formation of soft particles in drop-in...

61
Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis Project KTH Royal Institute of Technology Engineering Sciences in Chemistry, Biotechnology, and Health

Upload: others

Post on 09-Sep-2019

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

FormationofSoftParticlesinDrop-in

Fuels

RichardA.Alim

Master´sThesisProject

KTHRoyalInstituteofTechnology

EngineeringSciencesinChemistry,Biotechnology,andHealth

Page 2: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

FormationofSoftParticlesinDrop-in

Fuels

RichardA.Alim

Supervisor:

HenrikHittig

Examiner:

LarsJ.Pettersson

Page 3: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

Abstract

Asthemissiontothedecreaseglobalwarmingandphaseouthighlypollutingenvironmentalpracticesglobally,regulationsincludingEuro6andpoliciesgeneratedbytheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)arepushingcompaniestobemoreinnovativewhenitcomestotheirenergysources.Theseregulationsinvolvemanyfactorsrelatedtothecleanlinessofthefuelandproducedemissions,forexample,propertiesofthefuelssuchassulfurcontent,ashcontent,watercontent,andresultingemissionvaluesofCarbondioxide(CO2)andNitrogenOxides(NOx).Furthermore,Swedenhassetachallengingtargetofafossil-fuel-independentvehiclefleetby2030andnonetgreenhouse-gasemissionsby2050.

Onewaytocutdownonthepollutingpropertiesinthefuel,aswellasweakeningthedependenceonfossilfuelbasedfuelincludesutilizinghigherblendingratiosofbiofuelsinthetransportsector.Thistransitiontobiofuelscomeswithmanychallengestothetransportindustryduetohigherconcentrationsofthesenewfuelsleadstocloggingofthefiltersintheengine,aswellas,internaldieselinjectordeposits(IDIDs)thatproduceinjectorfouling.Thiscloggingofthefiltersleadstolowerperformancebytheengineswhichleadstohigherrepairtimes(uptime)andlesstimeontheroadtotransportgoods.Theformationofthesesoftparticlesattherootofthecloggingissueisapivotalissuebecausetheprecisemechanismsbehindtheirformationarehighlyunknown.Scania,aleaderintheSwedishautomotiveindustry,isveryinterestedinfiguringoutwhatmechanismsarethemostinfluentialintheformationoftheseparticlesintheengine.UnderstandingthekeymechanismswouldallowScaniatomakeappropriateadjustmentstothefuelortheenginestoensuremoretimeontheroadandlessmaintenance.

Therearemanyconditionsknowntobepossiblecausesoftheformationofsoftparticlesinenginessuchaswatercontent,ashcontent,andtemperature.Aftergeneratingsoftparticlesusingamodifiedacceleratedmethod,particleswereanalyzedusinginfraredtechnology(RTX-FTIR)andaScanningElectricMicroscope(SEM-EDX).Manydifferentexperimentswereperformedtobeabletomakeaconclusionastowhichmechanismsweremostinfluentialincludingtemperature,time,water,air,andoil.Thecombinationofagingbiofuels(B100,B10,HVO)withmetals,andwaterproducedthelargestamountofparticlesfollowedbyagingthebiofuelswithagedoil,metals,andwater.Agingthefuelswithagedoilincreasedparticles,meanwhiletheadditionofwaterpreventedparticleproductionpossiblyduetoadditives.B100producedthehighestamountofparticleswhenagedwithCopper,B10withBrass,andHVOwithIron.

Page 4: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

NomenclatureAbbreviationCommonName

HVO Hydrotreatedvegetableoil

FAME Fattyacidmethylester

ISO TheInternationalOrganizationforStandardization

ULSD UltraLowSulfurDiesel

CEN EuropeanCommitteeforStandardization

CR Commonrail

B0 Nobiodieselpresent

B10 10%concentrationofbiodieselinfuel

B100 100%biodiesel:nopetrodieselpresent

DCA DepositControlAdditive

PIBSI Polyisobutylenesuccinimides

SG Sterylglycoles

SMG SaturatedMonoglycerides

VF VacuumFiltration

Page 5: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

TableofContentsNomenclature.........................................................................................................................................4

Introduction............................................................................................................................................1

LiteratureStudy.......................................................................................................................................1

Whatarebiofuels?..............................................................................................................................1

CommonBiofuelCompositions...........................................................................................................2

FuelSelection......................................................................................................................................3

UltraLowSulfurDiesel(ULSD)........................................................................................................4

HydrotreatedVegetableOil(HVO)..................................................................................................7

FattyAcidMethylEster(FAME)......................................................................................................7

FiltrationSystemintheCommonRailEngine...................................................................................10

FilterClogging....................................................................................................................................11

Sieving...........................................................................................................................................11

Bridging.........................................................................................................................................11

Agglomeration...............................................................................................................................12

DieselInjectorClogging.....................................................................................................................12

InternalDieselInjectorDeposits...................................................................................................12

NozzleGeometry...........................................................................................................................13

FuelComposition...........................................................................................................................13

Temperature.................................................................................................................................13

ContaminantsinFuel........................................................................................................................13

Particlesinfuel..............................................................................................................................14

Water............................................................................................................................................14

Air..................................................................................................................................................15

PresenceofMetals........................................................................................................................15

SterylGlucosides(SG)&SaturatedMonoglycerides(SMG)..........................................................16

FuelAdditives................................................................................................................................18

TestMethods....................................................................................................................................19

AcceleratedMethod......................................................................................................................19

AcceleratedOxidationTest...........................................................................................................19

DaimlerOxidationTest..................................................................................................................20

RancimatEN15751.......................................................................................................................20

PetroOXYEN16091.......................................................................................................................20

ColdSoakFiltrationTest(ASTMD2500)........................................................................................21

FiltrationMethods.............................................................................................................................21

SimpleFiltration............................................................................................................................21

Page 6: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

VacuumFiltration..........................................................................................................................22

TechniquestoMeasureSoftParticles...............................................................................................22

FilterAnalysis................................................................................................................................22

SmearMethod...............................................................................................................................22

ManualCollectionMethod............................................................................................................22

Centrifugation...............................................................................................................................23

AnalyticalMethods...........................................................................................................................23

OpticalMicroscopy........................................................................................................................23

ElectronMicroscopy......................................................................................................................23

X-rayenergy-dispersivespectroscopy(EDX).................................................................................24

Fourier-transformInfraredSpectroscopywithAttenuatedTotalReflection(FTIR-ATR)..............24

Experimental.........................................................................................................................................24

Materials...........................................................................................................................................24

Metals............................................................................................................................................25

Water............................................................................................................................................25

Oil..................................................................................................................................................25

Procedure..........................................................................................................................................25

AppliedMethods...................................................................................................................................27

AcceleratedMethodsforOxidationofFuelOils...........................................................................27

ColdSoakFiltrationTest................................................................................................................27

VacuumFiltration..........................................................................................................................27

AppliedTechniquestoMeasureSoftParticles..................................................................................28

FilterAnalysis................................................................................................................................28

ManualCollectionMethod............................................................................................................28

AnalyticalTechniques........................................................................................................................28

Fourier-transformInfraredSpectroscopywithAttenuatedTotalReflection(FTIR-ATR)..............28

ScanningElectronMicroscopy(SEM)............................................................................................28

Results...................................................................................................................................................29

AgingofB100withFreshOil(MAM1)...............................................................................................29

AgingofBiofuels(MAM2).................................................................................................................29

AgingofBiofuelswithFreshOil(MAM3)..........................................................................................31

AgingofBiofuelswithAgedOil(MAM4)...........................................................................................32

AgingofHVOwithAgedOilforanExtendedPeriod(MAM5)..........................................................33

AgingofBiofuelswithAgedOilandWater(MAM6).........................................................................34

AgingofBiofuelswithAgedOilandMetals(MAM7)........................................................................35

AgingofBiofuelswithAgedOil,MetalsandWater(MAM8)............................................................36

Page 7: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

AgingwithAgedOilandMetals(MAM9)..........................................................................................38

Discussion..............................................................................................................................................39

Conclusion.............................................................................................................................................44

Futurerecommendations......................................................................................................................44

Appendices............................................................................................................................................45

IRSpectra..........................................................................................................................................45

Filter´sPost-Treatment.....................................................................................................................45

AgedFuelwithFreshOil(MAM3).................................................................................................45

AgedFuelwithAgedOil(MAM4)..................................................................................................45

AgedHVOwithAgedOil(MAM5).................................................................................................45

AgedFuelwithAgedOil,andWater(MAM6)...............................................................................46

AgedFuelwithAgedOil,andMetal(MAM7)................................................................................46

AgingofFuelswithAgedOil,MetalsandWater(MAM8)............................................................47

AgingofFuelswithMetalsandWater(MAM9)............................................................................47

References.............................................................................................................................................49

Page 8: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

1

IntroductionRenewablefuelsarebecomingmoreprominentgloballylargelyduetorecentpushesfromgloballeaderstodecreasethedependenceonfossil-fuelbasedenergysourcesincludingtheincreasedregulationofacceptableamountsofemissionsfromthetransportsectorsuchasEuro6andpoliciesgeneratedbytheUnitedNationsFrameworkConventiononClimateChange(UNFCCC).TheUNFCChasmadeparticularprogressinbringinggloballeaderstogethertoagreeontheparamountParisClimateChangeAgreementattheParisClimateConference(COP21)in2015,whichwastheaimstokeeptheglobaltemperaturebelowthecritical2°Cinthelongterm,amongotherimportantpolicies[1].Oneofthewaystoaccomplishthisgoalofreducingthesocietalecologicalfootprintistodevelopmorecleantechnologythatcanallowforindependencefromfossilfuels,andthisiswherethetransportindustryhasstartedtakinginitiativeduetoincreasingpressures.Swedenhasbeenaleaderinfurtheringtheclimatechangeinitiativeintakingastrongstancebysettingademandingmilestoneofafossil-fuel-independentvehiclefleetby2030andnonetgreenhouse-gasemissionsby2050[2].Thiscanbeaccomplishedbyimplementinghigherusageofrenewablefuelsinthetransportsector.Thechallengingtaskofproducinglessfossilfuel-dependentsystemshasbecomecentraltotheworkthattheSwedishautomotivecompany,ScaniaAB,isinvolvedinwhenitcomestotheenginesintheirtrucksandbuses.Scaniahasbeenlongatworktomaketheirdieselenginesmoreenvironmentallyfriendlybyrunningtheirsemi-trucksonabiodieselandregulardieselblend.Inparticular,therearebiofuelsthatcanbeusedincurrentenginesintheirpureordilutedformswhichareknownasdrop-infuels.Moreover,theyareinterestedinthedrop-infuelbiofuelmarketduetotheabilityofthisclassofbiofuelstoruninanenginewithoutanymodificationsrequired.Thegoaltoincreasetheblendingofbiofuelsinworkingdieselenginescanbechallengingduetothemanyissuesthatariseincludingseverecorrosion,carbondepositionandwearingofenginepartsofthefuelsupplysystemcomponents[3].Understandingthemechanismsbehinddepositsonthefiltersandfuelinjectorsiscrucialtoimplementinganeffectivesolution.Thegoalofthisreportistogainadeeperunderstandingintothemainmechanismsbehindthedepositformationsformedfromtheuseofbiofuels(alsoknownasdrop-infuels)orinordertodevelopanewmethodtogeneratesoftparticlesinalabsetting.Thiswouldallowforfurtherinvestigationintopossiblesolutionstopreventtheformationoftheaforementionedparticles,whetherthatbeviaalteringthecompositionofthebiodieselormakingadjustmentstooperatingconditionsoftheengines.

LiteratureStudy

Whatarebiofuels?Biodieselisafuelsubstitutethatismadefromvegetableoilsoranimalfats.Vegetableoilscommonlyusedincookingarefartooviscoustobeusedinadieselengineduetothepresenceofglycerine[4].Therefore,inordertousecertainbiofuelsincurrentengines,certainprocessesarerequiredincludingesterification,hydrotreating,andgasificationasshowninTable1.Currentbiofuelsaremainlyproducedfrommainstreamcommodityoilcrops,principallyoilpalm,soybean,andrapeseed,whilesomeoftheminoroilcropscanbeusedtoproducebiofuelsmorelocally[5].Furthermore,themainbiofuelsusedbyvehiclesinSwedenare(inorder),HVO(hydrotreatedvegetableoil),FAME(fattyacidmethylester),

Page 9: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

2

ethanol,andbiogas[6].ScaniahaslongbeenworkingonsolvingthisissuebyblendinganincreasingamountofbiofuelssuchasFattyacidMethylEsters(FAME)andhydrogenatedvegetableoil(HVO)withregulardiesel.Thisreportisinterestedincharacterizingthemechanismsbywhichthesoftparticlesareformed,includingbutnotlimitedto,hightemperaturesincombustion,watercontent,anddegradationofbiofuels.Furthermore,thisinformationwillbeusedinordertoattempttogeneratesoftparticlesinalaboratorywiththeintenttolearnwhichfactors,infact,playaroleintheformationoftheparticlessincethereisverylimitedresearchonthistopic.

Table1:Differenttechnologiesforbiobaseddieselfuels[7]

CommonBiofuelCompositionsBiofuelsfromdifferentsourcesarecomposedofvaryingcompositionsofcommontypesofvegetableoilsincludingPalmitic,StearicandsoonasTable2shows[8].

Table2:Fattyacidchainscommoninbiofuels[8]

Name ChemicalFormula Carbons:DoublebondsPalmitic R=-(CH2)14–CH3 16:0Stearic R=-(CH2)16–CH3 18:0Oleic R=-(CH2)7CH=CH(CH2)7CH3 18:1Linoleic R=-(CH2)7CH=CH-CH2-CH=CH(CH2)4-CH3 18:2Linolenic R=-(CH2)7CH=CH-CH2-CH=CH-CH2-CH=CH-CH2-

CH318:3

Eicoseneacid R=-(CH2)9CH=CH(CH2)7-CH3 20:1ErucicAcid R=-(CH2)11CH=CH(CH2)7-CH3 22:1

whereRisthelongchainsofcarbonsandhydrogenatoms,sometimesreferredtoasfattyacidchains

Furthermore,Table3onthefollowingpageshowsthecompositionsofvariousoilsandfatsusingthecomponentsmentionedabove[1].

Page 10: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

3

Table3:FattyAcidcompositionofVariousOilsandFats[1]

OilorFat 14:0 16:0 18:0 18:1 18:2 18:3 20:0 22:1Soybean 6-10 2-5 20-30 50-60 5-11 Corn 1-2 8-12 2-5 19-49 34-62 Trace Peanut 8-9 2-3 50-65 20-30 Olive 9-10 2-3 73-84 10-12 Trace Cottonseed 0-2 20-25 1-2 23-35 40-50 Trace HilinoleicSafflower

5.9 1.5 8.8 83.8

HiOleicSafflower

4.8 1.4 74.1 19.7 13.2

HiOleicRapeseed

4.3 1.3 59.9 21.1 13.2

HiErucicRapeseed

3.0 0.8 13.1 14.1 9.7 7.4 50.7

Butter 7-10 24-26 10-13 28-31 1-2.5 0.2-0.5 Lard 1-2 28-30 12-18 40-50 7-13 0-1 Tallow 3-6 24-32 20-25 37-43 2-3 LinseedOil 4-7 2-4 25-40 35-40 25-60 YellowGrease

2.43 23.24 12.96 44.32 6.97 0.67

Inthecaseofthisreport,thebiofuelthatisutilizedwasproducedusingrapeseed.

FuelSelectionTherearemanydifferenttypesoffuelsusedgloballydependingontheregion,however,thankstotheemphasisonincreasinglyenvironmentallyfriendlyalternativestherehasbeenapushfortheuseofUltraLowSulfurDiesel(ULSD)andfortheincreaseduseofrenewablefuels(HVO,FAME,etc.).Moreover,therehasbeenapushforcleanerfuelsgloballysotherehavebeenincreasingregulationsintroducedbytheInternationalOrganizationforStandardization(ISO)includingISOEN590andEN15940fordieselfuelwhichwillbediscussedlaterinthisreport.FuelpropertiesareshownbelowinTable4,whereEN590isregulardiesel,andGTLisGas-to-liquidproducedfromFischer-Tropschsynthesis[7].ThisreportwillcoverGTLfromFischer-Tropschsynthesisasitisnotinthescopeofinterest.HVOandFAMEcanbeproducedfromthesamefeedstock,buthavevastlydifferentprocessingtechniques[9].ThetransesterificationprocesstoproduceFAMEcanbeaccomplishedatamuchcheapercostwhencomparedwiththehydrotreatmentprocesstoproduceHVO,however,HVOismuchpurerthanFAMEcontainingnoconstituentsthatwouldleadtodepositsinfuelinjectors[10].HVOwillrequireahigherinvestmentbygovernmentsinordertointroduceitasamorecommoneverydayfuel,aswellas,expansionduetolimitedaccessrelativetoFAME.

Page 11: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

4

Table4:TypicalpropertiesofHVO,EuropeanEN590:2004dieselfuel,GTLandFAME[1]

UltraLowSulfurDiesel(ULSD)

Alongwiththepressurestoshifttomoreenvironmentallyfriendlyfuelsglobally,thespreadofdieselwithlowamountsofsulfurhavebecomemoreprominent.Themotivationtomovetolowersulfurcontentinfuelsislargelybasedupontheneedtoreducepoisoningoftheexhaustaftertreatmentcatalysts,reducedieselengine'sharmfulemissions,toimproveairqualitybydecreasingtheemissionsofsulfuroxides(SOx),NitrogenOxides(NOx),andparticulatematter.Onemainfocusfortheuseofultra-lowsulfurdiesel(ULSD)istominimizethepossiblepoisoningintheexhaustaftertreatmentsystemscausedbysulfur,whichincludethedieselparticularfilter(DPF),NOxreductionsystemandSelectiveCatalyticReduction(SCR)[11][12].Theexhaustaftertreatmentsfiltersarebecomingincreasinglyimportantinthechallengetokeepupwiththeemissionsstandardsthatgrowmoreandmorestringenteveryyearinthetransportindustry.Onesimplerwayforthetransportindustrytodecreasethechallengeofmeetingthehighemissionstandardsistoshiftthefocusfromdevelopingexpensiveaftertreatmentsystems(suchastheadditionofasulfurtrapcatalyst)todemandinghigherqualityfuel[11].Forexample,Zhangetal.studiedtheeffectofSO2poisoningontheSCRreactionactivityofaCu-SAPO-34catalysttoidentifytwomechanismsofwhichtheSCRcatalystwasinhibited;formationof(NH4)2SO4whichcanleadtoblockingoftheactivesites,aswellas,identifyingthetrendthatSO2absorptioncompeteswithNOxabsorptionontheCusites.Theconcentrationofsulfurinfuelshasalsobecomeakeyissueuponthefindingsthatcombustionofregulardieselfuelproducesamountsofsulfurdioxide,SO2,andNOx,nitrogenoxides.Moreover,whenSO2dissolvesintothewaterthisproducesthephenomenonknownasacidrainwhichcontributestoenvironmentaldamage.Whentheacidrunsintoriversand

Page 12: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

5

streamsitcanleadtoincreasedacidity,whichhasanimmediateeffectonbiodiversity.Furthermore,itcanreactwithmetalssuchaslimestone,aswellas,damagingthewaxlayerontreeswhichmakesitmoredifficulttoabsorbnecessaryminerals[13][14].Meanwhile,NOxcontributestothegreenhouseeffect.Astheamountsofvehiclesrunningondieselincreasesontheroadeveryyear,itbecomesnecessarytoreducetheamountofPMproducedtoensuresufficientairquality.Sootisthemainculpritofdieselnoxiousblackexhaustfumes,consequently,itisoneofthemajorcontributorstoairpollution[15].Moreover,thePMproducedareharmfulduetotheirabilitytopenetratedeeplyintothelungs.Startingin2004thestandardEN590reducedtheallowableamountofsulfurindieselfuelfrom50ppmto10ppmforroadvehicles[16].Inaddition,itallowsfortheblendingofupto7%volumeofbiofuelswithconventionaldieselfuel.AllofthestandardsareprovidedinTable5.Thisstandardhasbeenextendedtooff-roaddieselenginesandlargeengines,cappingthematalimitof15ppmsulfur.

Page 13: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

6

Table5:Generallyapplicablerequirementsandstandardizedtestmethodsforautomotivedieselfuel[16]

Property Unit Limits TestMethod

Minimum Maximum

Cetanenumber 51.0 - ENISO5165EN15195EN16144!EN16715

Cetaneindex 46.0 ENISO4264

Densityat15°C kg/m3 820.0 845.0 ENISO3675ENISO12185

Polycyclicaromatichydrocarbons

%(m/m) - 8 EN12916

Sulfurcontent mg/kg - 10 ENISO20846eENISO20884ENISO13032

Manganesecontent mg/dm3 - 2 EN16576

Flashpoint °C Above55.0 - ENISO2719

Carbonresidueg(on10%distillationresidue)

%(m/m) - 0.3 ENISO10370

Ashcontent %(m/m) - 0.010 ENISO6245

Watercontent %(m/m) - 0.020 ENISO12937

Totalcontamination mg/kg - 24 EN12662

Copperstripcorrosion(3hat50°C)

Rating Class1 ENISO2160

Fattyacidmethylester(FAME)content

%(V/V) - 7.0 EN14078

Oxidationstability h -20

25-

ENISO12205EN15751

Lubricity,wearscardiameter(WSD)at60°C"

µm - 460 ENISO12156-1

Viscosityat40°C mm2/s 2,000 4,500 ENISO3104

Distillation%(V/V)recoveredat250°C%(V/V)recoveredat350°C95%(V/V)recoveredat

%(V/V)%(V/V)°C

85

<65360

ENISO3405ENISO3924

Page 14: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

7

HydrotreatedVegetableOil(HVO)Hydrotreatingofvegetableoilisamodernwaytoproduceveryhigh-qualitybiobaseddieselfuelswithoutcompromisingfuellogistics,engines,exhaustaftertreatmentdevices,orexhaustemissions.Additionally,theyarecommonlycomposedofamixtureofparaffinichydrocarbons[17].HVOcomeswithmanyperkssuchasthepossibilitytoadjustthecoldpropertiesofthefuelbyadjustingtheseverityoftheprocess,orbyadditionalcatalyticprocessing,aswellas,thefuelhavingahighcetanenumber.Itisagreatalternativeforbiofuel,butcomeswithdisadvantageswhichincludeexpensiveproductionandthatitisproducedfromsimilarfeedstocksasbiodiesel[18].Infact,HVOhasmanyadvantagesatcoldtemperatures:fasterandeasiercoldstart,lesscoldstartsmoke,lessenginenoiseafteracoldstart[10].TheprocessrequiredtoproduceHVOinvolvessaturatingtriglyceridesunderhydrogenpressureandconvertingthemintofreefattyacidsandpropane.Subsequently,threesimultaneousreactionsoccurproducinglong-chainhydrocarbons,water,carbonmonoxide,andcarbondioxide[19].AdiagramdescribingthestepsinvolvedinofthehydrotreatmentcanbeseenInFigure1.

TheEuropeanCommitteeforStandardization(CEN)hasapprovedtheEN15940standardforparaffinicdieselspecifyingthequalityandpropertiesofadvanceddieselwhichiseithersyntheticorproducedfromrenewablerawmaterialsthroughhydrotreatment.Dieselfuelsthatcomplywiththestandardcanbeusedinexistingengineseitherassuchorasbefore,asblendcomponentsinconventionaldiesel[20].

WhileHVOmaycomewithmanyadvantages,thehighcostofproductionofthisbiofuelhavebeenplayedalargepartinthelimiteduseofitinthetransportsector.ThehighproductioncostscanbeattributedtohydrogenationandloweryieldsatHVOproduction[21].ThisfuelnotonlycostssignificantlymorethanotherbiodieselalternativessuchasFAME,butisalsoproducedfromthesamefeedstockwhichcausesstrainonthealreadylimitedresources.

FattyAcidMethylEster(FAME)FAMEiscomposedofaglycerinemoleculeconnectedwiththreelonghydrocarbons,whichcannotbeusedasafuelinitsoriginalformduetoitshighviscosity.Inthiscase,theFAMEissourcedfromrapeseedoilalthoughitcancomefrommanydifferentsourcesaspreviously

Figure1:Reactionschemeforhydroprocessingatriglyceride,e.g.triolein,bysaturation,fattyacidformation,andthreeroutestohydrocarbonformation[19]

Page 15: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

8

mentionedinthisreport.Therefore,inordertoutilizevegetablefuelsindieselengines,aprocesscalledtransesterificationisrequired.Transesterificationisanalcoholysisprocessthatconvertstriglyceridesfromvegetableoiltofattyacidmethyl/ethylestersbydisplacingalcoholfromanesterbyanotheralcohol[3].Afterthetransesterificationprocessiscomplete,thethreelonghydrocarbonmoleculesareeffectivelyseparatedasisshowninFigure2.Methanoliscommonlyusedintheprocesstobreakupthetriglycerides,aswellas,astrongbaseorastrongacidthatcanbeusedasacatalyst[22].:

Figure2:Thetransesterificationprocesstoproducebiodieselandglycerol[22]

AsthereactioninFigure2displays,methanolisreactedwithtriglycerideinthepresenceofacatalysttoproducerawbiofuelandglycerol.Furthermore,usingmethanolinthetransesterificationprocessallowsfortheglyceroltoberemovedsimultaneously[22].However,acleaningstepisrequiredinordertoobtainaviableformofthebiodiesel.OneofthecurrentissuesinusingFAMEintheautomotiveindustryistherateatwhichitdeterioratesrelativetoULSD.Deteriorationofthefuelincreaseswiththenumberofdoublebondspresentinthefeedstock;therefore,higherchanceofoxidationdeterioration[23].ThenumberofbondspresentinthreedifferentcommonFAMEsourcesaredisplayedinFigure3includingSoybeanMethylEster(SME),RapeseedOilMethylEster(RME)andPalmOilMethylEster(PME)wherethepurplerepresentsnonbondedcarbons,redrepresentssingle-bondedandyellowrepresentsdouble-bondedcarbons[23].

TriglycerideMethanolGlycerol Esters

Figure3:NumberofbondsperdifferentFAMEsources[23]

Page 16: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

9

TheincreaseduseofFAMEhasintroducedmanyissuesduetocontaminantswhichwillbediscussedlaterinthisreport.Moreover,togetanideaofthenovelproblemsthatmustbemitigatedFigure4showsasummaryofthemanyshortcomingsthatcanarise.Duetothemanypossiblesourcesofcontamination,itisverydifficulttonarrowdownwhichcontaminantsarethemostpotenttoengineperformance.Moreover,figure4displaysmanyoftheissuesknowntocausedeposits.

Figure4:IssuesintroducedduetohigherconcentrationsofFAME[23]

Page 17: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

10

FiltrationSystemintheCommonRailEngineThecommonrailfuelsystemutilizestwofiltersintheengineinordertoprotectthevariouscomponents,theprimaryandsecondfilterasisdisplayedinthediagramdisplayedin[24].

Figure5:Adiagramofthelayoutofadieseltruckengine[24]

Theprimaryfilteriscommonlylocatedonthesuctionsideofthefueltransferpumpandallowsfortheprotectionofthepumpwhilesimultaneouslytakingadvantageofeasierfuelwaterseparationconditionsbeforethepumpemulsifiesthefuel/watermixture[24].Moreover,uponcloggingoftheinlet-sidefilerresultsinthepressurelossofthesuctionofthefuelpump,inotherwords,morepressuredropleadstolessthansufficientfuelsupplyandlimitsenginesperformancedirectly[25].Efficiencyratingsfortheprimaryfiltersaredependentuponvehicle,engine,andoperatingenvironmentprimaryfiltersrangingfrom7µmto25µm.

Thesecondaryfilterislocatedbetweenthetransferandhigh-pressureinjectionpump.Thesefiltersprovideprotectionforthehigh-pressurefuelpumpandsensitivefuelinjectioncomponentsfromparticlesthatcancausewearanderosiondamage[24].Secondfiltersinhigh-pressurecommonrailfuelsystemsgenerallyhaveefficiencyratingsof4-5µm.

Theprimaryandsecondaryfiltersarebothparadigmstoanefficientrunningengineandcanbeafflictedbysimilarrootcauses.Thepre-filterandmainfiltercanbothbecloggedbytheaggregationofsoftparticles,however,theyoccurinslightlydifferentways.Thepre-filtercanbecomecloggedwithlargesoftparticlesthatdepositonitssurface,effectivelylimitingtheflowoffueltotheengine.Meanwhile,themainfiltercanbeaffectedbythesmallersoftparticlesintwoways:agglomerationandpresenceinthefuelinjector.Moreover,smallerporesizerestrictionsforfuelfiltersduetotighterclearancesinHPCR(High-PressureCommonRail)injectors,coupledwithcontaminantsfrombiodieselandcarboxylatesaltsinfuel,havebeenidentifiedasaccelerantsofdieselfuelfilterplugging[26].Itshouldbenotedthatthe

Page 18: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

11

sizeofthesesoftparticleslieintherangeof5to15µm,whereastheaverageeyecanonlydetectobjectsassmallas40µmasisshownin[27].Thesephenomenawillbediscussedinfurtherdetailinthenextsections.

Figure6:Generalsizesofcommonthings[27]

FilterCloggingUsingablendofbiodieselandregulardieselincurrentenginesintroducesnovelissuesintothepowersystemsbyproducingsoftparticleswhichclogtheenginefilters.UnderstandingthemainmechanismbywhichsoftparticlesareformediscrucialbecauseitwouldallowScaniatooptimizetheperformanceoftheirtrucksbyadjustingthecompositionofthebiofuelsorengineparameters,forexample,toadjustformorehumidregionssuchasLatinAmerica.Onestudyfoundthatfiltercloggingduetobiofuelsispossiblyrelatedtosolubilityincompatibilityandthatdepositsmaybetheresultofheavyoxidationoffuelcomponentssuchaslubricantadditivesduringcombustionofthefuel[28].Theaccumulationofsoftparticlescanleadtopluggingofthepre-filter(Stage1)viamanymechanisms,including,sieving,bridging,andagglomerationwhicharerepresentedinFigure7[29].SievingSievingcanresultincloggingduetothefactthatasoftparticlecanenteramicrochannelwhosesizeissmallerthanthediameteroftheparticleatrest.Inotherwords,whenapressuredifferenceisappliedbothvolumeandshapeofadeformableobjectchangeduetolocalmechanicalstresses.Thisshapechangeleadstoblockageofchannels,i.ecloggingofthefilter[29].BridgingBridgingcanformintheinstancesthatconvergingflowandhighparticleconcentrationoccurs,generatingalayerofparticles,typicallybetween2and10,thatspanacrosstheentirechannel.Thisoccurslargelyduetostericeffectsthroughtheformationofanarchofparticlesacrossthewidthofthechannel,resultingincloggingofthefilter[29].

Page 19: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

12

AgglomerationAgglomerationistheendresultofcloggingduetosuccessivedepositionofcolloidalparticles.Thisphenomenoncanoccurinthebulkofsuspensionoronafluidinterface[30].Short-rangeattractivevanderWaalsforceisthemaindrivingforcebehindtheformationofcloggingfromagglomeration,inotherwords,thehigherfrequencyofcollisionsofparticlesleadstohigherratesofdepositformationsonthefilters.Furthermore,globallythereisavarietyofweatherconditionsandaltitudeswhereScaniatruckstravelandtransportcargo,soknowledgeoftheprominentmechanismcanbeusedtoreduceuptimeofthevehicles

Figure7:PhenomenathatcancauseStage1andStage2filtersclogging[29]

DieselInjectorCloggingAnadditionalissuethatarisesfromtheformationofsoftparticlesisthegenerationofparticleswhicharesmallerthanthefiltersizeitself.Thisbecomesespeciallytroublesomebecausesomeparticlesmayfindtheirwaythroughtheprimaryandsecondaryfilter,whichleadstodepositsonthefuelinjector.Thisproblemispotenttotheoperationofanenginesincedepositsintheinjectorreducethehydraulicdiameter,indoingso,reducesthehydraulicflowinthenozzle.Thustheamountofinjectedfuelisdecreasedandsprayqualityisdecreased.Manystudieshavebeenperformedwhichhavenotonlyidentifiedcommoninternaldieselinjectiondeposits(IDID´s),butalsoidentifiedthemaincausesbehindinjectordepositsincludednozzlegeometry,fuelcomposition,andtemperature[31][32].InternalDieselInjectorDepositsInfact,thereare6differenttypesofinternaldieselinjectiondepositsthathavebeenidentifiedwhichareallproductsofthecontaminants.Thesixtypesof(IDID´s)include

Page 20: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

13

carboxylatesalts,polymericamides,inorganicsalts,agedfueldeposit,lacquer-basedorcarbonaceous[32].Furthermore,IDID´saremoreoftenthannotacomplexmixtureofmultiplesortswhichcanmakepinpointingthetruecauseofcloggingincreasinglydifficult.

NozzleGeometryDuetotheimportanceofgeometryintheprocess,itisveryimportanttohaveanaccuratemeasureofthegeometry.Macianet.aldescribesonemethodthatutilizesformingamoldofthenozzletipusingsiliconduetoitsmaterialproperties.Tanget.alinvestigatedtheimpactofenhancedcavitationontheformationofdepositionsbyvaryingthegeometriesofthesprayholesand,thuscavitationtendency.Onegeometry(Type2)utilizedahydro-grinded(respectivelyrounded)sprayholeinlettoreducecavitationinthenozzleorifice.Whiletheotherwasassumedtoresultinaminorcokingincomparisontothepreviousgeometry(Type2).Upontestinginamedium-dutytruckengineOm906usingCycle1.itwasfoundthattheType2geometryreducedinpoweroutputby6%,whilethetype1nozzleindicatednosignificantcokinglevel[34].Additionally,anotherstudyexaminedseveralgeometricalparametersandtheirinfluencesincludingoutletholediameter.Conicityfactor(Cf),andtheinletholeradiuswhichiscontrolledbythelevelof“hydrogrinding”.Argueyrolleset.al.foundthatlargeroutletholediameterandthereforelargerhydraulicflowleadtolargerdeposits.whilekeepingthefuelflowratelosslow[35].

FuelCompositionThenumberofdepositformationsincreaseswithalargerconcentrationofbiofuelinafuelmixtureasmanystudieshavefound[36].Birgeret.alperformedastudytoinvestigatetheeffectofdifferentfuelsfromvegetableoilthathadbeenprocessedviathetransesterificationprocessincludingB0(RF06),B30(30%V/V)andB100.DepositsweremeasuredbyadropinIndicatedMeanEffectivePressure(IMEP).Moreover,theresultsindicatedthatboththeB30andB100blendsofoff-specificationbiodieselacceleratedthedepositformation.

TemperatureManystudieshavebeendoneandcometotheconclusionthathighertemperaturesleadtomoredepositsintheengine,aswellas,studiesthathaveshownthatcoldtemperaturesleadtodepositsintheengine.Whenthebiofuelissubjectedtohighertemperatures,oxidationofthefuelincreasessubstantially.Itshouldbenoted,inadieselenginethetemperatureusedisathighestaround80°Canditisonlysubjectedtothistemperatureforashortwhile.Oxidationduetohightemperaturesismoreafocustoensurethelongevityofthecontaminantsthataccumulateovertime.Argueyrollesetal.statethatnozzletemperatureshigherthan300°Ccanresultinsignificantcoking.Furthermore,Galleet.alrecommendsavoidingtemperaturesover280°Cinthenozzletiptopreventcloggingandcarbonizing.Meanwhile,undercoldtemperatures,organicparticlessuchasSterylGlucosides(SG)precipitateoutofthefuelleadingtocloggingissues.However,thisspecificissuewillbediscussedinthefollowingsection.

ContaminantsinFuelTherearemanysortsofcontaminationthatcanoccurinafluidpowersystem:gaseous(e.gair),liquid(e.g.water),andsolidcontaminantsasFigure8belowdemonstrates.Furthermore,

Page 21: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

14

solidcontaminationcanbesubdividedintothreedifferentgroups:extremelyhard,hardandsoft.Contaminationiscommonlyintroducedthroughtheuseofuncleantanks,dirtaddedduringmaintenancecycles,tankopentotheenvironmentandmissingorlow-qualityairbreathersintanks[27].Forthisreport,thefocuswillbeonsoftparticles.Thesesoftorganicparticlescanbuildupwithintheengineduetotheiraccumulationintheenginefromnaturalcauses,aswellas,duetooxidationofthebiofuel.Softorganicparticlescanbesoft,stickyorslimywhichquicklyleadstobuild-upwithinthefiltersintheengine[24].Therootcausesfortheirformationwillbediscussedinthissection.

Figure8:Differenttypesofcontaminationinafluidsystem[24]

ParticlesinfuelParticulatecontaminantsincluderoaddust,enginerustorwearparticles,andanyotherhardparticlesthatcancauseenginedamage[24].Theseparticlesarecommonlyrigidinnatureandthereforecancausealargeamountofdamagetotheengine,however,thetrueextentofdamageisdependentonparticlesize,shape,rigidity,concentrationandcomposition.Thefirstlineofdefenseagainstthesedestructiveparticlesistheprimaryfilter,whichisdesignedtocapturetheseparticlesinthefuelinordertoreducedamagetoimportantcomponentsofthesystem[25].Therearetwocommonsourcesofparticulatecontaminationincludingdieselfuelcleanlinesslevelsofavailablefuel,andthetankvent.Asthisreporthasdiscussedearlier,therearecertainrequirementsforthecleanlinessofthefuelwhereitcanonlyincludeamaximumofcertainknowntroublesomecomponents[16].Asforcontaminantsthatareintroducedviathetankvent,theyincludeambientairwhichcancontributedustandotherharmfulcomponentsintothetank.Theproblemsthatcomewiththeambientairinthetankspecificallywillbediscussedlaterinthisreport.

WaterWatercanenterasystemasfree,dissolvedandemulsifiedwaterinthefuel.Waterfoundindieselfuelscancauseenginepartcorrosionanderosion,fuellubricitydeterioration,fuel

Page 22: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

15

pumpcavitation,fuelinjectordepositbuild-upandfuelfilterplugging[24].Inaddition,itcanalsopromotefuelinstabilityandbacteriagrowthatthefuel/waterinterface.Freeandemulsifiedwatercontentindieselfuelscanleaduptocloggingofthefilterssinceitpromotesbiologicalgrowthinstoragetanks,whichcanleadtocorrosionofmetals(copper,iron,steel,andothers)andformationofsludgeandslime[38].Meanwhile,dissolvedwaterleadstofasteroiloxidation,reducedfatiguelife,anddemolitionofester-basedfluidsandadditives[27].Itshouldbenoted,thatwaterinthetankisnotabnormalbecausewatercanalsobetransferredintothevehicle´sfueltankasthelevelofdissolvedwaterinthefuelequilibrateswiththerelativehumidityoftheoutsidesurroundings.Moreover,Thompsonetal.foundthatsaturationmoistureinbiodieselrangedfrom0.10to0.17%wtinthetemperaturerangeof4°to35°C,whichwas15-25timeshigherthanthatofstandarddiesel.Thispropertyleadstothepossibilityifwatercollectingatthebottomofthetank,whichleadstobiggerproblemsmentionedearliersuchasbiologicalgrowth.Fanget.alusedtheD2274standardmethodtoageB20inthepresenceofasmallamountofwaterandfoundthatitincreasedtherateforboththehydroxylandthecarbonylbands.Ultimatelysuggestingthemechanismsoccursasshowninequation2[40].Theproposedmechanismissuchthattheestersreactwithwatertoformcarboxylicacidandmethanol.

AirAsmentionedpreviously,ambientairmayenterthegastankwheneverthetankventisopenedwhichcanleadtomanyissuesincludingoiloxidation,varnishformation,cavitation,noise,andchangeofviscosity[27].Pre-maturedegradationofthebiofuelisakeyissuewhentheairisintroducedsincetheoxygencomponentwillreactwithoil.Thisisduetothepresenceofdoublebondsinthemoleculeinducesahighlevelofreactivitywithoxygenwhenitmakesdirectcontactwithair.Moreover,Altaieet.alfoundthatwhencomparingfueltankstoragethatwasclosedtotankstoragethatwasexposedtoambientair,thelaterdegradedatafasterrate[41].Decreaseinpumpefficiencyandeventuallydamagetopumpsiscausedbytheformationandcollapseofgaseousoilcavities(i.e.cavitation).

PresenceofMetalsThepresenceofmetalshasaverydampeningeffectontheperformanceofadieselenginesincetheycausedecreasedoxidationstabilityinbiofuels.Whiletheeffectofzinconbiofuelsiswellknown,othermetalsproducesimilareffectsincludingsodium,calcium,copper,andiron.TheissueofmetalsarisesduetothefundamentalsofthedegradationofbiofuelsbecauseitleadstotheformationofLongChainFattyAcids(LCFA)andShortChainFattyAcids(SCFA).TheSCFAareveryreactiveandreactwiththemetalionspresentformingmetalsoaps,whichcontributetothecloggingofthefilter.Risberget.alfoundthatsodium,calcium,copper,andironsaltssignificantlyfoulednozzleholes[42].Infact,atrendwasidentifiedthathigherchargeofthemetalcationinthecarboxylicsaltincreasedthefuelflowloss.Whilethe

Equation1:Esterhydrolysisbyreactionwithdissolvedwater[40]

Ester Water GlycerolCarboxylicAcid

Page 23: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

16

concentrationofzincinmarketdieselfuelsisratherlow,usuallybelow0.1ppm,zinccanbeintroducedfromfuelsystemcomponentsandlubricantsystems[43].Despitetheselowconcentrationsofzinc,theissueofconcentrationarisesduetoaccumulationovertime.Thedebilitatingeffectofzincondieselengineshasbeenwelldocumented,andmanyreportshaveconcludedthatithasthiseffectataslittleconcentrationas1ppm[31],[42],[43].Fangetal.researchedtheeffectofmetalsonB100usingsmallamountsofferricacetylacetonate(withironFeconcentrationat16or40ppm)usingtheD2274standardmethodofagingthefueltoobservenewbandinthecarbonylregionat1640cm-1[40].Thisnewbandwasidentifiedasacarboxylateformation,makingthecaseforareactionbetweenironandcarboxylatefunctionalgroups.

SterylGlucosides(SG)&SaturatedMonoglycerides(SMG)Plant-basedbiofuelsarecomposedoffreesterols,sterylestersandacetylatedsterylglucosides(ASGs).Moreover,duringthetransesterificationprocess,theASGsareconvertedtoSterylGlucosidesduetothepresenceofmethanol[44].Furthermore,manystudieshavefoundthatthepresenceofSGleadstofiltercloggingparticularlyincoldtemperatures[45],[46].ThefiltercloggingduetoSGislargelyduetothelowsolubilityofSGinbiodieselandhighmeltingpoint,leadingtosoftparticlesinthefuel.Furthermore,concentrationaslowas20ppmleadstofilterclogging[46],[47].

Monoglycerides(SMG)arepartiallyconvertedfatsandoilswithinthebiodiesel[48].Furthermore,Itcanhavetwoforms,saturatedandunsaturated;wheretheformercansignificantlyraisethecloudpointofthebiodieselwhilethelatterdoesnot[49].SimilartoSG,studieshaveshownthatSMGisacommonsourceoffilterplugging.TherearestandardsthatareaimingatthedecreasingconcentrationofSGandSMG´sintransportfuelsincludingENSS-EN14214,however,thisfocusfallsmainlyonfuelproducers.ThestandardsandestablishedtestmethodsforeachparameterofFAMEbiofuelareshowninTable6.Thisisnotaverypotentsourceofcontaminationduetothefactthattheconcentrationsaregenerallyextremelylow,andthereforenotalargefocusonfiltrationclogging[1].Fanget.alperformedanexperimentgravimetricallywherea20-gyellowgreasebiodieselsamplewasmixedwith2%EHN,0.1%organo-sulfonicacid(C12SO3H)and100ppmferricacetylacetone.Whereupon,a20%aqueousglycerinewasaddeddropwise[40].Afterfirstheatingthesampleat120°Cfor4hoursandthen110°Cforthenext16hourswithaconstantairflowrateof15cc/min,itwasfoundthatanincreasedbuild-upofdepositsoccurredwhentheglycerin/waterconcentrationreachesabout600ppm.

Page 24: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

17

Table6:GenerallyapplicablerequirementsandtestmethodsperSS-EN14214[78]

Page 25: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

18

FuelAdditivesFueladditivescanservemanypurposesinafuelincludingimprovinghandlingpropertiesandstabilityofthefuel,improvecombustionpropertiesofthefuel,provideengineprotectionandcleanliness,increasetheeconomicuseofthefuelandtoestablishorenhancethebrandimageofthefuel[50].Furthermore,dependingonthetransportsystemavarietyofthepreviouslymentionedfeaturesmayberequired.TherearemanyadditivesthatareinvolvedintheblendingofdieselfuelsincludingDepositControlAdditives(DCA)´s,CetaneNumberImprovers,ColdFlowImprovers,andStabilityImprovers.DepositControlAdditivesDepositcontroladditiveshavebecomeveryusefulinreducingclottingofthefilters,whichcanhelpmitigatetheissueofpowerlossengineperformanceduetosoftparticlesthatformindieselengines.DieselDCApreventstheformationofdepositsininjectornozzlespartlybyprovidingafilmonmetalsurfacesandpartlybypreventingagglomerationofdepositprecursors[51].Thisispossibleduetoitsstructurewhichconsistsofapolarheadwhichhasanaffinityforthemetalsurfaceinthefuelsystemandahydrocarbontailwhichallowsfuelsolubility.Theimportanceofthisadditiveindieselfuelblendingisreflectedinthecompositionoffuelssuchthat40-50%ofalladditivesusedareinfactDCA´s[52].ThereisoneparticularDCAthathasbeenavastlysuperioradditiveoverthelastthirtyyearsknownaspolyisobutylenesuccinimides(PIBSI)[53].ThechemicalstructureofPIBSIisdisplayedinFigure9.TherehasbeendebateastowhetherPIBSIcouldleadtoinjectordepositswheresomestudiesfoundthatbymixingandheatingPIBSIwithacidiccompoundscouldgenerateamidesandproducematerialwithasimilarFT-IRspectrumtodepositsanalyzedfromaninjector[54],[55].Consequently,afollow-upstudywasperformedwhichconcludedthatwhilethematerialproducedlookedsimilar,therewasnoconclusiveevidencethatPIBSIwouldproducedeposits[56].

CetaneNumberImproversCetanenumberimproversarecrucialinfuelstoprovideacost-effectiveincreaseindieselcetanequalityandarepredominantlyalkylnitrates,ofwhich2-ethylhexylnitrate(2-EHN)hasbeenthemostcommonforover80years[51].Ahighcetanenumberisveryimportantforafuelbecauseitdetermineshowfastafuelwillignite,therefore,thehigherthecetanenumberthemorereducedtheignitiondelay.Theydonotonlyincreasethecombustionprocessensuringearlyanduniformignitionofthefuel,butalsopreventprematurecombustionandexcessivepressureincreaseinthecombustioncycle.Alkylnitratesareveryeffectiveduetotheexcessoxygenthattheyintroduceintothefuelupondecomposition,whichisverybeneficialforthe

Figure9:TheChemicalStructureofPIBSI

Page 26: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

19

combustionofthefuel[50].Thoughtheseadditivescanbeveryeffectiveinimprovingthequalityofthefuel,theyalsocatalyzefueloxidationduetotheirstrongtendencytodecomposeathightemperaturesleadingtomorefreeradicalsinthefuel.Equation2showsthedecompositionreactionofanalkylnitrate[28].Equation2:AlkylNitrateDecomposition

𝑅𝑂𝑁𝑂$%&𝑅𝑂 ∙ +𝑁𝑂$

Fangelal.agedfuelswithdifferentconcentrationsofsulfuraccordingtoASTMD2274(SeeAcceleratedMethod)andfoundthattheadditionofalkylnitratesleadtolargeconcentrationsofcarbonylandhydroxylfunctionalgroups[28].

ColdFlowImproversColdflowimprovershelpnegatetheformationoflargewaxcrystalsthatbegintooccurlargelydueton-paraffinsastemperaturedrops,whichoftenleadtoblockingofthefuelfiltersandfeedlinesthatcanultimatelycauseengineshutdown.Co-precipitationoftheseadditiveswithwaxcrystalsreducesthenumberoflargecrystallatticesandinsteadproducesmanysmallcrystalseffectivelyallowingforbetterflow[51].

StabilityImproversStabilityimproveradditivesarecommonlyaddedinblendingofdieselfuelduetotheirabilitytoinhibittheformationofsludge,deposits,anddarkeningofcolorthatoccursnaturallyindieselfuelswhenstoredoveralongperiodoftime[51].Onetypeofstabilityimproverusedisknownasanantioxidant,whichcanimprovedthefuelstabilitybysuppressingthepropagationprocessbyreactingwithfreeradicals,aswellas,bydispersingsedimentagglomeratetopreventfilterblocking[50].Withthetrendofwantingtoblendhigherconcentrationsofbiodiesel,thesestabilizersgrowevermoreimportant.

TestMethodsAcceleratedMethodAgingofthefuelcanbeaccomplishedusingtheASTMD2274-14standardwhichisaStandardTestMethodforOxidationStabilityofDistillateFuelOil.Inthiscase,thisstandardwasusedasabasecaseandthentheexperimentsweremanipulatedbasedontheresultsthattheyproduced.Accordingtothisstandard,asampleofthe350-cm3volumeoffilteredmiddledistillatefuelisagedat95°Cfor16hourswhileoxygenisbubbledthroughthesampleat3dm3/h[57].Thismethodexposesthefuelforalongperiodoftimetohighlyoxidizingconditions.Furthermore,theinherentpotentialofthematerialbeingtestedtoformdepositsundertheseconditionsismeasured[58].Thisstudyisinterestedinisolatingparameterstoinvestigatetheindividualeffectofeach,thereforeithasbeeninitiallymodifiedsothata350-mlvolumeofabiofuelsampleisagedatdifferenttemperaturesforvaryingtimesopentotheenvironmentinafumehood.

AcceleratedOxidationTestTheOilStabilityIndex(OSI)canbecalculatedusingthestandardtestforDeterminationofOxidationStabilityonFatandOilDerivatives-namelyFattyAcidMethylEsters(FAME)asdescribedinSS-EN14112:2016[59].Thisstandardmeasuresthelengthoftimeat110°Cin

Page 27: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

20

airbeforevolatileoxidationproductsbegantoform[58].Moreover,itcanpredicthowlongamaterialcanwithstandoxidativeconditions.

DaimlerOxidationTestThisisamodifiedmethodthatutilizesrefluxandisbaseduponCECL-48-A-00.Afuelsampleisheatedatatemperatureof160Cunderconstantmixing,whiletheoxidationiscatalyzedusingareactivemetal(Fe(III)acetyl-acetone,100mg/kg).Airisfedintothesystemat10cm3/hthroughouttheoxidationprocess.Generally,250gofunusedmotoroilistestedandtheconcentrationofbiofuelconcentrationcanbevariedthoughaconcentrationof5%isrecommended.Thismethodisveryeffectiveforoxidationtestingduetothere-circulationoftheproductswithlowerboilingpoints.

RancimatEN15751EN15751isastandardtestmethodusedInEuropeforthedeterminationoftheoxidationstabilityoffuelsfordieselengines,bymeasuringtheinductionperiodofthefuelupto48hours.Thismethodcanbeusedtotestthestabilityofpurefattyacidmethylester(FAME)orinblendsbetween2and7%volumeFAME.Inthisprocess,astreamofpurifiedairispassedthroughthesamplewhichhasbeenheatedat110°C,whereuponoxidationvolatilecompoundsareformed.Thesevolatilecompoundsarepassedtogetherwithairintoaflaskcontainingdemineralizedordistilledwater,whichisequippedwithaconductivityelectrode.Usingthiselectrode,theconductivityismonitoredcloselyandupondetectionofrapidincreasedconductivityduetothedissociationofvolatilecarboxylicacidsproducingduringtheoxidationprocessandabsorbedinwater[60].EN590specificationforFAMEblends(2-7%-vol)isminimum20hoursandinEN15751(2009)forneatFAMEminimum8hours[61].

Figure10:MeasurementprincipleoftheRancimatmethod[61]

PetroOXYEN16091SS-EN16091isastandardmethodusedinEuropeforthedeterminationoftheoxidationstabilityofmiddledistillatefuels,fattyacidmethylester(FAME)fuelandofrespectiveblends,bymeasuringtheinductionperiodtothespecifiedbreakpointinareactionvesselchargedwiththesampleandoxygen.Theprocessmeasuresthestabilityofafuelbymeasuringthepressurechangesofoxygenovertimeinavesselpressurizedto700kPaasthesampleis

Page 28: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

21

heatedat140°C,asthepressureinthevesseldropsastheoxygenisconsumedduringoxidationofthesample.Theinductiontimeisthetimeittakesfortheoxygentoreachbreakpoint(i.e.whentheoxygenpressurecollapses).Furthermore,themorestableafuelisthehighertheinductiontime.

ColdSoakFiltrationTest(ASTMD2500)ASTMD2500standardisastandardmethodtotestforcloudpointofpetroleumproductsandliquidfuels.Moreover,itiscommonlyusedtotesttheperformanceofbiofuelsincoldtemperaturesviaafuelscloudpoint.ColdSoakFiltrationisagreatwaytoprecipitateoutformedsoftparticlesinoursamplesthathavealreadybeentreated(suchasusingthemodifiedacceleratedmethod)sincethecoldtemperatureprecipitatesouttherelevantsoftparticlesformed.PerASTMD2500,asampleiscooledatatemperatureof4.5°Cforanextendedperiodoftimefollowedbywarm-upbetween20to22°Ctoobserveanyformationofprecipitates[62],[63].

FiltrationMethodsTherearetwocommonfiltrationmethodsincludingsimplefiltrationandvacuumfiltrationwhichcanbeutilizedasaseparationtechniquedependingonthepropertiesofthesample,however,itshouldbenotedthatnotallparticlesmaybecollectedonthefilterifsomeofthecomponentsareinfactsolubleinthemixture.Thissolubilityleadstotheparticlespossiblypassingthroughthefilter,ratherthanremainingonthefiltertobelateranalyzedasdesired[28].

SimpleFiltrationThisisthemostcommonmethodoffiltrationandisusedtoremoveaninsolublesolidmaterialfromasolution[64].Thistypeoffiltrationreliesongravitytoproduceenoughforcetopullasolutionthroughafilter,whichisnotalwaysenoughrequiringsomeseparationprocessestousevacuumfiltration.

Figure11:MeasurementprincipleofPetroOXYmethod[62]

Page 29: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

22

VacuumFiltrationTheindustrystandardASTMD-6217entitledStandardTestMethodforParticulateContaminationinMiddleDistillateFuelsbyLaboratoryFiltrationcanbeappliedasaneffectivefiltrationmethod.Accordingtothisstandard,whenperformingvacuumfiltration1Loffuelisfilteredthroughoneormoresetof0.8microns(µm)membranefilters,whicharesubsequentlywashedwithasolvent,driedandweighed[65].Theparticularcontaminationismeasuredbythedifferenceinweightbetweenthetreatedfiltersandcontrolfilters.Duetothehighviscosityoftheoils,avacuumsystemisrequiredwhichcanbeaccomplishedusingawateraspiratedoramechanicalvacuumpumpasisshowninFigure12[66].

TechniquestoMeasureSoftParticlesFilterAnalysisUponvacuumfiltration,particleswillaccumulatedirectlyonthefilterthatcanbedirectlyanalyzed.TheparticlesthencanbeanalyzedontopofthefilterusingFTIR&SEM-EDX.TheOnlydrawbackisthatthenifthelayerofparticlesisnotthickenough,thefiltermaterialwillshowupintheanalysis[67].

SmearMethodWhenusingtheFTIR-ATRanalyticalmethod,itisoftendesiredtoexaminethesoftparticlesformedonthefilterwithoutanalyzingthefilteritself.Onemethodtoaccomplishthisistousethesmearmethodwhereasampleoftheformeddepositsistransferredtothesensorviaplacingitnearandspreadingitaroundwhileapplyingslightpressure.Thecrystalisverysmallsoaminusculeamountofparticlesarerequiredforanalysis.

ManualCollectionMethodThismethodcanbeusedwhenafuelhasproducedalargenumberofstickyparticlesinthebeaker.Therefore,whenthisphenomenonoccursitispossibletouseaspatulaorscoopulatotransfertheparticlesfromthebeakertothehopperduringVFordirectlytoexamineontheFTIRcrystal.

Figure12:SchematicofFiltrationSystem[66]

Page 30: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

23

CentrifugationCentrifugationisacommonmethodtoseparatetwoentitieswhicharecomprisedofdifferentdensities,andgenerallyinsoluble.Justlikeitisusedtoseparateglycerolfrombiofuel,itcansimilarlybeusedtoseparatethehigherdensityparticleswhichareformedduringagingfromthelessdensefuel[68].

AnalyticalMethodsOpticalMicroscopyTheopticalmicroscopeisutilizedfortheobservationofparticlesfromabout150to0.8µminsize.Particleslargerthan150µmcanbeobservedusingasimplemagnifyingglass,whileparticlessmallerthanthisrangerequiretheuseofelectronmicroscopy[69].Thelimitedmagnificationcanbealimitingfactorinusingthisrelativetomoreadvancedmethodssuchaselectronmicroscopy,however,alargeissueliesinthecommonoccurrenceofdistortionthatoccursonpointsoftheimageswhentheOPwithtransmittedlightisusedatveryhighmagnifications[70].ThoughtherearemethodsthatcanbeusedtocurbthislimitingissueincludingSpatiallymodulatedillumination(SMI),Spectralprecisiondistancemicroscopy(SPDM),Stimulatedtransmissionemissiondepletion(STED)and3Dsuper-resolutionmicroscopy.

ElectronMicroscopyElectronmicroscopyprovidesaprecisemethodtoobserveandmeasureparticlesincludingmethodssuchasScanningElectronMicroscopy(SEM),andTransmissionElectronMicroscopy(TEM).Thesemethodsareallcommonlyusedinindustry,however,theselectionofthemethodisveryspecifictoparametersofinterestssuchasmorphology,size,andcomposition.ScanningElectronMicroscopyTheScanningElectron(SEM)Microscopyexaminesmicroscopicstructurebyscanningthesurfaceofmaterials,indoingsoitusesafocusedelectronbeam(5-50keV)thatscansoverthesurfaceareaofaspecimen[69].Itisverycommonlyusedtoanalyzethesurfaceofmaterialsduetoitsabilitytoanalyzematerialsofverysmallscaleassmallastheorderoftensofmicrometersat103×magnificationandtheorderofmicrometersat104×magnification[71].SEMproducesanimagebyutilizingsecondaryorbackscatteredelectronsignals,wherethesecondaryelectronsaregeneratednearthesurfaceofthesampleandthebackscatteredelectronsarethosereflecteduponstrikingtheatomscomposingthesample.Thescanningelectronimagereflectsthefinetopographicalstructureupondetectionoftheseelectrons[72].Whenanalyzingorganicmaterialsalow-pressurevacuumisrequired,meanwhileformetalsandinorganicmaterialsahigh-pressurevacuumisoftenutilized.Inordertoproduceanimage,theSEMbeamisfocusedtoafinepointandscanslinebylineoversamplesurfaceinarectangularrasterpattern.Additionally,amuchloweracceleratingvoltageisrequiredasitdoesnotneedtopenetratethespecimen[73].SEMisalsoconsiderablyfasterrelativetoTEMandproducesmore3-dimensionaldetails,inlargepartduetoitsabilitytomagnifysamplesupto100.000xatresolutionsof15-20nmcomparedto0.3-0.5nmfortheTEM[69].

Page 31: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

24

TransmissionElectronMicroscopyInatransmissionelectronmicroscope,animageisproducedviaelectronsthatareacceleratedfromaninitialsourceontoacondenserlens.Subsequently,thebeamtravelsnearorcloseto,normalincidence.Thesetransmittedbeamsarethenfocusedbyanobjectivetoformanimagewhichisfurthermagnifiedbyintermediateandprojectorlensesontoaphosphorscreenorelectroncamera[74].TEMisoftenusedtoobserveparticlesinthesizerange0.001to5µm[75].Moreover,usesabroadstaticbeamtoproduceanimage,unliketheSEMbeamwhichrequiredfinepointfocustoscanline-by-line.AlargedisadvantageofusingTEMisthatathinspecimenisrequired,aswellas,alargeacceleratingvoltageinordertopenetratetheaforementionedsample[73].

X-rayenergy-dispersivespectroscopy(EDX)Energy-dispersivespectrometer(EDX)isanadditionaltoolthatcanbeusedtoperformacompositionalanalysisofasamplewhenaddedtotheSEMmicroscope.X-rayspectroscopydeterminespresenceandquantitiesofchemicalelementsbydetectingcharacteristicX-raysthatareemittedfromatomsirradiatedbyahigh-energybeam.InthecaseofEDX,thecompositionofasampleiscalculatedfromthex-rayenergybasedonthecharacteristicx-raysemittedfromsampleatoms[71].Fourier-transformInfraredSpectroscopywithAttenuatedTotalReflection(FTIR-ATR)Fourier-TransformInfraredSpectroscopyisaverypowerfultooltounderstandthecompositionofasamplebyprovidingoverallstructuralinformation.Thisisaccomplishedviathemeasurementofthewavelengthandintensityoftheabsorptionofnear-infraredlightbyasample.Infraredradiationistransmittedthroughasample,wherepartoftheradiationisabsorbedwhiletherestistransmittedthrough.Asensorusesthisinformationtogeneratestructureinformationaboutfunctionalgroupspresentinthesample[76].Oneoftheadvantagesofthisanalyticalmethodisthatitrequiresaverysmallamountofthesampletoobtainveryaccurateresults[77].Inthiscase,aSpectrum100wasusedwithaDATR1DiamondZincSelenidecrystal.Additionally,ithastheAttenuatedTotalReflectance(ATR)featurewhichallowsforfastersamplingwithnopreparation,highreproducibility,andminimaloperator-inducedvariations[76].OnedisadvantagetousingFTIRisthatonlypeaksfromfunctiongroupsareproduced,thereforeahigherqualityanalysiscanbeachievedwhenusedincombinationwiththeSEMmicroscopewithEDXanalysis.

Experimental

MaterialsTodevelopamethodtoproducesoftparticlesinalaboratoryusingB10,B100,andHVO.Thebiodieselusedwasprimarilyproducedfromrapeseedoil,largelyduetoit´sabundanceinSweden.Inaddition,previouslynotedcausesofsoftparticlesinadieselenginewereaddedto350-mlsamplesofthefuelsincludingwater,metals,freshoilandheavilyoxidizedoil.Thesesamplesweresetonrespectiveheatplatesandsubjectedtoheatingforaselectedamountoftimetodegradethefuelandproducethedesiredsoftparticles.Asummaryofalltheexperimentscompletedincludingtheparameterstested,temperatures,andadditivesusedisdisplayedinTable8.

Page 32: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

25

MetalsInthecasesofthemetalsused,therewerealltubesof42mmlength,butthespecificpropertiesareshowninTable7.Themetalpieceswereplacedinthecornerofthebeaker,soasnottodisturbthemixingofthestirbar.

Table7:Propertiesofthemetalsusedintheagingofthefuels

Metal Type Dimension(lengthxdiameterxwidth)

Brass CuZnPb 42mmx10mmx1mm

Copper CopperC106(CW024A) 42mmx6mmx1mmIron E235SS 42mmx12mmx2mm

WaterInthecaseofModifiedAcceleratedMethods6through8,wherethefuelswereexposedtowaterduringaging,waterwasinitiallyaddedtothebeakerandthenfilledwiththebiofuelandsoon.Additionally,a3%concentration(10.5g)wasaddedtwiceaday(morningandevening),soastopreventtheevaporationofthewaterdespitekeepingthetemperaturebelowtheboilingpointofwater.Inthecaseofthisreport,onlypurifiedMilliQwasusedtoreducecontaminationfromotherpossibleions.

OilInthecaseofoil(freshandheavilyoxidized),aconcentrationof1%wasusedwhichequatesto3.5ml.Fortheheavilyoxidizedoilwithanoxidationnumberof12.8fromamotorcellrunatScania,itwasassumedtobeasimilardensity,thereforethesameweightwasused.Agedoilwasusedtosimulatetheeffectofagedoilthattendstomixwiththefuelintheenginesystem.

ProcedureTheexperimentalmethodwasbasedupontheASTMD2274-14standardwhichisaStandardTestMethodforOxidationStabilityofDistillateFuelOil.Theset-upoftheexperimentwiththeheatingandstirringofthehotplateisshowninFigure13.Thestirringratewasheldconstantat250rpmthroughoutalltheexperiments.Depositformationwasmeasuredusingthefollowingprocedure.Afterheatingfortheallottedtimeandtemperature,theagedfuelwasplacedinarefrigeratorwithatemperatureof4°Cforaminimumof24hoursbasedonASTMD2500standard,ColdSoakFiltrationTest(CSFT),whichallowsforanyremainingparticlestoprecipitateoutofthemixture.OncetheCSFTstepiscomplete,theyareindividuallyfilteredthrougha1.2-micron(µm)glass-fibrefilter,forModifiedAcceleratedMethods1-5anda1-micron(µm)PTFEfilterforModifiedAcceleratedMethods5-8,a1-micron(µm)PTFEfilter.Thefilterswereweighedinitiallyandthentheresultingagedmixtureswerevacuumfilteredtoanalyzesoftparticlegrowthintherespectivefuelmixtures.Uponfiltration,thesuctionwasturnedoffand5-mlofheptanewasaddedtogetridofanyremainingoil.After30seconds,turnonsuctionandrepeat3moretimes.Thefilterwasthenplacedinapetridishandallowedtositovernighttoallowforadditionaldrying,shouldtherebeanyheptaneremaining.Theweightofthetreatedfilterwastakenthefollowingday.Followingtheweighingofthefilters,theywerecutinhalfinordertomakesurenocontaminationoccurredbetweentheanalysisoftheresultingparticlesusingSEM-EDXandFTIR.AsummaryofalltheperformedexperimentisdisplayedinTable8

Page 33: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

26

Table8:Asummaryoftheperformedexperiments

ModifiedAcceleratedMethod(MAM)

Biofuel(s) AddedOil?

AddedMetal(s)?

AddedWater?

Temperature[°C]

Time[hours]

HeatingMethod

1 B100 Freshoil No No 80 72 Oven2 B100,

B10,HVO

None No No 110 72 HeatPlate

3 B100,B10,HVO

FreshOil No No 110 48 HeatPlate

4 B100,B10,HVO

AgedOil No No 110 48 HeatPlate

5 HVO AgedOil No No 110 144 HeatPlate

6 B100,B10,HVO

AgedOil No Yes 90 48 HeatPlate

7 B100,B10,HVO

AgedOil Brass,Copper,Iron

No 90 48 HeatPlate

8 B100.B10,HVO

AgedOil Brass,Copper,Iron

Yes 90 48 HeatPlate

9 B100,B10,HVO

None Brass,Copper,Iron

Yes 90 48 HeatPlate

TemperatureProbe

HotPlate

Stirbar

Figure13:Set-upusedtoagethebiofuels

Page 34: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

27

AppliedMethodsAcceleratedMethodsforOxidationofFuelOilsForthisexperiment,theAcceleratedMethodforoxidationbasedontheASTMD2274-14standardwasmodified.inthecaseoftheexperimentsperformed,theexposuretimewasadjustedfrom16hoursto48hours.Additionally,thetemperaturewasincreasedto110°Cinitiallyandthenloweredto90°Cforthetestsinterestedintheeffectofwaterandmetalsontheagingofthebiofuels.

ColdSoakFiltrationTestThemethodintroducedfromtheASTMD2500:2017wasfollowed,andassuchthesampleswereplacedinarefrigeratorat4°Cfor24hourspost-agingwiththeselectedparametersaftertherespectivebeakersweresealedusingparafilm.

VacuumFiltrationDuetothehighviscosityofthebiofuelsfiltrationusingjustgravimetricpressureswouldnotbesufficienttofilteroutparticles,andthereforebyapplyingavacuum,theprocesscanoccuratafasterpace.Twofilterswereused,thefirstofwhichwasmadeofglassfibrewithaporesizeof1.2-micron(µm)thatwasutilizedinModifiedAcceleratedMethods1-5.Meanwhile,theotherfilterwascomposedofPTFEwithaporesizeof1-micron(µm)andwasusedinModifiedAcceleratedMethods6-8.Theset-upforthevacuumfiltrationisdisplayedinFigure14below.

Filter

Hopper

Motor

Figure14:Vacuumfiltrationset-up

Page 35: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

28

AppliedTechniquestoMeasureSoftParticlesFilterAnalysisUponvacuumfiltration,particleswillaccumulatedirectlyonthefilterthatcanbedirectlyanalyzed.However,whenanalyzingusingFTIRthiscancausecontaminationofthefuelspectraduetoincreasedconcentrationsofthefilter(borosilicateglassfilter)toshowuponthespectrum.ThisiswhyforModifiedAcceleratedMethod5-8afiltercomposedofPTFEwasused.ThisisnotaslargeaproblemwhenusingSEM/EDXhoweversincethereisapossibilitytoanalyzeveryspecificparticlesusingthesoftware.

ManualCollectionMethodWhenagingofallofthefuelsiscomplete,somebiofuelsproducealargeamountofsludgeorstickyparticlesinthebottomofthebeakerthatconsistsofcomponentsofthefuelsthatprecipitatedout.Ifthereisalargeamountofthesestickydepositsonthebeaker,theyhaveatendencytoblockthefiltersandmakeitdifficulttofilterproperly.

AnalyticalTechniquesThemaintechniquesusedtoanalyzethecompositionoftheparticleswasFTIR-ATRandSEM-EDX.ThecombinationofthesemethodsisveryeffectiveduetotheirabilityoftheSEM-EDXtoprovidetheexactcomponentsfoundpersample,whichhelpsinterprettheFTIRspectramoreaccurately.

Fourier-transformInfraredSpectroscopywithAttenuatedTotalReflection(FTIR-ATR)FTIR-ATRwasusedtoexaminethecompositionoftheproducedsoftparticlesusingthePerkinElmerSpectrum100FT-IRSpectrometer.Inthiscase,aSpectrum100wasusedwithaDATR1DiamondZincSelenidecrystal.Additionally,thesamplesweretestedusingpressuregauge(pressurepushingdownonfilters)valueof15toensurecontactoftheparticlestothecrystal.Forthecasesofanalysisofstickyparticlesobtainedmanuallyfromthecornerofabeaker,theparticlewasplaceduponthesensortogetaninitialreading.Tobesurethereadingisn’taffectedbyremainingfueldroplets,onedropofheptanewasplacedonthesampleandallowedtodryfor10minutes.Afollow-upanalysiswasthenperformedtocheckifanymajordifferencescouldbeidentified.

ScanningElectronMicroscopy(SEM)APerkinElmerSpectrum100ScanningElectronMicroscopewasoperatedinlowvacuummodetoanalyzetheproducedorganicparticlesusinganelectronbeamofbetween20and25kV.Additionally,theX-rayDispersiveSpectroscopy(EDX)functionwasutilizedtoobtainvaluableinformationabouttheelementalcomponentsfoundintheidentifiedparticles.

Page 36: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

29

Results

AgingofB100withFreshOil(MAM1)Thismethodinvolvedagingsixfuelssamples,withthecompositionsasshownpreviouslyinTable8,at80°Cfor72hoursinanoven.AfterrunningFTIRonthefilters,theresultswerenotindicativeofsoftparticleformationsincethepeaksontheFTIRonunagedandagedwerenearlyidenticalasFigure15shows.

Furthermore,usingSEManalysisitwasfoundthatitwasincreasinglydifficulttodistinguishthedifferencebetweentheagedsamples,andthereforeitwasconcludedthatverylittleifany,softparticlescouldbeidentifiedusingthismethod.

AgingofBiofuels(MAM2)Forthisversionoftheacceleratedmethod,three350-mlsamplesofHVO,B10,andB100wereheatedat110°Cfor72hourswithastirringrateof250rpm.Uponwhichtheywereplacedinarefrigeratorof4°Cforanadditional72hours.Inthiscase,therewasobservedparticlesintheHVOandstickyparticlesthatformedintheB10samplethatproduced

Unaged B100 1Name

Sample 029 By Administrator Date måndag, februari 19 2018Description

4000 6503500 3000 2500 2000 1500 1000

100

5455

60

65

70

75

80

85

90

95

cm-1

%T

Aged A1 fuel 1Aged A2 fuel 1Aged B1 fuel 1Aged B2 fuel 1Aged C1 fuel 1Aged C2 fuel 1

NameSample 015 By Administrator Date fredag, februari 16 2018Sample 017 By Administrator Date måndag, februari 19 2018Sample 019 By Administrator Date måndag, februari 19 2018Sample 021 By Administrator Date måndag, februari 19 2018Sample 023 By Administrator Date måndag, februari 19 2018Sample 025 By Administrator Date måndag, februari 19 2018

Description

4000 6503500 3000 2500 2000 1500 1000

101

5455

60

65

70

75

80

85

90

95

100

cm-1

%T

Figure15:FTIRspectrumforunagedB100(top)andagedsamplesusingModifiedAccelerationMethod1(bottom)

Page 37: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

30

significantcloggingofthe1-2micronvacuumfilter.TheagedsamplescanbeseeninFigure16.

Table9:FTIRresultsforB100,B10andHVOwhenagedfor72hours

Sample OH-stretchpeaks

C-HStretchpeaks

Carbonylpeaks CarboxylicIonpeaks

B100 + + +

B10 +++ ++ +++ +HVO + +

SmallparticleswereseenfloatingintheagedB100,whileinB10therewasavisiblelayerofthickoilyfilmonthesurfaceofthebeaker.Somuchso,thatittookaconsiderableamountoftimetofilterthroughduetothecloggingfactorasTable10shows.Additionally,thesamplesforB100andHVOremainedclearaftertheagingprocess,meanwhile,theB10sampleswerecloudyandunclear.TheB10wasoriginallyadarkgreenhue,whileHVOwasinitiallyclear.TheresultsfromtheFTIRcanbeseeninTable9,whereB10wasthemostvisiblysusceptibletodegradationfollowedbyB100andthenHVO.

Table10:Propertiesoffiltrationofagedbiofuels

Sample InitialWeight[g] FinalWeight[g] ΔWeight Filtrationtime[s]

B100 0.0251 0.0300 0.0049 1080

B10 0.0250 0.0943 0.0693 3600

HVO 0.0257 0.0285 0.0028 380

Figure16:SamplesofagedB100(left),B10(middle)andHVO(right)treatedusingjusthighheat(MAM2)

Page 38: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

31

AgingofBiofuelswithFreshOil(MAM3)For this version of the acceleratedmethod, 1% concentration of Scania REFoil 10W30wasadded350-mlsamplesofHVO,B10,andB100.Subsequently,theywereheatedat110°Cfor48hourswithastirringrateof250rpm.Uponwhichtheywereplacedinarefrigeratorof4°Cforanadditional72hours.

Table11:FTIRresultsforB100,B10,andHVOwhenagedwithFreshOil

Sample OH-stretchpeaks

C-HStretchpeaks

Carbonylpeaks

CarboxylicIonpeaks

B100 + + + B10 +++ ++ +++ +HVO + +

Table12:PropertiesoffiltrationofagedB100,B10,andHVOagedwithFreshOil

Sample InitialWeight[g] FinalWeight[g] ΔWeight FiltrationTime[s]

B100 0.0257 0.0320 0.0063 746B10 0.0259 0.1390 0.1131 4740HVO 0.0257 0.0340 0.0083 488

Muchliketheresultsfromthepreviousexperiment,B10wasfoundtobemostreactiveuponagingthebiofuelswithfreshoil.B10wasalsofoundtobeveryoily,asshowninFigure17.HVOisnoticeablymoststable,comparedtotheothertwofuels.B10hadasignificantcolorchangefromdarkgreentoanorange-redtint,whiletheHVOalsochangedfromacleartolightyellow.B100gotslightlylighter,thoughnotsignificantly.

DC

BA

Figure17:FiltersPost-treatmentusingMAM3showinganunusedfilter(A),AgedB100(B),AgedB10(C),andAgedHVO(D)wheretheywereagedwith3.5ml(1%w/w)freshoilfor72hours

Page 39: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

32

AgingofBiofuelswithAgedOil(MAM4)Forthisversionoftheacceleratedmethod,1%concentrationofengineoilwasadded350-mlsamplesofHVO,B10,andB100.Subsequently,theywereheatedat110°Cfor48hourswithastirringrateof250rpm.Uponwhichtheywereplacedinarefrigeratorof4°Cforanadditional24hours.

Table13:FTIRresultsforB100,B10,andHVOwhenagedwithAgedOil

Sample OH-stretchpeaks

C-HStretchpeaks

Carbonylpeaks

CarboxylicIonpeaks

B100 + + + B10 + ++ +++ +HVO + +

Table14:PropertiesofFiltrationofAgedHVOusingAgedOil

Whenthebiofuelswereagedwithagedoil,thepreviouslymentionedtrendofincreasedcarbonylsrelativetoC-HstretchfunctionalgroupswasobservedinB100andB10.ThetrendofincreasedcarbonylsrelativetoC-Hstretchpeaksremainsvalid,thoughactivityseemsdampenedinthiscase.Additionally,thefilterspost-treatmentarevisiblydarkerfromwhatissuspectedtobetheadditivesfromtheagedoil.Forexample,B10isconsiderablydarkandoilyrelativetothefilteredagedB100andHVO.

Sample InitialWeight[g] FinalWeight[g] ΔWeight Filtrationtime[s]

B100 0.0257 0.0317 0.0060 1020

B10 0.0258 0.2467 0.2209 2400

HVO 0.0256 0.0318 0.0062 1200

A B

C D

Figure18:FiltersPost-treatmentusingMAM4showinganunusedfilter(A),AgedB100(B),AgedB10(C),andAgedHVO(D),wheretheywereallagedwith3.5ml(1%w/w)oxidizedoilfor48hours

Page 40: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

33

AgingofHVOwithAgedOilforanExtendedPeriod(MAM5)Forthisversionoftheacceleratedmethod,theeffectofheavilyoxidizedoilduringtheagingofbiofuelswastestedusingtwosamplesof350-cm3HVO:HVO1(nooxidizedoil)andHVO2(withoxidizedoil).Subsequently,theywereheatedat110°Cfor144hourswithastirringrateof250rpm.Uponwhichtheywereplacedinarefrigeratorof4°Cforanadditional24hours.

Table15:FTIRresultsforHVOwhenagedwithAgedOilforanExtendedPeriod

Sample OH-stretchpeaks

C-HStretchpeaks

Carbonylpeaks

CarboxylicIonpeaks

HVO1 + +

HVO2 + +

ThoughHVOisaverystablefuel,theprevioustrendofahighconcentrationofcarbonylsrelativetoC-HstretchfunctionalgroupswasstillrelevantalthoughabitdampenedforHVOagedwithoutoil.ItwasinterestingthatdespiteHVO1nothavinganyoilmixedin,thefiltrationtimewaslongerthantheversionwithoil.Thoughthiscouldbeexplainedawayduetothemanydifferentfiltrationpathways.UsingFTIRanalysis,HVO2hadslightlyhigherconcentrationintheOH-stretchspectra,whiletheagingofHVO1producedacarbonylpeak.TheagedHVO1wasclearandtransparentwithalight-yellowshadepost-treatment,meanwhile,HVOwasblack,unclear,andopaque.UsingTable16,itcanbeseenthattheweightchangeisincrediblysmallrelativelybetweentheHVOagedwithandwithouttheagedoil.

Table16:PropertiesofFiltrationofHVOagedwithAgedOilforanExtendedPeriod

Sample InitialWeight[g] FinalWeight[g] ΔWeight FiltrationTime[s]HVO1 0.0262 0.0313 0.0051 540HVO2 0.0263 0.0313 0.0050 384

Moreover,whenanalyzingusingtheSEMmicroscopetherewerealargeramountofparticlesthatcouldbeseeninHVO2comparedwithtraceamountsofparticlesinHVO1.Figure19showstheimagesoftheparticlesobtainedusingSEM,whichcorroboratesthetraceamountsofparticlesinHVO1(B)comparedtoHVO2(C)withacleanfilterpictured(A).TheHVOagedwithoxidizedoilproducedalargenumberofparticlesvisibleusingSEM,meanwhile,theagedHVOwithoutoxidizedoilproducedsignificantlylesstoanalyze.

Page 41: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

34

AgingofBiofuelswithAgedOilandWater(MAM6)Forthisversionoftheacceleratedmethod,theeffectofwaterontheagingofbiofuelswastestedusingthreesamplesof350-mlB100,B10,andHVO.Subsequently,theywereheatedat90°Cfor48hourswithastirringrateof250rpm.Uponwhichtheywereplacedinarefrigeratorof4°Cforanadditional24hours.Itshouldbenoted,startingfromthisagingmethodthefilterusedduringVFwaschangedfroma1.2micron(µm)sizecomposedofglassfibretoa1micron(µm)sizecomposedofPTFE.

Table17:FTIRresultsforHVOwhenagedwithAgedOilandWater

Sample OH-stretchpeaks

C-HStretchpeaks

Carbonyl-peaks

CarboxylicIon-peaks

B100 + + +B10 + + ++HVO + + ++

A

B

C

Figure19:SEMresultsfromagedparticlesusingMAM5showingacleanfilter(A),AgedHVOwithoutOxidizedOil(B),andAgedHVOwithOxidizedOil(C)after144hours.

Page 42: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

35

Table18:PropertiesofFiltrationofAgedSamplesusingAgedOilWater(MAM6)

*Thefilterwasheavilycloggedatthistimeproducingnoadditionalfiltration

Theresultingcompositionpost-agingisshowninTable17,whereitcanbeseenthatcarboxylionpeakswereproducedforallthreefuels,whileonlyB100producedcarbonylpeaks.

AgingofBiofuelswithAgedOilandMetals(MAM7)Forthisversionoftheacceleratedmethod,theeffectofmetalontheagingofbiofuelswastestingusingthreesamplesof350-cm3B100,B10,andHVO.Subsequently,theywereheatedat90°Cfor48hourswithastirringrateof250rpm.Uponwhichtheywereplacedinarefrigeratorof4°Cforanadditional24hours.

Table19:FTIRresultsforHVOwhenagedwithAgedOilandMetals

Sample OH-stretchpeaks

C-HStretchpeaks

Carbonylpeaks

CarboxylicIonpeaks

BrassB100 + + B10 +++ ++ +++ ++HVO + +

CopperB100 + + B10 ++ ++ ++ ++HVO ++ ++ ++ +

IronB100 ++ +++ +++B10 + + ++ ++HVO + +

TheresultsusingFTIRAnalysiscanbeseenaboveinTable19.ThemetalsgenerallyincreasedcarbonylpeaksandC-Hstretchpeaks,however,onlytheB10canbeshowntoproduceaconsistentcarboxylicionpeakforallmetals.ItcanalsobeshowninTable20thatwhilebothB10agedwithbrassandwater,andB10agedwithcopperandwaterhaveasignificantweightchange,B10agedwithIronandwaterhasaveryminimalweightchangepost-filtration.

Sample InitialWeight[g] FinalWeight[g] ΔWeight Filtrationtime[s]

B100 0.0303 0.0333 0.0030 *3396B10 0.0237 0.0271 0.0034 *2400HVO 0.0313 0.0327 0.0014 2160

Page 43: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

36

Table20:PropertiesofFiltrationofAgedSamplesusingAgedOilandMetals(MAM7)

*Thefilterwasheavilycloggedatthistimeproducingnoadditionalfiltration

AgingofBiofuelswithAgedOil,MetalsandWater(MAM8)Forthisversionoftheacceleratedmethod,theeffectofthecombinationofmetalsandwaterontheagingofbiofuelswastestingusingthreesamplesof350-mlB100,B10,andHVO.Subsequently,theywereheatedat90°Cfor48hourswithastirringrateof250rpm.Uponwhichtheywereplacedinarefrigeratorof4°Cforanadditional24hours.

Table21:FTIRresultsforHVOwhenagedwithAgedOil,MetalsandWater

Sample OH-peaks

C-HStretchpeaks

Carbonyl-peaks

CarboxylicIon-peaks

BrassB100 +++ ++ +++ +++B10 +++ ++ +++ ++HVO ++ ++ ++ ++

CopperB100 + + + +++B10 +++ ++ +++ +HVO + + ++ ++

IronB100 + + + +++B10 +++ ++ +++ +HVO + + +

Whenagingwithagedoil,metals,andwater,theFTIRanalysisshowsmuchhigherconcentrationsofcarbonylpeaksandcarboxylicionpeaksrelativetobiofuelsagedwithaged

Sample InitialWeight[g] FinalWeight[g] ΔWeight Filtrationtime[s]1A 0.0297 0.0300 0.0003 36001B 0.0298 0.0810 0.0512 *9001C 0.0210 0.0211 0.0001 296

2A 0.0257 0.0261 0.0004 16412B 0.0347 0.0853 0.0506 *9002C 0.0238 0.0243 0.0005 *1560

3A 0.0282 0.0299 0.0017 *21603B 0.0272 0.0279 0.0007 *15003C 0.0277 0.0278 0.0001 420

Page 44: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

37

oilandmetals.WhencomparingresultsinTable21above,theresultsareindicativeofalargeinfluenceofbrassonB100,comparedwiththeresultingconcentrationofactivityinB100withcopperandB100.Additionally,HVOseemstobehighlyaffectedbybrassrelativetoCopperandIron.AscanbeseeninTable22,AgedB10withcopper,agedoil,andwaterfilteredoutthemostparticlesifanassumptionismadethattheweightcorrelatestoparticles.

Table22:PropertiesofFiltrationofAgedSamplesusingAgedOil,MetalsandWater(MAM8)

*filterwasheavilycloggedatthistimeproducingnoadditionalfiltration

Itwasveryinterestingthatuponfilteringthebiofuelsageswithcopper,theyseemedtoretaintheorangecolor.Asimilarphenomenonoccurredwhenagingwithiron.

Sample InitialWeight[g] FinalWeight[g] ΔWeight Filtrationtime[s]1A 0.0303 0.0378 0.0075 *5161B 0.0270 0.0488 0.0218 19351C 0.0315 0.0320 0.0005 1140

2A 0.0325 0.0395 0.0070 *6002B 0.0275 0.1034 0.0759 *3002C 0.0299 0.0305 0.0006 *1560

3A 0.0288 0.0321 0.0033 *10803B 0.0232 0.0285 0.0053 *6603C 0.0314 0.0324 0.0010 *1920

B100agedwithWater,CopperandAgedOil

B10agedwithWater,CopperandAgedOil

B100agedwithWater,IronandAgedOil

B10agedwithWater,IronandAgedOil

Page 45: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

38

AgingwithAgedOilandMetals(MAM9)Forthisversionoftheacceleratedmethod,theeffectofthecombinationofwaterandmetalsontheagingofbiofuelswastestingusingthree-samplesof350-mlB100,B10,andHVO.Subsequently,therewereheatedat90°Cfor48hourswithastirringrateof250rpm.Uponwhichtheywereplacedinarefrigeratorof4°Cforanadditional24hours.

Table23:FTIRresultsforHVOwhenagedwithMetalsandWater

Sample OH-peaks C-HStretchpeaks

Carbonyl-peaks

CarboxylicIon-peaks

BrassB100 +++ + +++ +++B10 +++ + +++ HVO + +

CopperB100 +++ + +++ ++B10 +++ + +++ +HVO ++ + ++ +++

IronB100 +++ ++ +++ +B10 + + + HVO +++ ++ +++

AccordingtoTable23,itshowsthatHVOwasgreatlyaffectedbybothCopperandIron,thoughCopperproducedcarbonylpeakswhilethelatterdidnot.Incomparingtheweightchangeforalloftheagedbiofuelsusingthedifferentmetals,thismethodproducedthemostparticlescollectedonthefilters.B10agedwithagedoilandbrassfilteredoutthemostparticlesfollowedbyB10agedwithagedoilandcopper,andB10agedwithagedoilandiron.However,itisveryinterestingthatwhenHVOwasagedwithagedoilandironitproducedaverysignificantamountoffilteredparticles.Itproducesveryredparticlesascanbeseenbelow.Furthermore,alloftheB100samplesagedproducedflaky,dryparticles.

B100agedwithBrassandWater

B100agedwithCopperandWater

B100agedwithIronandWater

HVOagedwithIronandWater

Page 46: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

39

Table24:PropertiesofFiltrationofAgingSampleswithWaterandMetals(MAM9)

*Thefilterwasheavilycloggedatthistimeproducingnoadditionalfiltration

DiscussionProducingsoftparticlesinalaboratorywithouttheuseofanengineutilizedmanymethodsincludingthemodifiedacceleratedmethodandColdSoakFiltration.Initially,6samplesofB100wereagedusinganovenat80°Cfor72hoursbaseduponthedegradationrateofthebiofuel.Thistemperaturewaschoseninordertostaybelowtheflashpointofthebiofuelintheovensincethegasesvaporizearound110°C.However,thismethodfailedtoproduceanysoftparticlesbaseduponananalysiscompletedusingbothFTIRandSEM-EDX.Followingthis,anexperiment(ModifiedAcceleratedMethod2)wasdesignedwhere3samplesofHVO,B10,andB100wereheatedonahotplateat110°Cfor72hourswhilebeingstirredat250rpm.Thismethodprovedmorepromisingandbecamethebasistoinvestigatetheeffectofadditionalparametersincludingfreshoil(ScaniaREFoil10W30),heavilyoxidizedoil,waterandmetals(brass,copper,andiron).

Upontestingtheseparameters,atrendwasidentifiedinwhichuponagingB100,B10andHVOallshowedadecreaseinC-Hstretchfunctiongroups(3300-2280cm-1)whileanincreaseincarbonylfunctiongrouppeaks.HVOandB100generallyproducedaverysmallamountofparticlesrelativetoB10,however,differenceswerefoundbetweenthesampleswhenanalyzed.UponagingtheB100,B10andHVOwithoutanyadditives(ModifiedAcceleratedMethod2),B10showedsignificantaffinitytodegraderelativetoB100andHVO.Somuchso,thatthelengthofthetreatmentwasdecreasedfrom72hoursto48hourstoincreasefilterability.However,oneexplanationaboutthelackoflargeconcentrationofparticlesinB100canbethattheparticlesaresolubleinthefuel.Furthermore,thetrendofhavingahighconcentrationofcarbonylsrelativetoC-Hstretchfunctionalgroupspost-agingwascorroboratedinHVO(themoststableofthethreebiofuels).

Uponinvestigationtheeffectoffreshoil(ScaniaREFoil10W30)versusheavilyoxidizedoilwithaoxidationnumberof12.8fromamotorcellatScania,itwasfoundthatthefreshoildoesnothaveanyvisualeffectwhenanalyzingusingFTIR.However,uponmeasuringthe

Sample InitialWeight[g] FinalWeight[g] ΔWeight Filtrationtime[s]1A 0.0261 0.0390 0.0129 2724*1B 0.0957 0.5235 0.4278 240*1C 0.0947 0.1588 0.0641 75*2A 0.0945 0.2021 0.1076 195*2B 0.0950 0.2816 0.1866 281*2C 0.0954 0.1642 0.0688 107*3A 0.0947 0.1822 0.0875 160*3B 0.0962 0.1623 0.0661 81*3C 0.0947 0.1762 0.0815 83*

Page 47: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

40

weightoftheparticlesproducedthatremainonthefilterpost-filtration,atrendofincreaseddepositscanbeidentified.Furthermore,whentheagedoilispresentitseemstoreducethenumberofparticlesthatarefilteredout.Thiscanbeseenveryclearlyincomparingtheresultsforthebiofuelswithagedoil,metalandwaterversusthebiofuelswithmetalsandwater.Thismaybeduetotheadditivesintheoilthatprecipitateoutofthefuelmixturesuponaging.UsingSEM-EDX,theconcentrationoftheseadditivescouldbeseen.Theseadditivesmayproducesomeatypeofactivedegradationprotectioninthefuel.

Uponinvestigatingtheeffectofwaterontheagingoffuel,itseemsthatwatermayplayinroleinincreasingparticlegrowthaswillbediscussedinmoredetailfortheseparatecasesofbiofuels.Thismaybethecasebecauseitoxidizesthemetals,producingparticlesintheprocessandcatalyzestheoxidationprocess.Additionally,whenB100wasagedwithagedoilandwater,alargeamountofsand-likeparticleswereformed.Similarly,forB10asmallamountofsandlikeparticleswasformed.NosuchparticleswereformedintheagingofHVOwithagedoilandwaterthough.Infact,whentheseparticleswereexaminedusingSEM,theycouldbedescribedashavingarose-likeshapetothem.SeeFigure20andFigure21.

UponexaminingtheeffectoftheagingofHVOwithoxidizedoil(ModifiedAcceleratedMethod5),itwasveryinterestingtofindthattheHVOsamplewithoutaddedoxidizedoil(HVO1)producedamoresignificant,thoughstillrelativelysmall,carbonylfunctionalgroupafteragingthefuelfor144hoursrelativetothefuelsamplewiththeheavilyoxidizedoil(HVO2).Additionally,HVO2producedaslightlylargeconcentrationofOHfunctionalgroupsrelativetoHVO1.

UponinvestigationofagingB100,B10,andHVOwithmetals(Brass,Copper,andIron)atrendofwidenedpeaksinthecarbonylregions,aswellas,carboxylionpeaks.However,atrendinparticleformationfrommosttoleaststartedtoformasfollows:

1.Fuel+Metal+Water

Figure20:SEMImagesofB100AgedwithAgedOilandWater

Figure21:SEMImageofB10AgedwithAgedOilandWater

Page 48: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

41

2.Fuel+AgedOil+Metal+Water

3.Fuel+AgedOil

4.Fuel+AgedOil+Metal

5.Fuel+AgedOil+Water

AsFigure22shows,thetrenddescribedisvalidundertheagingofB100underthepreviouslymentionedconditions.Though,thedatasupportstheconclusionthatcopperispossiblythemosteffectivemetalatproducinglargeramountsofparticlestoexamine.Ironwasthesecondmostproblematic,followedbyBrass.Toconfirmthistrend,IwouldrecommendarepeatexperimentoftheexperimentagingB100withIronandWater,aswellas,agingB100withagedoilandCopper.ThecopperseemstobeverysensitivetowaterastheweightchangejumpsdrasticallybetweentheB100agedwithagedoilandcopper(B100+AO+Cu)totheB100sampleagedwithagedoil,copper,andwater(B100+AO+CU+Water).

0 0,02 0,04 0,06 0,08 0,1 0,12

B100 B100 + FO B100 + AO

B100 + AO + W B100 + AO +B

B100 + AO + CU B100 + AO + FE

B100 + AO + B + W B100 + AO + CU + WB100 + AO + FE + W

B100 + B + W B100 +CU + W

B100 + FE + W

AMOUNT OF PARTICLES FORMED USINGDIFFERENTAGING PARAMETERSWITH

B100

Figure22:ParticlesformedwithagingB100withdifferentcombinationofparameters

Page 49: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

42

Figure23:ParticlesformedwithagingB10withdifferentcombinationparameters

ForB10,theresultsidentifybrassasthemetalthatproducesthehighestamountofparticlesuponaging.ThecombinationofB10fuelwithIronandWaterproducedaverylargeamountofparticles.Itshouldbenoted,thatB10tendstoproduceveryoilyparticles,thereforeonemustbeawarethatperhapsthefilterweightgainmaynotbeentirelyattributedtoparticles,butmaybecompromisedbyasmallamountofoilstillabsorbedinthefiltermaterial.Inthiscase,inordertofurthersupportthetrendofbrasshavingthestrongesteffectonaging,itwouldberecommendedtorepeattheexperimentofwhichB10wasagedwithagedoilandcopper(MAM72B),andB10agedwithagedoilandbrass(MAM71B).Thismayshowthatbrasshasalargeeffect,sincethecollectedvalueswereverycloseforthesesamples.Additionally,itmightbeusefultorepeattheexperimentfortheagingofB10withagedoil,brass,andwater(MAM81B)andB10agedwithagedoil,copper,andwater(MAM82B)toonceagainfurtherestablishthepreviouslyidentifiedtrend.

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45

B10 B10 + FO B10 + AO

B10 + AO + W B10 + AO +B

B10 + AO + CU B10 + AO + FE

B10 + AO + B + W B10 + AO + CU + WB10 + AO + FE + W

B10 + B + W B10 +CU + W

B10 + FE + W

AMOUNTOFPARTICLESFORMEDUSINGDIFFERENTAGINGPARAMETERSWITHB10

Page 50: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

43

Figure24:ParticlesformedwithagingHVOwithdifferentparameters

TheresultsfromagingHVOinFigure24showsthattheadditionofthefreshoilproducedmoreweightchangeincomparisontheHVOagedwithagedoil.Furthermore,thesampleagedwithagedoilandwateralsoshowsdecreasedparticlegrowth.UponanalyzingtheweightsobtainedfromtheHVOsamplesagingwithoilandwater,Ironshowsadominanteffect.Moreover,theIrononceagainproducesthemostweightchangewhenHVOwasagedwithwaterandmetals.Ironcanbedeemedtobethemosteffectiveatproducingparticles,followedbycopper.OneexperimentthatcouldberedonetotestwhetherthetrendholdsistoageHVOwithagedoilandIron(HVO+AO+FE)becauseifthatweretoproducemorethanHVO+AO+CuthenthetrendofIronbeingmosteffectiveatproducingparticlescouldbeconfirmed.

0 0,02 0,04 0,06 0,08 0,1

HVOHVO + FOHVO + AO

HVO + AO + WHVO + AO +B

HVO + AO + CUHVO + AO + FE

HVO + AO + B + W HVO + AO + CU + WHVO + AO + FE + W

HVO + B + WHVO +CU + W

HVO + FE + W

AMOUNT OF PARTICLES FORMED USINGDIFFERENTAGING PARAMETERSWITH

HVO

Page 51: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

44

ConclusionThefocusofthisprojectwastodevelopamethodinwhichsoftparticlesthatnaturallyforminatruckdieselengineinalabsetting,andthentoanalyzetheeffectofdifferentparametersthattendtoleadtodegradationofthefuel.Thiswasaccomplishedbyfirstheatinga350-cm3oftheselectedfuelsampleina600-cm3beakermixedwithparametersofinterest(agedengineoil,metals,water,etc.)for48hoursat110°C(90°Cforanysampleswithwater).Subsequently,thesesamplesarethenstoredinarefrigeratorat4°Cfor24hourstoallowforanyremainingparticlestoprecipitate.TheywerethenanalyzedusingFourier-TransformInfraredSpectroscopy(FTIR)andScanningElectronMicroscopywithX-rayenergy-dispersivespectroscopy(SEM-EDX).Atrendwasidentifiedwherethelargestamountofparticlesbyweightwereproducedinthefollowingorderfromgreatesttoleast:1.Fuel+Metal+Water

2.Fuel+AgedOil+Metal+Water

3.Fuel+AgedOil

4.Fuel+AgedOil+Metal

5.Fuel+AgedOil+Water

ThebiofuelsagedwithFuel+Metal+Waterproducedthehighestamountofparticles,possiblyduetotheinteractionbetweenwaterandthemetal.Meanwhile,whenthebiofuelswereagedwithFuel+Metal+Water+Agedoiltherewaslessparticleformationwhichcouldbeexplainedbyadditivesfromtheagedoilthatimprovestabilityofthefuel.AgingofbiofuelswithAgedOilproducedalargeramountofparticlesrelativetothebiofuelsagedwithAgedOilandMetal,aswellas,thebiofuelsagedwithOilandWater.Theresultsfoundthatagingofthebiofuelswithmetalsproducedahigheramountofparticlescomparativelytoagingofthebiofuelswithwater.Furthermore,thedifferentbiofuelsweremoreaffecteddifferentlybythemetalswhereB100producedthehighestamountofparticlesfromagingwithcopper,B10fromagingwithbrass,andHVOfromagingwithIron.

FuturerecommendationsSinceamethodhasbeendeveloped,thenextstepistobetterunderstandsoftparticleformationinmorerealisticparametersthatoccurintruckdieselengines.Namely,decreaseconcentrationofwaterandconcentrationofoil.Moreover,differentfiltersweretestedtofindasuitablematerialforthevacuumfiltrationstep.Infutureexperiments,theuseofa1-micronPTFEfilterwouldberecommendedduetotheminimizedeffectonfunctionalgroupsofinterestwhenanalysingusingFTIR,despitetherequiredadditionaltimeforfiltration.Additionally,theuseofthematerialcomponentsutilizedinthecurrenttruckssystemswouldaddanotherdimensionthatcouldbebeneficialforunderstandingtheformationofparticles.Throughouttheseexperiments,theeffectofoxygenhasnotbeenalargefocus,however,infutureexperiments,anaddedairstreamcouldbeusedtoaltertheconcentrationofoxygenwhileaging.Theoxygenaidsintheoxidationofthefuel,sothiswouldbeaveryinterestingparametertotestespeciallysincetheairstreamswouldallowforoxygentopenetratedeeperintothefuel.

Page 52: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

45

Appendices

IRSpectra

Table25:SpectraforFunctionalGroupsidentifiedinFTIRAnalysis

FunctionalGroup IRBand,cm-1O-HStretch

BondedO-HStretchinPolymers 3500-3300C-HStretch

C-HStretchinAromaticsorC=C-H 3100-3000C-HStretchinAlkane 3000-2800

C=OStretch AldehydeC=OStretch 1740-1690KetoneC=OStretch 1750-1680EsterC=OStretch 1750-1735

CarboxylicAcidC=OStretch 1780-1710Carboxylateion(Assymetric) 1610-1550

Filter´sPost-TreatmentAgedFuelwithFreshOil(MAM3)

AgedFuelwithAgedOil(MAM4)

AgedHVOwithAgedOil(MAM5)

BA C D

BA C D

BA C

Figure25:FiltersPost-treatmentofFuelsAgedwithFreshOilMAM3showinganunusedfilter(A),AgedB100(B),AgedB10(C),andAgedHVO(D)

Figure26:FiltersPost-treatmentofFuelsAgedwithAgedOil(MAM4)showinganunusedfilter(A),AgedB100(B),AgedB10(C),andAgedHVO(D)

Figure27:FiltersPost-treatmentofHVOAgedwithAgedOil(MAM5)showinganunusedfilter(A),AgedHVO1(B),AgedHVO2(C)

Page 53: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

46

AgedFuelwithAgedOil,andWater(MAM6)

AgedFuelwithAgedOil,andMetal(MAM7)Brass

Copper

Iron

A B C D

A B C D

A B C D

A B C D

Figure28:FiltersPost-treatmentofFuelsagedwithFreshOilandWater(MAM6)showinganunusedfilter(A),AgedB100(B),AgedB10(C),andAgedHVO(D)

Figure29:FiltersPost-treatmentofFuelsAgedwithAgedOilandBrass(MAM71A-C)showinganunusedfilter(A),AgedB100(B),AgedB10(C),andAgedHVO(D)

Figure30:FiltersPost-treatmentofFuelsAgedwithAgedOilandCopper(MAM72A-C)showinganunusedfilter(A),AgedB100(B),AgedB10(C),andAgedHVO(D)

Figure31:FiltersPost-treatmentofFuelsAgedwithAgedOilandIron(MAM73A-C)showinganunusedfilter(A),AgedB100(B),AgedB10(C),andAgedHVO(D)

Page 54: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

47

AgingofFuelswithAgedOil,MetalsandWater(MAM8)Brass

Copper

Iron

AgingofFuelswithMetalsandWater(MAM9)Brass

A B C D

A B C D

A B C D

A B C D

Figure32:FiltersPost-treatmentofFuelsAgedwithAgedOil,Brass,andWater(MAM81A-C)showinganunusedfilter(A),AgedB100(B),AgedB10(C),andAgedHVO(D)

Figure33:Figure32:FiltersPost-treatmentofFuelsAgedwithAgedOil,Copper,andWater(MAM82A-C)showinganunusedfilter(A),AgedB100(B),AgedB10(C),andAgedHVO(D)

Figure34:FiltersPost-treatmentofFuelsAgedwithAgedOil,Iron,andWater(MAM83A-C)showinganunusedfilter(A),AgedB100(B),AgedB10(C),andAgedHVO(D)

Figure35:FiltersPost-treatmentofFuelsAgedwithBrass,andWater(MAM91A-C)showinganunusedfilter(A),AgedB100(B),AgedB10(C),andAgedHVO(D)

Page 55: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

48

Copper

Iron

A B C D

A B C D

Figure36:FiltersPost-treatmentofFuelsAgedwithCopper,andWater(MAM92A-C)showinganunusedfilter(A),AgedB100(B),AgedB10(C),andAgedHVO(D)

Figure37:FiltersPost-treatmentofFuelsAgedwithIron,andWater(MAM93A-C)showinganunusedfilter(A),AgedB100(B),AgedB10(C),andAgedHVO(D)

Page 56: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

49

References

[1] EuropeanUnion,“ParisAgreement,”ClimateAction.EuropeanCommissiononClimateChange,Feb-2017.

[2] InternationalEnergyAgency,“EnergyPoliciesofIEACountries:Sweden2013,”EnergyPoliciesIEACtries.,2013.

[3] M.H.HassanandM.A.Kalam,“AnOverviewofBiofuelasaRenewableEnergySource:DevelopmentandChallenges,”ProcediaEng.,vol.56,pp.39–53,2013.

[4] T.R.Sem,“EffectofVariousLubricatingOilsonPistonDepositsinBiodieselFueledEngines,”inSAE2004WorldCongress&Exhibition,2004.

[5] D.J.Murphy,“OilCropsasPotentialSourcesofBiofuels,”inTechnologicalInnovationsinMajorWorldOilCrops,Volume2:Perspectives,S.K.Gupta,Ed.NewYork,NY:SpringerNewYork,2012,pp.269–284.

[6] “BiofuelsintheSweden.”EuropeanBiofuelsTechnologyPlatform,2015.

[7] S.Mikkonen,“Second-generationrenewabledieseloffersadvantages,”Hydrocarb.Process.,vol.87,no.2,pp.63–66,2008.

[8] B.S.VanGerpenJ.VanGerpen,R.J,B.Shanks,P.R.,andD.Clements,“BiodieselProduction,”NationalRenewableEnergyLaboratory,May2004.

[9] K.Sunde,A.Brekke,andB.Solberg,“EnvironmentalImpactsandCostsofHydrotreatedVegetableOils,TransesterifiedLipidsandWoodyBTL-AReview,”Energies,vol.4,no.6,pp.845–877,2011.

[10] “Emissions,”May-2016.[Online].Available:http://www.iea-amf.org/content/fuel_information/paraffins/emissions.

[11] H.Nishioka,K.Yoshida,T.Asanuma,andT.Fukuma,“DevelopmentofCleanDieselNOxAfter-treatmentSystemwithSulfurTrapCatalyst,”SAEInt.J.FuelsLubr.,vol.3,no.1,pp.30–36,Apr.2010.

[12] L.Zhang,D.Wang,Y.Liu,K.Kamasamudram,J.Li,andW.Epling,“SO2poisoningimpactontheNH3-SCRreactionoveracommercialCu-SAPO-34SCRcatalyst,”Appl.Catal.BEnviron.,vol.156–157,pp.371–377,2014.

[13] EnvironmentalProtectionAgency,“AcidRain.”[Online].Available:https://www.epa.gov/acidrain/what-acid-rain.

[14] BBC,“Oilrefiningandfuels.”[Online].Available:http://www.bbc.co.uk/schools/gcsebitesize/science/edexcel/fuels/oil_refining_fuelsrev5.shtml.

[15] A.Stanislaus,A.Marafi,andM.S.Rana,“Recentadvancesinthescienceandtechnologyofultralowsulfurdiesel(ULSD)production,”Catal.Today,vol.153,no.1,

Page 57: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

50

pp.1–68,2010.

[16] ASTMInternational,“Automotivefuels-Diesel-Requirementsandtestmethods,”WestConshohoken,PA,USA,2017.

[17] H.Aatola,M.Larmi,T.Sarjovaara,andS.Mikkonen,“HydrotreatedVegetableOil(HVO)asaRenewableDieselFuel:Trade-offbetweenNOx,ParticulateEmission,andFuelConsumptionofaHeavyDutyEngine,”SAEInt.J.Engines,vol.1,no.1,pp.1251–1262,Oct.2008.

[18] M.Vojtisek-Lometal.,“Blendsofbutanolandhydrotreatedvegetableoilsasdrop-inreplacementfordieselengines:Effectsoncombustionandemissions,”Fuel,vol.197,pp.407–421,2017.

[19] T.J.Hilbers,L.M.J.Sprakel,L.B.J.vandenEnk,B.Zaalberg,H.vandenBerg,andL.G.J.vanderHam,“GreenDieselfromHydrotreatedVegetableOilProcessDesignStudy,”Chem.Eng.Technol.,vol.38,no.4,pp.651–657,2015.

[20] EuropeanUnion,“Directive98/70/ECoftheEuropeanParliamentandoftheCouncilof13October1998relatingtothequalityofpetrolanddieselfuelsandamendingCouncilDirective93/12/EEC,”May1998.

[21] M.Mittelbach,“Hydro-treatedvegetableoils-Thebetterbiodieselalternative?,”inWorldBiodieselCongress&Expo,2016.

[22] Anonymous,“FattyAcidMethylEsters(FAME).”EuropeanBiofuelsTechnologyPlatform,2011.

[23] T.Omori,A.Tanaka,K.Yamada,andS.Bunne,“BiodieseldepositformationmechanismandimprovementofFuelInjectionEquipment(FIE),”inSAEInternationalPowertrains,FuelsandLubricantsMeeting,2011.

[24] D.Wilfon,A.Dallas,C.Yang,andP.Johnson,“Emergingchallengesoffuelfiltration,”Filtr.Int.J.Filtr.Sep.,vol.10,pp.39–53,2010.

[25] A.Ito,T.Ishii,H.Ando,F.Umebayashi,andK.Kinoshita,“ResearchonCloggingMechanismofMultilayeredFuelFiltersandExtensionofFilterLifeSpaninEthanolBlendedFuel,”SAEInt.J.FuelsLubr.,vol.5,no.1,pp.540–546,Nov.2011.

[26] A.S.FersnerandJ.M.Galante-Fox,“BiodieselFeedstockandContaminantContributionstoDieselFuelFilterBlocking,”SAEInt.J.FuelsLubr.,vol.7,no.3,pp.783–791,Oct.2014.

[27] SchroederIndustries,“ContaminationGuideforHydraulicFluids,OilsandDieselFuels.”Oct-2016.

[28] H.L.Fang,D.M.Stehouwer,andJ.C.Wang,“InteractionBetweenFuelAdditiveandOilContaminant:(II)ItsImpactonFuelStabilityandFilterPluggingMechanism,”inSAEPowertrain&FluidSystemsConference&Exhibition,2003.

Page 58: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

51

[29] E.DressaireandA.Sauret,“Cloggingofmicrofluidicsystems,”SoftMatter,vol.13,no.1,pp.37–48,2017.

[30] G.M.WhitesidesandB.Grzybowski,“Self-AssemblyatAllScales,”Science(80-.).,vol.295,no.5564,pp.2418–2421,2002.

[31] A.Birgel,N.Ladommatos,P.Aleiferis,S.Zulch,“DepositFormationintheHolesofDieselInjectorNozzles:ACriticalReview,”inPowertrains,FuelsandLubricantsMeeting,2008.

[32] “TheCharacterisationofDieselInternalInjectorDepositsbyFocusedIon-BeamScanningElectronMicroscopy(FIB-SEM),TransmissionElectronMicroscopy(TEM),AtomicForceMicroscopyandRamanSpectroscopy.,”inJSAE/SAE2015InternationalPowertrains,Fuels&LubricantsMeeting,2015.

[33] V.Macian,V.Bermudez,R.Payri,andJ.Gimeno,“NewTechniqueForDeterminationofInternalGeometryofaDieselNozzlewiththeuseofSiliconeMethodology,”Exp.Tech.,vol.27,no.2,pp.39–43,2003.

[34] J.Tang,S.Pischinger,M.Lamping,T.Körfer,M.Tatur,andD.Tomazic,“CokingPhenomenainNozzleOrificesofDl-DieselEngines,”SAEInt.J.FuelsLubr.,vol.2,no.1,pp.259–272,Apr.2009.

[35] B.Argueyrolles,B.Dehoux,S.Gastaldi,P.Grosjean,F.Levy,A.Michel,andD.Passerel,"InfluenceofInjectornozzledesignandcavitationoncokingphenomenon,"JSAE/SAEInternationalFuels&LubricantsMeeting,2007.

[36] A.Birgel,N.Ladommatos,P.Aleiferis,N.Milovanovic,P.Lacey,andP.Richards,“InvestigationsonDepositFormationintheHolesofDieselInjectorNozzles,”SAEInt.J.FuelsLubr.,vol.5,no.1,pp.123–131,Aug.2011.

[37] J.Galle.,S.Verhelst,R.Sierens,L.Goyos,R.Castaneda,M.Verhaege,L.Vervaeke,M.Bastiaen“Failureoffuelinjectorsinamediumspeeddieselengineoperatingonbio-oil,”BiomassandBioenergy,vol.40,pp.27–35,2012.

[38] P.B.L.Fregolente,W.M.W.Maciel,andL.S.Oliveira,“REMOVALOFWATERCONTENTFROMBIODIESELANDDIESELFUELUSINGHYDROGELADSORBENTS,”BrazilianJ.Chem.Eng.,vol.32,no.4,pp.895–901,Dec.2015.

[39] B.B.He,J.C.Thompson,D.W.Routt,andJ.H.VanGerpen,“MoistureAbsorptioninBiodieselanditsPetro-DieselBlends,”Appl.Eng.Agric.,vol.23,no.1,pp.71–76,2007.

[40] H.FangandR.McCormick,“SpectroscopicStudyofBiodieselDegradationPathways,”inPowertrain&FluidSystemsConferenceandExhibition,2006.

[41] M.A.H.Altaie,R.B.Janius,R.Yunus,Y.H.Taufiq-Yap,andR.Zakaria,“Degradationofenrichedbiodieselunderdifferentstorageconditions,”Biofuels,vol.8,no.2,pp.181–186,2017.

[42] P.A.RisbergandA.Sara,“TheEffectofZincandOtherMetalCarboxylatesonNozzle

Page 59: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

52

Fouling,”inSAE2016WorldCongressandExhibition,2016.

[43] R.Uitz,M.Brewer,andR.Williams,“ImpactofFAMEQualityonInjectorNozzleFoulinginaCommonRailDieselEngine,”inSAE2009PowertrainsFuelsandLubricantsMeeting,2009.

[44] L.Jolly,K.Kitano,I.Sakata,S.Wenzel,andW.Bunting,“AStudyofMixed-FAMEandTraceComponentEffectsontheFilterBlockingPropensityofFAMEandFAMEBlends,”inSAE2010PowertrainsFuels&LubricantsMeeting,2010.

[45] “TheRoleofSterolGlucosidesonFilterPlugging.”BiodieselMagazine.

[46] F.Lacoste,F.Dejean,H.Griffon,andC.Rouquette,“Quantificationoffreeandesterifiedsterylglucosidesinvegetableoilsandbiodiesel,”Eur.J.LipidSci.Technol.,vol.111,no.8,pp.822–828,Aug.2009.

[47] G.M.Chupka,L.Fouts,andR.L.Mccormick,“Effectoflow-levelimpuritiesonlow-temperatureperformancepropertiesofbiodiesel,”EnergyEnviron.Sci.,vol.5,no.9,pp.8734–8742,Aug.2012.

[48] V.Plata,D.Haagenson,A.Dagdelen,D.Wiesenborn,andV.Kafarov,“ImprovementofPalmOilBiodieselFilterabilitybyAdsorptionMethods,”J.Am.OilChem.Soc.,vol.92,no.6,pp.893–903,Jun.2015.

[49] A.D.M.Company,“BiodieselTechnicalInformation.”Available:http://biodiesel.org/docs/ffs-basics/adm-fact-sheet-biodiesel-technical-information.pdf?sfvrsn=4.

[50] S.P.SrivastavaandJ.Hancsók,“FuelsandFuel-additives,”JohnWiley&Sons,2014.

[51] “FuelAdditives:UseandBenefits,”Sep-2013.[Online].Available:https://www.atc-europe.org/public/Doc1132013-10-01.pdf.

[52] TheAdditiveTechnicalCommitee,“Fueladditivesandenvironment,”2004.

[53] J.ReidandJ.Barker,“UnderstandingPolyisobutyleneSuccinimides(PIBSI)andInternalDieselInjectorDeposits,”inSAE/KSAE2013InternationalPowertrains,Fuels&LubricantsMeeting,2013.

[54] J.Ullmann,M.Geduldig,H.Stutzenberger,R.Caprotti,andG.Balfour,“InvestigationintotheFormationandPreventionofInternalDieselInjectorDeposits,”inSAEWorldCongress&Exhibition,2008.

[55] J.Ullmann,M.Geduldig,H.Stutzenberger,R.Caprotti,G.Balfour,andD.Hess,“EffectsofFuelImpuritiesandAdditiveInteractionsontheFormationofInternalDieselInjectorDeposits,”in7thinternationalColloquiumFuels,2009,p.2009.

[56] J.UllmannandH.Stutzenberger,“InternalDieselInjectorDepositFormation-ReproductioninLaboratory,SystemBenchandEngineTests,”inTAEFuels9thInternationalColloquiu,2013.

Page 60: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

53

[57] ASTMInternational,“StandardTestMethodforOxidationStabilityofDistillateFuelOil(AcceleratedMethod),”WestConshohoken,PA,USA,2000.

[58] R.L.McCormick,M.Ratcliff,L.Moens,andR.Lawrence,“SeveralFactorsAffectingtheStabilityofBiodieselinStandardAcceleratedTests,”FuelProcess.Technol.,vol.88,no.7,pp.651–657,2007.

[59] SwedishStandardsInstitute,“Fatandoilderivatives–FattyAcidMethylEsters(FAME)–Determinationofoxidationstability(acceleratedoxidationtest),”2016.

[60] SwedishStandardsInstitute,“Automotivefuels–Fattyacidmethylester(FAME)fuelandblendswithdieselfuel–Determinationofoxidationstabilitybyacceleratedoxidationmethod,”2014.

[61] T.Hartikka,U.Kiiski,M.Kuronen,andS.Mikkonen,“DieselFuelOxidationStability:AComparativeStudy,”inSAE/KSAE2013InternationalPowertrains,Fuels&LubricantsMeeting,2013.

[62] ASTMInternational,“StandardTestMethodforCloudPointofPetroleumProductsandLiquidFuels,”WestConshohoken,PA,USA,2000.

[63] S.M.Lopes,D.Conran,andM.Russell,“EffectivenessofColdSoakFiltrationTesttoPredictPrecipitateFormationinBiodiesel,”inSAE2011WorldCongress&Exhibition,2011.

[64] “OrganicLaboratoryTechniques.”UniversityofCalgary.Available:http://www.chem.ucalgary.ca/courses/351/laboratory/filtration.pdf

[65] ASTMInternational,“ASTMD-6217:StandardTestMethodforParticulateContaminationinMiddleDistillateFuelsbyLaboratoryFiltration,”1998.

[66] ASTMInternational,“StandardTestMethodforParticulateContaminationinMiddleDistillateFuelsbyLaboratoryFiltration,”2016.

[67] D.Gossman,“HowdoesFourierTransformInfrared(FTIR)SpectroscopyWork?”GossmanForensics.

[68] I.M.Atadashi,M.K.Aroua,andA.A.Aziz,“Biodieselseparationandpurification:Areview,”Renew.Energy,vol.36,no.2,pp.437–443,2011.

[69] T.Allen,ParticleSizeMeasurement,FourthEdi.Springer,Dordrecht,1990.

[70] Y.Smith,“LimitationsofOpticalMicroscopy,”Apr-2017.

[71] Y.Leng,“ScanningElectronMicroscopy,”inMaterialsCharacterization,Weinheim,Germany:Wiley-VerlagGmbH&Co.KGaA,2013,pp.127–161.

[72] H.HIgh-Tech,Let´sFamiliarizeOurselveswiththeSEM!HitachiHIgh-Tech,2008.

[73] ThermscientificScientific,“AnIntroductiontoElectronMicroscopy.”Available:

Page 61: Formation of Soft Particles in Drop-in Fuelskth.diva-portal.org/smash/get/diva2:1228545/FULLTEXT01.pdf · Formation of Soft Particles in Drop-in Fuels Richard A. Alim Master´s Thesis

54

https://www.fei.com/introduction-to-electron-microscopy/sem/.

[74] J.M.ZuoandJ.C.H.Spence,“IntroductionandHistoricalBackground,”inAdvancedTransmissionElectronMicroscopy:ImagingandDiffractioninNanoscience,NewYork,NY:SpringerNewYork,2017,pp.1–18.

[75] Techniquesforelectronmicroscopy,2.ed.[re.Oxford:Blackwell,1965.

[76] D.Gossman,“AttenuatedTotalReflection(ATR)Mode:AdvantagesforFT-IRSpectroscopy.”AZOMaterials,Feb-2012.

[77] J.D.SchuttlefieldandV.H.Grassian,“ATR-FTIRspectroscopyintheundergraduatechemistrylaboratorypartI:Fundamentalsandexamples,”J.Chem.Educ.,vol.85,no.2,pp.279–281,Feb.2008.

[78]SwedishStandardsInstitute,"RequirementsandtestmethodsforFattyAcidMethylEsters(FAME)fordieselengines,"2008