fragmentation and forward error correction for lorawan...

35
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/30 Context Problematic LoRaFFEC Performances Conclusion Annex Fragmentation and Forward Error Correction for LoRaWAN small Maximum Transmit Unit networks Ulysse COUTAUD 12 Martin HEUSSE 1 Bernard TOURANCHEAU 1 1 Université Grenoble Alpes 2 Semtech 17 February 2020

Upload: others

Post on 19-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.1/30

Context Problematic LoRaFFEC Performances Conclusion Annex

Fragmentation and Forward Error Correction forLoRaWAN small Maximum Transmit Unit

networks

Ulysse COUTAUD1 2

Martin HEUSSE1 Bernard TOURANCHEAU1

1Université Grenoble Alpes2Semtech

17 February 2020

Page 2: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.2/30

Context Problematic LoRaFFEC Performances Conclusion Annex

Low Power Wide Area Networks (LPWAN) :

Wireless cellular networksLow energy consumption: θ(10 years) battery autonomy.Low throughput: θ(10Kbps).Long range: θ(10km).Huge capacity: θ(1000 nodes) connected to a single gateway.

Packet Error Rate (PER) in wireless networks :Path Loss.Interferences and ambient noise.Collisions.

Page 3: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.2/30

Context Problematic LoRaFFEC Performances Conclusion Annex

Low Power Wide Area Networks (LPWAN) :

Wireless cellular networksLow energy consumption: θ(10 years) battery autonomy.Low throughput: θ(10Kbps).Long range: θ(10km).Huge capacity: θ(1000 nodes) connected to a single gateway.

Packet Error Rate (PER) in wireless networks :Path Loss.Interferences and ambient noise.Collisions.

Page 4: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.3/30

Context Problematic LoRaFFEC Performances Conclusion Annex

: Physical layer

7 8 9 10 11 120

5000

10000

15000

20000

25000

0

1000

2000

3000

4000

5000

6000

Maximal distance according to chip sensitivity

Indicative physical bit rate

Spreading Factor

Ran

ge(m

)

Rat

e (b

it/s)

Estimation with Friis :GTGR( λ

4πR )a = PRPT

with classic parameters for the target hardware 1.

Chirp Spread Spectrum basedmodulation.6 Spreading Factors (SF).SF are orthogonal.

⇒ Long range communication.⇒ Noise resilient.⇒ Multiples sub-channel.

1Antenna gain: GT,GR = 1; a Path Loss Exponent 2.64, transmitted power PT = 14dBm, distance R, λwavelength at 868MHz, Semtech LoRaTM SX1272/73 datasheet.

Page 5: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.4/30

Context Problematic LoRaFFEC Performances Conclusion Annex

for LPWAN: LoRaWANTM

Application

LoRa® MAC

MAC options

Class A(Baseline)

Class B(Baseline)

Class C(Continuous)

LoRa® Modulation

Regional ISM band

EU 868 EU 433 US 915 AS 430 —

Figure: LoRaWANTM protocol stack.1

Cellular architecture.Uplink oriented: from nodesto network server (NS).Asynchronous.ISM band.

1https://www.lora-alliance.org/portals/0/documents/whitepapers/LoRaWAN101.pdf

Page 6: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.5/30

Context Problematic LoRaFFEC Performances Conclusion Annex

LoRaWANTM Maximum Transmit Unit (MTU)

Table: Application payload (without anyoptional fields in the header) for theminimum and maximum DR in variousbands2.

Band Maximum payload size (bytes)Min DR Max DR

EU863-870 51 242US902-928 11 242CN779-787 51 242

EU433 51 242AU915-928 11 242CN470-510 51 242

AS923 19 250KR920-923 51 242IN865-867 51 242RU864-870 51 242

ISM duty cycling regulation.Time On Air is SF dependant.Piggybacked LoRaMACcommands.

⇒ Fragmentation.⇒ Increases losses.Ex: With payload fragmented in 10 pieces over a 10% i.i.d

erasures channel, less than 35% of the data can be delivered.

2LoRa Alliance Technical Committee Regional Parameters Workgroup. Lorawan 1.1 regional parameters.Technical report, LoRa Alliance, 2018.

Page 7: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.5/30

Context Problematic LoRaFFEC Performances Conclusion Annex

LoRaWANTM Maximum Transmit Unit (MTU)

Table: Application payload (without anyoptional fields in the header) for theminimum and maximum DR in variousbands2.

Band Maximum payload size (bytes)Min DR Max DR

EU863-870 51 242US902-928 11 242CN779-787 51 242

EU433 51 242AU915-928 11 242CN470-510 51 242

AS923 19 250KR920-923 51 242IN865-867 51 242RU864-870 51 242

ISM duty cycling regulation.Time On Air is SF dependant.Piggybacked LoRaMACcommands.

⇒ Fragmentation.

⇒ Increases losses.Ex: With payload fragmented in 10 pieces over a 10% i.i.d

erasures channel, less than 35% of the data can be delivered.

2LoRa Alliance Technical Committee Regional Parameters Workgroup. Lorawan 1.1 regional parameters.Technical report, LoRa Alliance, 2018.

Page 8: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.5/30

Context Problematic LoRaFFEC Performances Conclusion Annex

LoRaWANTM Maximum Transmit Unit (MTU)

Table: Application payload (without anyoptional fields in the header) for theminimum and maximum DR in variousbands2.

Band Maximum payload size (bytes)Min DR Max DR

EU863-870 51 242US902-928 11 242CN779-787 51 242

EU433 51 242AU915-928 11 242CN470-510 51 242

AS923 19 250KR920-923 51 242IN865-867 51 242RU864-870 51 242

ISM duty cycling regulation.Time On Air is SF dependant.Piggybacked LoRaMACcommands.

⇒ Fragmentation.⇒ Increases losses.Ex: With payload fragmented in 10 pieces over a 10% i.i.d

erasures channel, less than 35% of the data can be delivered.

2LoRa Alliance Technical Committee Regional Parameters Workgroup. Lorawan 1.1 regional parameters.Technical report, LoRa Alliance, 2018.

Page 9: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.6/30

Context Problematic LoRaFFEC Performances Conclusion Annex

LoRaWANTM reliability

To improve Data Delivery Rate (DDR):Increase Transmit Power (TxP).Increase SF.Systematic retransmissions (NBTRANS) : DDR = 1− (PER)n ; Time On Air (TOA) ×n .

Automatic Repeat reQuest (ARQ).

Adaptive Data Rate (ADR)Dynamically adapts the transmissions parameters (TxP, SF, NBTRANS).

Page 10: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.6/30

Context Problematic LoRaFFEC Performances Conclusion Annex

LoRaWANTM reliability

To improve Data Delivery Rate (DDR):Increase Transmit Power (TxP).Increase SF.Systematic retransmissions (NBTRANS) : DDR = 1− (PER)n ; Time On Air (TOA) ×n .

Automatic Repeat reQuest (ARQ).

Adaptive Data Rate (ADR)Dynamically adapts the transmissions parameters (TxP, SF, NBTRANS).

Page 11: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.7/30

Context Problematic LoRaFFEC Performances Conclusion Annex

Problematic:How to decorrelate applicative-MTU and physical-MTU ?How to provide (very) high Data Delivery Rate ?

Page 12: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.8/30

Context Problematic LoRaFFEC Performances Conclusion Annex

LoRa Fragmentation and Forward Error Correction

LoRaFFEC, a protocol to combine :FragmentationForward Error Correction

Sub-layers:Integrity.Fragmentation.Erasure Correction.

Page 13: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.8/30

Context Problematic LoRaFFEC Performances Conclusion Annex

LoRa Fragmentation and Forward Error Correction

LoRaFFEC, a protocol to combine :FragmentationForward Error Correction

Sub-layers:Integrity.Fragmentation.Erasure Correction.

Page 14: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.9/30

Context Problematic LoRaFFEC Performances Conclusion Annex

LoRaFFEC protocol

Integrity sub-layer:

Applicative Data Unit(n bytes)

LSB (1 byte)

HASH(2 bytes)MSB (3 bytes)

Applicative Counter

Not sent Sent

|_____MSB1______|_____MSB2______|_____MSB3______|

MSB2

Page 15: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.10/30

Context Problematic LoRaFFEC Performances Conclusion Annex

LoRaFFEC protocol

Fragmentation sub-layer:

Applicative Data Unit(n bytes)

LSB (1 byte)

HASH(2 bytes)

Applicative Counter

Fragment Fragment Fragment

Fragment Length< 11 bytes

Padding

Page 16: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.11/30

Context Problematic LoRaFFEC Performances Conclusion Annex

LoRaFFEC protocol

Erasure Correction sub-layer3:

Redundant Fra

gment Window

[9+128; 1

0+128; 11+128]

Redundant Fra

gment Window

[12+128; 1

3+128; 14+128]

Redundant Fra

gment Window

[6+128; 7

+128; 8+128]

0 Data Fragment

1 Data Fragment

2 Data Fragment

3 Data Fragment

4 Data Fragment

5 Data Fragment

6 Data Fragment

7 Data Fragment

8 Data Fragment

9 Data Fragment

10 Data Fragment

11 Data Fragment

12 Data Fragment

13 Data Fragment

14 Data Fragment

15 Data Fragment

Data Fragment

124 Data Fragment

Application Data Unit

1250 Data Fragment

1 Data Fragment

2 Data Fragment

3 Data Fragment

4 Data Fragment

5 Data Fragment

6 Data Fragment

7 Data Fragment

8 Data Fragment

9 Data Fragment

10 Data Fragment

11 Data Fragment

12 Data Fragment

13 Data Fragment

14 Data Fragment

15 Data Fragment

125 Data Fragment

124 Data Fragment

253 Redundant Fragment

252 Redundant Fragment

252 Redundant Fragment

130 Redundant Fragment

129 Redundant Fragment

128 Redundant Fragment

131 Redundant Fragment

132 Redundant Fragment

133 Redundant Fragment

134

135

136

Redundant Fragment

Redundant Fragment

Redundant Fragment

137

138

139

Redundant Fragment

Redundant Fragment

Redundant Fragment

140

141

142

Redundant Fragment

Redundant Fragment

Redundant Fragment

Pseudo-random linear combinations.Coding Rate = 1/2.Resolved by Gaussian elimination.

Parameters:Window Length (WL).Redundancy Density (RD).Decoding Depth (DD).

Decoding complexity : O(w2 × DD).

3Marcelis, Paul J and Rao, Vijay S and Prasad, R Venkatesha. DaRe: Data recovery through application layercoding for LoRaWAN. In Internet-of-Things Design and Implementation (IoTDI), 2017 IEEE/ACM SecondInternational Conference on, pages 97?108. IEEE, 2017.

Page 17: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.12/30

Context Problematic LoRaFFEC Performances Conclusion Annex

LoRaFFEC performances simulation

Erasure channelIndependant and identically distributed (iid) erasures1000 Application Data Unit transmissions / experiment95% confidence interval

Page 18: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.13/30

Context Problematic LoRaFFEC Performances Conclusion Annex

DDR [WL=128; RD=0.6; DD=2]

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●

●●●●

●●●●●●●●●●●●●

●●●●●●

●●●●●

LoRaQoS Erasure Recovery (%) Performances[Decoding Depth 2; Redundancy Density 0.62 ; iid erasures]

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Packet Erasure Rate (%)

Dat

a D

eliv

ery

Rat

e (%

)

● LoRaFFECSystematic Retransmission

Page 19: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.14/30

Context Problematic LoRaFFEC Performances Conclusion Annex

With fragmentation [WL=128; DD=2; RD=0.61]

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●

LoRaQoS Erasure Recovery Performances[Applicative Payload 249 (28 fragments); Coding Rate 0.5;Decoding Depth 2; Window Length 128; Redundancy Density 0.61 ; iid erasures]

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Packet Erasure Rate (%)

Dat

a D

eliv

ery

Rat

e (%

)

Number of fragments● 1

28

Page 20: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.15/30

Context Problematic LoRaFFEC Performances Conclusion Annex

Conclusion LoRaFFEC

Combined fragmentation and application-level errorcorrection.Data delivery rate (DDR) >98% up to 40% PERchannels.

Further work :Loosen LoRaTM physical parameters.Improve channel characterization and quality estimation.LoRaFFEC incorporated into ADR will improve network capacity and reliability.

Page 21: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.16/30

Context Problematic LoRaFFEC Performances Conclusion Annex

THANKS

Page 22: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.17/30

Context Problematic LoRaFFEC Performances Conclusion Annex

Window Length [DD=2; RD=0.61]

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

LoRaQoS Erasure Recovery (%) Performances[Decoding Depth 2; Redundancy Density 0.62 ; iid erasures]

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Packet Erasure Rate (%)

Dat

a D

eliv

ery

Rat

e (%

)

● Systematic RetransmissionWindow Length 8Window Length 16Window Length 32Window Length 128

Page 23: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.18/30

Context Problematic LoRaFFEC Performances Conclusion Annex

Redundancy Density [DD=2] PER=40%

●●●

●● ● ● ● ● ● ● ● ● ● ●

LoRaQoS Erasure Recovery Performances[Decoding Depth 2; Packet Erasure Rate 40% ; iid erasures]

80

85

90

95

100

0.00

0.25

0.50

0.75

1.00

Redundancy Density

Dat

a D

eliv

ery

Rat

e (%

)

WL● 128

8

Page 24: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.19/30

Context Problematic LoRaFFEC Performances Conclusion Annex

Decoding Depth [WL=128; RD=0.61]

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●

80

90

100

30 40 50

Packet Erasure Rate (%)

Dat

a D

eliv

ery

Rat

e (%

)

Decoding Depth● 1 x WL

2 x WL3 x WL4 x WL5 x WL

Page 25: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.20/30

Context Problematic LoRaFFEC Performances Conclusion Annex

Latency [WL=128; DD=2; RD=0.61]

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

0 10 20 30 40 50 60 70 80 90 100

Packet Erasure Rate (%)

Late

ncy

(in fr

agm

ents

offs

et)

● Window Length 8Window Length 16Window Length 32Window Length 128

Page 26: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.21/30

Context Problematic LoRaFFEC Performances Conclusion Annex

LoRaFFEC protocol

Services:

Fragmentation

Erasure Correction

Protocol overhead:

1 byte applicativecounter /applicative data unit(ADU)

2 bytes hash / ADU

1 byte fragmentcounter / LoRaTM

frame (physical)

Applicative Data Unit(n bytes)

LSB (1 byte)

HASH(2 bytes)MSB (3 bytes)

Applicative Counter

Not sent Sent

|_____MSB1______|_____MSB2______|_____MSB3______|

MSB2

Applicative Data Unit(n bytes)

LSB (1 byte)

HASH(2 bytes)

Applicative Counter

Fragment Fragment Fragment

Fragment Length< 11 bytes

Padding

Fragment

#iFragment Payload

[i]Fragment Payload

[i+1]Fragment Payload

[i+2]Fragment Payload

[i+3]

LoRaWAN frame

LoRaWAN payload

LoRaFFEC Data UnitLoRaWAN headers

Page 27: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.22/30

Context Problematic LoRaFFEC Performances Conclusion Annex

LoRaFFEC protocol

Fragments aggregation in LoRaWANTM frame:Fragment

#i Fragment Payload

[i]Fragment Payload

[i+1]Fragment Payload

[i+2]Fragment Payload

[i+128]

Fragment

#i Fragment Payload

[i]Fragment Payload

[i+1]

Fragment

#i Fragment Payload

[i+1]Fragment Payload

[i+128]

Fragment

#i Fragment Payload

[i]Fragment Payload

[i+1]Fragment Payload

[i+2]

Fragment

#i+128 Fragment Payload

[i+128]Fragment Payload

[i+1+128]Fragment Payload

[i+2+128]

LoRaFFEC frame

FragmentNumber

3Fragment Payload

[3]Fragment Payload

[4]Fragment Payload

[5]Fragment Payload

[131]

LoRaFFEC frame

FragmentNumber

3Fragment Payload

[3]Fragment Payload

[4]Fragment Payload

[5]

LoRaFFEC frame

FragmentNumber

131Fragment Payload

[131]Fragment Payload

[132]Fragment Payload

[133]Fragment Payload

[6]

Fragment Payload

[6]

New Application Data Unit

Fragment Payload

[132]Fragment Payload

[133]Fragment Payload

[6]

Page 28: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.23/30

Context Problematic LoRaFFEC Performances Conclusion Annex

Reliability in LoRaWANTM

Systematic Repetition (SR) of the frameseach frame is repeated n times⇒ PDR = 1− (PER)n.⇒ Time On Air (ToA) = ToA[uplink]×n.

Automatic Repeat reQuest (ARQ)Uplink frames marked as confirmedRe-emitted in absence of downlink acknowledgement.⇒ Overload of the gateways, blind period.⇒ ToA = ToA[uplink] + ToA[acknowledgement].

At the physical layer: Adaptive Data Rate (ADR) protocol⇒ Dynamically adapts SF, TxP...⇒ Driven jointly by the network server and the node.⇒ Rely on channel estimation (measured SNR, RSSI, ...)⇒ Rely channel characterisation (Rayleigh fading, Gaussian noise, Log-normal pathloss, ...)

Page 29: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.24/30

Context Problematic LoRaFFEC Performances Conclusion Annex

State Of the Art: Forward Error Correction inLoRaWANTM

DaRe (Data Recovery)Pseudo random linearcombination.Low latency.No downlinksrequired.Fixed redundancyrate.

CCARR (Channel CodingAdaptive Redundancy Rate) :

Reed Solomon.High PDR.Dynamic redundancy rate.

[Marcelis, Paul J and Rao, Vijay S and Prasad, R Venkatesha. DaRe: Data recovery through application layercoding for LoRaWAN. In Internet-of-Things Design and Implementation (IoTDI), 2017 IEEE/ACM SecondInternational Conference on, pages 97?108. IEEE, 2017.][U.Coutaud and B. Tourancheau. Channel Coding for Better QoS in LoRa Networks. In IEEE, editor, InternationalConference on Wireless and Mobile Computing, Networking and Communications (WiMob), pages 1–9, June 2018.]

Page 30: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.25/30

Context Problematic LoRaFFEC Performances Conclusion Annex

State Of the Art: LoRaWANTM channel

• Bursty channel• Log-normal fading with sd=7P. J. Marcelis, V. Rao, and R. V. Prasad. Dare: Data recovery through application layer coding for lorawan. InProceedings of the Second International Conference on Internet-of-Things Design and Implementation, pages97–108. ACM, 2017.

• Highly variable PERT. Ameloot, P. Van Torre, and H. Rogier. A compact low-power LoRa IoT sensor node with extended dynamicrange for channel measurements. MDPI Sensors, 18(7):2137, 2018.

• Residual PER.J. Petäjäjärvi, K. Mikhaylov, M. Hämäläinen, and J. Iinatti. Evaluation of LoRa LPWAN technology for remotehealth and wellbeing monitoring. In IEEE, editor, International Symposium on Medical Information andCommunication Technology (ISMICT), pages 1–5, 2016.J. Petajajarvi, K. Mikhaylov, A. Roivainen, T. Hanninen, and M. Pettissalo. On the coverage of LPWANs: rangeevaluation and channel attenuation model for LoRa technology. In IEEE, editor, International Conference on ITSTelecommunications (ITST), pages 55–59, 2015.

• Fast Rayleigh fadingT. Attia, M. Heusse, B. Tourancheau, and A. Duda. Experimental Characterization of Packet Reception Rate inLoRaWAN. In Rencontres Francophones sur la Conception de Protocoles, l’Évaluation de Performance etl’Expérimentation des Réseaux de Communication, editor, CoRes, Narbonne, France, June 2019.https://hal.archives-ouvertes.fr/CORES2019/hal-02129199v1.

Page 31: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.26/30

Context Problematic LoRaFFEC Performances Conclusion Annex

Exponential distribution (dB)

0

500

1000

−40

−30

−20

−10 0 10

Page 32: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.27/30

Context Problematic LoRaFFEC Performances Conclusion Annex

Log-normal distribution m=0.56 sd=7.11 (dB)

0

300

600

900

1200

−40

−20 0 20

Page 33: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.28/30

Context Problematic LoRaFFEC Performances Conclusion Annex

Log-normal distribution sd=1.25 (dB)

0

300

600

900

−2.5 0.0

2.5

Page 34: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.29/30

Context Problematic LoRaFFEC Performances Conclusion Annex

State Of the Art: Forward Error Correction in WirelessNetworks

• Y.Birk and Y.Keren. Judicious use of redundant transmissions inmultichannel aloha networks with deadlines. IEEE, 1999.• Ender Ayanoglu, Pramod Pancha, Amy R Reibman, and ShilpaTalwar. Forward error control for mpeg-2 video transport in awireless atm lan. Mobile Networks and Applications, 1996.•C. E. Luna, Y. Eisenberg, R. Berry, T. N. Pappas, and A. K.Katsaggelos. Joint source coding and data rate adaptation forenergy efficient wireless video streaming. IEEE Journal on SelectedAreas in Communications, Dec 2003.

Page 35: Fragmentation and Forward Error Correction for LoRaWAN ...lig-membres.imag.fr/heusse/MaDeLoRa/coutaud.pdf · 3/30 Context Problematic LoRaFFEC Performances Conclusion Annex: Physical

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.30/30

Context Problematic LoRaFFEC Performances Conclusion Annex

LoRaWANTM network architecture

End Nodes

LoRa® RFLoRaWAN™

TCP/IP SSLLoRaWAN™

AES Secured Payload

TCP/IP SSLSecure Payload

Concentrator/Gateway

3G/EthernetBackhaul

NetworkServer

ApplicationServer