

A) B)

Xanthine oxidase

scr

siSirt

3

rela

tive p

rote

in e

xpre

ssio

n

0.0

0.5

1.0

2.0

1.5

p=0.1000

E)

PRDX3

scr

siSirt

3

rela

tive m

RN

A e

xpre

ssio

n

0.0

0.5

1.0

1.5 p=0.5961

rela

tive m

RN

A e

xpre

ssio

n

Thioredoxin 1

p=0.1951

0.0

0.5

1.0

1.5

scr

siSirt

3

rela

tive m

RN

A e

xpre

ssio

n

Thioredoxin 2

0.5

1.0

1.5 p=0.5629

scr

siSirt

3

0.0

C) D)

F) G)

rela

tive m

RN

A e

xpre

ssio

n

NADPH oxidase (p47phox)

0.0

0.5

1.0

p=0.86761.5

scr

siSirt

3

rela

tive m

RN

A e

xpre

ssio

n

NADPH oxidase (p22phox)

0.0

0.5

1.0

1.5

2.0 p=0.0051

scr

siSirt

3

ß-actin

scr

siSirt

3sc

r

siSirt

3sc

r

siSirt

3

p22phox

0

1

2

3

4

5

scr

siSirt

3

p=0.5549

rela

tive

pro

tein

expre

ssio

n

Page 78: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

Gaul D.S., Winnik S. et al., Sirt3 in Endothelial Function, Supplemental Material

71

FigureS4–Nitricoxide(NO)generationisnotaffectedbySirt3deficiency

Figure S4 – Expression analyses (western blot) of (A) total eNOS, (B) eNOS

phosphorylated at serine 1177 (p-eNOS(Ser1177)), and (C) eNOS

phosphorylatedat threonine495 (p-eNOS(Thr495)) inHAECuponknockdown

of Sirt3 or control transfection using scrambled siRNA (scr). (D)Western blot

analysesofeNOSun-/couplinguponknockdownofSirt3orcontroltransfection

usingscrambledsiRNA(scr).(E)NitricoxideproductionusingDAF-2diacetate

inHAECuponknockdownofSirt3, control transfectionusingscrambledsiRNA

(scr) or non-transfected (NT) controls. Each condition was assessed with or

without (vehicle) L-NIO, a non-selective nitric oxide synthase inhibitor. ***)

p<0.001, **) p<0.01, n.s. = not significant. Boxpots show interquartile ranges,

whiskersindicateminimaandmaxima.

A)

scr

siSirt

3

p-eNOS (Thr495)

p=0.0286

rela

tive p

rote

in e

xpre

ssio

n

[p-e

NO

S(T

hr4

95)/

tota

l eN

OS

]

0.0

0.5

1.0

1.5

B) C)

rela

tive p

rote

in e

xpre

ssio

n

[p-e

NO

S(S

er1

177)/

tota

l eN

OS

]

0.0

0.5

1.0

1.5

p-eNOS (Ser1177)

p=0.3429

scr

siSirt

3

rela

tive p

rote

in e

xpre

ssio

n

0.0

0.5

1.0

1.5

scr

siSirt

3

eNOS

p=0.2000

ratio

couple

d / u

ncouple

d e

NO

S

0.0

1.0

3.0

4.0

2.0

scr

siSirt

3

eNOS coupling

p=0.0004

D)

eNOS monomer

eNOS dimer

scr

siSirt

3sc

r

siSirt

3sc

r

siSirt

3

rela

tive N

O p

roductio

n o

ver

25 m

in [A

U]

0

200

400

500

300

100

scr

siSirt

3NT

scr

siSirt

3NT

++-

-

+--

L-NIO

vehicle - -

+ +

+

n.s.

n.s.n.s.

n.s.

******

**

E) NO production (DAF-2)

p=0.8427

0

0.5

1.0

1.5

2.0

rela

tive p

rote

in e

xpre

ssio

n

scr

siSirt

3

eNOS dimers eNOS monomers

0

0.5

1.0

2.0

scr

siSirt

3

p=0.004

Page 79: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

Gaul D.S., Winnik S. et al., Sirt3 in Endothelial Function, Supplemental Material

72

FigureS5–LossofSOD2inducestranscriptionofC/EBP-ß

Figure S5 – Expression analyses using quantitative PCR (left hand side) and

westernblotanalysis(righthandside)ofSOD2(A,B),C/EBP-ß(C,D),andSirt3

(F, G) of HAEC following transient knockdown of SOD2 (siSOD2) or control

transfectionwithscrambledsiRNA(scr).Atleastthreeindependentexperiments

inbiologicaltriplicateswereperformed.

scr

siSOD2

0.0

0.5

1.0

1.5

rela

tive m

RN

A e

xpre

ssio

n p<0.00001

SOD2

0.0

0.5

1.0

1.5

2.0

rela

tive p

rote

in e

xpre

ssio

n

scr

siSOD2

p<0.0001

SOD2A) B)

scr

siSOD2

0.0

0.5

1.0

1.5

rela

tive m

RN

A e

xpre

ssio

n 2.0 p=0.9852

Sirt3

0.0

0.5

1.0

1.5

rela

tive p

rote

in e

xpre

ssio

n

2.0

scr

siSOD2

p=0.8490

Sirt3

scr

siSOD2

0.0

2.0

4.0

6.0

8.0

rela

tive m

RN

A e

xpre

ssio

n p<0.0001

C/EBP-ß

0.0

0.5

1.0

1.5

2.0

rela

tive p

rote

in e

xpre

ssio

n

scr

siSOD2

p=0.5897

C/EBP-ß

D)C)

F) G)

Page 80: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

73

6.3 Lossof Sirt3 accelerates arterial thrombosisby increasing formation

ofneutrophilextracellulartrapsandplasmatissuefactoractivity

ThemanuscriptisblockedfrompublicationintheZentralbibliothekZürich

for1year.

Authors:

DanielS.Gaul,JulienWeber,LambertusJ.vanTits,SusannaSluka,LisaPasterk,

Martin F. Reiner, Natacha Calatayud, Christine Lohmann, Roland Klingenberg,

Felix C. Tanner, Giovanni G. Camici, Johan Auwerx, François Mach, Stephan

Windecker,NicolasRodondi,ThomasF.Lüscher,StephanWinnik*,andChristian

M.Matter*

*Contributedequally

Statusofthemanuscript:

Submittedto: EuropeanHeartJournal(EHJ)

Submissiondate: 14June2017

TheattachedmanuscriptistheversionthatwassubmittedtoEHJ.

AuthorcontributionsDanielS.Gaul:

- Planning, data acquisition, analysis, statistical evaluation, and

interpretationofexperiments

- Contributionstotheindividualfigures:

o Figure1:contributedsubfigure1C

o Figure2:contributedsubfigure1A-C

o Figures3and4:contributedthewholefigures

o Figure5:contributedsubfigures5Aand5C

o Figure6:contributedfigure6Aand6B

o Figure7:Contributedwholefigure

o SupplementalFigure1(S1):contributedthewholefigure

o Supplemental Figure 2 (S2): contributed subfigures S2A-C in

collaborationwithMartinF.Reiner

o SupervisionofvisitingPhDstudentLisaPasterk,whocontributed

Figure5Band5D.

- Writing,editing,andproofreadingofthemanuscript

Page 81: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

74

6.4 Endothelial Sirt6 deficiency accelerates arterial thrombosis by

upregulatingtissuefactorandpro-inflammatorycytokines

ThemanuscriptisblockedfrompublicationintheZentralbibliothekZürich

for1year.

Authors:

DanielS.Gaul,NatachaCalatayud,NicoleR.Bonetti,JulienWeber,LambertusJ.

vanTits, LisaPasterk,GiovanniG. Camici, ThomasF. Lüscher andChristianM.

Matter

Statusofthemanuscript:

Manuscriptinpreparation(experimentsinprogress)

AuthorcontributionsDanielS.Gaul:

- Conceptionanddesignofthestudy

- Planning,organization,and,incollaborationwithJulienWeber,generation

ofendothelialspecificSirt6knockoutmouseline

- Planning, data acquisition, analysis, statistical evaluation, and

interpretationofexperiments

- Contributionstotheindividualfigures:

o Figure1:contributedthewholefigure

o Figure2:contributedfigure2B-2EincollaborationwithNicoleR.

Bonetti

o SupervisionofMasterstudentNatachaCalatayud,whocontributed

Figure3and4asapartofherMasterproject: ‘Sirtuin-6protects

humanaorticendothelialcellsfromapro-thromboticphenotype’

- Writing,editing,andproofreadingofthemanuscript

Page 82: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

75

7 Discussion

7.1 Mainfindings

Inthefirstpartofthisdissertation,weinvestigatedtheeffectsofaglobalSirt3

deletion inamousemodel inatherosclerosis,endothelial function,andarterial

thrombosis. We hypothesised that Sirt3 deletion accelerates atherosclerosis,

inducesendothelialdysfunctionandenhancesthrombosisduetoanincreasein

oxidativestress.

In the second part, we focused on the role of Sirt6 in thrombosis. We

hypothesised that Sirt6 depletion in the endothelium increases arterial

thrombosis through the activation of NF-κB and AP-1 pro-inflammatory

pathwaysintheendothelium.

Sirt3inatherosclerosis

ToassesstheeffectsofSirt3inatherosclerosis,wegeneratedSirt3-/-miceonthe

backgroundofanLDL-Rknockoutatheroscleroticmousemodelandfedthema

high-cholesterol diet for 12 weeks to induce atherosclerosis. Interestingly,

although levels of the systemic oxidative stressmarkermalondialdehydewere

increased in these mice (Figure 11), deletion of Sirt3 did not affect plaque

burden,fibrouscapthickness,necroticcorediameter,orplaquemacrophageand

T-cell infiltration.However, loss of Sirt3was coupled to an acceleratedweight

gainandimpairedcapabilitytocopewithrapidchangesinnutrientsupply.

Sirt3inendothelialfunction

Secondly, we fed Sirt3-/- mice a high-cholesterol diet for 12 weeks and

subsequently evaluated endothelial function. We showed that Sirt3 deficiency

blunts SOD2 activity and increases levels of superoxide in endothelial cells in

vitro.However, endothelial functionassessedby aortic relaxation capacitywas

onlymildlyimpairedinSirt3-/-mice(Figure11).Supplementingtheaortaewith

pegylatedSOD,rescuedtheimpairedrelaxationcapacity.Asapotentialcausefor

themildeffect,weidentifiedanovelC/EBP-β-dependentfeedbackupregulation

of SOD2, which is able to protect the endothelium from oxidative stress in

absence of Sirt3. Inactivating this rescuemechanism enhanced endothelial cell

death.

Page 83: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

76

Sirt3inarterialthrombosis

Furthermore, we tested the effect of Sirt3 deficiency on laser-induced arterial

thrombosisinSirt3-/-micestimulatedwithLPS.Timetothromboticocclusionin

thesemicewas reducedbyhalf compared to thecontrolgroup.Moreover, clot

formation was accelerated and clot stability increased. We discovered higher

levels of circulating TF in the plasma and an increasedNET formation rate in

Sirt3-deficientneutrophilsasreasonsforacceleratedthrombosis(Figure11).In

linewith this observation, transcription of SOD2 inmurine Sirt3-/- neutrophils

wasdecreasedandleukocytesofpatientsshowedareductioninSOD2,aswellas

Sirt3,afterSTEMI.

Figure 11. The effects of global loss of Sirt3 and endothelial loss of Sirt6 on the

vasculature.Left:GloballossofSirt3leadstoincreasedsystemicreactiveoxygenspecies(ROS),increased levels of circulating soluble tissue factor (TF) and increased formationof neutrophilextracellulartraps(NETs).Furthermore,ROSinendothelialmitochondriaisincreased.Allthesechangesleadtoendothelialdysfunctionandacceleratedarterialthrombosis.AtherosclerosiswasnotaffectedbySirt3deficiencyinoursetting.Right:Endothelium-specificdeletionofSirt6leadstoacceleratedthrombosisviaincreasedTFexpressionandinflammatorysignallinginendothelialcells.

Page 84: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

77

Sirt6inarterialthrombosis

Finally, we analysed the effect of endothelium-specific Sirt6 deficiency on

arterial thrombosis. Time to thrombotic occlusion in endothelial Sirt6-/- mice

occurred 45% faster compared to control mice, after inducing arterial

thrombosiswith a laser. Invitro, Sirt6-deficientHAECs exhibited increased TF

transcription, protein expression and activity, along with transcriptional

upregulationofpro-inflammatorycytokinesthatareinducedbyNF-κBandAP-1

transcriptionfactors(Figure11).

7.2 Keyfindingsincomparisontocurrentliterature

AddedvalueofourSirt3loss-of-functiondata

Opposing our hypothesis, Sirt3 deficiency did not affect atherosclerosis and

inducedonlymildendothelialdysfunction,althoughwecouldprovethatlossof

Sirt3 is increasing oxidative stress systemically and in endothelial cells. We

identified a novel C/EBP-β-dependent feedbackmechanism that explains how

the endothelium is protected from ROS-induced endothelial dysfunction. The

samemechanismcouldexplaina lackofdifferencebetweenSirt3-/-andcontrol

mice in atherosclerosis: when Sirt3 is lacking, the compensatory mechanism

protects the endothelium from dysfunction, which prevents increased cellular

adhesion of leukocytes to the endothelium and subsequently accelerated

progressionofatherosclerosis.Furthermore,ourfindingsshowthatlossofSirt3

onanatherogenicbackgroundimpairsmetabolicadaptationandcausesweight

gain.These findingsare in linewithpreviousonesthatassignedSirt3arole in

thedevelopmentofmetabolicsyndrome.164

To date, we are the only group that investigated Sirt3 in atherosclerosis and

arterial thrombosis, but other groups also examined its implication in

endothelialfunction.Astudy,whichwaspublishedonlyonemonthbeforeours,

confirmed that loss of Sirt3 increases superoxide levels in endothelial cells.201

However, as opposed to our study, Yang and associates showed a more

pronouncedimpairmentofendothelialrelaxationcapacityinSirt3-/-mice.Thisis

likelyduetothedifferentmodeltheychose.Firstofall,theyusedthe129-mouse

strain for their experiments, while we used C57BL/6 mice. The strain can

immensely influencetheoutcomeofanexperiment. Indeed,astudy from1990

showed, thatwhenmiceof16differentgeneticbackgroundsweresubjectedto

anatherogenicdiet, somestrains, includingC57BL/6,werevery susceptible to

atherosclerosis, while others were completely resistant.202 More specifically,

whencomparingaorticcrosssectionsofC57BL/6and129miceafter14weeks

Page 85: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

78

ofatherogenicdiet,C57BL/6miceexhibitedameanlesionareaof4200µm2per

section,while129miceshowedameanareaofonly350µm2.Ourstronginterest

towards the roleofSirt3 inatherosclerosis, togetherwithclearproof fromthe

literature, stating that C57BL/6 background is among the bestmodels for this

disease,servedthebasisforchoosingthesemiceforourprojects.Secondly,Yang

andtheirteamusedadifferentstimulustoactivatetheendothelium.Theyuseda

model of obesity by feeding their mice a 45% high-fat diet for 24 weeks, in

contrast to our 12-week 1.25% high-cholesterol diet. While no significant

differenceinbodyweightbetweenSirt3-/-andwildtypecouldbeobservedinour

model, the weight of 129-Sirt3-/- mice was increased by 26.6% compared to

respective controls.201 As obesity presents a major risk factor for endothelial

dysfunction,itmakessensethatsuchapronouncedincreaseaffectsendothelial

function.203

Our results assessing Sirt3 in arterial thrombosis support our hypothesis and

addneutrophilsasnewprotagonistcells inwhichSirt3playsaprotectiverole.

SinceformationofNETsisdependentongenerationofROS,itislikelythatSirt3

isprotectingneutrophilsfromNETreleasebymediatingROSviaSOD2andCAT,

aspreviouslydescribedinothercontexts.161-163Interestingly,arecentdiscovery

associatedlossofSirt3withanimpairedrecoveryaftermyocardialischaemia.204

Taking into account the detrimental role of NETs after reperfusion, increased

formation of NETs may explain why the recovery after ischaemia in Sirt3-

deficientmiceisimpaired.129

AddedvalueofourSirt6loss-of-functiondata

Thesecondproposedhypothesis,statingthatendothelium-specific lossofSirt6

increasesthrombosisviaactivationofNF-κBandAP-1pathways,wasverifiedby

our results. However, since it is still work in progress, we cannot confidently

conclude if orwhichof the twopro-inflammatory transcription factorsplays a

morepronouncedroleinthrombosisinducedbyendothelialSirt6deficiency.All

theidentifiedupregulatedpro-inflammatorytargetscanbecontrolledbyNF-κB

andAP-1. To date, there are no publications dealingwith Sirt6 in thrombosis.

However,aroleforSirt6inendothelialdysfunctionandatherosclerosishasbeen

described.199,200,205,206 Since these studies specifically investigated endothelial

cells,theresultscanbewellcomparedtoourfindings.Ithasbeendemonstrated

in vitro that human umbilical vein endothelial cells lacking Sirt6 show a pro-

inflammatory phenotype with an increase in expression of cell adhesion

Page 86: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

79

molecules.200,205TheseobservationswerelikelytriggeredbyanincreaseinNF-

κBexpressionandsignallingandareinlinewithourresults.200

On the other hand, one of the studies also showed an increase in pro-

inflammatory interleukins (IL) 1β, 6 and 8, which is something we could not

observe.200 In fact, our findings suggest, that transcription of IL-6 and IL-8 is

downregulatedinSirt6-deficientcells.Themainreasonforthedifferencemaybe

thatinthepublishedstudy,LPSisusedtostimulateendothelialcells.Theuseof

thisbacterialendotoxinmaytriggeran increasedreleaseof interleukinsthat is

evenmore pronounced in the absence of Sirt6. Furthermore, we used human

aorticendothelial cells,whereasourcolleaguesusedumbilicalveinendothelial

cells. It cannot be excluded, that Sirt6 plays different regulatory roles in the

differentcell types.Finally, invivo studiesusingheterozygousdeletionorgene

knockdownofSirt6onanatheroscleroticbackgroundsustainourfindings,that

VCAM-1andICAM-1areupregulatedintheabsenceofSirt6.199,206

7.3 Potentiallimitations

Asalreadydescribed,Sirt3deficiencyperse isnotsufficientto induceastrong

phenotype inmice, unless the system is challenged by another stimulus.148,150

For our studies of atherosclerosis and endothelial function we chose a high-

cholesteroldietasastimulusbecauseitinducesatherosclerosisandactivatesthe

endothelium.ThisdietmayhavebluntedtheeffectofSirt3incontrolmice,asthe

activity of all sirtuins is inhibited upon caloric excess. However, a complete

inhibition of Sirt3 is highly unlikely, since our analyses showed less global

mitochondrialacetylationincontrolscomparedtoSirt3-depletedmice.

Intheendothelialfunctionstudy,weusedahigh-cholesteroldietinSirt3-/-mice

with intact LDL-R. Studies investigating hypercholesterolemia inmice showed

that LDL-R+/+ mice did not have increased cholesterol levels when fed a

moderate cholesterol diet.207 This indicates that Sirt3-/- mice may still cope

rather well with the high-cholesterol diet and possibly suffer merely from

moderatestress.OurfindingsshowthatROSthatisinducedbythisstresscanbe

scavenged via a feedback-upregulation of SOD2 in endothelial cells. Taken

together, these findings suggest that feeding a high-cholesterol diet may have

been too weak of a stimulus to induce a Sirt3-mediated change in the

endothelium.

Page 87: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

80

A stronger stressor was used to assess the function of Sirt3 in arterial

thrombosis. Sirt3-/- micewere stimulatedwith LPS, a bacterial endotoxin that

activatesleukocytesandtriggersformationofROS.208LPSmaynotbeoccurring

in all cases of atherothrombosis and classically this disease is seen as a non-

infectiousinflammatorydisease.Nevertheless,therearestudieschallengingthis

view by associating the gut microbiome with cardiovascular diseases and

neutrophilageing,indicatingthatendogenousbacterialendotoxinsplayarolein

CVD.209,210 Furthermore, neutrophil activation can also be triggered by the

activatedendotheliumandplatelets,indicatingthatapathogenicstimulusisnot

necessarytoinduceneutrophilreactionsinatherothrombosis.111,112

AsSirt6deficiencyhasamuchstrongereffectinmicethandeletionofSirt3,no

additional stimulus was used for these experiments. We generated an

endothelium-specific knockout of Sirt6 to assess the function of this nuclear

sirtuin in thrombosis. In earlier studies, Cre-recombinase expressed under the

Tie2promoterwasusedtoachieveanendothelium-specificdeletion.Itwaslater

shown, however, that Tie2 is also expressed in monocytes/macrophages,

indicatingthatTie2-mediatedknockoutswerenotspecifictotheendothelium.211

Consequently,weemployedamodelthatdeletedexonsofSirt6byuseofaCre-

recombinase, expressed under the vascular endothelial Cadherin (VE-Cadh)

promoter, which is currently thought of as the best method to achieve an

endothelialknockout.212Yet,itmaybepossiblethatothercelltypesalsoexpress

VE-Cadh. Furthermore, in the current state of the project, it is not completely

clear,ifthegeneratedSirt6knockoutreallyworkedasweanticipated.Additional

studiestocharacteriseandprovetheendothelialdeletionofSirt6arenecessary.

Amoregenerallimitationofourstudymaybetheageoftheexperimentalmice.

Weusedrelativelyyoungmiceforourstudies,whereasCVDinhumansusually

develops over long time periods and thus leads to complications only in aged

individuals.Hence,theresultsmaynotberepresentativeoftheeventsinanaged

organism.Infact,inanagedmouse,morepronouncedeffectsoflossofSirt3or

Sirt6inatherothrombosismaybeexpected.

Finally,we only usedmalemice in our studies,whichmay limit the extent to

whichtheresultsarerelevanttofemales.

Page 88: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

81

7.4 Implicationsandoutlook

Sirt3reduceschancesofcardiovascularriskfactordevelopment

EventhoughSirt3doesnotappeartoaffectatheroscleroticplaques,weshowed

that Sirt3-deficient mice on an atherosclerotic background have difficulties in

maintainingmetabolichomeostasisandshowacceleratedgainofweight.Asboth

metabolicdisordersandobesityaremajorriskfactorsforCVD,Sirt3mayplayan

importantroleinthepreventionofcardiovascularriskfactordevelopment.143,203

Thisdoesnotaffectatherosclerosisimmediately,butovertime.Thus,forfuture

studies of Sirt3 in atherosclerosis, it would be interesting to use aged Sirt3-

deficient mice. To additionally reduce a possible blunting effect of a high

energetic diet, such as high-cholesterol diet, on the sirtuins, the LDL-R-/-

/ApoB100mousemodelofatherosclerosiscouldbeused. Inthismousemodel,

thecapabilityofmicetoeditapolipoproteinB(apoB)mRNAisimpaired,sothey

can only synthesise apoB100, which remarkably increases LDL levels and

induces severe atherosclerosis in animalsonanormal chowdiet.213 Finally, as

our results revealed, Sirt3-/- mice have problems to adapt to fast changing

nutrientsupply.Thisfindingcouldbeusedtoinduceadditionalstressbyfasting

themiceonceorincycles,beforeanalyses.

Sirt3protectstheendotheliumfrommitochondrialROS

Our results provide insights into a novel rescue mechanism that protects

endothelialcellsfromROSinabsenceofSirt3.Thishighlightstheimportanceof

ROS scavenging in the vasculature. Asmentioned above, wemay have used a

relativelyweakstressorinoursystem.Usingastrongerstimulus,aswasdoneby

another group, affected endothelial function in Sirt3-/- animals to a greater

extent,comparedtoourmodel.201WecanconcludethatSirt3playsaprotective

role in the endothelium. For future research, it would be interesting to see, if

Sirt3 overexpression preserves endothelial function in mice. Furthermore,

diabetes is a major risk factor for endothelial dysfunction.214 Since several

studies linkedSirt3 to the regulationof insulin sensitivity andprotection from

insulinresistance,itwouldbeparticularlyinterestingtoinvestigateendothelial

functioninSirt3-deficientdiabeticmice.156,201,215

Sirt3regulatesNETformation

As described, NETs are implicated in awide range of diseases, including CVD.

Investigatingarterial thrombosis,our findingsdemonstratethatSirt3 isableto

preventNETformationinneutrophils.Thus,activationofSirt3mayreduceNET

Page 89: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

82

formationindiseasecontextsandimprovepatientoutcome.However,itremains

elusive whether this would also affect neutrophil anti-infectious mechanisms.

Yet, it could be studied using a neutrophil-specific Sirt3 overexpression

approach. Sirt3 could be overexpressed under the promoters of neutrophil-

specificCD18 integrinormyeloid-relatedprotein8, asusedbefore for specific

knockoutapproaches.216,217

Sirt6protectstheendotheliumfrominflammationandapro-thromboticstate

Our further studies uncovered a beneficial role of Sirt6 in arterial thrombosis

andsuggestthatSirt6delaysthrombosisbyprotectingtheendothelium.Itwould

beinterestingtoassessifSirt6candothismoreefficientlywhenitisactivatedor

overexpressedintheendothelium.

WhileSirt6-dependentretentionofNF-κBandAP-1signallingisinthecentreof

attention, the exact underlying mechanism remains unclear. Histone 3

acetylationlevelsshouldbeassessed,alongwithfunctionalstudiesofNF-κBand

AP-1 DNA binding activity. ELISA-based activity assays, that can quantify the

amounts of Sirt6-interaction partners RelA and c-JUN bound to DNA, are

available.Alternatively,phosphorylationofc-JUNandthetranslocationofNF-κB

tothenucleuscouldshedlightonwhich,ifonlyoneofthetranscriptionfactorsis

playing a predominant role. Finally, the results obtained in cell cultures of

HAECs,usingaSirt6knockdownapproach, shouldbeverified inSirt6-/-mouse

endothelialcells.

7.5 Conclusions

For the first time,wedescribeabeneficial role forSirt3 inmajorhallmarksof

CVD, comprising risk factor development, endothelial dysfunction, and arterial

thrombosis, and an advantageous role for endothelial Sirt6 in arterial

thrombosis.Furthermore,ourresultsemphasisethedetrimentalroleofROSand

inflammatorysignallinginthesediseases.

Basedonourresults,wespeculatethatspecificactivationofSirt3andSirt6aids

in the prevention and acute therapy of CVD. Currently, no sirtuin-specific

activators are known. Investing in the discovery of new substances that can

specificallyactivatecertainsirtuinscouldopenawholenewfieldoftherapeutic

possibilitiesforCVD,aswellasothermetabolicandage-relateddiseases.

Page 90: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

83

8 References

1. LozanoR,NaghaviM,ForemanK,etal.Globalandregionalmortalityfrom235causesofdeathfor20agegroups in1990and2010:asystematicanalysisfor the Global Burden of Disease Study 2010. Lancet 2012;380(9859): 2095-128.2. CollaboratorsGMaCoD.Global,regional,andnationallifeexpectancy,all-causemortality,andcause-specificmortalityfor249causesofdeath,1980-2015:asystematicanalysisfortheGlobalBurdenofDiseaseStudy2015.Lancet2016;388(10053):1459-544.3. Piepoli MF, Hoes AW, Agewall S, et al. 2016 European Guidelines oncardiovasculardiseasepreventioninclinicalpractice:TheSixthJointTaskForceof the European Society of Cardiology and Other Societies on CardiovascularDisease Prevention in Clinical Practice (constituted by representatives of 10societiesandby invitedexperts)Developedwith thespecialcontributionof theEuropeanAssociation forCardiovascularPrevention&Rehabilitation (EACPR).EurHeartJ2016;37(29):2315-81.4. GerlandP,RafteryAE,SevčíkováH,etal.Worldpopulationstabilizationunlikelythiscentury.Science2014;346(6206):234-7.5. DanaeiG,FinucaneMM,LuY,etal.National,regional,andglobaltrendsinfastingplasmaglucoseanddiabetesprevalencesince1980:systematicanalysisof health examination surveys and epidemiological studies with 370 country-yearsand2·7millionparticipants.Lancet2011;378(9785):31-40.6. FinucaneMM,StevensGA,CowanMJ,etal.National,regional,andglobaltrendsinbody-massindexsince1980:systematicanalysisofhealthexaminationsurveys and epidemiological studies with 960 country-years and 9·1 millionparticipants.Lancet2011;377(9765):557-67.7. KontisV,Bennett JE,MathersCD,LiG, ForemanK,EzzatiM.Future lifeexpectancy in 35 industrialised countries: projections with a Bayesian modelensemble.Lancet2017;389(10076):1323-35.8. HeidenreichPA,TrogdonJG,KhavjouOA,etal.Forecastingthe futureofcardiovascular disease in the United States: a policy statement from theAmericanHeartAssociation.Circulation2011;123(8):933-44.9. Vasan RS, Benjamin EJ. The Future of Cardiovascular Epidemiology.Circulation2016;133(25):2626-33.10. Blausen.com,Staff.MedicalgalleryofBlausenMedical2014.WikiJournalofMedicineWikiJournalofMedicine2014;1(2).11. Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis.Circulation2004;109(23Suppl1):III27-32.12. BaldaMS,MatterK.Tightjunctions.JCellSci1998;111(Pt5):541-7.13. Ebnet K, Vestweber D. Molecular mechanisms that control leukocyteextravasation: the selectins and the chemokines. Histochem Cell Biol 1999;112(1):1-23.14. Cotran RS, Pober JS. Cytokine-endothelial interactions in inflammation,immunity,andvascularinjury.JAmSocNephrol1990;1(3):225-35.15. Jayakody L, Kappagoda T, Senaratne MP, Thomson AB. Impairment ofendothelium-dependent relaxation: an early marker for atherosclerosis in therabbit.BrJPharmacol1988;94(2):335-46.

Page 91: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

84

16. SuwaidiJA,HamasakiS,HiganoST,NishimuraRA,HolmesDR,LermanA.Long-term follow-up of patients with mild coronary artery disease andendothelialdysfunction.Circulation2000;101(9):948-54.17. CelermajerDS, SorensenKE, GoochVM, et al.Non-invasive detection ofendothelialdysfunction inchildrenandadultsatriskofatherosclerosis.Lancet1992;340(8828):1111-5.18. KashyapVS, Reil TD,MooreWS, et al. Acute arterial thrombosis causesendothelial dysfunction: a newparadigm for thrombolytic therapy. JVascSurg2001;34(2):323-9.19. ElliottHL.Endothelialdysfunction incardiovasculardisease: risk factor,riskmarker,orsurrogateendpoint?JCardiovascPharmacol1998;32Suppl3:S74-7.20. FurchgottRF,ZawadzkiJV.Theobligatoryroleofendothelialcellsintherelaxationofarterialsmoothmusclebyacetylcholine.Nature1980;288(5789):373-6.21. IgnarroLJ,ByrnsRE,BugaGM,WoodKS.Endothelium-derived relaxingfactor frompulmonary artery and vein possesses pharmacologic and chemicalpropertiesidenticaltothoseofnitricoxideradical.CircRes1987;61(6):866-79.22. WinquistRJ,BuntingPB,BaskinEP,WallaceAA.Decreasedendothelium-dependent relaxation in New Zealand genetic hypertensive rats. J Hypertens1984;2(5):541-5.23. Verbeuren TJ, Jordaens FH, Zonnekeyn LL, Van Hove CE, Coene MC,HermanAG.Effectofhypercholesterolemiaonvascularreactivityintherabbit.I.Endothelium-dependent and endothelium-independent contractions andrelaxationsinisolatedarteriesofcontrolandhypercholesterolemicrabbits.CircRes1986;58(4):552-64.24. Ludmer PL, Selwyn AP, Shook TL, et al. Paradoxical vasoconstrictioninducedbyacetylcholineinatheroscleroticcoronaryarteries.NEnglJMed1986;315(17):1046-51.25. Félétou M, Vanhoutte PM. Endothelial dysfunction: a multifaceteddisorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol 2006;291(3):H985-1002.26. DrögeW.Freeradicalsinthephysiologicalcontrolofcellfunction.PhysiolRev2002;82(1):47-95.27. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases:theroleofoxidantstress.CircRes2000;87(10):840-4.28. MurphyMP.Howmitochondriaproducereactiveoxygenspecies.BiochemJ2009;417(1):1-13.29. COHEN G, HOCHSTEIN P. GLUTATHIONE PEROXIDASE: THE PRIMARYAGENTFORTHEELIMINATIONOFHYDROGENPEROXIDEINERYTHROCYTES.Biochemistry1963;2:1420-8.30. Zámocký M, Koller F. Understanding the structure and function ofcatalases:cluesfrommolecularevolutionandinvitromutagenesis.ProgBiophysMolBiol1999;72(1):19-66.31. Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD.Free radicals and antioxidants in human health: current status and futureprospects.JAssocPhysiciansIndia2004;52:794-804.32. Münzel T, Daiber A, Ullrich V, Mülsch A. Vascular consequences ofendothelial nitric oxide synthase uncoupling for the activity and expression of

Page 92: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

85

thesolubleguanylylcyclaseandthecGMP-dependentproteinkinase.ArteriosclerThrombVascBiol2005;25(8):1551-7.33. KugiyamaK,KernsSA,MorrisettJD,RobertsR,HenryPD.Impairmentofendothelium-dependent arterial relaxation by lysolecithin in modified low-densitylipoproteins.Nature1990;344(6262):160-2.34. LibbyP. Inflammation inatherosclerosis.Nature2002;420(6917):868-74.35. DabaghM,JalaliP,TarbellJM.ThetransportofLDLacrossthedeformablearterial wall: the effect of endothelial cell turnover and intimal deformationunderhypertension.AmJPhysiolHeartCircPhysiol2009;297(3):H983-96.36. Nakashima Y, Fujii H, Sumiyoshi S, Wight TN, Sueishi K. Early humanatherosclerosis: accumulationof lipid andproteoglycans in intimal thickeningsfollowedbymacrophageinfiltration.ArteriosclerThrombVascBiol2007;27(5):1159-65.37. KitaT,KumeN,MinamiM,etal.RoleofoxidizedLDLinatherosclerosis.AnnNYAcadSci2001;947:199-205;discussion-6.38. Weber C, ErlW, PietschA, StröbelM, Ziegler-HeitbrockHW,Weber PC.Antioxidants inhibitmonocyteadhesionbysuppressingnuclear factor-kappaBmobilization and induction of vascular cell adhesionmolecule-1 in endothelialcellsstimulatedtogenerateradicals.ArteriosclerThromb1994;14(10):1665-73.39. Cybulsky MI, Gimbrone MA. Endothelial expression of a mononuclearleukocyte adhesion molecule during atherogenesis. Science 1991; 251(4995):788-91.40. Vestweber D. How leukocytes cross the vascular endothelium.Nat RevImmunol2015;15(11):692-704.41. Hsieh CC, Yen MH, Yen CH, Lau YT. Oxidized low density lipoproteininducesapoptosisviagenerationofreactiveoxygenspecies invascularsmoothmusclecells.CardiovascRes2001;49(1):135-45.42. Hochreiter-HuffordA,RavichandranKS.Clearingthedead:apoptoticcellsensing, recognition, engulfment, and digestion.Cold SpringHarbPerspectBiol2013;5(1):a008748.43. Mach F, Sauty A, Iarossi AS, et al. Differential expression of three Tlymphocyte-activating CXC chemokines by human atheroma-associated cells. JClinInvest1999;104(8):1041-50.44. Ikeda U, Matsui K, Murakami Y, Shimada K. Monocyte chemoattractantprotein-1andcoronaryarterydisease.ClinCardiol2002;25(4):143-7.45. TakahashiM,MasuyamaJ,IkedaU,etal.Suppressiveroleofendogenousendothelialmonocyte chemoattractantprotein-1onmonocyte transendothelialmigrationinvitro.ArteriosclerThrombVascBiol1995;15(5):629-36.46. RosenfeldME,Ylä-HerttualaS,LiptonBA,OrdVA,WitztumJL,SteinbergD. Macrophage colony-stimulating factormRNA and protein in atheroscleroticlesionsofrabbitsandhumans.AmJPathol1992;140(2):291-300.47. ShashkinP,DragulevB,LeyK.Macrophagedifferentiation to foamcells.CurrPharmDes2005;11(23):3061-72.48. Galis ZS, SukhovaGK,KranzhöferR, Clark S, LibbyP.Macrophage foamcells from experimental atheroma constitutively produce matrix-degradingproteinases.ProcNatlAcadSciUSA1995;92(2):402-6.

Page 93: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

86

49. MeiselSR,XuXP,EdgingtonTS,etal.Differentiationofadherenthumanmonocytes into macrophages markedly enhances tissue factor proteinexpressionandprocoagulantactivity.Atherosclerosis2002;161(1):35-43.50. Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS. Reactiveoxygenspeciesproducedbymacrophage-derivedfoamcellsregulatetheactivityof vascularmatrixmetalloproteinases in vitro. Implications for atheroscleroticplaquestability.JClinInvest1996;98(11):2572-9.51. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: adynamicbalance.NatRevImmunol2013;13(10):709-21.52. NewtonAH,BenedictSH.LowdensitylipoproteinpromoteshumannaiveTcelldifferentiationtoTh1cells.HumImmunol2014;75(7):621-8.53. DavenportP,TippingPG.Theroleof interleukin-4andinterleukin-12intheprogressionofatherosclerosisinapolipoproteinE-deficientmice.AmJPathol2003;163(3):1117-25.54. Lutgens E, Gorelik L, Daemen MJ, et al. Requirement for CD154 in theprogressionofatherosclerosis.NatMed1999;5(11):1313-6.55. HegyiL,SkepperJN,CaryNR,MitchinsonMJ.Foamcellapoptosisandthedevelopmentof the lipidcoreofhumanatherosclerosis. JPathol1996;180(4):423-9.56. Seimon T, Tabas I. Mechanisms and consequences of macrophageapoptosisinatherosclerosis.JLipidRes2009;50Suppl:S382-7.57. Boyle JJ. Vascular smoothmuscle cell apoptosis in atherosclerosis. Int JExpPathol1999;80(4):197-203.58. SeimonTA,NadolskiMJ,LiaoX,etal.Atherogeniclipidsandlipoproteinstrigger CD36-TLR2-dependent apoptosis in macrophages undergoingendoplasmicreticulumstress.CellMetab2010;12(5):467-82.59. Loree HM, Kamm RD, Stringfellow RG, Lee RT. Effects of fibrous capthickness on peak circumferential stress inmodel atherosclerotic vessels.CircRes1992;71(4):850-8.60. BentzonJF,OtsukaF,VirmaniR,FalkE.Mechanismsofplaqueformationandrupture.CircRes2014;114(12):1852-66.61. Martin P. Wound healing--aiming for perfect skin regeneration. Science1997;276(5309):75-81.62. FalkE,ShahPK,FusterV.Coronaryplaquedisruption.Circulation1995;92(3):657-71.63. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons fromsudden coronary death: a comprehensive morphological classification schemeforatheroscleroticlesions.ArteriosclerThrombVascBiol2000;20(5):1262-75.64. FurieB,FurieBC.Mechanismsofthrombusformation.NEnglJMed2008;359(9):938-49.65. BevilacquaMP,PoberJS,MajeauGR,CotranRS,GimbroneMA.Interleukin1(IL-1)inducesbiosynthesisandcellsurfaceexpressionofprocoagulantactivityinhumanvascularendothelialcells.JExpMed1984;160(2):618-23.66. Semeraro N, Biondi A, Lorenzet R, Locati D, Mantovani A, Donati MB.Direct inductionoftissuefactorsynthesisbyendotoxininhumanmacrophagesfromdiverseanatomicalsites.Immunology1983;50(4):529-35.67. Darbousset R, Thomas GM, Mezouar S, et al. Tissue factor-positiveneutrophils bind to injured endothelial wall and initiate thrombus formation.Blood2012;120(10):2133-43.

Page 94: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

87

68. GiesenPL,RauchU,BohrmannB,etal.Blood-bornetissuefactor:anotherviewofthrombosis.ProcNatlAcadSciUSA1999;96(5):2311-5.69. Bach R, Rifkin DB. Expression of tissue factor procoagulant activity:regulationbycytosoliccalcium.ProcNatlAcadSciUSA1990;87(18):6995-9.70. Maynard JR, Heckman CA, Pitlick FA, Nemerson Y. Association of tissuefactoractivitywiththesurfaceofculturedcells.JClinInvest1975;55(4):814-24.71. BogdanovVY,BalasubramanianV,HathcockJ,VeleO,LiebM,NemersonY.Alternativelysplicedhumantissuefactor:acirculating,soluble,thrombogenicprotein.NatMed2003;9(4):458-62.72. Mackman N, Tilley RE, Key NS. Role of the extrinsic pathway of bloodcoagulation inhemostasis and thrombosis.ArteriosclerThrombVascBiol 2007;27(8):1687-93.73. Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of afunctionalthrombinreceptorrevealsanovelproteolyticmechanismofreceptoractivation.Cell1991;64(6):1057-68.74. Greenberg CS, Miraglia CC, Rickles FR, Shuman MA. Cleavage of bloodcoagulationfactorXIIIandfibrinogenbythrombinduringinvitroclotting.JClinInvest1985;75(5):1463-70.75. Butenas S, Dee JD, Mann KG. The function of factor XI in tissue factor-initiatedthrombingeneration.JThrombHaemost2003;1(10):2103-11.76. Walsh PN. Roles of factor XI, platelets and tissue factor-initiated bloodcoagulation.JThrombHaemost2003;1(10):2081-6.77. RennéT, SchmaierAH,NickelKF,BlombäckM,MaasC. In vivo roles offactorXII.Blood2012;120(22):4296-303.78. Baugh RJ, Broze GJ, Krishnaswamy S. Regulation of extrinsic pathwayfactorXaformationbytissuefactorpathwayinhibitor.JBiolChem1998;273(8):4378-86.79. Esmon CT, Vigano-D'Angelo S, D'Angelo A, Comp PC. AnticoagulationproteinsCandS.AdvExpMedBiol1987;214:47-54.80. Găman AM, Găman GD. Deficiency Of Antithrombin III (AT III) - CaseReportandReviewoftheLiterature.CurrHealthSciJ2014;40(2):141-3.81. Lefrançais E, Ortiz-Muñoz G, Caudrillier A, et al. The lung is a site ofplateletbiogenesisandareservoirforhaematopoieticprogenitors.Nature2017;544(7648):105-9.82. HolinstatM.Normalplateletfunction.CancerMetastasisRev2017.83. Ware JA, Heistad DD. Seminars inmedicine of the Beth Israel Hospital,Boston.Platelet-endotheliuminteractions.NEnglJMed1993;328(9):628-35.84. SmolenskiA.NovelrolesofcAMP/cGMP-dependentsignalinginplatelets.JThrombHaemost2012;10(2):167-76.85. Schäfer A, Bauersachs J. Endothelial dysfunction, impaired endogenousplatelet inhibition and platelet activation in diabetes and atherosclerosis.CurrVascPharmacol2008;6(1):52-60.86. Stalker TJ, Traxler EA, Wu J, et al. Hierarchical organization in thehemostaticresponseanditsrelationshiptotheplatelet-signalingnetwork.Blood2013;121(10):1875-85.87. LismanT,WeeteringsC,deGrootPG.Plateletaggregation:involvementofthrombinandfibrin(ogen).FrontBiosci2005;10:2504-17.88. Walsh PN. Platelet coagulant activities and hemostasis: a hypothesis.Blood1974;43(4):597-605.

Page 95: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

88

89. Gaul DS, Stein S, Matter CM. Neutrophils in cardiovascular disease.EurHeartJ2017;38(22):1702-4.90. Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in theactivation and regulation of innate and adaptive immunity. Nat Rev Immunol2011;11(8):519-31.91. Rigby KM, DeLeo FR. Neutrophils in innate host defense againstStaphylococcusaureusinfections.SeminImmunopathol2012;34(2):237-59.92. Zernecke A, Bot I, Djalali-Talab Y, et al. Protective role of CXC receptor4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis.CircRes2008;102(2):209-17.93. Drechsler M, Megens RT, van Zandvoort M, Weber C, Soehnlein O.Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis.Circulation2010;122(18):1837-45.94. StrokaKM, Levitan I,Aranda-EspinozaH.OxLDLand substrate stiffnesspromote neutrophil transmigration by enhanced endothelial cell contractilityandICAM-1.JBiomech2012;45(10):1828-34.95. Soehnlein O, Xie X, UlbrichH, et al. Neutrophil-derived heparin-bindingprotein (HBP/CAP37) deposited on endothelium enhances monocyte arrestunderflowconditions.JImmunol2005;174(10):6399-405.96. SoehnleinO,ZerneckeA,ErikssonEE,etal.Neutrophilsecretionproductspavethewayforinflammatorymonocytes.Blood2008;112(4):1461-71.97. Lee TD, Gonzalez ML, Kumar P, Grammas P, Pereira HA. CAP37, aneutrophil-derived inflammatory mediator, augments leukocyte adhesion toendothelialmonolayers.MicrovascRes2003;66(1):38-48.98. Herman MP, Sukhova GK, Libby P, et al. Expression of neutrophilcollagenase (matrix metalloproteinase-8) in human atheroma: a novelcollagenolyticpathwaysuggestedby transcriptionalprofiling.Circulation2001;104(16):1899-904.99. Daugherty A, Dunn JL, Rateri DL, Heinecke JW. Myeloperoxidase, acatalystforlipoproteinoxidation,isexpressedinhumanatheroscleroticlesions.JClinInvest1994;94(1):437-44.100. Hosokawa T, Kumon Y, Kobayashi T, et al. Neutrophil infiltration andoxidant-productioninhumanatheroscleroticcarotidplaques.HistolHistopathol2011;26(1):1-11.101. Scannell M, Flanagan MB, deStefani A, et al. Annexin-1 and peptidederivatives are released by apoptotic cells and stimulate phagocytosis ofapoptoticneutrophilsbymacrophages.JImmunol2007;178(7):4595-605.102. StockerR, Keaney JF. Role of oxidativemodifications in atherosclerosis.PhysiolRev2004;84(4):1381-478.103. Massberg S, Grahl L, von Bruehl ML, et al. Reciprocal coupling ofcoagulationandinnateimmunityvianeutrophilserineproteases.NatMed2010;16(8):887-96.104. Vanichakarn P, Blair P, Wu C, Freedman JE, Chakrabarti S. NeutrophilCD40enhancesplatelet-mediatedinflammation.ThrombRes2008;122(3):346-58.105. Steg PG, James SK, Atar D, et al. ESC Guidelines for themanagement ofacute myocardial infarction in patients presenting with ST-segment elevation.EurHeartJ2012;33(20):2569-619.

Page 96: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

89

106. Vinten-Johansen J. Involvement of neutrophils in the pathogenesis oflethalmyocardialreperfusioninjury.CardiovascRes2004;61(3):481-97.107. LittMR,JeremyRW,WeismanHF,WinkelsteinJA,BeckerLC.Neutrophildepletionlimitedtoreperfusionreducesmyocardialinfarctsizeafter90minutesof ischaemia. Evidence for neutrophil-mediated reperfusion injury. Circulation1989;80(6):1816-27.108. Dutta P, Courties G, Wei Y, et al. Myocardial infarction acceleratesatherosclerosis.Nature2012;487(7407):325-9.109. Goldstein JA, Demetriou D, Grines CL, PicaM, ShoukfehM, O'NeillWW.Multiplecomplexcoronaryplaquesinpatientswithacutemyocardialinfarction.NEnglJMed2000;343(13):915-22.110. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellulartrapskillbacteria.Science2004;303(5663):1532-5.111. Etulain J,Martinod K,Wong SL, Cifuni SM, SchattnerM,Wagner DD. P-selectin promotes neutrophil extracellular trap formation inmice.Blood 2015;126(2):242-6.112. GuptaAK,JoshiMB,PhilippovaM,etal.Activatedendothelialcellsinduceneutrophil extracellular traps and are susceptible to NETosis-mediated celldeath.FEBSLett2010;584(14):3193-7.113. YousefiS,SimonHU.NETosis-DoesItReallyRepresentNature's"SuicideBomber"?FrontImmunol2016;7:328.114. JorchSK,KubesP.Anemergingroleforneutrophilextracellulartrapsinnoninfectiousdisease.NatMed2017;23(3):279-87.115. Lood C, Blanco LP, Purmalek MM, et al. Neutrophil extracellular trapsenriched in oxidized mitochondrial DNA are interferogenic and contribute tolupus-likedisease.NatMed2016;22(2):146-53.116. FuchsTA,AbedU,GoosmannC,etal.Novelcelldeathprogram leads toneutrophilextracellulartraps.JCellBiol2007;176(2):231-41.117. Megens RT, Vijayan S, Lievens D, et al. Presence of luminal neutrophilextracellulartrapsinatherosclerosis.ThrombHaemost2012;107(3):597-8.118. BorissoffJI, JoosenIA,VersteylenMO,etal.ElevatedlevelsofcirculatingDNA and chromatin are independently associated with severe coronaryatherosclerosis and a prothrombotic state.ArteriosclerThrombVascBiol 2013;33(8):2032-40.119. Brill A, Fuchs TA, Savchenko AS, et al. Neutrophil extracellular trapspromotedeepveinthrombosisinmice.JThrombHaemost2012;10(1):136-44.120. DeMeyerSF,SuidanGL,FuchsTA,MonestierM,WagnerDD.Extracellularchromatin is an important mediator of ischemic stroke in mice. ArteriosclerThrombVascBiol2012;32(8):1884-91.121. Savchenko AS, Borissoff JI, Martinod K, et al. VWF-mediated leukocyterecruitment with chromatin decondensation by PAD4 increases myocardialischaemia/reperfusioninjuryinmice.Blood2014;123(1):141-8.122. von Brühl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils, andplateletscooperatetoinitiateandpropagatevenousthrombosisinmiceinvivo.JExpMed2012;209(4):819-35.123. de Boer OJ, Li X, Teeling P, et al. Neutrophils, neutrophil extracellulartraps and interleukin-17 associate with the organisation of thrombi in acutemyocardialinfarction.ThrombHaemost2013;109(2):290-7.

Page 97: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

90

124. MangoldA,AliasS,ScherzT,etal.CoronaryneutrophilextracellulartrapburdenanddeoxyribonucleaseactivityinST-elevationacutecoronarysyndromearepredictorsofST-segmentresolutionandinfarctsize.CircRes2015;116(7):1182-92.125. Riegger J, Byrne RA, Joner M, et al. Histopathological evaluation ofthrombusinpatientspresentingwithstentthrombosis.AmulticenterEuropeanstudy:areportofthepreventionoflatestentthrombosisbyaninterdisciplinaryglobalEuropeaneffortconsortium.EurHeartJ2016;37(19):1538-49.126. Stakos DA, Kambas K, Konstantinidis T, et al. Expression of functionaltissue factor by neutrophil extracellular traps in culprit artery of acutemyocardialinfarction.EurHeartJ2015;36(22):1405-14.127. Kambas K, Chrysanthopoulou A, Vassilopoulos D, et al. Tissue factorexpression in neutrophil extracellular traps and neutrophil derivedmicroparticlesinantineutrophilcytoplasmicantibodyassociatedvasculitismaypromotethromboinflammationandthethrombophilicstateassociatedwiththedisease.AnnRheumDis2014;73(10):1854-63.128. FuchsTA,BrillA,DuerschmiedD,etal.ExtracellularDNAtrapspromotethrombosis.ProcNatlAcadSciUSA2010;107(36):15880-5.129. Ge L, Zhou X, Ji WJ, et al. Neutrophil extracellular traps in ischaemia-reperfusion injury-induced myocardial no-reflow: therapeutic potential ofDNase-basedreperfusionstrategy.AmJPhysiolHeartCircPhysiol2015;308(5):H500-9.130. Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-likeproteins.BiochemBiophysResCommun2000;273(2):793-8.131. NakagawaT,GuarenteL. SnapShot: sirtuins,NAD, and aging.CellMetab2014;20(1):192-.e1.132. Imai S, Guarente L. NAD+ and sirtuins in aging and disease.TrendsCellBiol2014;24(8):464-71.133. Roth GS, Ingram DK, Lane MA. Caloric restriction in primates andrelevancetohumans.AnnNYAcadSci2001;928:305-15.134. Colman RJ, Anderson RM, Johnson SC, et al. Caloric restriction delaysdiseaseonsetandmortalityinrhesusmonkeys.Science2009;325(5937):201-4.135. ColmanRJ,BeasleyTM,KemnitzJW,JohnsonSC,WeindruchR,AndersonRM. Caloric restriction reduces age-related and all-cause mortality in rhesusmonkeys.NatCommun2014;5:3557.136. Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2alone promote longevity in Saccharomyces cerevisiae by two differentmechanisms.GenesDev1999;13(19):2570-80.137. BellizziD,RoseG,CavalcanteP,etal.AnovelVNTRenhancerwithintheSIRT3 gene, a human homologue of SIR2, is associatedwith survival at oldestages.Genomics2005;85(2):258-63.138. Kanfi Y,NaimanS,AmirG, et al. The sirtuin SIRT6 regulates lifespan inmalemice.Nature2012;483(7388):218-21.139. Guarente L. Calorie restriction and sirtuins revisited. Genes Dev 2013;27(19):2072-85.140. Oellerich MF, Potente M. FOXOs and sirtuins in vascular growth,maintenance,andaging.CircRes2012;110(9):1238-51.

Page 98: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

91

141. WinnikS,AuwerxJ,SinclairDA,MatterCM.Protectiveeffectsofsirtuinsin cardiovascular diseases: from bench to bedside. Eur Heart J 2015; 36(48):3404-12.142. GuarenteL.Sirtuinsaspotential targets formetabolicsyndrome.Nature2006;444(7121):868-74.143. Wilson PW, D'Agostino RB, Parise H, Sullivan L, Meigs JB. Metabolicsyndromeasaprecursorofcardiovasculardiseaseandtype2diabetesmellitus.Circulation2005;112(20):3066-72.144. MirandaMX,vanTitsLJ, LohmannC, et al.TheSirt1activatorSRT3025providesatheroprotection inApoe-/-micebyreducinghepaticPcsk9secretionandenhancingLdlrexpression.EurHeartJ2015;36(1):51-9.145. HoutkooperRH,PirinenE,AuwerxJ.Sirtuinsasregulatorsofmetabolismandhealthspan.NatRevMolCellBiol2012;13(4):225-38.146. NorthBJ,SinclairDA.Theintersectionbetweenagingandcardiovasculardisease.CircRes2012;110(8):1097-108.147. Schwer B, North BJ, Frye RA, Ott M, Verdin E. The human silentinformationregulator(Sir)2homologuehSIRT3isamitochondrialnicotinamideadeninedinucleotide-dependentdeacetylase.JCellBiol2002;158(4):647-57.148. Lombard DB, Alt FW, Cheng HL, et al. Mammalian Sir2 homolog SIRT3regulates global mitochondrial lysine acetylation.Mol Cell Biol 2007; 27(24):8807-14.149. Shi T, Wang F, Stieren E, Tong Q. SIRT3, a mitochondrial sirtuindeacetylase, regulates mitochondrial function and thermogenesis in brownadipocytes.JBiolChem2005;280(14):13560-7.150. Hirschey MD, Shimazu T, Goetzman E, et al. SIRT3 regulatesmitochondrial fatty-acid oxidation by reversible enzyme deacetylation.Nature2010;464(7285):121-5.151. HallowsWC,LeeS,DenuJM.Sirtuinsdeacetylateandactivatemammalianacetyl-CoAsynthetases.ProcNatlAcadSciUSA2006;103(27):10230-5.152. SchlickerC,GertzM,PapatheodorouP,KachholzB,BeckerCF,SteegbornC.Substratesandregulationmechanisms for thehumanmitochondrial sirtuinsSirt3andSirt5.JMolBiol2008;382(3):790-801.153. SomeyaS,YuW,HallowsWC,etal.Sirt3mediatesreductionofoxidativedamageandpreventionofage-relatedhearinglossundercaloricrestriction.Cell2010;143(5):802-12.154. Yu W, Dittenhafer-Reed KE, Denu JM. SIRT3 protein deacetylatesisocitrate dehydrogenase 2 (IDH2) and regulatesmitochondrial redox status. JBiolChem2012;287(17):14078-86.155. AhnBH,KimHS, Song S, et al. A role for themitochondrial deacetylaseSirt3inregulatingenergyhomeostasis.ProcNatlAcadSciUSA2008;105(38):14447-52.156. JingE,EmanuelliB,HirscheyMD,etal.Sirtuin-3(Sirt3)regulatesskeletalmusclemetabolismandinsulinsignalingviaalteredmitochondrialoxidationandreactive oxygen species production. Proc Natl Acad Sci U S A 2011; 108(35):14608-13.157. Vassilopoulos A, Pennington JD, Andresson T, et al. SIRT3 deacetylatesATPsynthaseF1complexproteinsinresponsetonutrient-andexercise-inducedstress.AntioxidRedoxSignal2014;21(4):551-64.

Page 99: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

92

158. FinleyLW,HaasW,Desquiret-DumasV,etal.Succinatedehydrogenaseisadirecttargetofsirtuin3deacetylaseactivity.PLoSOne2011;6(8):e23295.159. WestAP,ShadelGS,GhoshS.Mitochondriaininnateimmuneresponses.NatRevImmunol2011;11(6):389-402.160. Orrenius S, Gogvadze V, Zhivotovsky B. Mitochondrial oxidative stress:implicationsforcelldeath.AnnuRevPharmacolToxicol2007;47:143-83.161. Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP.Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependentantioxidantdefensemechanisms inmice. JClinInvest2009;119(9):2758-71.162. Qiu X, Brown K, Hirschey MD, Verdin E, Chen D. Calorie restrictionreduces oxidative stress by SIRT3-mediated SOD2 activation.CellMetab 2010;12(6):662-7.163. TaoR,ColemanMC,PenningtonJD,etal.Sirt3-mediateddeacetylationofevolutionarily conserved lysine 122 regulates MnSOD activity in response tostress.MolCell2010;40(6):893-904.164. HirscheyMD,ShimazuT,JingE,etal.SIRT3deficiencyandmitochondrialproteinhyperacetylationacceleratethedevelopmentofthemetabolicsyndrome.MolCell2011;44(2):177-90.165. PaulinR,DromparisP,SutendraG,etal.Sirtuin3deficiencyisassociatedwith inhibitedmitochondrial function and pulmonary arterial hypertension inrodentsandhumans.CellMetab2014;20(5):827-39.166. Hafner AV, Dai J, Gomes AP, et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiachypertrophy.Aging(AlbanyNY)2010;2(12):914-23.167. Tseng AH, Shieh SS, Wang DL. SIRT3 deacetylates FOXO3 to protectmitochondriaagainstoxidativedamage.FreeRadicBiolMed2013;63:222-34.168. SundaresanNR,SamantSA,PillaiVB,RajamohanSB,GuptaMP.SIRT3isastress-responsivedeacetylaseincardiomyocytesthatprotectscellsfromstress-mediatedcelldeathbydeacetylationofKu70.MolCellBiol2008;28(20):6384-401.169. Rose G, Dato S, Altomare K, et al. Variability of the SIRT3 gene, humansilentinformationregulatorSir2homologue,andsurvivorshipintheelderly.ExpGerontol2003;38(10):1065-70.170. Kugel S,Mostoslavsky R. Chromatin and beyond: themultitasking rolesforSIRT6.TrendsBiochemSci2014;39(2):72-81.171. Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability andaging-like phenotype in the absence of mammalian SIRT6. Cell 2006; 124(2):315-29.172. Xiao C, Kim HS, Lahusen T, et al. SIRT6 deficiency results in severehypoglycemiabyenhancingbothbasalandinsulin-stimulatedglucoseuptakeinmice.JBiolChem2010;285(47):36776-84.173. KanfiY,PeshtiV,GilR,etal.SIRT6protectsagainstpathologicaldamagecausedbydiet-inducedobesity.AgingCell2010;9(2):162-73.174. MichishitaE,McCordRA,BerberE, et al. SIRT6 is ahistoneH3 lysine9deacetylasethatmodulatestelomericchromatin.Nature2008;452(7186):492-6.

Page 100: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

93

175. Yang B, Zwaans BM, Eckersdorff M, Lombard DB. The sirtuin SIRT6deacetylates H3 K56Ac in vivo to promote genomic stability. Cell Cycle 2009;8(16):2662-3.176. TasselliL,XiY,ZhengW,etal.SIRT6deacetylatesH3K18acatpericentricchromatintopreventmitoticerrorsandcellularsenescence.NatStructMolBiol2016;23(5):434-40.177. ZhongL,D'UrsoA,ToiberD,etal.ThehistonedeacetylaseSirt6regulatesglucosehomeostasisviaHif1alpha.Cell2010;140(2):280-93.178. DominyJE,LeeY,JedrychowskiMP,etal.ThedeacetylaseSirt6activatesthe acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol Cell2012;48(6):900-13.179. Sebastián C, Zwaans BM, Silberman DM, et al. The histone deacetylaseSIRT6isatumorsuppressorthatcontrolscancermetabolism.Cell2012;151(6):1185-99.180. Min L, Ji Y, Bakiri L, et al. Liver cancer initiation is controlled by AP-1through SIRT6-dependent inhibition of survivin. Nat Cell Biol 2012; 14(11):1203-11.181. Lai CC, Lin PM, Lin SF, et al. Altered expression of SIRT gene family inheadandnecksquamouscellcarcinoma.TumourBiol2013;34(3):1847-54.182. Wang JC,KafeelMI,AvezbakiyevB,etal.Histonedeacetylase in chroniclymphocyticleukemia.Oncology2011;81(5-6):325-9.183. Michishita E, McCord RA, Boxer LD, et al. Cell cycle-dependentdeacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle2009;8(16):2664-6.184. MultaniAS,ChangS.WRNattelomeres:implicationsforagingandcancer.JCellSci2007;120(Pt5):713-21.185. MaoZ,HineC,TianX,etal.SIRT6promotesDNArepairunderstressbyactivatingPARP1.Science2011;332(6036):1443-6.186. Kaidi A,Weinert BT, Choudhary C, Jackson SP. Human SIRT6 promotesDNAendresectionthroughCtIPdeacetylation.Science2010;329(5997):1348-53.187. McCordRA,MichishitaE,HongT,etal.SIRT6stabilizesDNA-dependentproteinkinaseatchromatinforDNAdouble-strandbreakrepair.Aging(AlbanyNY)2009;1(1):109-21.188. ToiberD,ErdelF,BouazouneK,etal.SIRT6recruitsSNF2HtoDNAbreaksites, preventing genomic instability through chromatin remodeling. Mol Cell2013;51(4):454-68.189. Jedrusik-Bode M, Studencka M, Smolka C, et al. The sirtuin SIRT6regulates stress granule formation in C. elegans andmammals. JCellSci 2013;126(Pt22):5166-77.190. SongMY,WangJ,KaSO,BaeEJ,ParkBH.InsulinsecretionimpairmentinSirt6knockoutpancreaticβcellsismediatedbysuppressionoftheFoxO1-Pdx1-Glut2pathway.SciRep2016;6:30321.191. TaoR,XiongX,DePinhoRA,DengCX,DongXC.FoxO3transcriptionfactorand Sirt6 deacetylase regulate low density lipoprotein (LDL)-cholesterolhomeostasis via control of the proprotein convertase subtilisin/kexin type 9(Pcsk9)geneexpression.JBiolChem2013;288(41):29252-9.

Page 101: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

94

192. Tao R, Xiong X, DePinho RA, Deng CX, Dong XC. Hepatic SREBP-2 andcholesterol biosynthesis are regulated by FoxO3 and Sirt6. J Lipid Res 2013;54(10):2745-53.193. ElhanatiS,KanfiY,VarvakA,etal.MultipleregulatorylayersofSREBP1/2bySIRT6.CellRep2013;4(5):905-12.194. JiangH,KhanS,WangY,etal.SIRT6regulatesTNF-αsecretion throughhydrolysisoflong-chainfattyacyllysine.Nature2013;496(7443):110-3.195. Xiao C, Wang RH, Lahusen TJ, et al. Progression of chronic liverinflammationandfibrosisdrivenbyactivationofc-JUNsignalinginSirt6mutantmice.JBiolChem2012;287(50):41903-13.196. KawaharaTL,MichishitaE,AdlerAS,etal.SIRT6linkshistoneH3lysine9deacetylation to NF-kappaB-dependent gene expression and organismal lifespan.Cell2009;136(1):62-74.197. SundaresanNR,VasudevanP,ZhongL,etal.ThesirtuinSIRT6blocksIGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun.NatMed2012;18(11):1643-50.198. Cai Y, Yu SS, Chen SR, et al. Nmnat2 protects cardiomyocytes fromhypertrophyviaactivationofSIRT6.FEBSLett2012;586(6):866-74.199. Xu S, Yin M, Koroleva M, et al. SIRT6 protects against endothelialdysfunctionandatherosclerosisinmice.Aging(AlbanyNY)2016;8(5):1064-82.200. LappasM.Anti-inflammatorypropertiesof sirtuin6 inhumanumbilicalveinendothelialcells.MediatorsInflamm2012;2012:597514.201. Yang L, Zhang J, Xing W, et al. SIRT3 Deficiency Induces EndothelialInsulinResistanceandBluntsEndothelial-DependentVasorelaxationinMiceandHumanwithObesity.SciRep2016;6:23366.202. Paigen B, Ishida BY, Verstuyft J, Winters RB, Albee D. Atherosclerosissusceptibility differences among progenitors of recombinant inbred strains ofmice.Arteriosclerosis1990;10(2):316-23.203. Mauricio MD, Aldasoro M, Ortega J, Vila JM. Endothelial dysfunction inmorbidobesity.CurrPharmDes2013;19(32):5718-29.204. HeX,ZengH,Chen JX.AblationofSIRT3causescoronarymicrovasculardysfunction and impairs cardiac recovery post myocardial ischaemia. Int JCardiol2016;215:349-57.205. Cardus A, Uryga AK,Walters G, Erusalimsky JD. SIRT6 protects humanendothelial cells from DNA damage, telomere dysfunction, and senescence.CardiovascRes2013;97(3):571-9.206. Liu Z, Wang J, Huang X, Li Z, Liu P. Deletion of sirtuin 6 acceleratesendothelial dysfunction and atherosclerosis in apolipoprotein E-deficientmice.TranslRes2016;172:18-29.e2.207. Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J.Hypercholesterolemiainlowdensitylipoproteinreceptorknockoutmiceanditsreversal by adenovirus-mediated gene delivery. JClin Invest 1993;92(2): 883-93.208. HsuHY,WenMH. Lipopolysaccharide-mediated reactive oxygen speciesandsignaltransductionintheregulationofinterleukin-1geneexpression.JBiolChem2002;277(25):22131-9.209. MattilaKJ,ValtonenVV,NieminenMS,AsikainenS.Roleofinfectionasarisk factor for atherosclerosis,myocardial infarction, and stroke.ClinInfectDis1998;26(3):719-34.

Page 102: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

95

210. ZhangD,ChenG,ManwaniD,etal.Neutrophilageingisregulatedbythemicrobiome.Nature2015;525(7570):528-32.211. Patel AS, Smith A, Nucera S, et al. TIE2-expressingmonocytes/macrophagesregulaterevascularizationoftheischemiclimb.EMBOMolMed2013;5(6):858-69.212. Alva JA, Zovein AC, Monvoisin A, et al. VE-Cadherin-Cre-recombinasetransgenicmouse: a tool for lineage analysis and gene deletion in endothelialcells.DevDyn2006;235(3):759-67.213. Powell-BraxtonL,VéniantM,LatvalaRD,etal.Amousemodelofhumanfamilial hypercholesterolemia: markedly elevated low density lipoproteincholesterol levels and severe atherosclerosis on a low-fat chow diet.NatMed1998;4(8):934-8.214. Avogaro A, Albiero M, Menegazzo L, de Kreutzenberg S, Fadini GP.Endothelialdysfunctionindiabetes:theroleofreparatorymechanisms.DiabetesCare2011;34Suppl2:S285-90.215. LantierL,WilliamsAS,WilliamsIM,etal.SIRT3IsCrucialforMaintainingSkeletalMuscleInsulinActionandProtectsAgainstSevereInsulinResistanceinHigh-Fat-FedMice.Diabetes2015;64(9):3081-92.216. Németh T, Futosi K, Sitaru C, Ruland J, Mócsai A. Neutrophil-specificdeletion of the CARD9 gene expression regulator suppresses autoantibody-inducedinflammationinvivo.NatCommun2016;7:11004.217. VanZiffleJA,LowellCA.Neutrophil-specificdeletionofSykkinaseresultsinreducedhostdefensetobacterialinfection.Blood2009;114(23):4871-82.

Page 103: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

96

9 CurriculumVitae

Name GAUL

Firstnames DanielSebastian

DateofBirth 15March1986

Nationality German

Education

2002-2005 FriedrichDessauerGymnasium,Frankfurta.M.,GermanyAbitur2005(equivalenttoMatura)

2006-2008 UniversityofMainz,Germany Pre-diplomaexaminationsinBiologyin2008

2008-2009 UniversityofGlasgow,Scotland,UnitedKingdom 3rd year full term honours course in Biomedical Sciences

fundedbyanERASMUSscholarship

2009-2012 UniversityofMainz,Germany Diploma in Genetics, Pharmacology & Toxicology, and

Zoologyin2012(equivalenttoMasterofScience)

2012 MaxPlanckInstituteforHeartandLungResearch BadNauheim,Germany DiplomaThesis:‘GenerationofaTEAD2KOmouselineand

identification of new potential interaction partners of theTEADtranscriptionfactorfamilyinsmoothmusclecells’

2013-present UniversityofZurich,Switzerland PhD student in the ‘Integrative Molecular Medicine’

programmeatthe‘CenterforMolecularCardiology’

ExtracurricularActivities

2007-2012 Founder member of the ‘Biotechnological Students

Initiative’(btSe.V.)Mainz Boardmember2009-2011;Chairmanoftheboard2011/12

2008-2009 Member of the ‘Glasgow University Student

BiochemistrySociety’

2010 VolunteeratSanCristobalBiologicalReserve

Galapagos,Ecuador 6-week volunteer programme in reforestation, reserve

maintenance,communityactivitiesandorganicfarming

Page 104: Fromcaloricrestrictiontocardiovascularhealth: … · 2020. 8. 31. · study the molecular effects of Sirt6 deficiency on endothelial cells, Sirt6 knockdown was performed in cultured

97

2011 ScientificAssistantattheUniversityofMainz Supervisionofpracticalundergraduatecourses

2013-present Member of the ‘Life Science Zurich Young Scientist

Network’

Project Leader 2014/15; Board member 2015/16;ChairmanoftheBoard2016/17

Awards

2016 Best Poster Award at the 12th Symposium of the ZurichCenter for Integrative Human Physiology in Zurich,Switzerland

2017 Best Free Communication at the Cardiovascular &MetabolicResearchMeetinginFribourg,Switzerland

2017 Silver Poster Award at the Cardiology Update Congress2017inDavos,Switzerland

Publications

OriginalArticles

2014 Winnik S, Gaul DS, Preitner F, Lohmann C, Weber J,Miranda MX, Liu Y, van Tits LJ, Mateos JM, Brokopp CE,Auwerx J, Thorens B, Lüscher TF, Matter CM. Deletion ofSirt3doesnotaffectatherosclerosisbutacceleratesweightgain and impairs rapid metabolic adaptation in LDLreceptor knockout mice: implications for cardiovascularrisk factor development. Basic Res Cardiol2014;109(1):399.

2016 Winnik S, Gaul DS, Siciliani G, Lohmann C, Pasterk L,Calatayud N, Weber J, Eriksson U, Auwerx J, van Tits LJ,Lüscher TF, Matter CM. Mild endothelial dysfunction inSirt3knockoutmice fedahigh-cholesteroldiet:protectiverole of a novel C/EBP-β-dependent feedback regulation ofSOD2.BasicResCardiol2016;111(3):33.

2017 ReinerMF,AkhmedovA,StivalaS,KellerS,GaulDS,BonettiNR,SavareseG,GlanzmannM,ZhuC,RufW,YangZ,MatterCM, Lüscher TF, Camici GG, Beer JH. Ticagrelor, but notclopidogrel, reduces arterial thrombosis via endothelialtissue factorsuppression.CardiovascRes2017;113(1):61-69.

Reviews

2017 GaulDS,SteinS,MatterCM.Neutrophils incardiovasculardisease.EurHeartJ2017;38(22):1702-4