from x-ray binaries to agn: the disk/jet connectionbhfeedback2012/uploads/bhfeedback2012... ·...

17
From X-ray Binaries to AGN: the Disk/Jet Connection Rich Plotkin University of Amsterdam (Michigan) with Sera Markoff (Amsterdam), Scott Anderson (Washington), Niel Brandt (PSU), Brandon Kelly (UCSB), Elmar Körding (Nijmegen, NL), Ohad Shemmer (N. Texas), Jianfeng Wu (PSUCfA)

Upload: lamduong

Post on 17-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

From X-ray Binaries to AGN: the Disk/Jet Connection

Rich PlotkinUniversity of Amsterdam (➔ Michigan)

with Sera Markoff (Amsterdam), Scott Anderson (Washington), Niel Brandt (PSU), Brandon Kelly (UCSB), Elmar Körding (Nijmegen, NL),

Ohad Shemmer (N. Texas), Jianfeng Wu (PSU➔CfA)

X-Ray Binaries Can Help Us Learn about Galaxy and SMBH (Co)-Evolution

To better understand feedback, and to exploit AGN as probes of SMBHs, we need more constraints on how radiation ⟺ Ṁ, MBH

Understanding the connection between black hole accretion disks and outflows is crucial

XRBs are scale models of AGN

Springel et al. (2005) - Millenium Simulation

31.25 Mpc/hz=18.3; T=0.2 Gyr

31.25 Mpc/h

z=0; T=13.6 Gyr

I. Two case studies:i. High-energy radiation near the disk/jet interfaceii. Accretion mode, and how it affects AGN

unification and feedback

II. Future insights to be learned from XRBs

Outline: Advantages of Looking at All Types of Black Holes

Black Hole X-ray Binary(~10MSun)

Microquasar Outbursts

GX 339-4 During Outburst

Dunn et al. (2010) StartEnd

Lum

inos

ityLjet or corona/Ldisk

Non-ThermalThermal

Dunn et al. (2010)

XRBs~10 Msun

BLLacs~108--9 Msun

FR I’s~108--9 Msun

LLAGN~107--8 Msun

Sgr A*

~106 Msun

28 30 32 34 36 38 40 42log Lr [erg s-1]

35

40

45

50

55

log

L x’ (M) [

erg

s-1]

Data from Körding et al. (2006)Plotkin et al. (2012a)

log Lradio (erg s-1)

log

L x-ra

y + ξ M

log

MBH

(erg

s-1 )

The Fundamental Plane of Black Hole Activity (Merloni et al. 2003, Falcke et al. 2004) Lx-ray ~ (Lradio)ξR MξM

Constraining how Radiation ⟺ Ṁ, MBH

For low L/LEdd BHs: the conversion of the accretion flow into radiative output at

the disk/jet interface is universal across

the black hole mass scale

XRBs~10 Msun

BLLacs~108--9 Msun

FR I’s~108--9 Msun

LLAGN~107--8 Msun

Sgr A*

~106 Msun

28 30 32 34 36 38 40 42log Lr [erg s-1]

35

40

45

50

55

log

L x’ (M) [

erg

s-1]

Data from Körding et al. (2006)Plotkin et al. (2012a)

log Lradio (erg s-1)

log

L x-ra

y + ξ M

log

MBH

(erg

s-1 )

The Fundamental Plane of Black Hole Activity (Merloni et al. 2003, Falcke et al. 2004) Lx-ray ~ (Lradio)ξR MξM

Constraining how Radiation ⟺ Ṁ, MBH

Lx-ray ~ (Lradio)1.76 M-1.56

If Inverse Compton X-rays from Radiatively Inefficient Accretion:

If Optically Thin Synchrotron X-rays:Lx-ray ~ (Lradio)1.38 M-0.81

What geometry produces the high-energy radiation?

1.2 1.4 1.6 1.8 !R

!1.6

!1.4

!1.2

!1.0

!0.8

!0.6

!0.4

!M

Contracted"R=!0.15

MeritBayes

1.2 1.4 1.6 1.8 !R

Contracted"R=0.00

X-rays from an “average” low L/LEdd BH are Dominated by Optically Thin Jet Synchrotron

43 Galactic BHs, SgrA*, LLAGN10 MSun - 107 MSun

ξ M -

Mas

s Coe

ffici

ent

P12 Bayesian Regression

MeritFunction

Merit Function is a modified χ2 estimator (from Körding et al. 2006)

Bayesian Linear Regression (mlinmix_err developed by Kelly 2007)

Inverse ComptonX-rays

LX ∝"ṁ2

Lx-ray ~ (Lradio)ξR MξM

-1.4

-1.2

-1.0

-0.8

-0.6

LX ∝"ṁ2.3

-1.6

ξR - Radio Coefficient

Plotkin et al. (2012a)

Optically ThinSynchrotron X-rays

Geometry of a low-luminosity “Hard Sate” Black Hole

~10% LEdd

<1-2% LEddNo Wind/Torus

Ine!cient Inner Accretion Flow

Disk Wind Feeding Torus

Most X-rays are optically thin jet synchrotron

e.g., above schematic helps inform us on how to use radiation from nearby low-luminosity AGN to probe the SMBH Mass Function at z=0

Figure Adapted from Trump et al. 2011

I. Two case studies:i. High-energy radiation near the disk/jet interfaceii. Accretion mode, and how it affects AGN

unification and feedback

II. Future insights to be learned from XRBs

Outline: Advantages of Looking at All Types of Black Holes

Explore Accretion Mode with BL Lacs (beamed low-luminosity radio galaxies)

JET

Urry & Padovani (1995)

5

10

15

20

Flu

x. D

ens. (e

rg s

−1 c

m−2

Å−1

)

Ca II H/K

Mg Na

SDSS J080018.79+164557.1 (zspec = 0.309)

10

12

14

16

log i

Fi

(erg

s−1

cm

−2)

log ipeak = 13.5 Hz

100

200

300

400

500

Flu

x. D

ens. (e

rg s

−1 c

m−2

Å−1

)

SDSS J080949.18+521858.2 (zspec = ?, zhg > 0.056)

10

12

14

16

log i

Fi

(erg

s−1

cm

−2)

log ipeak = 15.5 Hz

4000 5000 6000 7000 8000 9000

Wavelength (Å) [Obs. Frame]

0

20

40

60

80

Flu

x. D

ens. (e

rg s

−1 c

m−2

Å−1

)

SDSS J110021.06+401928.0 (zspec = ?, zhg > 0.275)

8 10 12 14 16 18 20

log irest (Hz)

8

10

12

14

16

log i

Fi

(erg

s−1

cm

−2)

log ipeak = 16.2 Hz

Flux

Den

s.

Wavelength (Å)

SDSS Optical Spectrum

Plotkin et al. (2010)

Explore Accretion Mode with BL Lacs (beamed low-luminosity radio galaxies)

JET

Urry & Padovani (1995)Wavelength (Å)

SDSS Optical Spectrum

Plotkin et al. (2010)

5

10

15

20

Flu

x.

De

ns.

(erg

s−1

cm

−2 Å

−1)

Ca II H/K

Mg Na

SDSS J080018.79+164557.1 (zspec = 0.309)

10

12

14

16

log

i F

i (e

rg s

−1 c

m−2

)

log ipeak = 13.5 Hz

100

200

300

400

500

Flu

x.

De

ns.

(erg

s−1

cm

−2 Å

−1)

SDSS J080949.18+521858.2 (zspec = ?, zhg > 0.056)

10

12

14

16

log

i F

i (e

rg s

−1 c

m−2

)

log ipeak = 15.5 Hz

4000 5000 6000 7000 8000 9000

Wavelength (Å) [Obs. Frame]

0

20

40

60

80

Flu

x.

De

ns.

(erg

s−1

cm

−2 Å

−1)

SDSS J110021.06+401928.0 (zspec = ?, zhg > 0.275)

8 10 12 14 16 18 20

log irest (Hz)

8

10

12

14

16

log

i F

i (e

rg s

−1 c

m−2

)

log ipeak = 16.2 Hz

Flux

Den

s.

Weakly Beamed BL Lac

Mid-Infrared Colors with WISE:Most BL Lacs are Missing Dusty Torus Emission

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

W1!

W2

RL BL Lacs (0.1<z<0.3)

Quasars (Extended)

Quasars (Point!like)

Early!Type Galaxies

(a)

(b) Simulated Jet

0 1 2 3 4W2!W3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

W1!

W2

(c) Simulated Jet + Galaxy

0 1 2 3 4W2!W3

(d) Simulated Jet + Galaxy + Torus

Plotkin et al. 2012b

Simulated Jet+Galaxy+TorusSimulated Jet+Galaxy

Simulated Jet

WISE Infrared Color 2[4.6µm]-[12µm] (mag)

WIS

E In

frare

d Co

lor 1

[3.4

µm]-[

4.6µ

m] (

mag

)

WISE Blazar Strip (Massaro et al.

2011)

WISE Infrared Color 2[4.6µm]-[12µm] (mag)

WIS

E In

frare

d Co

lor 1

[3.4

µm]-[

4.6µ

m] (

mag

)Weakly Beamed BL Lacs

Contours: Simulated IR Colors

Redder

Redder

~10% LEdd

<1-2% LEddNo Wind/Torus

Ine!cient Inner Accretion Flow

Disk Wind Feeding Torus

GX 339-4(~10 MSun)

XRB accretion state (and jet properties) are likely connected to the inner accretion flow

Nature of Inner Accretion Flow Likely Evolves

adapted from Trump et al. 2011

Lum

inos

ity

Ljet or corona/Ldisk

Thermal Non-Thermal

StartEnd

adapted from Dunn et al. 2010

High-Luminosity

Low-Luminosity

Figure Adapted from Trump et al. 2011

Lack of torus emission suggests an accretion mode “divide” for AGN, similar to XRBs

(e.g., see Jackson & Wall 1999; Nicastro 2000; Ghisellini & Celotti 2001; Böttcher & Dermer 2002; Wold et al. 2007; Ghisellini et al. 2009, Hardcastle et al. 2009; Trump et al.

2011; Antonucci et al. 2011, Plotkin et al. 2012b)

~10% LEdd

<1-2% LEddNo Wind/Torus

Ine!cient Inner Accretion Flow

Disk Wind Feeding Torus

Wind Mode?

Radio Mode?

I. Two case studies:i. High-energy radiation near the disk/jet interfaceii. Accretion mode, and how it affects AGN

unification and feedback

II. Future insights to be learned from XRBs

Outline: Advantages of Looking at All Types of Black Holes

Do distinct accretion states launch winds vs. jets, or can “wind” vs “radio” feedback co-exist?

�� ���� �

���

����

��

����

��

����

���

����������������������

����� �

���� ���

��������

-�*/,)&-0�

� �*/..&-)��*0-,&,++�� �*2*.3*).����*1*0&,,)�

��,,2&-�

����

��������$���������! ���5�&+.����

5�&*)����5�&*����

����������!��"�� ���4�&+.����

4�&*)����4�&*����

���*/.)&.))�� �*0.1&+.1�-�*2.03**.�

���� !�!�� �����

Ponti et al. (2012)

XRB winds not detected in hard (i.e jetted) state?

Lum

inos

ity

Ljet or corona/Ldisk

Radio-loud QSOs generally show weaker disk winds

Richards et al. (2011)

weaker disk wind

Radio LoudRadio Quiet

Conclusions1. X-ray binaries help us see the bigger picture

2. There is a robust disk/jet coupling for “Hard State” Black Holes X-rays are predominantly optically thin synchrotron

Constraints on geometry near the black hole help us go from radiation ⟺ Ṁ, MBH

3. BL Lac objects have weak or missing tori

New evidence for an AGN accretion mode “divide”

Implications for “wind” vs “radio” feedback?