for nanotechnology (uc cein) nsf: ef 0830117 · 2013. 2. 7. · uc center for environmental...

117
University of California Center for Environmental Implications of Nanotechnology (UC CEIN) NSF: EF0830117 Annual Report Year 2 April 1, 2009 – March 31, 2010

Upload: others

Post on 21-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

   

 University of California 

Center for Environmental Implications of Nanotechnology (UC CEIN) 

  

NSF: EF‐0830117   

Annual Report Year 2 

 April 1, 2009 – March 31, 2010 

 

Page 2: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

 

TABLE OF CONTENTS  

1. NSF Cover Page                   ‐ 

2. Table of Contents                  1 

3. Project Summary                  2 

4. List of Center Participants, Advisory Boards, Participating Institutions      3 

5. Quantifiable Outputs  (Table 1)              8 

6. Mission and Broader Impacts                9 

7. Highlights                    13 

8. Strategic Research Plan                  30 

9. Research Program, Accomplishments, and Plans           33 

Table 2 – NSEC Program Support            71 

10. Center Diversity – Progress and Plans              72 

11. Education                    74 

Table 3a – Education Program Participants – All          79 

Table 3b – Education Program Participants – US Citizen/PR      80 

12. Outreach and Knowledge Transfer              81 

13. Shared and Experimental Facilities              96 

14. Personnel                    102 

Table 4A – NSEC Personnel – All             106 

Table 4B – NSEC Personnel – US Citizen/PR          108 

15. Publications and Patents                110 

16. Biographical Information                112 

17. Honors and Awards                  117 

18. Fiscal Section 

a. Statement of Unobligated Funds            117 

b. Budget                    117 

19. Cost Sharing                    139 

20. Leverage                    139 

Table 5 – Other Support               140 

Table 6 – Partnering Institutions             141 

21. Current and Pending Support – PIs and Thrust Leaders          142 

 

Page 3: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

2  

3. Project Summary The  goal  of  the University  of  California  Center  for  Environmental  Implications  of Nanotechnology  (UC CEIN)  is to develop a broad‐based model of predictive toxicology and risk ranking premised on selected nanomaterial property‐activity relationships that determine fate, transport, exposure as well as biological injury  at molecular,  cellular,  organismal,  and  ecosystems  levels.    The  integrated  and multidisciplinary research effort, assisted by a  computerized expert  system, will help  to establish multi‐media modeling and safe implementation of nanotechnology in the environment.  UC CEIN has successfully integrated the expertise  of  engineers,  chemists,  colloid  and  material  scientists,  ecologists,  marine  biologists,  cell biologists, bacteriologists, toxicologists, computer scientists, and social scientists to create the predictive scientific platform that will inform us about the possible hazards and safe design of nanomaterials (NMs) in  the  environment.    This  predictive  scientific model  is  carried  out  by  seven  interdisciplinary  research groups  (IRGs):  IRG  1:  NM  Standard  Reference  and  Combinatorial  Libraries  and  Physical‐chemical Characterization;  IRG 2: Studying NMs  Interactions at the Molecular, Cellular, Organ, and System Levels; IRG 3: Organismal and Community Ecotoxicology;  IRG 4: Nanoparticle Fate and Transport;  IRG 5: High‐Throughput  Screening  (HTS), Data Mining,  and Quantitative‐Structure  Relationships  for NM  Properties and Nanotoxicity; IRG 6: Modeling of the Environmental Multimedia NM Distribution and Toxicity; IRG 7: Risk Perception of Potential Environmental Impacts of Nanotechnology.    

In our  second year of operation,  the national and  international profile of  the UC CEIN has been  raised further  as  a  key  resource  for NanoEHS  research, protocol development,  knowledge dissemination  and contributing to policy making.  Currently, there are 43 active research projects across the IRGs, all linked to the central goals of the Center.   Noteworthy accomplishments  in this period  include the expansion of our combinatorial  libraries  (metal oxides, SWCNT, metals, clays)  to  include 60 variants of nanoparticles that are  in various  stages of characterization and  introduction  into environmental  studies  (IRG 1).   We have successfully demonstrated the validity of the hierarchical oxidative stress paradigm for nanoparticles with  varying  chemistries  and  have  developed  a multi‐parametric  rapid  throughput  screening  assay  to compare  the oxidative  stress  responses of CeO2, TiO2, ZnO  (IRG 2 &5).   Related environmental  studies demonstrate that ZnO is very toxic to the development of sea urchin and zebrafish embryos, with effects seen at concentrations 10‐100 times less than previously reported in aquatic systems (IRG 3). Work with metal oxide NPs has shown that they can be stabilized in freshwater systems by environmentally relevant capping agents that can influence their transport to the environment as well as introducing the particles other  environmental  compartments  such  as  estuaries  and  seawater  (IRG  4).    Studies  using  zebrafish embryos as a potential  in vivo high content screening mechanism have been undertaken on a  range of CEIN  library  NMs,  with  some  of  the  metal  and  metal  oxide  nanoparticles  yielding  similar  response outcomes as  revealed by  the  rapid  throughput  screening assays  (IRG 5).   NP aggregation modeling has provided  information on  the expected  size distribution of NP  suspensions under various environmental and experimental  conditions,  supplying  crucial  information  for  the design of experimental protocols  to assess  transport pathways pertinent  to modeling activities of  the Center  (IRG 6).   Data  from  the nearly completed  Industry Perception  and Practices  survey will be put  to use  to help UC CEIN  tailor  industry outreach programs that focus on ENM and the environment (IRG 7).  Our Education and outreach efforts have expanded considerably in the second year as we integrate community and K‐12 educational efforts, expand online offerings of environmental nanotechnology courses, and play a visible role in the advising the regulatory efforts undertaken at the state and federal  level (Education and Outreach). This  includes participation  in  the  PCAST  review  of  NNI,  the  Nano2  workshops  developing  a  future  vision  for nanotechnology as well as participating in bi‐national nanotechnology forums. 

In the coming year, we will expand our research activities to incorporate additional NM libraries into our environmental studies.   Moreover, we are hosting and co‐sponsoring the Second  International Meeting, play a  leading  role  in  the NNI Nano2  initiative, and expanding our  collaborations and with  researchers nationally, internationally, and influencing State and Federal policy decisions.  

Page 4: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

 

4. Center Participants, Advisory Boards, and Participating Institutions  Center Participants Participants Receiving Center Support Faculty:  Kenneth Bradley   UCLA        Assistant Professor, Microbiology Jeffrey Brinker    University of New Mexico/Sandia  Professor, Chemical/Nuclear Engineering  Bradley Cardinale  UC Santa Barbara     Assistant Professor, Ecology Evolution, Marine Biology Gary Cherr    UC Davis       Professor, Environmental Toxicology/Nutrition Yoram Cohen    UCLA        Professor, Chemical Engineering Curtis Eckhert    UCLA        Professor, Environmental Health Sciences William Freudenberg  UC Santa Barbara     Professor, Environmental Studies and Sociology Jorge Gardea‐Torresdey  University of Texas, El Paso  Professor, Chemistry Hilary Godwin    UCLA        Professor, Environmental Health Sciences Robert Haddon    UC Riverside      Professor, Chemistry Barbara Herr Harthorn  UC Santa Barbara     Associate Professor, Women’s Studies/Anthropology Eric Hoek    UCLA        Associate Professor, Civil & Environmental Engineering Patricia Holden    UC Santa Barbara     Professor, Environmental Microbiology Milind Kandlikar    University of British Colombia  Assistant Professor, Institute for Global Issues Arturo Keller    UC Santa Barbara     Professor, Environmental Biogeochemistry Hunter Lenihan    UC Santa Barbara     Associate Professor, Marine Biology Alex Levine    UCLA        Assistant Professor, Chemistry and BioChemistry Shuo Lin     UCLA        Professor, Molecular, Cell, & Developmental Biology Lutz Madler    University of Bremen    Professor, Materials Science Timothy Malloy    UCLA        Professor, Law Andre Nel    UCLA        Professor, Medicine; Chief, Division of NanoMedicine Roger Nisbet    UC Santa Barbara     Professor, Ecology, Evolution, Marine Biology Robert Rallo    Universitat Roriv i Virgili/UCLA  Associate Professor, Chemical Engineering   Theresa Satterfield  University of British Colombia  Associate Professor, Institute of Resources Joshua Schimel    UC Santa Barbara     Professor, Ecology, Evolution, Marine Biology Ponisseril Somasundaran Columbia University    Professor, Materials Science Galen Stucky    UC Santa Barbara     Professor, Chemistry and Biochemistry Donatello Telesca  UCLA        Assistant Professor, Biostatistics Sharon Walker    UC Riverside      Assistant Professor, Chemical and Environmental Eng. Jeffrey Zink    UCLA         Professor, Chemistry and Biochemistry  Research Staff: Irina Chernyshova  Columbia University Robert Damoiseaux  UCLA Anna Davison    UC Santa Barbara Helen Dickson    UC Santa Barbara Aoergele Fnu    UCLA Bryan France    UCLA Jennifer Gowan    UC Santa Barbara Sean Hecht    UCLA Susan Jackson    UC Davis Zhao Ivy Ji    UCLA Ya‐Hsuan Liou    UC Santa Barbara Marianne Maggini  UC Santa Barbara Delia Milliron    Lawrence Berkeley National Laboratory Taleb Mokari    Lawrence Berkeley National Laboratory Jose Peralta‐Videa  University of Texas, El Paso Dad Roux‐Michollet  UC Santa Barbara 

Page 5: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

 

David Schoenfeld  UCLA Carol Vines    UC Davis Hongtuo Wang    UC Santa Barbara Tian Xia      UCLA   Postdoctoral Researchers: Bryan Cole    UC Davis Gwen D’Arcangelis  UC Santa Barbara Guadalupe De La Rosa  University of Texas, El Paso Xiaohua Fang    Columbia University Yuan Ge     UC Santa Barbara Saji George    UCLA Nalinkanth Ghone  UCLA Debraj Ghosh    UCLA Yongsuk Hong    UC Santa Barbara Chia‐Hung Hou    UC Santa Barbara Angela Ivask    UCLA Xingmao Jiang    Sandia National Labs Xue Jin      UCLA Mikael Johansson  UC Santa Barbara Sanaz Kabehie    UCLA Irina Kalinina    UC Riverside Myungman Kim    UCLA Hiroaki Kiyoto    UC Santa Barbara Tin Klanjscek    UC Santa Barbara Chris Knoll    UC Santa Barbara Konrad Kulacki    UC Santa Barbara Minghua Li    UCLA Rong Liu     UCLA Martha Lopez    University of Texas, El Paso Huan Meng    UCLA Robert Miller    UC Santa Barbara Sumitra Nair    UCLA Sandip Niyogi    UC Riverside Manuel Orosco    UCLA Suman Pokhrel    University of Bremen John Priester    UC Santa Barbara Elizabeth Suarez    UCLA Won Suh    UC Santa Barbara Reginald Thio    UC Santa Barbara Raja Vukanti    UC Santa Barbara Xiang Wang    UCLA Haiyuan Zhang    UCLA Lijuan Zhao    University of Texas, El Paso Yan Zhao    UCLA  Graduate Students: Barbora Bakajova  UC Santa Barbara Lynn Baumgartner  UC Santa Barbara Christian Beaudrie  University of British Columbia Samuel Bennet    UC Santa Barbara Benjamin Carr    UC Santa Barbara 

Page 6: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

 

Savanna Carson    UCLA Eunshil Choi    UCLA Kabir Chopra    UCLA Indranil Chowdhury  UC Riverside Kristin Clark    UC Santa Barbara Mary Collins    UC Santa Barbara Alyssa de la Rosa   University of Texas, El Paso Laura De Vries    University of British Columbia Cassandra Engeman  UC Santa Barbara Elise Fairbairn    UC Davis Daniel Ferris    UCLA Allison Fish    UC Santa Barbara Shannon Hanna    UC Santa Barbara Jose Hernandez‐Viezcas  University of El Paso, Texas Allison Horst    UC Santa Barbara Carlin Hsueh    UCLA Zongxi Li    UCLA Monty Liong    UCLA Haoyang Haven Liu  UCLA Catalina Marambio‐Jones UCLA John Meyerhofer   UC Santa Barbara Randy Mielke    UC Santa Barbara Trina Patel    UCLA Satish Ponnurangam  Columbia University April Sawvell    UC Santa Barbara Alia Servin    University of Texas, El Paso Sharona Sokolow  UCLA Sirikarn Surawanvijit  UCLA Courtney Thomas  UCLA Pria Vytla    UC Santa Barbara Rebecca Werlin    UC Santa Barbara Tristan Winneker   UC Santa Barbara Kimberly Worsley  UC Riverside Kristin Yamada    UCLA Yichi Zhang    UC Santa Barbara Dongxu Zhou    UC Santa Barbara  Undergraduate Students: Adeyemi Adeleye  UC Santa Barbara Nicolai Archuleta   UC Santa Barbara Rebecca Britt Armenta  University of Texas, El Paso Gwen Christiansen  UC Santa Barbara Maia Colyar    UC Santa Barbara Jon Conway    UC Santa Barbara Stephen Crawford  UC Santa Barbara Vivian Do    UCLA Ryo Furukawa    UCLA Arjan Gower    UC Santa Barbara Ryan Honda    UC Riverside Edward Hu    UC Santa Barbara Casey Leavitt    UC Santa Barbara Leuh Yang Liao    UCLA Erica Linard    UC Santa Barbara 

Page 7: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

 

Angela Liu    UCLA Kristin Matulich    UC Santa Barbara Ariel Miller    UC Santa Barbara Alex Moreland    UC Santa Barbara Fabiola Moreno    University of Texas, El Paso Michelle Oishi    UCLA Scott Pease    UC Santa Barbara David Pierra    UC Santa Barbara Gabriel Rubio    UC Santa Barbara Esther Shin    UC Davis Nancy Teng    UC Santa Barbara Kari Varin    UCLA  High School Students (Interns): Courtney Kwan    UC Santa Barbara  Staff/Administration: David Avery    UCLA Raven Bier    UC Santa Barbara John Chae    UCLA Mariae Choi    UCLA Julie Dillemuth    UC Santa Barbara Kristin Duckett    UC Santa Barbara Catherine Nameth  UCLA Nancy Neymark    UCLA  Affiliated Participants, Not Receiving Center Support Faculty: Carolyn Bertozzi    UC Berkeley/Lawrence Berkeley Lab  Professor, Chemistry, Molecular/Cell Biology Freddy Boey    Nanyang Technological University    Professor, Materials Science Engineering Kenneth Dawson   University College Dublin      Professor, Physical Chemistry Francesc  Giralt    Universitat Rovira I Virgili      Professor, Chemical Engineering Jordi Grifoll    Universitat Rovira I Virgili      Associate Professor, Chemical Engineering Joachim Loo    Nanyang Technological University    Assistant Professor, Materials Engineering Nick Pidgeon    Cardiff University       Professor, Applied Psychology  Postdoctoral Researchers: Sijing Xiong    Nanyang Technological University  Graduate Students: Xinxin Zhao    Nanyang Technological University      External Science Advisory Committee Pedro Alvarez    Rice University        Professor, Engineering Ahmed Busnaina   Northeastern University      Professor, Engineering; Director, HRNM Sharon Dunwoody  University of Wisconsin‐Madison    Professor, Journalism/Mass Communication Menachem Elimelech  Yale University        Professor, Chemical Engineering C. Michael Garner  Intel Corporation       Program Manager, Emerging Materials Res. James Hutchison   University of Oregon      Professor, Assoc. VP, Research Fred Klaessig    Pennsylvania Bio Nano Systems     Julia Moore    Woodrow Wilson International Center  Deputy Director, PEN Kent Pinkerton    UC Davis         Director, Center for Health/Environment David Rejeski    Woodrow Wilson International Center  Director, PEN 

Page 8: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

 

Ron Turco    Purdue University      Professor, Agronomy Isiah Warner    Louisiana State University      Professor, Environmental Chemistry Jeff Wong    Department of Toxic Substances Control  Deputy Director, Science  Academic Participating Institutions Cardiff University Columbia University Nanyang Technological University Universitat Rovira I Virgili University of Bremen University of British Colombia University of California, Los Angeles University of California, Santa Barbara University of California, Davis University of California, Riverside University College Dublin University of New Mexico University of Texas, El Paso  Non Academic Participating Institutions California Science Center Lawrence Berkeley National Laboratory Lawrence Livermore National Laboratory Sandia National Laboratory Santa Monica Public Library    

Page 9: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

Table 1: Quantifiable Outputs - Draft ReportNSEC Center: CEIN: Predictive Toxicology Assessment and Safe Implementation of Nanotechnology in the Environment

Outputs Reporting Year -4 Reporting Year -3 Reporting Year -2 Reporting Year -1 Reporting Year Total

Publications Resulted From NSEC Support

In Peer Reviewed Technical Journals 0 0 0 12 27 39

In Peer Reviewed Conference Proceedings 0 0 0 0 1 1

In Trade Journals 0 0 0 0 0 0

With Multiple Authors 0 0 0 12 27 39

Multiple Authors: Co-Authored With NSEC Faculty 0 0 0 12 27 39

NSEC Technology Transfer

Inventions Disclosed 0 0 0 0 0 0

Patents Filed 0 0 0 0 0 0

Patents Awarded 0 0 0 0 0 0

Patents Licensed 0 0 0 0 0 0

Software Licensed 0 0 0 0 0 0

Spin-off Companies Started (if applicable) 0 0 0 0 0 0

Degrees to NSEC Students

Bachelor's Degrees Granted 0 0 0 0 0 0

Master's Degrees Granted 0 0 0 0 2 2

Doctoral Degrees Granted 0 0 0 0 1 1

NSEC Graduates Hired by

Industry 0 0 0 0 0 0

NSEC participating firms 0 0 0 0 0 0

Other U.S. Firms 0 0 0 0 0 0

Government 0 0 0 0 0 0

Academic Institutions 0 0 0 0 2 2

Other 0 0 0 0 0 0

Unknown 0 0 0 0 0 0

NSEC Influence on Curriculum (if applicable)

New Courses Based on NSEC Research 0 0 0 0 1 1

Courses Modified to Include NSEC Research 0 0 0 0 6 6

New Textbooks Based on NSEC Research 0 0 0 0 0 0

Free-standing Course Modules or Instructional CDs 0 0 0 0 0 0

New Full Degree Programs 0 0 0 0 0 0

New Degree Minors or Minor Emphases 0 0 0 0 0 0

New Certificate 0 0 0 0 0 0

Information Dissemination/Educational Outreach

Workshops, Short Courses to Industry 0 0 0 0 1 1

Workshops, Short Courses to Others 0 0 0 0 2 2

Seminars, Colloquia, etc. 0 0 0 49 211 260

World Wide Web courses 0 0 0 3 1 4

1 of 1 4/13/2010 9:11 AM

AveryCEIN
Typewritten Text
UC CEIN
AveryCEIN
Typewritten Text
AveryCEIN
Typewritten Text
Annual Report 2010
AveryCEIN
Typewritten Text
AveryCEIN
Typewritten Text
AveryCEIN
Typewritten Text
AveryCEIN
Typewritten Text
8
Page 10: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual  Report 2010 

 

6.  Mission Statement The mission of the University of California Center for Environmental Implications of Nanotechnology (UC CEIN)  is to ensure that nanotechnology  is  introduced  in a responsible and environmentally compatible manner,  thereby  allowing  the  US  and  International  Communities  to  leverage  the  benefits  of nanotechnology  for  global  economic  and  social  benefit.    This  mission  is  being  accomplished  by developing  a  broad‐based  predictive  toxicology  model  premised  on  quantitative  structure–activity relationships  (QSARs) as determined by  looking at nanomaterial  injury mechanisms at cellular,  tissue, organism  and mesocosm  levels.  Since  its  founding  in  September  2008,  the UC  CEIN  has  successfully integrated  the  expertise  of  engineers,  chemists,  colloid  and  material  scientists,  ecologists,  marine biologists, cell biologists, bacteriologists, toxicologists, computer scientists, and social scientists to create the  predictive  scientific  platform  that  will  inform  us  about  the  possible  risks  and  safe  design  of nanomaterials (NMs) that may come into contact with the environment.    

 The  key  components of  the predictive  scientific model  include:  (i)  the  establishment of nanomaterial libraries based on a consideration of production volumes and the material types most likely to come into contact with the environment; (ii) nanomaterial distribution in the environment, as governed by modes of  release,  physicochemical  and  transport  properties,  interactions  with  biological  substrates,  and bioaccumulation;  (iii)  representative  ecological  life  forms  serving  as  early  sentinels  to  monitor  the spread and bio‐accumulation of hazardous nanomaterials; (iv) biological screening allowing QSARs to be developed  based  on  the  bio‐physicochemical  properties  of  nanomaterials;  (v)  HTS  of  the  standard reference and combinatorial nanomaterial  libraries; and  (vi) a computational expert  system providing model predictions. These  research activities are being combined with educational programs  to  inform the  public,  future  generations  of  scientists,  public  agencies,  and  industrial  stakeholders  of  the importance of safe implementation of nanotechnology in the environment. The overall impact will be to reduce uncertainty about the possible consequences of nanomaterials in the environment, while at the same time providing guidelines for their safe design to prevent environmental hazard. 

 Broader Impacts Traditional and current toxicity testing in humans and the natural environment is heavily dependent on a  complex  set of whole‐animal‐based  toxicity  testing  strategies. This approach, while a  time‐honored hazard assessment tool, is unlikely to handle the rapid pace at which nanotechnology‐based enterprises are generating new materials. The UC CEIN  is addressing these challenges of scale by using a scientific platform  that  can  perform  high  content  and  high  throughput  screening  to  generate  the  domains  of knowledge  that  are  required  to  make  predictions  about  the  impact  of  nanotechnology  on  the environment.  This  knowledge  is  also  being  used  for making  predictions  and  implementing  the  safe design of nanomaterials.   The UC CEIN’s creation of a comprehensive computational expert system  is assisting hazard ranking and risk predictions of nanomaterial impact on the environment for the global society. Our educational and outreach activities are being used as powerful portals for the dissemination of  our  research  findings  and  predictions  to  the  scientific  and  industrial  communities.   Our  outreach activities  are  informing  both  experts  and  the  public  at  large  about  the  safety  issues  surrounding nanotechnology and how to safely produce, use, and dispose NMs.  Significant Advances Since April 1, 2009:  

UC CEIN has played a national  leadership  role  in NanoEHS  through participating  in  the PCAST review of NNI NanoEHS initiatives, assisting Senator Feinstein’s office in review of the NanoEHS bill,  playing  a  lead  role  on  NanoEHS  in  the  Nano2  initiative  exploring  the  vision  for Nanotechnology  in  the next 10 years, and  through  the Principal  Investigator acting as  session chair for NanoEHS in the US‐Russia Experts Meeting on Nanotechnology.  The UC CEIN has also 

Page 11: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual  Report 2010 

10 

 

participated  in  the RC2 research efforts  launched by  the NIEHS with stimulus‐package  funding and has helped to design round robin testing of ENM using protocols developed by the UC CEIN.   

 

The  first  library of metal oxides  (TiO2, Ce02 and ZnO) have been obtained,  characterized, and distributed  to  laboratories  across  the  CEIN.    A  second  set  of  libraries  is  currently  being introduced (SWNCT, Au, Ag, CdSe, silica, clays).  The current library includes 60 different types of nanoparticles, with characterization in process for 25 new nanoparticles.  The compositional and property  variation of  the  library materials have  allowed us  to obtain  new  information  about material properties involved in toxicology and fate and transport.  (IRG 1).  

 

Characterization of dispersion of commercial particles  in our  library  in six different biologically relevant media  (tissue  culture,  bacterial  culture,  and  yeast  culture)  has  been  conducted.    A highly efficient method of dispersing particles was identified (fetal bovine serum) and the effect of  ions  in  the media on  the dispersion was  systematically  investigated.   This protocol  is now being used in round robin testing being conducted in other national programs in addition to the CEIN (IRG 1).  

 

Successful demonstration of  the oxidative  stress hierarchical paradigm  for nanoparticles with varying chemistries and physicochemical characteristics to revel the dose‐response relationships between  particle  parameters  and  elicitation  of  biological  response  consistent with  oxidative stress (using CeO2, TiO2, ZnO) (IRG 2).  

 

As an exercise in safe design, doping ZnO with Fe has been found to significantly reduce ZnO NP toxicity in mammalian cell.  Screening for toxicity of these and other safe designed NPs can now be rapidly performed by rapid throughput screening that promises early delivery of data suitable for expert model development (IRG 2).  

 

Bacterial toxicity research conducted shows that ZnO and CeO2 inhibit growth more than TiO2.  We  are  currently  evaluating hypotheses  for mechanisms  and methods  for  testing differences between gram positive and gram negative strains (IRG 2).  

 

Studies examining  the effects of exposure  to Quantum Dots  (CdSe) across  trophic  levels show the  potential  impact  of  the  biomagnifications  of  these NP  through  the  lower  trophic  levels, which could  implicate an even more extreme condition at higher  trophic  levels,  including  fish and mammals (IRG 2/3).  

 

Early studies have  revealed  that ZnO  is very  toxic  to  the development of sea urchin embryos.  Effects  are  seen  at  concentrations  that  are  approximately  10‐100  times  smaller  than  those previously reported for aquatic systems.  (IRG 3).   

 

Mesocosm work, conducted in collaboration with DEB modeling, progressed in plant, freshwater and terrestrial soil groups to test not only the effects of ENM on population processes, but also trophic transfer and bioaccumulation.  We found strong evidence in aquatic systems that ZnO is significantly  toxic  to primary producers, mainly  through dissolution of Zn and exposure of  the organisms  to  ionic Zn.   There  is  little evidence  that TiO2  is  toxic  to aquatic primary producers (IRG 3).   

 

Page 12: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual  Report 2010 

11 

 

Fresh water ecology studies are underway to develop a predictive model that explains how the diversity of species  in a  freshwater  food‐web  influences  the accumulation of nanomaterials  in higher trophic levels.  Initial experiments have shown that TiO2 stimulates the growth of a wide range of freshwater algae, leading to accumulation of TiO2 in the tissues of higher trophic levels (IRG 3). 

 

Work with metal  oxide  NPs  has  shown  that  they  can  be  easily  stabilized  under  freshwater conditions,  which  is  a  major  pathway  by  which  sources  (e.g.  wastewater  treatment  plant discharge,  stormwater,  other  runoff)  lead  into  other  environmental  compartments,  such  as estuaries and oceans, where the particles sediment rapidly. This has important implications for aquatic organisms that are exposed to particles either in the water column or sediments (IRG 4).  

 

A major study on aggregation and sedimentation behavior of metal oxide NMs was conducted using seawater, freshwater, and groundwater.   Electrophoretic mobility (EPM) of the NMs was found  to  be  statistically  related  to  the  concentration  of NOM  and  ionic  strength.    The  EPM controls the rate of sedimentation of the NP in these media (IRG 4).  

 

A study on the removal of NM from aqueous systems has shown that efficient removal can be achieved  by  optimal  pH  destabilization,  coagulant  dosing,  sedimentation,  and  ultrafiltration.  This has  important  implications  for water treatment and handling of nanoparticle‐laden waste streams.  This study also fits in with the objective of improving ENM safety (IRG 4).  

 

Through validation of commercially available HTS assays to determine compatibility with MSSR and  nanomaterials,  we  have  successfully  implemented  gene  reporter  assays  that  provide readouts  of  known  cellular  damage  pathways.    Preliminary  results  identify  genotoxicity  in  a subset of NMs.   The data from these studies are then  integrated  into  IRG 6 as training data to establish methods for modeling NM/conditions that induce stress and/or toxicity (IRG 5).  

 

Studies  using  zebrafish  embryos  to  perform  high‐content  screening  in  vivo  have  been undertaken on a range of CEIN library NMs.  Metal/metal oxide NP toxicities that are observed in vivo closely correspond with the results predicted by in vitro testing.  Zebrafish appears to be a valid model  for corroborative  testing of  the cell culture  system and  studies will continue  to ascertain the mechanisms of NM toxicity in aquatic organisms (IRG 5). 

 

A new efficient computer algorithm  for  feature selection ranking was developed  for screening and  ranking  nanoparticle  properties  for  the  development  of  quantitative  property‐structure relationships.   The  applicability  of  the  method  was  demonstrated  with  databases  from  the machine  learning  repository,  polymeric  nanoparticles  insulin  retention  data,  and  TiO2 

nanotoxicity. (IRG 6)      

NP  aggregation  modeling  is  providing  information  on  the  expected  size  distribution  of  NP suspensions, under various environmental and experimental conditions,  thus supplying crucial information  for  the  design  of  NP  experimental  protocols  and  for  assessing  the  relative importance  of  transport  pathways  pertinent  for  modeling  the  transport  and  fate  of nanoparticles (IRG 6)  

 

Page 13: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual  Report 2010 

12 

 

International  Survey  of  nano  industry  EHS  officers  regarding  NM  environmental  risks  and perceptions has been in the field since Fall 2009 and is nearing the final stages of data collection.  Results are being preliminarily analyzed and presented publically (IRG 7).  

 

Data  from  the  Industry  survey  that  is nearing  completion  can be put  to use  to help UC CEIN tailor  industry planned outreach programs to focus on specific needs and knowledge gaps.   An oversample  of  California  respondents  is  being  investigated.    Such  an  oversample would  help identify state‐specific environmental risk perception within industry EHS programs that has been previously unstudied (IRG 7).  

 

A  pilot  survey  on  public  environmental  perception  of  nanotechnology  will  be  conducted  in March/April 2009 with initial pilot data expected in Spring/summer (IRG 7).  

 Impacts of Education and Outreach Programs A major goal of the UC CEIN is to train the next generation of nano‐scientists, engineers, and regulators to anticipate and mitigate potential future environmental hazards associated with nanotechnology.  Our educational programs are developed to broaden the knowledge base of the environmental implications of nanotechnology  through academic coursework, world‐class  research,  training courses  for  industrial practitioners,  outreach  to  the  public  and  policy  makers,  and  a  journalist‐scientist  communication program.   We have made considerable progress on the Education and Outreach goals of the Center over the past year.    Integration  across  research  areas  is  strengthening  over  time,  largely  as  a  result  of  the implementation of a protocols working group, a high throughput working group, use of the Sharepoint file‐sharing system, and active participation by our graduate students and postdoctoral researchers on our  student‐postdoc  advisory  committee  (SPAC).    Academically,  we  have  incorporated  new  Center research into the curriculum of at least five currently taught graduate level courses, and we have made available  via webcasting  for  the  first  time a  short  course on Dynamic Energy Budget  (DEB) Modeling from UC Santa Barbara.  Plans are underway to revise the bi‐annual Nanotoxciology course to reflect the range of UC CEIN knowledge generation.   Development of the Safe Handling of Nanomaterials training modules has captured the interest and support of the UCLA Office of Environmental Health & Safety as well as the University of California EH&S taskforce.  Discussions are underway to develop a campus‐wide testing of these new educational modules for implementation across UC and in Industry.  The Center has quickly become a valuable  resource on Nano‐EHS  for policy makers,  federal and  state  regulatory and funding agencies, and industries within California.  This includes participation in the PCAST review of NNI and  the  Nano2  workshops  which  have  developed  a  future  vision  for  nanotechnology,  as  well  as participating in bi‐national nanotechnology forums.  In  the  coming  year,  the  UC  CEIN  will  host  the  second  International  Conference  on  Environmental Implications of Nanotechnology (ICEIN 2010 ‐ jointly organized by the CEINT), and co‐sponsor Nano2010 to be held  in August 2010  at Clemson University.   Public outreach will  take  a  sharper  focus  through hosting  of NanoDays  at  the  California  Science  Center  (April  2010)  and  conducting  public  forums  on nanotechnology at the Santa Monica Library (April 2010).   Finally, we are expanding our K‐12 outreach activities, working with  several  local  schools  to  integrate  nanotechnology  education  into  the  science curriculum.    

 7.  Highlights Research, Education, and Outreach highlights follow.  

Page 14: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

NSF: EF-0830117

Diversity of Size, Shape, and Composition in the Nanomaterial Library

Establishing a nanomaterial library thatencompasses a broad range of chemicalcompositions, sizes, and shapes is a necessityfor mechanistic and high throughputnanotoxicity studies. Currently, the nanomateriallibrary has been expanded extensively from theinitial three major commercial metal oxides(TiO2, CeO2, and ZnO) to a variety of newcompositions including metals (Au, Ag),quantum dots (CdS, CdSe), and carbonnanotubes (SWCNT, MWCNT). For eachnanomaterial, the particle size has been wellcontrolled from a few nanometers to severalhundred nanometers. In addition, nanomaterialswith shapes ranging from spheres, cubes, rods,to wires were also successfully synthesized.

Cube

Size Shape

20 nm

TiO2

Composition

d=10 nm

CdSe

Au

d=30 nm

d=130 nm Wire

Rod

50 nm

Zhaoxia Ji and Jeffrey I. ZinkUC Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California, 90095, USA.

Page 15: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

NSF: EF-0830117

Optimization of Nanoparticle Dispersion and Stability in Cell Culture Media

NP Stock Solution

Nice Dispersion

Zhaoxia Ji, Xiang Wang, and Jeffrey I. ZinkUC Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California, 90095, USA.

Large Agglomerates

30 min

30 min 24 hr

24 hr

MajorSedimentation

Stable Suspension

Medium Alone

Medium w/ Dispersing Agent

It is well known that nanoparticlesagglomerate extensively upon addition to cellculture media. If the agglomerates were usedwithout modification for nanotoxicity studies,the dose estimation would be innacurate andthe interpretation of the toxicity results wouldbe complicated. It is very important todevelop effective methods for preparing well-dispersed nanoparticle suspensions. Ourresults show that when proteins and serum,(natural components of physiological fluids)are used as dispersing agents, highlydispersed nanoparticle suspensions can beobtained. The resulting dispersions remainstable even after 24 hours.

Page 16: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

NSF: EF-0830117

Effects of Soluble Cadmium Salts vs. CdSe Quantum Dots on the Growth of Planktonic Pseudomonas aeruginosa

John H. Priester1, Peter K. Stoimenov2, Randall E. Mielke3, Samuel M. Webb4, Christopher Ehrhardt5, Jin Ping Zhang6, Galen D. Stucky2, Patricia A. Holden1

1Donald Bren School of Environmental Science & Management, 2Department of Chemistry and Biochemistry, 5Earth Sciences, 6Materials Research Laboratory, University of California, Santa Barbara, CA 93106, 3Center for Life Detection, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 911094 Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, Menlo Park, CA 94025

The effects of CdSe QDs vs. Cd(II) ions on P. aeruginosa growth were investigated. Above a total cadmium concentration threshold, QDs impaired growth more than Cd(II) ions. Scanning transmission electron microscopy (STEM) images showed cellular destruction with QDs (below, right) not observed with Cd(II) (below, middle). Reactive oxygen species (ROS) concentrations were also higher with QDs, supporting a specific and larger effect of nanoparticles above the threshold. (Priester et. al, 2009, Environmental Science & Technology).

Control

500 nm500 nm 500 nm

Cd acetate –treated CdSe QD –treated

Page 17: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

NSF: EF-0830117

Our work on marine organisms shows that impacts of nanoparticles (NP) depend on the type of NP and its behavior in the environment. Zinc oxide NPs are toxic to marine phytoplankton because they dissolve and release zinc into seawater. Titanium dioxide particles, in contrast, do not dissolve and had no effect on phytoplankton growth.Top figure on shows toxicity of zinc oxide to phytoplankton: diamond-shapes are highest concentrations the NP, open circles the lowest. Lines on graph represent fits of results predicted by Dynamic Energy Budget model: the empirical data closely match the model predictions.

Bottom-dwelling marine amphipods, which live in soft-sediments that can trap and accumulate NPs, died when exposed to low doses of zinc oxide NPs dissolved in seawater (an unnatural exposure regime; see figure below on left). However, when exposed to the zinc oxide in sediments (a natural exposure regime; see figure below on right), amphipods tolerated very high concentrations of NPs. This work suggests toxicity of metal oxide NPs in marine environments may be alleviated by binding to bottom sediments. However, NPs bound in sediments may create problems in the future due to complex process such as metal diagenesis.

Toxicity of nanomaterials in the marine environmentHunter Lenihan, Robert Miller, Shannon Hanna, Arturo Keller

Bren School of Environmental Science and Management University of California Santa Barbara, CA USA

Model fits to experimental data showing decreased growth rates in a marine diatom due to exposure to zinc oxide NPs.

96hr water exposure

ZnO (mg L-1)0 1 2 3 4 5

Sur

viva

l (%

)

0

20

40

60

80

100

100% mortality

10 day sediment exposure

[ZnO] (mg L-1)

0 20 40 60 80 100

% S

urvi

val

40

50

60

70

80

90

100

Page 18: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

NSF: EF-0830117

Negative effect of TiO2 and ZnO nanoparticles on soil microbial communitiesYuan Ge1,2, Joshua Schimel3 and Patricia Holden1,2

1Institute for Computational Earth System Science, 2Bren School of Environmental Science & Management,3Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara

Both TiO2 and ZnO show negativeeffects on extractable soil DNA

TiO2: linear relationshipZnO: nonlinear relationship

Toxicity: ZnO>TiO2Higher slope for ZnO dose-response curveSignificantly lower DNA for ZnO at the sameexposure concentration (0.5 mg g-1 soil)

Time dependency:Stronger dose-response after 60, vs. 15, daysGreater change over time with TiO2

y = -0.936x + 4.215R² = 0.996

y = -3.512x + 4.136R² = 0.4510

2

4

6

8

0 0.5 1 1.5 2 2.5

DN

A (µ

g g-1

soil)

MeO (mg g-1 soil)

15 days incubation010D

TiO2 ZnO

y = -2.299x + 6.389R² = 0.922

y = -5.968x + 4.897R² = 0.4650

2

4

6

8

10

0 0.5 1 1.5 2 2.5

DN

A (µ

g g-1

soil)

MeO (mg g-1 soil)

60 days incubation010D

M O ( TiO2 ZnO

P=0.013

P=0.000

Page 19: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

NSF: EF-0830117

Bioaccumulation of nano-TiO2 in freshwater herbivoresKonrad J. Kulacki, Bradley J. Cardinale

Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara

Monocultures of 20 of the most common species of freshwater phytoplankton in North America were cultured in media containing increasing concentrations of TiO2 nanoparticles. Each algal monoculture was then fed to Daphnia pulex (one of the most widespread freshwater herbivores) for 24h, after which, Daphnia were placed in spring water, allowed to clear their guts, and then removed and analyzed for TiO2 in tissues. Daphnia accumulated nano-TiO2 in proportion to ambient concentrations, and this was true for nearly every species of algae fed to this consumer (each algal species is represented by a different line in graph at right). We are currently determining whether accumulation was due to trophic transfer or direct consumption. Either way, our results show that nano-TiO2 has the potential to accumulate at higher trophic levels in a food web.

0 50 100 150 200 250 300 350TiO2 exposure concentration (mg/L)

0.0

0.5

1.0

1.5

2.0

µg T

iO2

per D

aphn

ia p

ulex

Page 20: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

NSF: EF-0830117

Stability and Aggregation of Metal Oxide Nanoparticles in Natural WatersArturo A. Keller, Dongxu Zhou and Hongtao Wang

Univ. of California, Santa Barbara

There is a pressing need for information on the mobility of nanoparticles in the complex aqueous matrices found in realistic environmental conditions. To address these questions, we dispersed three metal oxide nanoparticles (TiO2, ZnO and CeO2) in samples taken from eight different aqueous media associated with seawater, lagoon, river, and groundwater (Fig. 1). The electrophoretic mobility of the particles in a given aqueous media was dominated by the presence of natural organic matter (NOM) and ionic strength, and independent of pH. NOM adsorbed onto these nanoparticles significantly reduces their aggregation, stabilizing them under many conditions. The transition from reaction to diffusion limited aggregation occurs at an electrophoretic mobility from around -2 to -0.8 µm s-1 V-1 cm (Fig. 2). These results are key for designing and interpreting nanoparticle ecotoxicity studies in various environmental conditions.

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400

Time (min)

C/C

o

Mesocosm freshwaterStormwaterMesocosm effluentTreated EffluentLagoonGroundwaterSanta Clara RiverSeawater

Fig. 1

0.0

0.2

0.4

0.6

0.8

1.0

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

EPM (µm s-1 V-1 cm)

Atta

chm

ent e

ffici

ency

(-)

ZnO

CeO2

TiO2

Fig. 2

Page 21: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

Correlation between total nanoparticle surface energy and cell responsePonniseril Somasundaran and Xiaohua Fang

Columbia University

We explored the toxic effects of metal oxide nanoparticles on N. Europaea cultures. In general, cell size scales inversely with the total surface energy of the nanoparticles. When the total surface energy increases, cell size decreases (Fig. 1), except for the CeO2particles. It is clear that the cells were subjected to severe stress by ZnO and TiO2 nanoparticles (Fig. 2).The cells became smaller upon contacting ZnO. Also the membrane and cell walls became distorted and fragmented under the stress of these nanoparticles.

Fig. 1

Fig. 2

NSF: EF-0830117

Page 22: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

Highthroughput Screening for Rapid Cytotoxicity Assessment of NanomaterialsSaji George ¶, Tian Xia ¶, Suman Pokhrel ‡, Robert Damoiseaux †, Ken Bradley ∗, Lutz Madler ‡, Andre Nel¶

¶ Dept. of Medicine - Div. of NanoMedicine, University of California, Los Angeles, CA, USA ‡IWT Foundation Institute of Materials Science, Department of Production Engineering, University of Bremen, Germany, †Molecular Shared Screening Resources, University of California, Los Angeles, CA, USA ∗ Dept of

Microbiology, Immunology & Mol Genetics, University of California, Los Angeles, CA, USA

NSF: EF-0830117

In order to bridge the gap between the faster growing list of engineerednanomaterials and their safety assessment, we devised a highthroughput cytotoxicity screening that used automated liquid handlingtechniques and automated epifluorescence microscopy to assay formultiple cytotoxic events in nanoparticle treated cells. The microscopicimages of nanoparticle treated cells after staining with fluorescenceindicator dyes (Upper-left panel), was analyzed to measure and scorethe percentage of cells affected for the sublethal and lethal cytotoxicevents (heatmap-upper right panel). Dissolution of ZnO and release ofZn2+ ions was found to mediate toxicity of ZnO NPs and we achievedreduction in cytotoxicity of ZnO by doping ZnO with iron that changed thematerial matrix to slow Zn2+ release (lower panel). This workdemonstrated the utility of a high throughput, integrated biologicaloxidative stress response pathway to perform hazard ranking ofnanoparticles, in addition to showing how this assay can be used toimprove nanosafety by decreasing ZnO dissolution through iron doping.

Page 23: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

NSF: EF-0830117

Zebrafish model for toxicity screening of nanomaterials David Schoenfeld, Saji George, Tian Xia, Yan Zhao, Lin Shuo, Andre Nel

UCLARapid development of nanotechnologyincreases the possibility of exposure tonanomaterials, however, their potentialtoxicity to humans is largelyunknown. We use zebrafish as a modelorganism because the National Institutesof Health recognizes it as arepresentative model for exploringhuman disease. We tested the toxicity of8 metal/metal oxide nanoparticles tozebrafish embryos. Silver, quantum dot,and ZnO nanoparticles showedsubstantial toxicity in terms ofmorphological defects, hatching rate,and survival rate. Overall, the toxicityprofile of nanomaterials in zebrafishagrees with that in mammalian cells andzebrafish is a good model organism forstudying the toxicity of nanomaterials.

Page 24: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

Data-Driven Models of Engineered Nanomaterials (eNMs)CEIN Computational Infrastructure• Collaboration Infrastructure• Designed CEIN Data Repository• Prototype eNM Database System

Data preprocessing

Data Mining andKnowledge Extraction

Data-driven Models

• HTS data Normalization• Data Quality analysis• Hit detection (Active vs. non-Active)• Feature Extraction and Selection

• Hierarchical Clustering: heat-maps• Topology preserving clustering:

Self-Organizing Maps (SOM)

• Data-driven Modeling• Screening Classifiers• nano-QSAR development

ZnO Ag Pt

Au

Al2O3

SiO2

Developed a correlation analysis of Toxicity pathways and Toxicity effects (shown above for RAW cells). The analysis reveals specific correlation patterns for ZnO, Ag, and Pt NPs.

Developed and Implemented : (a) new Feature Selection methods suitable for HTS analysis , and (b) tools for HTS data normalization and hit detection.

Example: QSAR to predict cell damage (induced by metal and metal oxide NP after 24h exposure in BEAS-2B cells). Input parameters: NP concentration, IEP, ZPwater, ZPBEGM.

NSF: EF-0830117

Page 25: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

Air Water Soil Sediment

Mas

s Fra

ctio

n of

TiO

2

• eNMs transport is governed by their aggregation state and interaction with other suspended matter & dissolved species. Computational model incorporating DLVO theory with

Monte Carlo approach to simulate NP aggregation. Sedimentation is included to enable comparison with DLS measurements.

Develop parametric models of NP aggregation for use in intermedia transport assessment, in support of toxicity studies and for data-driven toxicity models & decision tools.

Transport and Fate of Engineered Nanomaterials (eNMs)

NP input

Microlayer

Atmospheric NP

Resuspension

Sedimentation

AdvectionAggregation

Sediment

DisaggregationWater Body

Evolution of TiO2 NP aggregate size (20 nm primary size) for a suspension of 20 ppm in water (pH=10, I=6x10-4 M).

(rmean ,PSD) = F(C,ψ , I )

A simple aquatic multimedia system showing major intermedia transport processes

• Environmental distribution of eNMs (a multimedia mass balance analysis)

Environmental concentrations & intermedia fluxes

Intermedia transport (e.g., sedimentation, dry/wet deposition, aerosolization)

Estimated distribution of TiO2 in LA County. Largest fraction in air, >0.99

NSF: EF-0830117

Page 26: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

NSF: EF-0830117 NSF SES 0531184

Current Reported Practices and Perceived Risks Related to Health, Safety and Environmental Stewardship in Nanomaterials Industry1

Researchers seek to understand how private firms are adapting practices for safe development of ENMs in the context of absent regulation and indeterminate standards. Since September 2009, researchers have collected 60 surveys from nanomaterials firms internationally (14% response rate). Preliminary findings include:

1Engeman, C. (Soc, UCSB), Baumgartner, L., Carr, B., Fish, A., Meyerhofer, J., Holden, P. (Bren School, UCSB), Harthorn, B. (Fem Studies, UCSB). 2010. In Progress.

0

10

20

30

40

50

60

Per

cent

of C

ompa

nies

Lack of information

Lack of guidance/regulation

Budget constraints

Internal enforcement

Reported Impediments to Implementing Nano-specific EHS

Programs

Waste Management

23% Report listing nanomaterials in waste manifests36% Report having a nano-specific waste program42% Report using separate containers for nanomaterials66% Report disposing nanomaterials as hazardous waste

The smaller firms (1-19 employees) are less likely to:• Consider budget constraints or report “lack of

knowledge” as an impediment to implementing a nanospecific EHS program.

Younger firms (<10 years) are more likely than older firms to:

• Implement a nano-specific EHS program.• Disclose that their products contain nanomaterials.

Page 27: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

The Impact of Testing Costs on the Regulation of Nanoparticles

Jae-Young, C., Ramachandran, G. Kandlikar, M. 2009 "The Impact of Toxicity Testing Costs on Nanomaterial Regulation", Environmental Science and Technology 43(9):3030-3034.

Costs of testing the toxicity of nanoparticles are important for determining how nanoparticles might be regulated. Here we analyze whether testing costs might reasonably be borne by industry.

Based on publicly available information we estimate that there are 265 distinct nanoparticle types for sale in the US. Testing costs vary from $70,000 (Level 1 – physical characterization) to $4.48 million (Level IV – in-vivo animal models) depending on level of testing. Four scenarios assumed different proportions (“distribution”) of nanomaterials that are tested at different levels. In the optimistic scenario only 10% of nanoparticles will need the full range of tests, while in the precautionary approach all nanoparticles need testing at all levels. Costs of testing range from $249 million (Optimistic) to $ 1.18 billion (Precautionary) At current levels of R&D spending on nanomaterial toxicity this translates into between 11 and 43 years for testing currently existing nanoparticles.

Testing level Level I Level II Level III Level IVTotal

Testing cost per substance $0.07 $0.83 $2.15 $4.48

Optimistic

Distribution 0.60 0.15 0.15 0.10 1.00

Number of materials 159 40 40 27 265

Costs of testing (a) $11.4 $33.0 $85.6 $118.8 $249

Neutral

Distribution 0.25 0.25 0.25 0.25 1.00

Number of materials 66 66 66 66 265

Costs of testing $4.7 $55.0 $142.7 $296.9 $500

Risk Averse

Distribution 0.10 0.20 0.20 0.50 1.00

Number of materials 27 53 53 133 265

Costs of testing $1.9 $44.0 $114.1 $593.9 $754

Precautionary

Distribution 0.00 0.00 0.00 1.00 1.00

Number of materials 0 0 0 265 265

Costs of testing $0.0 $0.0 $0.0 $1,187.7 $1188

New approaches that increase the efficiency of testing are needed, especially as the numbers of nanoparticle types increase.

NSF: EF-0830117 NSF SES 0531184

Page 28: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

Christian E.H. Beaudrie (2010), “Emerging Nanotechnologies and Life Cycle Regulation: An investigation of federal regulatory oversight from nanomaterial production to end-of-life”. Center for Contemporary History & Policy, Chemical Heritage Foundation, Studies in Sustainability White Paper Series.

While existing regulations are widely considered to provide adequate authority to regulate nanomaterials, novel properties, low production volumes, sparse data, and a lack of standards and protocols severely challenge the applicability of regulations. Furthermore, a shortage of resources and inadequate authority to require testing or recalls severely limit regulators’ effectiveness in managing risk. Many nano-products as a result will go largely unregulated along their life cycle, while others may fall through gaps in regulation as they move from one stage of their life to the next. Overall, improvements in authority to require testing of a wider range of products, a systems approach to regulation that better engages stakeholders in risk management, and improvements in regulatory oversight at the ‘use’ stage are recommended.

Figure 1. Federal health, safety, and environmental regulations that apply along the life cycle of a typical nanomaterial. Dashed boxes denote the life cycle stages at which each regulation’s primary regulatory mechanisms are in effect.

While several US federal regulations are expected to apply to emerging nanomaterials, questions remain as to whether current regulatory frameworks are sufficient for managing risks that may emerge. This work investigates the federal health, safety, and environmental regulations that apply over the life cycle of a typical nanomaterial to determine whether novel properties and high uncertainty over risks significantly challenge the current regulatory system.

Emerging Nanotechnologies and Life Cycle Regulation

NSF: EF-0830117; NSF SES 0531184

Page 29: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

NSF: EF-0830117

SPAC Leadership WorkshopHilary Godwin

CEIN Education/Outreach Director

The Student/Postdoc Advisory Committee sponsors activities to ensure effective mentoring and professional development for the Center’s students and postdocs. On September 8, 2009, twenty CEIN-affiliated and ten CEINT-affiliated students and postdocs participated in an interactive workshop that included small group discussions, problem-solving activities, and presentations. The three topics covered were: Getting the Mentoring you Need; Introduction to Principles of Quality Control and Quality Assurance, and Guidelines for Development and Validation of Standard Protocols.

Feedback was positive, and it included, “As a Master’s student, it’s rare to touch on these sorts of topics in my field. But all of these topics are very pertinent to my research and career interests related to the safe handling & disposal of nanomaterials.”

Page 30: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

NSF: EF-0830117

NanoDays 2010: Partnerships & OutreachHilary Godwin

CEIN Education/Outreach DirectorNanoDays is a nationwide weeklong educational festival which aims to introduce nanoscale science & engineering to the public. NanoDays is an initiative from the Nanoscale Informal Science Education Network (NISE Net).

Saturday, March 27, Santa Barbara: The CEIN at UCSB partnered with the Center for Nanotechnology in Society (CNS) and the National Nanotechnology Infrastructure Network (NNIN) at UCSB for an eight-hour NanoDays event at the Santa Barbara Museum of Natural History. Three CEIN-affiliated graduate students and staff participated in this event which reached 500 people.

Saturday, April 3, Los Angeles: The CEIN at UCLA partnered with the California Science Center for a four-hour NanoDays event at the museum. Fourteen CEIN Volunteer Educators (from the CEIN, CNSI at UCLA, California Teach at UCLA) lead interactive activities and interacted with the public. Included in this volunteer group were three faculty members and two postdocs who answered any and all nanoscience-related questions. This successful event reached 550 people.

Page 31: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

30 

8.  Strategic Research Plan.  Long‐term Research Goals of the UC CEIN Our  principal  long‐term  goal  is  to  establish  a  predictive  scientific model  in which  nanomaterial  bio‐physicochemical  interactions at cellular, subcellular and organism  level  is utilized for prioritizing  in vivo eco‐toxicity  testing  to  provide  a  robust  scientific  platform  for  risk  predictions  of  how  engineered nanomaterials could cause harm to the environment.  Through the establishment of a rigorous scientific platform that utilizes mechanisms and pathways of  injury as well as fate, transport, and bioavailability linked  to  nanomaterial  physicochemical  properties,  our  goal  is  to  establish  a  scientific  paradigm  for making  predictions  about  nanomaterials  impact  on  the  environment  at  the  scale  of  growth  of  this technology.  In order to achieve these long‐term goals, it is necessary to establish standard reference material (SRM) and  combinatorial  nanomaterial  libraries  that  will  allow  us  to  determine  how  key  physicochemical properties  such  as  chemical  composition,  size,  shape,  aspect  ratio,  porosity,  dissolution,  crystalline states,  surface  functionalization,  surface  charge,  adsorbed  impurities  and  particle  dispersal  or aggregation determine material spread to the environment, cellular uptake, bioavailability and catalysis of bio‐catalytic activity  that  could  lead  to  toxicity  in bacteria, yeasts, algae, phytoplankton, protozoa, mammalian cells and select sets of trophic life forms in terrestrial and aquatic ecosystems.    In  order  to  develop  in  vitro  toxicological  testing  that  will  inform  in  vivo  testing  and  knowledge development by a computerized expert system, an  important goal  is to develop high content and high throughput screening that can be used to rapidly screen the SRM libraries as well as demonstrate how the  designed  introduction  of  physicochemical  variations  of  a  single  material  can  influence biocompatibility or bioadversity.  The number of materials that can be handled simultaneously and the volume of data generation through high throughput screening  is  important for establishing knowledge domains  in  the  computerized  expert  system  as well  as  for meeting  the  scale of observations  that  is required to cover a wide range of nanomaterials.  Because the number of analyses that can be performed in mesocosms are limited, an important goal of the Center has been to use a series of trophic levels in terrestrial, fresh water and marine ecosystems to determine whether the in vitro and high throughput testing is predictive of the toxicological outcomes in vivo.   As an example of how to accomplish this interfacing, we are using a zebrafish embryo screening model  to  check  the  immediate  in  vivo  relevance  of  high  throughput  toxicological  screening  data collected in cellular screening.  Similar connectivity is also being sought across the Center for sea urchin embryos,  phytoplankton,  etc.,  before  moving  up  the  trophic  ladder.    Moreover,  dynamic  energy budgeting will be used as an important integrative model in population studies.    

       An  important  long‐term  objective  is  to  utilize  the  structure‐activity  relationship  of  nanomaterial physicochemical properties with  in vitro and eco‐toxicological outcomes to develop guidelines for safe design of engineered nanomaterials as well as methods that can be used to protect the environment.  We  are  using  heatmaps  and  self‐organizing maps  to  identify metal  and metal  oxide  NP  properties associated with a hierarchical oxidative stress injury mechanism.    An  important UC CEIN goal  is  to use  the knowledge generation  through  integrated  research activities and  risk  perception  surveys  to  inform  the  public,  academia,  industry  and  government  agencies  how nanotechnology  can  be  safely  implemented  in  society  and  the marketplace. By  reducing  uncertainty 

Page 32: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

31 

about  potential  nanomaterials  toxicity,  our  goal  is  to  promote  widespread  acceptance  of nanotechnology in society.  Organization and Integration of Center Research Activities Our predictive scientific model will consider the nanomaterials most likely to come into contact with the environment.  In  the  first  five  years  of  our  research  activities,  we  will  do  extensive  coverage  of metal/metal oxide nanomaterial libraries, single‐wall and multi‐wall carbon nanotubes (CNT) and a clay library as representative of natural nanoparticles.   We will consider the physicochemical properties of these  materials  that  allow  them  to  spread  to  the  environment,  their  bio‐availablity  through cellular/organismal  uptake  and  ability  to  perform  biocatalytic  activities  that  could  lead  to  toxicity  in bacteria, yeasts, algae, phytoplankton, protozoa, mammalian cells and select sets of trophic lifeforms in terrestrial, fresh water and marine ecosystems.   We will consider mechanisms and biological pathways of  injury  that  can  be  used  to  perform  high  content  and  high  throughput  screening with  a  view  to facilitate  in vivo  toxicological assessment,  including development of cost‐effective and rapid screening paradigms.   All of  the above nanomaterial physicochemical characteristics, biological and  toxicological data will be used to establish quantitative structure‐activity relationships (QSARs) through the use of a computerized cell‐learning system that can help to formulate risk ranking. 

 Our  research  goal  of developing  a  predictive  risk model  for  nanomaterial impact  on  the  environment will  be  executed  through seven  IRGs  (see  figure).  To develop  an  understanding  of the QSARs,  IRG 1  is acquiring a physical  library  of  standard reference  nanomaterials representing  the  major classes  of  commercial metal/ metal  oxide  nanoparticles, SWCNT,  MWCNT  and  a representative  number  of natural  nanoparticles  from commercial  sources  or  in‐house  synthesis.    Faculty 

experts in IRG 1 use advanced NM design and synthesis methods to develop combinatorial libraries that will  consist of a  single material made  in different  sizes and  shapes or with different dissolution, ROS generation, surface charge, band gap and crystalline states.  These combinatorial libraries are enhancing the study of the  interfacial properties responsible for biocompatible and bio‐adverse responses. These nanomaterials  are  being  characterized  to  determine  the  physicochemical  properties  (IRG  1)  that  are associated with cellular, tissue, and systemic injury in a variety of environmental life forms (IRG 2 and 3). These ecological life forms are chosen to represent a hierarchy of trophic levels in fresh water, seawater and  terrestrial mesocosms are being assessed  for nanomaterial uptake, bioaccumulation, and  toxicity (IRG 3).  The  engineered NPs  are  also  compared with naturally existing  congeners  to determine  their state of aggregation, stability, and transport in various environmental aquatic and tissue culture media (IRG 4). We use  the  key  interfacial properties  governing  interactions  at  the nano–bio  interface  (size, surface area, shape, aggregation, dispersibility, charge) to develop HTS approaches (IRGs 1 & 5) allowing 

Cellular/tissue/systemic

NM synthesis & characterization

IRG #2IRG #3

High throughput screening

Modeling of environ-mental multimedia

NM impacts

Risk perception

Fate & Transport

Interactions at molecular, cellular, organ & systemic

levels

Organism, population, community &

ecosystem toxicology

IRG #1

IRG #2

IRG #4

IRG #3IRG’s #5-7

Interdisciplinary Research Groups (IRGs)

Page 33: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

32 

contemporaneous testing of batches of nanomaterials in representative cellular systems (e.g., bacteria, yeasts, mammalian cells) for hazard prediction based on final common toxicological pathways (oxidant stress  response,  proliferation,  ATP  production, mitochondrial  dysfunction,  apoptosis).      Attempts  are being made to develop structure‐activity relationships that can be used to rank the hazard of batches of particles or for a range of physicochemical variations of the same material (IRG 5 and 6).  To train novel cognitive neural networks  for  risk prediction,  the physicochemical, biological,  toxicological, exposure, and  dose–response  data  are  being  integrated  into  a  comprehensive  environmental  multimedia assessment model  for nanomaterials  and NP‐bound  toxicants  (IRG 6).  This  computational  risk model interfaces with the CNS at UCSB to responsibly convey the risks to  industry, the public, and regulatory agencies, and to set environmental safety guidelines (IRG 7).  

Page 34: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

33

9. Research Program, Accomplishments, and Plans The UC CEIN has successfully integrated the expertise of engineers, chemists, colloid and material scientists, ecologists, marine biologists, cell biologists, bacteriologists, toxicologists, computer scientists, biostatisticians and social scientists necessary to create a predictive scientific platform that will inform us about the possible hazards and safe design of nanomaterials (NMs) that may come into contact with the environment. In the first year of operation, the Center operated 39 distinct but interactive research projects across 7 IRGs. In the second year of the Center, some projects came to a natural conclusion and new projects were created to reflect additional focus areas. As of this report, there are 43 research projects across 7 IRGs. The Center is organized into 7 interdisciplinary research groups (IRGs):

• IRG 1: Nanomaterial Standard Reference and Combinatorial Libraries and Physical-Chemical Characterization.

• IRG 2: Studying Nanomaterials Interactions at the Molecular, Cellular, Organ, and System Levels • IRG 3: Organismal and Community Exotoxicology • IRG 4: Nanoparticle Fate and Transport • IRG 5: High-Throughput Screening (HTS), Data Mining, and Quantitative-Structure Relationships

for Nanomaterial Properties and Nanotoxicity • IRG 6: Modeling of the Environmental Multimedia Nanomaterial Distribution and Toxicity • IRG 7: Risk Perception of Potential Environmental Impacts of Nanotechnology

For each IRG, the goals, organization and integration, major accomplishments, and plans for the coming year are presented in detail. Detailed information about each research project, including an abstract of the project, are available on the CEIN website: http://cein.cnsi.ucla.edu Seed Funding In Winter 2009, the UC CEIN Executive Committee issued a call for seed funding proposals. The seed funding competition is designed to new integrated research projects that cannot be carried out in the scope of existing project funding. Innovative and cross-cutting proposals were sought that could be completed or can show definitive progress within a one-year funding cycle. Proposals were limited to existing CEIN faculty members at US institutions. The executive committee reviewed all proposals and selected 3 seed proposals for funding effective April 1, 2009 for a period of 1 year. The initial projects funded are:

• IRG 1-10: Systematic Synthesis of Nanoparticles of Controllable Morphology, Composition, and Porosity to Perform Biological Structure-Function Analysis in Mammalian Cells and Bacteria – Jeff Brinker, Sandia National Laboratory/University of New Mexico

• IRG 4-6: Coagulant-Enhanced Membrane Filtration for Metal-Oxide Nanoparticle Removal from Wastewater – Yoram Cohen – UCLA, Hunter Lenihan – UC Santa Barbara

• IRG 5-3: High-Throughput Characterization of Toxicity and Uptake Mechamisms of CEIN Nanomaterials in S. Cerevisiae – Hilary Godwin, Kenneth Bradley, Andre Nel – UCLA

In February/March 2010, the Executive Committee conducted a review of the initial seed projects and concluded that each project was successful in introducing new integrative topics into the Center portfolio. Each project has been recommended for continuation funds and will remain active in our portfolio. A new call for proposals for the Year 2 seed funding program has been issued and selected projects will begin in April/May 2010.

Page 35: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

34

IRG 1 – Nanomaterial Standard Reference and Combinatorial Libraries and Physical-Chemical Characterization Faculty Investigators: Carolyn Bertozzi, UC Berkeley/Lawrence Berkeley Lab - Professor, Chemistry, Molecular/Cell Biology Freddy Boey, Nanyang Technological University - Professor, Materials Science Engineering Jeffrey Brinker, University of New Mexico/Sandia - Professor, Chemical/Nuclear Engineering Robert Haddon, UC Riverside - Professor, Chemistry Eric Hoek, UCLA - Associate Professor, Civil & Environmental Engineering Joachim Loo, Nanyang Technological University - Assistant Professor, Materials Engineering Lutz Madler, University of Bremen - Professor, Materials Science Andre Nel, UCLA - Professor, Medicine; Chief, Division of NanoMedicine Ponisseril Somasundaran, Columbia University - Professor, Materials Science Galen Stucky, UC Santa Barbara - Professor, Chemistry and Biochemistry Sharon Walker, UC Riverside - Assistant Professor, Chemical and Environmental Eng. Jeffrey Zink, UCLA - Professor, Chemistry and Biochemistry – AREA LEAD Number of Graduate Students: 12 Number of Undergraduate Students: 2 Number of Postdoctoral Researchers: 12 Goals of IRG 1: IRG 1’s main goals are to assemble nanomaterial standard reference and combinatorial libraries, to characterize the physiochemical properties of the nanomaterials, to synthesize “designer” or “hand-crafted” specialty nanomaterials and characterize them, and to identify new and important nanomaterials that could or should be of interest for environmental impacts. Organization and Integration of IRG 1 Projects Current IRG 1 projects include:

• IRG 1-1: Managing SRM production, distribution, and characterization (Jeffrey Zink)

• IRG 1-2: Direct measurement of bio-nano interfacial forces for UC CEIN SRMs: Beyond “wettability” and “zeta potential” The project was not continued for CEIN funding because it did not fit into the goals stated above (Inactive) (Eric Hoek)

• IRG 1-3: Development of a nanomaterials library consisting of layered clays and determination

of their physico-chemical properties (Galen Stucky)

• IRG 1-4: Redox and electron transfer active doping of TiO2 nanoparticles and nanospheres and their cellular oxidation cytotoxicity (Galen Stucky)

• IRG 1-5: Chemically Functionalized Single-Walled Carbon Nanotubes (SWNTs) (Robert Haddon)

• IRG 1-6: Metal Oxide Nanoparticle Library – Derivatization, Surface Modification and Synthesis

for Toxicology and High throughput Testing (Jeffrey Zink)

• IRG 1-7: Designing of binary and mixed binary MeOx nanomaterial libraries using FSP technology for testing paradigms of environmental and cellular interactions (Lutz Madler)

Page 36: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

35

• IRG 1-8: Synthesis and Characterization of Nano-Silver Reference Material Library for

Environmental Transport, Fate, and Toxicity Testing (Erick Hoek)

• IRG 1-9: Investigating the toxicity of biodegradable nanomaterials (Joaquim Loo)

• IRG 1-10: Systematic Synthesis of Nanoparticles of controllable morphology, composition and porosity to perform biological structure-function analysis in mammalian cells and bacteria. (Jeff Brinker)

Detailed information about each research project, including an abstract of the project, are available on the CEIN website: http://cein.cnsi.ucla.edu The organization of IRG 1 involves synthesis of nanoparticles at UCLA (IRGs 1-6 and 1-8), at UCSB (IRG 1-3) at Sandia National Laboratory (IRG 1-10) and at the University of Bremen (IRG 1-7). Physical and chemical characterization of the materials are partially carried out in these laboratories, and final and full characterization, cataloging, warehousing and distribution are carried out by IRG 1 at UCLA. Integration is coordinated through IRG 1. By mutual agreement reached by teleconferencing, each research group is focused on a specific type of nanomaterial as indicated by the titles of the projects. Commercially available materials are purchased primarily by IRG 1-1. The IRGs are all in frequent communication with IRG 1-1. Major Accomplishments of IRG 1 (since March 2009) At the end of calendar year 2009, IRG 1 had completed its initial major goal of assembling and characterizing a library of standard reference materials. Characterization of the three commercial nanoparticle compositions (TiO2, ZnO and CeO2) and several new compositions was completed. Particles have been distributed to the high throughput screening group and have also been distributed to all of the biology groups that requested them. The highlights of the work include:

• Assembly of nanoparticle library containing 60 different types of particles (Table 1) • Characterization of all 60 nanoparticles in the current library

The results of the characterization of the standard reference materials is shown in Table 3 and a brief explanation of the methods used is shown in Table 3.

• Characterization in progress of 25 new nanoparticles (Table 4) • Identification of efficient and reliable dispersion methods (manuscript of submitted

publication available) Characterization of new and designer materials is continuing actively. Metal nanoparticles, carbon nanotubes, designer metal oxides and clays are currently being examined. Fluorescent labeling of nanoparticles from the above libraries has been carried out at the request of individual research groups. Important results are reported in the summaries of IRGs 2 and 5. A major accomplishment from IRG 1 is the characterization of dispersion of the commercial particles in eight different biologically relevant media (tissue culture, bacterial culture and yeast culture). Most importantly, a highly efficient method of dispersing the particles was identified (fetal bovine serum) and the effect of ions on the dispersibility was interpreted. Zhaoxia (Ivy) Ji presented the results of her work

Page 37: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

36

at the International Conference in Washington, D.C. to great acclaim. A manuscript reporting the aspects of the work related to titania has been submitted for publication. Impacts on the Overall Goals of the Center The major impacts on the overall goals of the center directly follow from the major accomplishments. Assembly of nanoparticle library containing 60 different types of particles (Table 1) was necessary in order to have materials for the high throughput screening. This library is central to the goals of the Center. Characterization of all 60 nanoparticles in the current library is essential in order for the researchers to know exactly what physical and chemical the materials possess. Identification of efficient and reliable dispersion methods was a major step forward in helping the researchers prepare the samples in useable forms for the biological studies. Samples prepared and characterized by IRG1 are currently being used throughout the entire center. The distributions of samples to individual research groups are summarized in table 5. Major Planned Activities for the Next Year: The immediate future goals, organized by IRG subsection, are listed below.

• IRG 1-1 Generate a complete catalog of all of the materials characterized, include results of the physical/chemical characterizations, and make it available to all of the IRGs online (collaboration with Dr. Cohen).

Continue characterizations of new materials as they are synthesized by the members of IRG 1 or purchased from commercial sources.

• IRG 1-2 Funding discontinued. • IRG 1-3 Develop and characterize a library of clay nanoparticles. • IRG 1-5 Develop a library of chemically functionalized single-walled carbon nanotubes. • IRG 1-6 Continue synthesis and characterization a library of mesoporous silica noanoparticles

including rods and hollow spheres. Develop new derivatization methods for metal oxide particles needed by other IRGs. Modify surfaces of nanoparticles for toxicology and screening.

• IRG 1-7 Synthesize binary and mixed binary MeOx nanomaterial libraries using flame spray pyrolysis.

• IRG 1-10 Synthesize metal oxide nanoparticles of controllable morphology, composition and porosity.

Synthesize silica nanoparticles of variable crystallinity. Synthesize solid silica nanoparticles for comparison with porous particles.

The goals of synthesizing mixed metal oxide particles, a library of multiple types of silica nanoparticles, and libraries of surface-derivatized metal oxide nanoparticles are rapidly being achieved. Concluding Observations The researchers in IRG 1 have accomplished their initial goal of carefully characterizing a library of commercially available standard reference materials and of materials synthesized by members of the IRG and making them available to the members of the CEIN. New libraries of “designer” nanoparticles are rapidly expanding, especially those involving doped metal oxide particles, metal nanoparticles, and multiple forms of silica particles.

Page 38: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

37

Table 1. Nanoparticle Library in the CEIN

Composition Size (nm) Shape Phase/Structure

TiO2

~25 Spheres 80% Anatase & 20% Rutile

169, 264, 802, 1009 (size by DLS) Spheres Anatase

162, 166 (size by DLS) Spheres Rutile

10 × 100 Rods Rutile

5 × 1000 Wires Rutile

20, 25, 46, 48, 54, 63, 93, 115, 121, 146, 148, 223, 248, 1073 (size by DLS) Spheres Amorphous

80-1000 (wide distribution) Spheres Mesoprous

Cu-TiO2 80-1000 (5% Cu, wide distribution) Spheres Mesoporous

CeO2 ~25 Spheres Crystalline

70 × 8 Rods Crystalline

ZnO ~20 Spheres Crystalline

Fe-ZnO 20, 15, 14, 12, 8, 8, 8 nm with 0, 1, 2, 4, 6, 8, 10 atomic weight% Fe Spheres Crystalline

SiO2

5, 8, 30, 50, 80, 130 (Commercial) Spheres Amorphous

6, 20, 3, 40, 60, 70 (synthesized) Spheres Amorphous

81 × 137, 94 × 209, 72 × 201, 65 × 308, 69 × 446 Rods Mesoporous

Au 5, 10 Spheres Amorphous

Ag 10 Spheres Amorphous

CdSe 5.8 Spheres Crystalline

CdS 4.8 Spheres Crystalline

SWNT-COOH ~3 × 1500 Nanotubes Crystalline

Attapulgite ~1200 Irregular Crystalline

Hydrotalcite ~500 Irregular Crystalline

Kaolinite 204, 200-1400 Polyhedral Crystalline

Montmorrilite 200-1800 Irregular Crystalline

Page 39: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

38

Table 2. Overview of Analytical Methods for Physical and Chemical Characterization

Transmission Electron Microscopy (TEM) & Scanning Electron Microscopy (SEM):

The operation principles of electron microscopy are based on the interaction between an electron beam and a solid surface. In TEM, transmitted or forward-scattered electrons are used to obtain images; while in SEM, back scattered or secondary electrons are analyzed to yield images. With enough representative images, TEM and SEM can be used to obtain primary size, morphology, topography, state of agglomeration, or even some crystallographic information of nanoparticles. X-ray Diffraction (XRD): When a coherent X-ray beam is directed at a sample, interaction of the X-rays with the sample creates diffracted beams that can be related to interplanar spacings in the crystalline sample according to the Bragg’s law: nλ=2dsinθ; where n is an integer, λ is the wavelength of the X-rays, d is the interplanar spacing, and θ is the diffraction angle. Based on this principle, XRD can be used to identify crystalline phase and structure and to determine crystallinity. Primary size of nanoparticles can also be derived from the XRD patterns using the Sherrer equation: S=λ/ωcosθ; where S is the particle size and w is full-width-at-half-maximum of the diffraction peak. Dynamic Light Scattering (DLS): In DLS, a monochromatic light beam is directed at a particle suspension where it is scattered. Due to the random Brownian motion of the particles, the intensity of the scattered light fluctuates with time; from which a translational diffusion coefficient, Dt, can be determined using an autocorrelation function. Hydrodynamic diameter (dH) of nanoparticles can then be estimated from the Stokes-Einstein equation dH=kT/3πηDt; where k is the Boltzmann constant, T is the temperature, and η is the viscosity. Information including size distribution and state of agglomeration can also be derived from the DLS measurement. Brunauer-Emmett-Teller (BET) Surface Area Analysis: BET method is based on adsorption of gas on a surface. The amount of gas adsorbed at a given pressure allows to determine specific surface area. Assuming the particles have solid and uniform spherical shape with smooth surface, an average particle size can also be estimated. Thermo-Gravimetric Analysis (TGA): TGA is usually used to determine a material’s thermal stability and its fraction of volatile components by monitoring the weight change as a function of temperature and time. Based on the weight loss or gain profile, kinetic process such as dehydration, oxidation and decomposition can be identified and the corresponding moisture content and organic content can be determined. Zeta Potential & Electrophoretic Mobility (EPM): Surface charge can be determined indirectly by measuring the zeta potential (ζ) or electrophoretic mobility (EPM) of the particles. The EPM is defined as the velocity of a particle per electric field unit and is obtained by applying an electric field to the particle suspension and measuring the average velocity of the particles. Using Smoluchowski or Huckel equation, the zeta potential can be calculated. The magnitude of zeta potential gives an indication of the potential stability of the nanoparticle suspension. Nanoparticles with zeta potential more positive than 30 mV or more negative than -30 mV are normally considered stable. By adjusting pH, an isoelectric point (pHiep) can also be determined. Nanoparticles are positively charged below pHiep and negatively charged above pHiep.

Page 40: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

39

Table 3. Summary of physical and chemical characterization of the commercial metal oxides.

SRM Properties Characterization

Techniques Unit TiO2 CeO2 ZnO

Primary Size TEM/SEM nm 15-20 10-30 20-30

XRD nm 13 7 8

Particle Size in H2O DLS nm 194±7 231±16 205±14

Phase & Structure XRD

81% Anatase + 19% Rutile

100% Ceria Cubic

100% Zincite Hexagonal

Morphology TEM Semi-spherical Irregular Spheroid

Surface Area BET m2 g-1 51.5 93.8 42.1

pHiep ZetaPALS 6.5-6.6 7.5-7.8 8.4

Zeta Potential in 0.1 mM KCl ZetaPALS mV 40.0±2.3 32.3±5.0 22.2±1.4

EPM in 0.1 mM KCl ZetaPALS m2 V-1 s-

1 3.11±0.12 2.52±0.39 1.73±0.11

Purity TGA wt.% 98.03 95.14 97.27

Moisture Content TGA wt.% 1.97 4.01 1.61

Acid Content TGA wt.% 0 0.85 1.12

Table 4. Nanoparticles in the process of characterization

Composition Phase/Structure Size by DLS (nm) Shape Note

TiO2

Amorphous 10, 15, 20, 50, 100, 150, 200, 250, 380, 1000 Irregular

10-15 samples for each type of TiO2 sample Multiple samples have similar sizes in each case TEM analysis will be performed to determine primary particle size

Anatase 60, 150, 200, 250, 300, 600, 800, 1000

Spheres or Spheroids

Rutile 130, 150, 200, 300, 500, 800, 1000

Rods or Spheroids

Table 5. Nanoparticle Distribution in UC CEIN

Page 41: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

40

Table 5. Nanoparticle Distribution in UC CEIN

Group Unit

Approximate Quantity

TiO2 CeO2 ZnO SWCNTs SiO2

Evonik Univ of Bremen

Sandia Labs Meliorum Univ of

Bremen Meliorum Univ of Bremen

As-Prepared Purified -COOH Mesoporous

Dr. André Nel UCLA g 5 0.75 2.5 0.75 2.5 0.75 0.2 0.2 0.2 6 × 0.02c

Dr. Eric Hoek UCLA g ~180 0.73 ~30 0.75 ~990 0.75

Dr. Hilary Godwin UCLA g 0.02 0.02 0.02 0.02 0.02 0.02

Dr. Sharon Walker UCR g 10 35 25

Dr. Lutz Mädler University of Bremen g 100 480 490

Dr. Joachim Loo NTU, Singapore g 100 480 490

Dr. Andre Venter W. Michigan University g 0.02 0.02 0.02 0.02 0.02 0.02

Dr. Gary Cherr UC Davis g 400 500 500

Dr. Arturo Keller UCSB g 400 3×1.0a 8980 9000 0.25b

Dr. Jorge Gardea-Torresdey UTEP g 200 2000 2000

Dr. P. Somasundaran Columbia University g 400 500 500 ~0.1

Dr. Stavros Garantziotis NIEHS g 5

Dr. Kenneth Bradley UCLA g 0.01 0.01 0.01

a. Three TiO2 samples with different shapes (dots, rods, wires) will be sent out in one week. b. Sample will be sent out in one week. c. Six SiO2 rod samples with different aspect ratios

Page 42: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

41

IRG 2: Studying NMs’ Interactions at the Molecular, Cellular, Organ, and Systemic Levels Faculty Investigators: Gary Cherr, UC Davis – Professor, Environmental Toxicology/Nutrition Patricia Holden, UC Santa Barbara – Professor, Environmental Microbiology – AREA LEAD André Nel, UCLA – Professor, Medicine; Chief, Division of NanoMedicine Roger Nisbet, UC Santa Barbara – Professor, Ecology, Evolution, Marine Biology Galen Stucky, UC Santa Barbara – Professor, Chemistry and Biochemistry Number of Graduate Students: 5 Number of Undergraduate Students: 3 Number of Postdoctoral Researchers: 9 Goals of IRG 2: There are six major goals for IRG 2:

1. Explore the mechanisms of NP uptake into cells, tissues, and organs. Mechanisms include: electron transfer from membranes and cell components to NPs, ROS production and membrane or organelle damage from energized NPs, NP uptake via various mechanisms including membrane wrapping and phagocytosis. These mechanisms will vary between eukaryotic and prokaryotic cell systems and could determine sensitivity or resistance to engineered nanomaterials (ENM).

2. Study paradigms for toxicity that can be used to screen for the potential adverse environmental

impacts of NPs. Paradigms include: cellular oxidation via electron transfer from cells to NPs, toxic metal release from metallic NPs—either extracellularly with passive uptake of ions or intracellularly where NPs effectively deliver large doses released upon NP breakdown, sorption of ambient toxicants onto NPs and delivery into cells with NP uptake, intracellular ROS-mediated oxidative damage, lysosomal destabilization or mitochondrial function impairment (both potentially leading to mammalian cellular apoptosis), cellular oxidative stress response induction, direct targeting of NPs to specific organelles, energy-dependent expulsion of NPs, intracellular dissolution into toxic constituents, and extracellular binding leading to nutrient deprivation. As above, these paradigms will vary with bacterial or mammalian cell systems.

3. Evaluate localization of NPs in cells and tissues. Of interest are membrane binding as a pre-requisite to

either uptake or toxicity, receptor roles, organelle targeting, NP intracellular integrity, and methods to evaluate the “aging” of NPs once inside cells and tissues.

4. Evaluate whole organism responses including developmental stages (embryonic) to determine:

developmental effects, whole organism systemic functions (immune, digestive, respiratory), and NP localization.

5. Evaluate population responses including changes in respiration, growth rates, reproduction, viability,

transcriptomic changes, and NP uptake and modification. 6. Model effects using Dynamic Energy Budget (DEB) theory as a framework which employs submodels in

toxicokinetics and toxic effects.

Page 43: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

42

Organization and Integration of IRG 2 Projects: There are currently 7 projects within IRG 2. IRG2-1 is being performed at UCLA in the Nel Lab and in the HTS facility (IRG 5) at UCLA, IRG2-2 is being performed at UCD/BML in the Cherr Lab, IRG2-3 is being performed at UCSB in the Holden Lab, IRG2-4 is being performed at UCSB in the Nisbet Lab, IRG2-5 is being performed at UCSB in the Holden Lab with assistance from the Cherr Lab (UCD/BML) and from the Stucky Lab (UCSB), and IRG2-6 is being conducted out of the Holden Lab primarily, but increasingly also with investigators in IRG3, and IRG 2-7 is being performed at UCLA in the Nel Lab. Current IRG2 projects include:

• IRG 2-1: HTS development in mammalian cells using macrophages and epithelial cells to develop paradigms for assessment of nanomaterials toxicity (Andre Nel, Saji George, and Tian Xia)

• IRG 2-2: Marine organismal nanotoxicology: Studying Nanomaterials’ (NMs) Interactions at the Molecular, Cellular, Organ, and Systemic Levels (Gary N. Cherr, Carol A. Vines, Elise Fairbairn, Suzy Jackson, Esther Shin, Brian Cole)

• IRG 2-3: Effects of metal oxides on bacterial growth and determining growth-reduction mechanisms (Patricia Holden, John Priester, Allison Horst, Gary Cherr, and Raja Vukanti)

• IRG 2-4: Dynamic energy budget modeling of toxic effects of CdSe quantum dots (Roger M Nisbet)

• IRG 2-5: Effects of CdSe QDs and TiO2 on protozoans via direct uptake and phagocytosis of NP-fed bacteria (Patricia Holden, John Priester, Rebecca Werlin, Galen Stucky, Gary Cherr)

• IRG 2-6: Electron microscopic methods for visualizing nanomaterials in biological specimens (Randy Mielke, Patricia Holden)

• IRG 2-7: Linking the physiochemical characteristics of carbon nanotubes to toxicological outcomes in vitro (André Nel, Xiang Wang)

Detailed information about each research project, including an abstract of the project, are available on the CEIN website: http://cein.cnsi.ucla.edu Integration: 1. IRG2-1 with IRG5 for development and standardization of HTS screening protocols for mammalian

cells and specific stress responses; with IRG1, using directed synthesis for specific response testing and dispersion testing; with IRG4 regarding transmission of Fe-doped ZnO NPs for fate and transport studies; with IRG6 regarding transmission of HTS data for expert system development.

2. IRG2-2 with IRG2-5, where IRG2-2 developed a high content assay for protein carbonyls for use in a

simple trophic feeding (bacteria to protozoa) experiment; with IRG4 for development of NP dispersion protocol in seawater and other aqueous media using various dispersants; with IRG1 (Zink group) who covalently linked a fluorescent tag (FITC) to ZnO which enabled visual tracing of the NP into embryos.

Page 44: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

43

3. IRG2-3 with IRG5 (Bradley) where aqueous culture conditions for bacteria are to be translated for use in HTS, and for coordinated recruiting of new postdoc in bacterial HTS research

4. IRG2-4 with Holden (model development using existing data from IRG 2-3) and with IRG3 (Cardinale) 5. IRG2-5 with IRG1 (Stucky) and IRG2-2 (Cherr) where CdSe QDs are synthesized by IRG1 and protein

carbonyl assay development was contributed by IRG2-2

6. IRG 2-6 with IRG 2-5, and IRG 3 (Cardinale, Lenihan) and IRG 4 (visualization using ESEM), where new methods in assessing NM aging in biological systems are being developed and applied to these projects.

7. IRG 2-7 with IRG 1, using directed responses for specific response and dispersion testing. Major Accomplishments of IRG 2 (since March 2009): IRG 2-1: Interrogated and successfully demonstrated the applicability of the “oxidative stress hierarchical paradigm” (Nel et al., Science, 2006) for nanoparticles with varying chemistries and physicochemical characteristics, to reveal the dose-response relationships between particle parameters and elicitation of biological response consistent with oxidative stress. Demonstration and standardization of HTS protocols for screening NPs (including the metal oxides CeO2, TiO2, ZnO) for toxicity in mammalian cell lines. Successfully doped ZnO NPs with iron and demonstrated alleviation of Zn(II) ion toxicity. Applied HTS approach to a 2nd round of metal oxide NPs with >5000 variables screened. Determined the rate of NP agglomeration in biological media, and developed NP dispersion protocol applicable to zebra fish media. Demonstrated ZnO toxicity according to postulated paradigm in Zebra fish for in vivo extrapolation of in vitro approach system. Expanded nanoparticle library to include Ag, Au, Pt, Al2O3, SiO2, CdSe/ZnS (Quantum dot) with ZnO where, via HTS, differential toxicity –ranging from sub- to full-lethal effects-- of particles was shown both for in vitro and in vivo model systems. Published two impact manuscripts: one regarding HTS approaches and the other regarding the ZnO dopant study. This rapid progress in this project has resulted within one year in the development of a platform for accelerated generation of screening data for the expert model system within IRG6. IRG 2-2: Evaluation of toxicity of metal oxides (CeO2, TiO2, ZnO) to sea urchin embryos in seawater with and without various putative dispersants and organic matter (OM: including Bovine Serum Albumin or BSA, humic acid, alginate) where BSA and HA were retired based on non-specific effects on embryo development, and low environmental relevance of BSA; thus alginate was selected for further study. Two of the NPs (CeO2 and TiO2) showed little toxicity but ZnO was toxic to developing embryos, causing developmental abnormalities at very low levels with dose- and exposure time-, but not developmental stage-, dependencies. FITC-labeled ZnO entered cells and were shown to induce apoptosis in blastula-stage embryos. Published a manuscript with IRG4 regarding dispersion of NPs in seawater and other environmental waters as a function of additives including alginate and other OM compounds. Newly tested activity of metal oxide nanomaterials as substrates for multidrug efflux export proteins in fertilized sea urchin embryos, discovering that the metal oxide NMs tested are not substrates for the MDR transporters, nor do they perturb efflux activity. Developed and applied high content assays for assessing oxidative damage (via protein carbonyls) and plasma membrane damage (via uptake of specific impermeable markers). Developed high throughput protocols for the marine mussel, Mytilus californianus, focusing on cell preparation including achieving disagglomeration, then measuring cell survival and cell viability as indicators of mussel hemocytes toxicity using positive control conditions.

Page 45: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

44

Protocols appear to comprise a promising high-throughput marine invertebrate cellular system for determining toxicity of a wide range of nanomaterials. IRG 2-3: Researched, modified and recruited aqueous growth media to simulate oligotrophic conditions for bacterial growth assays in a HTS platform. Demonstrated use of this media, in addition to rich media conditions, for studying bacterial growth as a function of NM type and concentration. Performed growth inhibition studies for SRM metal oxides (CeO2, TiO2, ZnO) and each of four bacterial strains (2 gram positive, 2 gram negative) where gram positive bacteria were found to be relatively more sensitive, and toxicity for all was enhanced in minimal, versus complex, aqueous media. Differential association of NPs with gram positive versus gram negative bacteria was shown by ESEM. Growth rate calculations across all replicates indicate significant differences where ZnO appears equivalently inhibitory when compared to Zn-sulfate ion control. Across strains and conditions, determined that ZnO was relatively more inhibitory, with CeO2 the next inhibitory and TiO2 the least. However, inhibitory concentrations were remarkably similar across media and strains, i.e. within order of magnitude, indicating common mechanisms under investigation. Discovered that P. aeruginosa disagglomerates TiO2, using DLS, and quantitative high resolution microscopy. Submitted manuscript for review /publication for this latter project. Quantitatively assessed conditions leading to disagglomeration of TiO2 in abiotic culture media and showed comparable results to IRG4. IRG 2-4: Developed dynamic energy budget model of effects of Cd(II) on bacterial growth, using growth curve data collected experimentally from IRG2-3 for CdSe QD and Cd(II) growth inhibition studies published in 2009. Showed that assumptions involving reactive oxygen species (ROS) affecting controls improve the model fit to data. Completed calibration of model to new data generated by IRG2-3 of optical density versus cell counts, using these results to calibrate data at high cell density regions of growth curves. Drafted manuscript for this model and data set for internal review. IRG 2-5: Completed all measurements related to simple trophic transfer study (bacteria to protozoans) of Cd(II) versus CdSe QDs where significant bioaccumulation in bacteria and biomagnification to protozoa are observed. TEM revealed cessation of digestion for QD treatments in protozoa, differently from Cd(II) alone. Modeling of protozoan growth curve data revealed differential growth rates for Cd(II) versus QD treatments that are explainable by digestion impedance visualized in STEM images. Researched predator-prey literature regarding preferential feeding which is not exhibited here, and defined major discovery of this experiment as one of differential digestion due to feeding on QD-laden bacteria. Drafted manuscript which is under internal review / revision. IRG 2-6: Completed acquisition of all STEM images of protozoa and bacteria associated with IRG2-5 and completed all EDS analysis. Began analysis of EDS data relative to controls with the objective of assessing atomic ratios of QD surface atoms (as resolved by EDS) at locations of QD cellular sequestration (e.g. cell membrane, mitochondria, food vacuoles, etc.). Ongoing is assessing efficacy of atomic ratio analysis for characterizing NP fate in biological tissues and cells. Completed STEM image acquisition for all bacteria-NM conditions in IRG2-4, with the objective of assessing cell damage by association of NMs with cell membranes. This data is currently under analysis. IRG 2-7: Implemented as purified, purified and carboxyl-functionalized single wall carbon nanotubes (SWCNT) obtained from IRG 1 for cell toxicity testing in RAW264 cells. Developed dispersal protocol for SWCNT using fetal bovine serum and obtained data showing differential toxicity of the 3 tube types as determined by cell viability, cytokine productions and ROS assays. Preliminary results indicate that the nanomaterials exert toxicity through their metal impurities as well as through their size.

Page 46: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

45

Impacts on the Overall Goals of the Center: The overall goals of exploring mechanisms is most highly developed at this point for the mammalian cell lines in IRG2-1 and also with the zebra fish in vivo research in IRG2-1. However, other projects are also demonstrating impact, including HTS-oriented assays and screening results for dose-response relationships in marine organisms (embryos and mussels) as well as for bacteria. The focus on mechanisms for these latter systems is progressing, having established effective doses and initial data sets regarding effects and nanomaterial associations with test organisms. Dispersion protocols, a methodological emphasis, were advanced for all projects. Dispersant selection and performance was advanced with mammalian cells and embryos, where the latter, in seawater, effectively utilized alginate as a dispersant. Dispersion protocols and dispersants for bacterial culture media were tested, and are currently being finalized. The spectrum of NPs being tested is widening, as are the cellular systems being tested. Doping ZnO with Fe was found to significantly reduce ZnO NP toxicity to mammalian cells, and screening for toxicity of these and other NPs can now be rapidly performed in a high content manner which promises early delivery of data suitable for expert model development. ZnO was found to enter and exert substantial toxicity to sea urchin embryos, and new methods are under development to assess cellular damage (e.g. oxidation and membrane damage). Bacterial toxicity research showed that ZnO and CeO2 are more growth inhibitory than TiO2; hypotheses for mechanisms and methods for testing differences between gram positive and negative strains are under evaluation. To increase the environmental relevance of bacterial studies, a bacterial culture medium was recruited and tested for simulating oligotrophic conditions. A trophic transfer experiment (bacteria to protozoa) was completed, showing for the first time bioaccumulation and biomagnifications of CdSe QDs in a simplified microbial food web, but, more importantly a differential effect of QDs on protozoan digestion of bacteria. Two other high impact products include, for the first time, a DEB model applied to Cd(II)-affected bacteria during growth, and also the discovery that bacteria can disagglomerate a common metal oxide which has implications for transport in porous media in the environment. Major Planned Activities for the Next Year: • Analyze the data from in vitro and in vivo toxicity studies with metal and metal oxide nanoparticles using computational expertise from IRG-6 for (1) ranking the nanoparticles according to their toxicity (2) assessing the predictive power of in vitro studies, (3) start building up the expert system required to generate structure-activity relationships (in collaboration with IRG6). • Conduct cytotoxicity studies in combinatorial nanomaterial library that includes CeO2 , ZnO, CuO and CoO (with varying size), quantum dots (varying structure and surface functionalization), carbon nanotubes (with varying degrees of heavy metal contaminant and surface modification). This study will help us in understanding toxicity paradigms other than oxidative stress paradigm and in generating the structure activity relationships. • Study the cytotoxicity of iron doped TiO2 under dark and illuminated conditions and understand the effect of iron doping on the abiotic and biotic reactive oxygen generation during light activation. • Evaluate oxidative damage and cell viability endpoints in sea urchin embryos, and in mussel (immune and respiratory) cells exposed to ZnO. • Expand NP range beyond initial triology of metal oxides.

Page 47: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

46

• Expand documentation of experimental protocols, with an initial emphasis on dispersant selection, testing, and validation. • Recruit and apply assays for assessing effects of metal oxides on bacteria, including evaluating membrane potential, dehydrogenase activity and membrane integrity. • Discover explanation for enhanced growth inhibition of metal oxide NPs to gram positive versus gram negative bacteria. • Recruit transcriptomic approach for bacterial response to selected NP (grad student project development). • Advance NP aging characterization by TEM/EDS. • Prepare and submit several manuscripts for publication (at least two associated with IRG2-1, one or more with IRG2-2, two with IRG2-3, one with IRG2-4, and one with IRG2-5). • Develop bacterial HTS platform with IRG5 at UCLA, incorporating screening assays recruited during this period.

Page 48: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

47

IRG 3 - Organismal, Population, Community, and Ecosystem Toxicology Faculty Investigators: Bradley Cardinale, UC Santa Barbara - Assistant Professor, Ecology Evolution, Marine Biology Jorge Gardea-Torresday , University of Texas, El Paso - Professor, Chemistry Patricia Holden, UC Santa Barbara - Professor, Environmental Microbiology Hunter Lenihan, UC Santa Barbara - Associate Professor, Marine Biology – AREA LEAD Roger Nisbet, UC Santa Barbara - Professor, Ecology, Evolution, Marine Biology Joshua Schimel, UC Santa Barbara - Professor, Ecology, Evolution, Marine Biology

Number of Graduate Students: 5 Number of Undergraduate Students: 11 Number of Postdoctoral Researchers: 7

IRG 3, in collaboration with IRGs 1, 2, and 4, examines the ecological effects of nanomaterials across three ecosystems (terrestrial plant–soil, freshwater streams, and marine benthos) and processes (e.g., colonization, turnover, trophic cascades, nutrient cycling). In multi-trophic level experiments, bioaccumulation and biomagnification of the nanomaterials will be assessed. Additionally, IRG 3 will explore how nanomaterial exposure influences energy uptake and utilization, and, subsequently, how effects at the molecular and cellular levels can be extrapolated to populations, communities, and ecosystem processes. Goals of IRG 3 The main goal in this IRG is to determine whether engineered nanomaterial (ENM) exposure and the related changes in physiology observed in simple laboratory systems (IRG 2) help to predict changes in demographic rates and thus individual performance of focal species inhabiting terrestrial soil, freshwater, and marine ecosystems. The link between NPs, individual performance, and population dynamics will tested on organisms such a bacteria, phytoplankton, and zooplankton as they have rapid generation and population turn over rates allowing for observations of true dynamics. Tests of the impacts of NPs on populations will be made in simple controlled laboratory conditions as well as more realistic conditions, such as soil plots and current flumes. We are assembling multiple species in mesocosms to mimic community assemblages, food webs, and ecosystem conditions, where we will explore the effects of NPs on predator-prey interactions, competition for resources, biodiversity, and the bioaccumulation and biomagnification of NP contaminants through trophic transfer. At the ecosystem level, within mesocosms, we also plan to test whether NP exposure and uptake alter the rates of ecosystem processes, including nutrient and carbon cycling, respiration, photosynthesis, the provision of ecosystem services, including economically valuable species. The common synthetic activity across IRG 3 is development, testing, and retooling of Dynamic Engery Budget (DEB) modeling, which relies on DEB theory to identify key physiological processes that drive energy acquisition, use, and cell maintenance. DEB modeling predicts quantitatively how NPs, both general and specific types, will influence the physiological parameters, and in turn how demographic rates and population growth rates will respond. Our initial experiments with single species are providing key parameter values, such as population growth rates without NPs, respiration rates when exposed, and No-Effect-Concentrations (NEC), that then came be used in the models to both explain and eventually predict the effects of NPs on population dynamics.

Page 49: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

48

We conduct much of our work in collaboration with IRG 2, as stated above, and in the development of High Throughput testing for our IRG 3 focal species; with IRG 4, because the fate and transport of NPs in natural media is critical to predicting and assessing their ecological impacts; with IRG 6 to develop wastewater management protocols, technology, and methods for use in our experiments, as well as their application in industry; and also with IRG 6 in developing risk management models.

Our specific goals include: 1) Conduct lab experiments in collaboration with IRG 1 to determine the effects of model NPs

(TiO2, ZnO, AgO2, Quantum dots, and Fullerenes) on demographic rates and energetics of single species, including primary producers (freshwater algae, marine phytoplankton, terrestrial grasses) and consumers (freshwater copepods, marine filter feeders, terrestrial arthropods).

2) Combine species from the experiments above in larger mesocosms to extrapolate single-species results to simple communities to measure effects on food webs, nutrient cycling, and ecosystem function through predation, deposit feeding, and competition.

3) Use rate estimates from the above experiments to parameterize Dynamic Energy Budget (DEB) models to predict natural impacts on aquatic and terrestrial ecosystems.

4) Work with IRG 4 to understand exposure pathways through fate and transport processes. 5) Work with IRG 6 to develop fluid media filtering of NPs for use in processing media used in IRG 2

and 3 experiments, as well as industrial use and wastewater management.

To attain our goals, all components of IRG 3 (IRG 3-1 marine; IRG 3-2 plants; IRG 3-3 Freshwater; IRG 3-4 Terrestrial soil; IRG 3-5 DEB modeling) interact with other each other and other IRGs to varying degrees. Construction of infrastructure to conduct experiments in various media (e.g., marine and estuarine mescosms) is a continuous process, as is the development of DEB models.

Current IRG 3 projects include: Organization and integration of IRG 3 projects

• IRG 3-1: Marine Ecosystem Impacts of Engineered Nanomaterials (Hunter Lenihan) • IRG 3-2: Toxicity and Uptake of Nanoparticles in Terrestrial Plant Species

(Jorge Gardea-Torresdey) • IRG 3-3: Dynamic Energy Budget (DEB) Modeling to Support Design of Aquatic Microcosm

Experiments (Roger Nisbet) • IRG 3-4: Nanotoxicology in Terrestrial Mesocosms (Patricia Holden, Joshua Schimel) • IRG 3-5: The Ecological Impacts of TiO2 Nanoparticles on Freshwater Food-Webs

(Bradley Cardinale)

Detailed information about each research project, including an abstract of the project, are available on the CEIN website: http://cein.cnsi.ucla.edu IRG 3-1 marine has investigated zinc oxide and titania NPs and alginate (as a source of dissolved organic carbon) in 96-hour toxicity experiments with phytoplankton. ZnO suppressed growth of all phytoplankton species tested. TiO2 showed no effect on population growth of any phytoplankton species tested. Work with Dr. Keller - IRG 4 has established the timescale and rate of dissolution of ZnO NPs in seawater: dissolution is rapid but not complete over the 4-day timescale of our experiments. TiO2

was not tested becomes it does not dissolve in seawater. Results from this IRG 3 and 4 interaction also identified that ZnO aggregates rapidly and sediments out of solution. As such, we predict that the major toxic effect of ZnO is through dissolved, free Zn. This work produced two papers for the journals E S & T, one in press and one in review.

Page 50: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

49

The work with IRG 4 on fate and transport indicated, as we had predicted, that MeO NPs will probably enter marine sediment and expose soft-sediment organisms to potentially toxic levels of particulate and/or dissolved metals. To begin assessing the ecological impacts of NP in marine sediments, we conducted a pilot study of the effects of ZnO on marine benthic amphipods, Leptocheirus, a common estuarine species used in ecotox studies, in short-term mortality tests. Aqueous exposures proved highly toxic at relatively low levels. In sediment tests, much higher concentrations were tolerated, likely due to binding of the particles and ionic zinc by sediment. We are currently analyzing sediment, water, and organism samples from these experiments to determine whether amphipods are incorporating zinc, and to what extent sediment binds it up. We expect that results of this pilot project will be submitted for publication within the next 6 months. Finally, we collaborated with Roger Nisbet and his post-doc Erik Muller to DEB model our phytoplankton toxicity data and estimated NEC for 2 species. The model fits did not work for the other two species, and another round of experiments designed to fill in the data gaps were unsuccessful at doing that. This work is included in our paper in review with E S & T. Present modeling focus is on designing mussel experiments to model bioaccumulation. To date, work in this group has focused on single batch containers. The construction of marine mesocosms is almost complete. IGR 3-2 Plants: A primary focus for this reporting period was determine the biological impact of several MeO nanoparticles (NPs) on terrestrial plant species within soil and hydroponic mesocosms. This work built on prior experiments that assessed the effect of ZnO, and CeO2 nanoparticles, and their respective ions on seed germination, root elongation and metal uptake in alfalfa, tomato, cucumber, mesquite and corn. In this period vegetative vigor test for ZnO, TiO2, and CeO2 NPs were performed in mesquite plants grown in hydroponics. Other plants that are under study are soybean, palo verde, cucumber, carrots, and onions. Results showed that none of the NPs reduced plant growth. In addition, at all concentrations, the nanoceria increased the activity of stress enzymes (CAT and APOX) in leaves, while ZnO NPs increased CAT in all tissues and APOX in stems and leaves. Electron microprobe analysis confirmed the presence of Zn in the vascular system of the ZnO NP treated plants, but the nanoceria treated plants showed Ce only in cortex and epidermis. However, x-ray mapping did not show evidence of nanoceria agglomeration in the vascular tissue. XAS studies showed clear evidence of the presence of CeO2 NPs within tissues but ZnO NPs were not observed. Mesquite plants showed signs of visible stress including chlorosis, necrosis, stunting or wilting, even after 30 days of treatment. Mesquite plants also appear able to biotransform the ZnO NPs. Results also showed that at the concentrations used and the growth stage studied, the nanoceria and ZnO NPs exerted low toxicity on mesquite, suggesting that this desert plant may display some resistance to both the nanoceria and ZnO NPs. Further experiments are underway to reveal the uptake mechanisms and the final coordination of Zinc within mesquite. Interactions with other IRGs focused on conceptual understanding of NP-soil-plant interactions involving solid bacteria, and fate and transport of MeOs in soil that may influence uptake through root systems. IGR 3-3 Freshwater: Work in this group consisted of finishing the first round of the freshwater mesocosm experiments. Focus on this group is on TiO2 explicitly. The first block of the mesocosm experiment took four months from set-up to final sampling, and included 100 experimental stream channels that spanned three treatments (3 levels of algal species diversity x presence/absence of herbivores x 3 levels of nano-TiO2). Collaborators included Arturo Keller’s lab (physical characteristics of TiO2), Trish Holden’s lab (bacterial response to TiO2), and Roger Nisbet’s lab (DEB modeling of population dynamics). Research includes cleaning up the TiO2 waste from block 1 and getting ready to set-up for a second round of the experiment, which should be running by March. Experiments designed to separate four possible hypotheses to explain why nano-TiO2 stimulated algal biomass in our first year pilot studies are being initiated. Samples from 2009 pilot studies are being processed, with the only

Page 51: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

50

data left to collect are analyses of TiO2

in herbivorous snails. Methods for this analysis have proven problematic since digestion of the calcium shells leads to precipitates that interfere in ICP analyses.

This group has conducted integrative work with several other CEIN groups and researchers. Work with has continued with Roger Nisbet and his postdoc Tin Klanjscek to develop a Droop model of algal competition and herbivory that can be used to predict how model ecological system responds to TiO2. Based on these interactions, IRG3-5 has had a significant role in helping to design the freshwater mesocosm experiment, for which they will be using data to parameterize their model. Aside from co-authoring a manuscript with Arturo Keller (accepted and in press), Dr. Keller’s group has collaborated in the freshwater mesocosm experiment by aiding with the design and providing analyses of the physical characteristics of nano-TiO2 in the stream channels. Trish Holden and IRG 3-4 collaborated on the freshwater mesocosm experiment, helping to design the project and adding a component to sample bacterial biofilms to assess their response to TiO2

.

IRG 3-4 terrestrial: Focus within this group was mainly on soil microbes in grassland ecosystems. Experiments tested natural communities of grasses, arthropods, and soil microbes, to estimate effects of NPs on carbon and nitrogen cycling. Concurrently, this group is developing genetic techniques to identify population changes in specific microbial groups (e.g., ammonia oxidizers) causing the changes in remineralization and immobilization rates seen in their experiments. DNA was extracted from soil samples exposed to TiO2 (0, 500, 1000 and 2000 µg g-1 fresh soil) and ZnO (50, 100 and 500 µg g-1 soil). Results showed a negative dose-response relationship between the exposure concentration and the extractable soil DNA. The effect of ZnO on the extractable soil DNA was stronger than that of TiO2

, as reflected by a higher slope of dose-response curve for ZnO. PCR was performed using the extracted soil DNA as template and universal bacteria primers (Bac8f and Univ1492r). PCR products were purified and quantified for the digestion reaction. Restriction enzyme digestion was performed and the digested products were sent to UC Berkeley for electrophoresis (We are waiting for the T-RFLP results of overall bacterial community).

IRG 3-5 DEB modeling: Specific aims of this group during the reporting period were to develop simple models of microcosms with multiple algal species and a single herbivore species exposed in freshwater systems to TiO2 in collaboration with IRG 3-3; and to use DEB models to help interpret data on growth of marine phytoplankton exposed to ZnO NPs with IRG 3-1. The work under Aim 1 (simple models of microcosms) is in progress. We collaborate closely with Kulaki and Cardinale, including contributions to the design of additional experiments to accompany the mesocosm studies. We completed the work planned under aim 2 (using DEB models to help interpret data on growth of marine phytoplankton exposed to nanomaterials). A DEB framework was used to model the effects of two metal oxide NPs on phytoplankton growth (experiments reported under IRG 3-1). The model was used to estimate the concentrations of NPs that have no effect on population growth (NEC) for the diatom Skeletonema marinoi and for Thalassiosira pseudonana. Major Accomplishments of IRG 3 (since March 2009) Major accomplishments in IRG3 consisted of submitting and publishing several papers, initiating mesocosm work in the plant, terrestrial soli, and freshwater systems work, and conducting a large array of integrative work among subgroups within IRG 3, with other IRGs, and with CEINT. Publications during the current reporting year at listed in Section 15 of the report. Mesocosm work, conducted in collaboration with DEB modeling and IRG 2 progressed in the plant (IRG 3-2), freshwater (IRG 3-3), and terrestrial soil (IRG 3-4) groups. These experiments included not only tests of the effects of NP (MeO and Quantum DOTS) on population processes, but also trophic transfer and bioaccumulation. The work was well integrated with DEB modeling which is designed to describe

Page 52: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

51

and predict general effects of NPs on ecological processes. We found strong evidence in aquatic systems that ZnO is significantly toxic to primary producers, mainly through the dissolution of Zn from NPs and exposure of the organisms to ionic Zn. We also found little evidence that TiO2 is toxic to aquatic primary producers. Both these MeO were sequestered in terrestrial plants were they had negative effects that was dependent on the species of plant. Quantum dots are taken up by bacteria and accumulate in predatory protista, indicating that bioaccumulation occurs even on the smallest spatial scale. Finally, working with IRG 6 we developed wastewater-processing technology that will allow us to pursue mesocosms work avoiding substantial costs associated with hazardous waste generation, and without causing environmental harm.

Impacts on the Overall Goals of the Center: Our overall goal of exploring mechanisms by which NPs influence population- and community-level impacts was realized through advances made in six research foci. First, work of the two aquatic groups, marine and freshwater, indicates that MeO NPs that dissolve in solution (e.g., ZnO) reduce primary production and the abundance of microalgae, and therefore have the capacity to negatively impact aquatic food webs. In contrast, MeO NPs that do not dissolve readily (TiO2) appear to have little negative impact on algae, and for some freshwater species may enhance primary production. The toxic effects of ZnO appear to be related to the dissolution of Zn ions from aggregates that form and attach to stable surfaces and perhaps to cell walls. Second, negative dose responses between concentrations of MeOs and extractable DNA in bacteria indicating that these NPs reduce bacterial abundance. Results were similar to work with aquatic primary producers (microalgae) in that ZnO appeared more toxic than TiO2. Third, empirical evidence provided by TEM images, clearly indicates that primary consumers of aquatic microalgae and soil bacteria can sequester and thus bioaccumulate MeO and carbon Quantum Dots through predation, thus clearly indicating trophic transfer and the capacity for bioaccumulation and biomagnifications. Fourth, terrestrial plants uptake, sequester, and accumulate MeO NPs, and display signs of stress including chlorosis, necrosis, stunting, and wilting. Plants also appear resistant to toxicity of ZnO because they can biotransform the NPs into a less toxic form. Fifth, DEB modeling is proving to be a extremely valuable platform in predicting the general population-level impacts of NPS on primary producers through the negative effects of NPs on cellular-level energy uptake and utilization. Lastly, work in mesocosms indicates that MeO NPs entering natural ecosystems accumulate as expected in specific environmental sinks, including plant biomass and aquatic sediments, thus reducing toxicity to organisms. Work with marine invertebrates, for example, indicated that exposure to MeO NPs dissolved in water were highly toxic most of the material accumulated rapidly in sediments where it was chemically bond by organic material, became less bioavailable, and dramatically less toxic. Our understanding of environmental sinks was made possible through our integrative work with IRG 4. Major Planned Activities for the Next Year: Next year’s activities include tests of the effects of CeO2, AgO2, and SWCNT on marine phytoplankton, as well as the effects of these NPS, along with ZnO and TiO2 on marine grazers, especially copepods (pelagic) and mussels (benthic). Work with mussels will also be pursued in additional multi-IRG experiments that integrate fate and transport, IRG 2 work on physiological and histological responses, mussel performance, and DEB modeling. We plan to expose mussels to NPs vis-a-vis direct uptake and uptake through contaminated phytoplankton and zooplankton. We will also move ahead with mesocosms experiments in freshwater and soil systems, examining effects of characterized NPs on primary production, population dynamics, genetics, biodiversity, bioaccumulation and biomagnifications. Aspects of this work will be conducted in close collaboration with Roger Nisbet’s group to both design the best experiments, and to generalize the results in terms of the potential impacts of a wide variety of nanomaterials.

Page 53: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

52

IRG 4: Fate & Transport of Nanoparticles Faculty Investigators: Yoram Cohen, UCLA - Professor, Chemical Engineering Arturo Keller, UC Santa Barbara - Professor, Environmental Biogeochemistry – AREA LEAD Hunter Lenihan, UC Santa Barbara - Associate Professor, Marine Biology Ponisseril Somasundaran, Columbia University - Professor, Materials Science Sharon Walker, UC Riverside - Assistant Professor, Chemical and Environmental Engineering Number of Graduate Students: 7 Number of Undergraduate Students: 6 Number of Postdoctoral Researchers: 6 Goals of IRG 4: IRG 4 research focuses on determining the nanoparticle (NP) characteristics, environmental conditions and processes that control NP mobility, reactivity, bioavailability and persistence in different media. Organization and Integration of IRG 4 Projects: Note: Project numbering reflects the order in which these projects were originally submitted, rather than scientific organization.

Current IRG 4 projects include:

• IRG 4-1: Photoactivated Reaction Kinetics of ZnO, TiO2, and CeO2 Nanoparticles in Aqueous Systems, Including IRG 3 Media (Arturo Keller)

• IRG 4-2: Role of NOM on Fate and Transport of Nanoparticles Under Varying Solution Chemistries (Arturo Keller)

• IRG 4-3: Effect of Wettability on the Transport and Fate of Metal Oxide Nanoparticles (Ponisseril Somasundaran)

• IRG 4-4: Packed Bed Column, Parallel Plate Flow Cell, and a Radial Stagnation Point Flow Chamber Transport Studies using SRMs (Sharon Walker)

• IRG 4-5: Interaction forces of ZnO, TiO2, and CeO2 nanoparticles with natural and engineered surfaces under different aqueous solution chemistries (Arturo Keller)

• IRG 4-6: Coagulant-enhanced membrane filtration for metal-oxide nanoparticle removal from wastewater (Yoram Cohen and Hunter Lenihan)

Detailed information about each research project, including an abstract of the project, are available on the CEIN website: http://cein.cnsi.ucla.edu The studies of nanoparticle mobility are divided into two key processes, namely aggregation (Project IRG 4-2) and deposition onto surfaces (Projects IRG 4-4 and IRG 4-5). These processes are influenced by the environmental conditions in which the NPs are dispersed, and in particular the presence of specific

Page 54: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

53

organic macromolecules; this is being studied under Project IRG 4-3. Photoactivity of the NPs in different environmental conditions is being studied under Project IRG 4-1. Persistence of NPs is being evaluated as part of the work related to Project IRG 4-4. Finally, the destabilization of NPs to sediment them out, for example in wastewater treatment, is conducted under Project IRG 4-6. The work is done in close collaboration with other IRGs, which provide us with NPs and their primary characterization (IRG 1) as well as the environmental conditions (IRGs 2 and 3) that are relevant for the UC CEIN studies. We work closely with IRGs 2 and 3 to determine the bioavailability of the NPs. We also work with IRG 5 with regards to developing high-throughput screening methods for fate and transport parameters. Our results feed the expert database and models in IRG 6, which then provides us with feedback to develop new experiments to test emerging hypothesis about NP fate and transport. We provide information to IRG 7 for their risk perception studies. Major Accomplishments of IRG 4 (since March 2009): During the past year a major study of the aggregation and sedimentation behavior of the three metal oxide (MeO) NPs in various natural waters was conducted, included seawater, freshwater and groundwater (Project IRG 4-2). The electrophoretic mobility (EPM) of the NPs in these various aqueous matrices was found to be statistically related to the concentration of NOM and ionic strength (IS), but functionally independent of pH, within the range of conditions in these natural waters. The transition between reaction-limited and diffusion-limited aggregation was shown to be a function of the measured EPM. The actual EPM controls the rate of sedimentation of the NPs in these various media. A paper was accepted in ES&T in Feb 2010. In a related study, additional work in IRG 4-2 evaluated the effect of NP morphology on the aggregation process. A second publication in Water Research has just been accepted based on this work. This information is being used by Project IRG 4-6 to design a system for treating NP-laden wastewater. Studies on the removal of nanoparticles (NP) from aqueous systems have shown that efficient removal of NP can be achieved (>99%) by the combination of optimal pH destabilization, coagulant dosing, sedimentation and ultrafiltration. This has important implications for water treatment and handling of nanoparticle laden waste streams. A protocol was developed for determining the optimal conditions for the removal of nanoparticles from aqueous dispersions. The experimental protocol utilizes both ICP analysis and DLS measurements to quantify the sedimentation removal efficiency and feasibility of subsequent removal by ultrafiltration. Project IRG 4-4 has been systematically evaluating the behavior of the MeO NPs under different pH and ionic strengths (IS) to study the deposition process in both microfluidic cells and macroscopic porous media. Some of their work has led to the development of two draft protocols for the UC CEIN, on how to disperse NPs from powder and how to measure these parameters. Two different microfluidic cells are used (parallel plate and impingement plate) to study the deposition of NPs under different geometries. These studies are being used to develop a quantitative understanding of the processes that govern NP deposition in porous media. Two publications have been prepared. NPs can also attach to different surfaces. Work at the pore scale with mesocosm waters is being conducted under Project IRG 4-5. To date the attachment forces for various metal and MeO NPs to silica surfaces under mesocosm conditions have been measured. These surfaces are similar to the sediment surfaces that are common in nature. A publication on the attachment of gold NPs to mica surfaces has been prepared.

Page 55: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

54

In addition to the interaction between NOM and the NPs, there is a need to understand the more specific interactions with particular large biomolecules such as proteins, polymers and surfactants. These interactions are particularly important for understanding bioavailability and NP transport into cells. Project IRG 4-3 is addressing these questions. Probing of the interactions at nano-bio-interfaces at various biological levels will allow one to develop NP structure-activity relationships and ways to mitigate the toxicity. To date this group has developed a technique to quantify the hydrophobicity of particles. Currently, the characterization is effective for evaluating the particles wettability to water. The method is based on measuring trace water absorption on the particles, which can be translated into the surface energy levels of the NP surfaces. A manuscript on this work has been submitted for review. Since reactive oxygen species (ROS) generation is an important reaction for many MeO NPs, and it can have significant implications for toxicity as well as for biogeochemical cycling, Project IRG 4-1 is characterizing ROS production of the MeO NPs in different aqueous media, including seawater, freshwater and groundwater. The kinetics of ROS generation have been calculated in deionized and seawater systems across a range of nanomaterial concentrations. Other natural media are currently being investigated. A manuscript on the first year results is in preparation. Impacts on the Overall Goals of the Center: In collaboration with IRG 3, IRG 4 is answering important questions with regards to the state of the NPs in various environmental media, and the rate of change between states. We have demonstrated the high rate of NP aggregation in seawater and subsequent sedimentation, which has led to a focus on benthic organisms as the most likely to be impacted in these conditions. Working with IRG 3, we’ve also shown that even under these high ionic strength conditions the NPs can be stabilized by increasing the concentration of alginate, a common natural organic present in marine environments. We have also shown that the NPs can be stable in many freshwater systems, due to the adsorption of NOM to the NP surface, which leads to steric hindrance for aggregation. Thus, pelagic organisms in freshwater systems may be at higher risk. We have also shown that the presence of NOM, even at low concentrations, can significantly increase the stability of the NPs in most natural waters. The experiments geared towards NP deposition are serving to better understand the transport of NPs in groundwater system, such as those considered for our terrestrial mesocosms. The work related to the interaction between different NPs and organic molecules of varying hydrophobicity are allowing us to elucidate the type and number of sites on the NP that participate in these very important phenomena. Finally, our work with NPs with different morphologies is shedding light on the importance of this NP characteristic on their stability, aggregation and deposition. These results are serving researchers within the CEIN to understand the behavior of the NPs within their systems, and also are developing, in collaboration with IRG 6, the quantitative framework that can be used to predict the behavior of new NPs in different media. Major Planned Activities for the Next Year: Project IRG 4-1 has developed a multi-well experimental protocol that will significantly accelerate the rate at which these experiments can be conducted. One important question is the role of various water constituents in the promotion or quenching of photoactivity of the NPs. Using the multi-well approach we will explore their individual contribution to this important process. Project IRG 4-2 will generate experimental data to quantitatively describe the complex relationship EPM = f( IS, [NOM], pH), which can then be used to predict the rate of NP aggregation under many different environmental conditions. The work will cover metal and metal oxide NPs. In addition, this project will expand the studies of the effect of NP morphology on its aggregation, using the expanded Standard Reference Material (SRM) catalog that IRG 1 has created.

Page 56: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

55

Project IRG 4-3 has developed well defined methods for quantifying the hydrophobicity of NPs, using a number of biomolecules. The project will explore the influence of composition, surface properties and other characteristics that determine the hydrophobicity of the NPs, and how this may be influenced by the different biomolecules. Project IRG 4-4 will conduct deposition studies in the microfluidic and macroscopic systems for metal oxide NPs, and then will expand this work to consider other NPs from the expanded SRM catalog. Project IRG 4-5 will expand the studies with different surfaces to clays and silts, as well as with biological (algal) surfaces during the coming year. Different approaches are being considered to quantitatively determine the attachment forces, including AFM, QCM and optical tweezers. Project IRG 4-6 will build a pilot scale NP wastewater treatment system to handle (separately) the waste water generated by the freshwater and seawater mesocosm studies, which is on the order of 1,500 L/month. The system will be operated in batch mode, collecting data to determine the effect of different operating conditions on effluent quality. The discharge requirements have been determined by the UCSB EHS Dept. based on RCRA requirements.

Page 57: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

56

IRG 5: High-Throughput Screening, Data Mining, and Quantitative-Structure Relationships for NM Properties and Nanotoxicity Faculty Investigators: Kenneth Bradley, UCLA – Assistant Professor, Microbiology – AREA LEAD Hilary Godwin, UCLA – Professor, Environmental Health Sciences Patricia Holden, UCSB – Professor, Environmental Microbiology Shuo Lin, UCLA - Professor, Molecular, Cellular, and Developmental Biology André Nel, UCLA – Professor, Medicine; Chief, Division of NanoMedicine Donatello Telesca, UCLA – Assistant Professor, Biostatistics Jeffrey Zink, UCLA – Professor, Chemistry and Biochemistry Number of Graduate Students: 1 Number of Undergraduate Students: 0 Number of Postdoctoral Researchers: 7 Goals of IRG 5: The overarching goal of IRG5 is to rapidly determine the specific features of NMs that govern their biological interfacial properties. To accomplish this, we are leveraging existing high throughput screening (HTS) capabilities at the UCLA Molecular Screening Shared Resource (MSSR). Several key cell types (e.g., animal, yeast, bacteria) for their toxicity outcomes using a variety of assays that probe direct cytotoxicity, as well as sub-lethal induction of stress. Further, we are employing genomics-based HTS in E. coli and S. cerevisiae in order to determine mechanisms of toxicity induced by NMs. Organization and Integration of IRG 5 Projects: Bradley and Damoiseaux provide general HTS expertise and oversee experiments at UCLA/MSSR and work closely with other groups to facilitate HTS experiments. Currently five active projects are in IRG5 (5-2, 5-3, 5-5, 5-6, and 5-7) and two additional projects are shared between IRG 2 and IRG5 (#IRG 2-1 and 2-3). In addition, there is scientific integration between IRGs 1 and 5 in projects IRG1-6 and IRG1-8 and strong collaboration on data analysis with IRG6. These projects address NM interactions with mammalian and yeast cells (Goals 1 and 3 above). Assays that measure the response to nanomaterials in cells from mammals are performed in collaboration with Nel (IRG 5-5, 5-6) and Bradley (IRG 5-2). Damoiseaux, and Godwin, who have extensive experience using S. cerevisiae in high-throughput screens, oversee yeast assays (IRG5-3) in collaboration with Bradley. Bacterial assays are performed in close collaboration with Bradley, Damoiseaux, Holden, and Hoek, who collectively have extensive experience in screening a wide variety of both Gram-positive and -negative bacteria. Identification of physiological and genetic responses to NMs (IRG 2) provide the mechanistic basis for new HTS assays using genetic reporter systems (e.g., either green fluorescent protein or lux-based). While previous efforts examined the influence of surface functionalization of mesoporous silica NMs on interactions with bacteria (IRG5-1; Goal 2), these studies were restricted to a single NM. Because our goal is to understand a much broader range of NMs, are expanding bacterial studies to include all SRMs and screening of genome-wide knockout collection in E. coli. This work has been initiated in 2010 with the arrival of a new postdoctoral fellow, Dr. Angela Ivask, who is currently a senior research scientist at the National Institute of Chemical Physics and Biophyiscs in Estonia (start date at CEIN was March 01, 2010; see 5. Major Planned Activities below).

Page 58: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

57

Finally, new HTS assays are being developed based on key NM characteristics elucidated in IRG 1. Data from HTS will be analyzed using the informatics approaches developed in IRG6. As assays for fate and transport (IRG 4) have been developed and will be incorporated into HTS screening. Current IRG 5 Projects include: IRG 5-1: The influence of surface functionalization on antimicrobial properties of silver nanocrystals encapsulated in mesoporous silica nanoparticles (Ag@MES) (Ken Bradley, Jeff Zink, Bryan France, Monty Liong). Inactive Project. IRG 5-2: Validation of cell-based assays for high throughput screening to determine toxicity of nanomaterials (Ken Bradley, Bryan France, Robert Damoiseaux). IRG 5-3: High-throughput Characterization of Toxicity and Uptake Mechanisms of CEIN Nanomaterials in S. cerevisiae (Hilary Godwin, Ken Bradley, Andre Nel, Elizabeth Suarez). IRG5-4: Asessment of nanoparticle cellular & assessment of chemical composition of the nanoparticle-corona (Andre Nel, Manuel Orosco, Tian Xia). Inactive Project. IRG5-5: Predictive nanotoxicology through multiparametric high content toxicological screening assay (Andre Nel, Haiyuan Zhang, Tian Xia). IRG 5-6: Nanotoxicity testing in zebrafish (David Schoenfeld, Yan Zhao, Shuo Lin, Andre Nel). IRG 5-7: Statistical Assessment and Toxicity Profiling of Engineered Nanomaterials (Donatello Telesca, Trina Patel). Detailed information about each research project, including an abstract of the project, are available on the CEIN website: http://cein.cnsi.ucla.edu Major Accomplishments of IRG 5 (since March 2009): IRG5-1: Published article in Advanced Materials

Liong, M., France, B., Bradley, K.A.*, and Zink, J.I* (2009) Antimicrobial Activity of Silver Nanocrystals Enscapsulated in Mesoporous Silica Nanoparticles. Adv. Mater. 21: 1-6

This project is currently inactive but will be resumed at a later stage when we have more information on metal ion toxicity. We will then resume the work with silica NP as a stealth delivery system to compare to dissolving metal and metal oxide NP. IRG5-2: Currently testing luciferase-based reporter assays in three different mammalian cell lines for HTS compatibility. Additional testing systems have been identified and will be tested in the near future. Preliminary results have identified genotoxicity in a subset of NMs and confirmed stress induction in others. These data have also been used by IRG6 as a training set to establish methods for determining NMs/conditions that significantly induce stress/toxicity. IRG5-3: The genome-wide collection of knockout S. cerevisiae strains was obtained, validated and reformatted for HTS. EC50 tests in YPD of positively charged polystyrene (62nm), titanium dioxide

Page 59: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

58

(titania), zinc oxide, and cerium oxide (ceria) particles (PS-NH2, TiO2, ZnO, and CeO2 respectively) were performed with wildtype yeast to identify NMs that would be of high interest for testing against the knockout collection (e.g. those that showed toxicity to WT yeast). An endpoint optical density assay using wildtype yeast was used to calculate EC50 values. Titania and ceria were not toxic below 1 mg/mL concentrations and increasing the concentration above this threshold is not possible since the nanoparticles are not dispersable and sediment in the wells. EC50 concentrations at pH 6.4 were determined to be 50 ug/mL for 62 nm (primary size) PS-NH2 nanoparticles, and 250 ug/mL for 20-30 nm (primary size) ZnO nanoparticles. Metal oxides demonstrated greater toxicity in the presence of the antibiotic ampicillin than without. This has important implications for mechanism of toxicity as well as implications for experiments performed in mammalian systems. Based on this result, effects of inclusion of antibiotics (Pen/Strep) in mammalian systems should be analyzed. No significant difference was noted for polystyrene particles +/- ampicillin. Collaboration with IRG 1 (Dr. Ivy Ji) has provided characterization of CEIN SRMs (titanium dioxide, cerium oxide, and zinc oxide) in YPD (rich) and SD (minimal) yeast growth media. Specifically, particle size was characterized in water and media. Metal oxides tested (except zinc oxide NPs) approach micron sized diameters in YPD and SD versus a primary size of 15-30 nm. Thus, aggregation likely occurs in yeast growth media and will be taken into account in data analysis. To establish conditions for the genome-wide screen, a pilot run was completed with wildtype background yeast of the Mat a strain. The pilot was run for 24 hours to test the growth assay on the MSSR robotics and plate reader set-up. This run identified characteristics of the strain such as growth rate and hour at which stationary phase is achieved. The run was also analyzed for potential artifacts that may arise during the growth process and for the number of replicates needed for a reasonable 90% confidence interval. In conjunction with Dr. Donatello Telesca (IRG 5-7), the data from the pilot were analyzed. Based on this analysis, no more than five replicates are necessary to reliably calculate the variables of interest (carrying capacity and doubling time). A doubling time of 1.7 hours was calculated, and stationary phase is reached at 18 hours. Dr. Telesca will analyze the confidence intervals of doing 1-4 replicates to determine if these are acceptable and allow us to reduce the number of replicates. Finally, Dr. Suarez has met several times with Sumitra Nair of IRG6 to go over preliminary data and walk through the type of data IRG5 will be providing and attended IRG6 group meeting as relevant to CEIN work. IRG5-5: Aim 1, a multiparametric high content screening assay was used to assess the hierarchical Tier 3 oxidative stress effects of zinc oxide nanoparticles doped by different levels of iron in immortalized epithelial cell lines (BEAS-2B and R 3/1) compared with that in primary cell line (NHBE). We found that zinc oxide nanoparticles without doping showed high toxicity to above these cell lines in which increased intracellular calcium influx, increased superoxide anion level, mitochondrial membrane depolarization and increased plasma membrane leakage were observed. However, with an increase in doped iron levels, the nano zinc oxide showed gradually decreased toxicities and the lowest toxicity was found in zinc oxide nanoparticles doped by 10% of iron. Moreover, immortalized cell lines (BEAS-2B and R 3/1) showed stronger toxic responses to nanomaterials compared with primary cell line (NHBE). In Aim 2, the different hierarchical Tier 3 oxidative stress effects between differentiated and undifferentiated NHBE cell line treated by zinc oxide nanoparticles doped by different levels of iron or mesoporous nanoparticles coated by different PEI polymers are currently being assessed by a multiparametric high content screening assay. We will determine the toxicological response in differentiated NHBE cells, and test our hypothesis that cellular differentiation will lead to high toxicological response to nanomaterials.

Page 60: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

59

After integrating the results in Aim1 and Aim 2, we can conclude that toxicities of nanomaterials tightly correlate with the cell types and stages. IRG 5-6: The NP toxicity in early zebrafish embryos is being measured over a 120 hour period from observed hatching rates, mortality rates, heart rate and abnormal morphology (ex: pericardial/yolk sac edema, large/small yolk, short tail, underdeveloped eyes, necrotic tissue). Thus far, the toxicity of Ag, Au, Pt, Al2O3, Fe3O4, SiO2, quantum dots (QD), ZnO and Fe-doped ZnO has been assessed at 4 concentrations (maximum of 25 ppm). Of these NPs tested, Ag, Pt, ZnO and QD demonstrated toxicity at one or more of the tested concentrations, as expected from earlier in vitro testing. Furthermore, embryos treated with Fe-doped ZnO displayed fewer signs of toxicity relative to their undoped ZnO-treated counterparts, which in vitro testing suggested may be due to a slower build-up of Zn2+ in solution. In order to determine how ROS contributed to these toxicities, a ROS-reactive fluorescent dye will be administered to a cell suspension prepared from live embryos and analyzed via FACS (dye does not penetrate whole embryos,) though trials are still ongoing. Overall, our progress indicates that metal/metal oxide NP toxicities observed in vivo closely agrees with those anticipated from in vitro testing. Thus, zebrafish appears to be a valid model for corroborative testing of the cell culture system, and should prove useful in ascertaining the mechanism(s) of NP toxicity in aquatic organisms. IRG 5-7: 1. Finalized the probability model to describe ENM toxicity profiles. 2. Finalized the probability model to associate ENM toxicity to ENM properties. 3. Begun to implement the model in (1). Impacts on the Overall Goals of the Center: High throughput screening projects supported by IRG5 provide a wealth of insight into nanomaterial properties associated with cellular toxicity, and provide mechanistic insight into such toxicity. Assays involving animal cells (IRG 5-2 and 5-5) probe a variety of biological responses but utilize a similar panel of cell types and nanomaterials, thus providing greater analytical power by enabling comparison of results. IRG 5-2 determines sub-lethal changes in gene transcription as a measure of stress and toxicity, while IRG 5-5 leverages a series of hierarchical oxidative response assays developed by Nel. Findings from IRG 5-5 have now been utilized to inform experiments in intact animals (zebrafish; IRG 5-6), thus validating cell-based assays and accelerating discovery of mechanisms of nanotoxicity. Assays that measure responses of single-cell eukaryotic (yeast) and those planned for prokaryotic (bacteria) organisms both take advantage of cutting edge genomic approaches enabled by HTS capabilities of the MSSR. Specifically, NMs will be screened against libraries of both E. coli and S. cerevisiae in which every non-essential gene is individually knocked out. These assays not only provide information on toxicity associated with NM properties (composition, size, dose, etc…) but will provide direct mechanistic insight into biological pathways involved in the cellular response and induction of toxicity. Finally, HTS and HCS assays are necessary to generate the volume of data needed by IRG6 to build models of how and why NMs display cytotoxicity. Establishment of these assays enables increased throughput with new NMs (see planned activities) that are required to generate data sufficient to begin modeling.

Page 61: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

60

Major Planned Activities for the Next Year: We plan to implement HTS assay validation in bacteria starting in March, 2010. IRG5 recently hired a postdoc (Angela Ivask) who started with the Center in March 2010. IRG5-1: The student working on this project has graduated and moved to a postdoctoral position. Because the highly focused nature of this project was not perfectly in line with the HTS goals of IRG5, we decided to shift our efforts towards screening the E. coli genome-knockout collection, which will be performed by Dr. Ivask upon her arrival. The library has already been obtained and arrayed by Dr. Suarez. This project will receive a new number (e.g. IRG5-8) when it official begins. Dr. Zink also plans to expand the use of silica to additional metals (e.g., Co, Cu, Au) in the future, at which point in time the metal-doped particles will be subjected to HTS. IRG5-2: We will work with IRG6 to analyzed existing HTS data, and expand assay the collection of NMs to include those beyond the SRMs. IRG5-3: Due to the size of the library (57 x 96-well plates, or 15 x 384-well plates), it was determined that a first screen should focus on determining the carrying capacity of the screen when exposed to nanoparticles at IC50. Performing a genome-wide screen and taking readings every hour as was planned previously was determined to require too much machine time would introduce artifacts from evaporation during the screen. Doing a first screen as an end point OD reading reduces the time of assay to 20-24 hours. The first run will assay 57 nm positively charged polystyrene nanoparticles (PS-NH2) at 50ug/mL (IC50). IRG 2-3 and 1-8: IRG5 will work with IRG 2 (Holden) and IRG1 (Dr. Zink) to leverage bacterial-based HTS assays for testing of SRMs and expanded NM sets (see IRG2-1).

Page 62: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

61

IRG 6 - Modeling of the Environmental Multimedia Distribution and Toxicity of Nanoparticles Faculty Investigators: Kenneth Bradley, UCLA - Assistant Professor, Microbiology Yoram Cohen, UCLA - Professor, Chemical Engineering – AREA LEAD Francesc Giralt, Universitat Rovira I Virgili - Professor, Chemical Engineering Hilary Godwin, UCLA - Professor, Environmental Health Sciences Jordi Grifoll, Universitat Rovira I Virgili - Associate Professor, Chemical Engineering Barbara Herr Harthorn, UC Santa Barbara - Associate Professor, Women’s Studies/Anthropology Patricia Holden, UC Santa Barbara - Professor, Environmental Microbiology Hunter Lenihan, UC Santa Barbara - Associate Professor, Marine Biology André Nel, UCLA - Professor, Medicine; Chief, Division of NanoMedicine Robert Rallo, UCLA & Universitat Rovira I Virgili - Associate Professor, Chemical Engineering Number of Graduate Students: 2 Number of Undergraduate Students: 1 Number of Postdoctoral Researchers: 3 Goals of IRG6 IRG6 focuses on the development of modeling and analysis tools to assess the environmental transport and fate of nanomaterials (NMs), cellular and toxicological responses, and implications for their environmental impact via a multimedia modeling (MM) approach. In this approach matrix-specific concentrations (and mass fractions) available for interaction of nanomaterials (NMs) with the biological receptors of concern are estimated via transport and fate models considering regional and site-specific geographical and meteorological conditions, in addition to estimated NMs releases to the environment. The outcome of the multimedia transport and fate analysis is a quantification of the significant transport and potential exposure pathways, the expected media concentrations, and intermedia fluxes. Additionally, data from high throughput toxicity screening of NMs are integrated into the models, and framework for the structure-activity relationship models are developed . Output from the MM models is then used as input to ranking analysis of the impact of NMs, given data on concentration-weighted measures of their environmental impact. The above ranking approach, along with information on perception of potential environmental impacts of nanotechnology (IRG7), form the basis for the construction of a decision tree considering the potential impact of new nanomaterials and options for their safe design. IRG6 Projects and CEIN Service: • IRG6-1 - Data management for HTS data analysis, nanoparticle transport and fate modeling, and

toxicity (Yoram Cohen)

• IRG6-2 - CEIN collaboration infrastructure; (IRG6-3) Machine learning analysis and modeling of high throughput screening data for NMs (Yoram Cohen)

• IRG6-4 - Development of a framework for machine Learning analysis and modeling of high throughput screening data: software development (Yoram Cohen)

• IRG6-5 - Modeling framework for multimedia analysis of the environmental distribution of nanoparticles (Yoram Cohen)

• IRG6-6 - Multimedia transport and fate of nanoparticles: software development (Yoram Cohen)

Page 63: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

62

• IRG6-7 - Environmental multimedia decision analysis software for nanoparticle (Yoram Cohen) Detailed information about each research project, including an abstract of the project, are available on the CEIN website: http://cein.cnsi.ucla.edu Key questions: What are the factors affecting the transport of nanoparticles across the relevant environmental phase boundaries and how can these be quantified via deterministic models? Can the environmental transport parameters for NMs (e.g., deposition velocities, diffusion coefficients, sticking coefficients) be predicted and/or correlated based on their fundamental physicochemical properties that include their state of aggregation? How are NMs distributed among environmental compartments and what are the major factors controlling these distributions? Can appropriate taxonomy for nanoparticles be developed along with data-driven models of physicochemical and toxicological properties of NMs for use in multimedia impact assessment models? Organization and integration of IRG6 Projects IRG 6 is addressing the above questions with the following major objectives: (a) provide researchers of IRG 1-IRG 5 with generalized models to categorize the behavior of nanoparticles according to their physicochemical and toxicological properties, (b) determine the adequacy of the CEIN databases for enabling sufficient data mining for the development of predictive models, and (c) develop environmental multimedia impact models suitable for assessing the environmental distribution of nanomaterials (with a focus on the aquatic environment) and the implications of their environmental impact. IRG6 consists of seven sub-projects. The first two are primarily service tasks (IRG 1 and IRG 2) and the remaining focus on fundamental research. In order to address objectives (a) and (b), IRG6 is developing the algorithmic (and software) building blocks (IRG 6-3 and IRG 6-4) necessary for data-mining, selection and ranking of NP properties for QSAR development, and pattern recognition (including advance clustering analysis). In order to achieve the above, a computational cluster infrastructure was developed (IRG 6-1, IR G6-2). The computational infrastructure includes hardware and general server software component for a CEIN database that are now in place at the UCLA CNSI building. IRG 6 is now working to integrate available CEIN and external literature data into a data archiving system that consists of a database for modeling purposes and a searchable data file library using the NCEAS system (IRG6-1). In addition, in order to facilitate the sharing of CEIN information (both technical and non-technical), a collaboration server was established (IRG 6-2) and training provided to CEIN members. Major accomplishments (Since March 2009) IRG 6-1 and IRG 6-2 (a) A computational facility has been established in the space provided for IRG6 in mid-march 2009 (in 5545 CNSI, UCLA) to serve the computational, modeling, and collaborative research activities of the CEIN. The hardware (computers) for the facility has been purchased and installed. All the networking work for the cluster has been completed and now numbers 52 CPUs. Software installed on the cluster includes scientific programming tools such as MATLAB, as well as multipurpose programming languages such as FORTRAN, Java, C and C++ (IRG6-1); (b) Possible architectures for the CEIN data archiving were assessed including the UCLA-Sensorbase and NCEAS-Metacats, however none of these fulfills the specific requirements for managing NP data (IRG6-1); (c) MATLAB licenses were obtained (SeasNet) and software now takes advantage of the computational cluster (IRG 6-1);

Page 64: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

63

(d) A data archiving format was proposed for NP size distribution data and the HTS data sets (IRG6-1); (e) A collaboration (Share Point) site for the CEIN was developed (nearly 140 CEIN users registered) with training and maintenance provided by IRG 6 (IRG 6-2); (f) CEIN’s Collaborative Infrastructure underwent significant upgrades in order to adapt the system to the needs of the new CEIN Data Repository and Data Management System. The upgrades include migration of the operating system to Windows Server 2008 Enterprise R2, upgrade of the user management system to Active Directory to improve administration management tasks, migration of SharePoint Services to SharePoint Server infrastructure, and installation and configuration of new database engine MS-SQL Server 2008 (IRG 6-2); (g) Each IRG, as well as the Protocols, and Education group now has its own subsite with a designated site administrator. A number of training sessions were held on the use of the CEIN SharePoint site and a general training session was recorded with Elluminate. (IRG 6-2); (h) IRG6 has provided assistance to the CEIN administration regarding the planning of a new CEIN website. The cein.ucla.edu subdomain now resides in the CEIN server, and administered by IRG 6. (IRG 6-2); (i) IRG 6 has joined a major national initiatives (caNanoLab and caBIG) related to the standardization of NP data; (j) IRG 6 has been coordinating, within the Protocols Group, the development of CEIN-wide procedures for data management including the development of guidelines for data file preparation; and (k) CUDA libraries for parallel processing using GPU cards have been installed and configured in the CEIN cluster to speed-up the Monte-Carlo Simulations of NP aggregation. IRG 6-3 (a) A cytotoxicity dataset developed by IRG 5 was utilized to develop a set of tools for statistical analysis of toxicokinetic patterns for nanoparticles and to determine the proper application domain for QSAR development. Classification of toxico-kinetic time series was evaluated using diverse statistical and machine learning techniques. This part of the effort is aimed at developing a screening classification models from the relationships between cluster representatives and NP properties. Visual data mining techniques including Heat-Maps and Self-Organized Maps (SOM) have been applied for knowledge extraction from HTS data sets. The data used in this study was based on the oxidative stress screening paradigm and consisted of in vitro analysis of the cytotoxic effects produced by eight nanoparticles (Au, Ag, Pt, Al2O3, Fe3O4, SiO2, ZnO and CdSe/ZnS quantum dots on murine RAW 264.7 macrophage cells and human epithelial BEAS-2B cells, respectively; (b) A machine learning kernel-based classifier algorithm was developed to predict the toxicity of nanoparticles (NPs) based on their properties. The set of physicochemical properties used to develop the models included concentration, zeta potential in water, zeta potential and size in bronchial epithelial cell growth medium (i.e., the cell culture medium) and the isoelectric point. An exhaustive search scheme was used to consistently evaluate the performance of the set of classifiers developed using all possible combinations of these physicochemical properties. An ensemble approach was implemented to reduce misclassification risk (especially for low exposure concentrations);

Page 65: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

64

(c) A novel method of selecting important/representative features for experimental data sets was developed. The method was evaluated on various real-life datasets with different machine learning applications and demonstrated its good learning performance and robustness since it preserves the principal data structures present in data. To deal with more complex situations, where features are non-linearly linked, the original method was extended using a kernel approach. The algorithm has been successfully applied to rank diverse cytotoxicity assays. The ranking of the assays will be useful for prioritizing and designing nanoparticle testing/screening procedures (IRG 5). Two papers describing the feature selection algorithm and its non-linear extension have been submitted for peer-review. The proposed feature selection methods have been applied to identify representative assays for HTS Nano-Toxicity data and the result has been submitted to "Nanotech Conference 2010"; (d) HTS data pre-processing and hit identification techniques have been implemented and assessed with CEIN generated data. Diverse normalization methods based on Z-score, robust Z-score and B-score techniques have been implemented and their impact on data when combined with different hit detection algorithms was analyzed using a set of Luciferase Gene Reporting data provided by IRG 5 (Bradley’s group); (e) A preliminary assessment of the feasibility of ranking the toxicity of nanoparticles was performed using a simple approach based on weight factors, the results obtained are compatible with the experimental evidence found in literature. IRG 6-4 (a) The feature selection methods developed in IRG 6-3 based on Least Squares Error (LSE) have been implemented as Java software components using the Weka3 Data Mining Software library which is one of the most widely used open source libraries for data mining. (b) IRG 6 completed the assessment of diverse open source tools for high dimensional data analysis. Based on this analysis, the main functional requirements for these tools are data mining and HTS data processing capabilities; and support for integration with SQL database engines. Software platforms assessed include RapidMiner, MultiExperiment Viewer (MeV) and KNIME/HCDC. (c) Activities carried out included presentations on the tools and techniques developed (Infosessions) as well as support to IRG 5 member on the use of MeV. IRG 6-5 (a) A Monte Carlo based aggregation model was developed making use of the DLVO theory and Brownian kinetics. The model refined to include sedimentation in order to provide a more accurate simulation of the natural environment, as well as a closer comparison with experimental dynamic light scattering (DLS) measurements of the size distribution of nanoparticle suspensions. Comparison of model results with experimental results for TiO2 nanoparticles aggregation demonstrated predicted aggregates that are consistent with experimental observations (IRG 6-1, IRG 6-4). This model paves the way for the development of parameterized relations to predict the size of secondary NPs that is essential for modeling the transport and fate of NMs; (b) Experimental DLS data needed for validation of the aggregation model was developed for TiO2 and CeO. The evolution of the particle size distributions under various pH, ionic strength and initial NP concentrations were measured and compared favorably with model simulations.

Page 66: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

65

IRG 6-6 (a) A software framework was developed for the multimedia transport model (Mend-Nano). The architecture for assembly of the system components focuses on the user-end to enable rapid scenario analysis. Various components of the software will be implemented using the theoretical and empirical intermedia transport relations and property QSPRs developed in IRG 6-5 and IRG 6-4, respectively. (b) A component for NP aggregation that will provide estimations of particle size distributions under different conditions is being implemented and tested. The software implementation is being optimized to speed-up de calculations using the GPU infrastructure developed in IRG 6-1. (c) The initial object oriented design of Mend-Nano is being re-engineered to be interoperable with the data model used in CEIN’s Data Management System (IRG 6-2). This will facilitate the access of the transport model to all the experimental physicochemical data and nanoparticle properties stored in the data repository. IRG 6-7 Rapid growth of the nanotechnology industry necessitates the introduction of decision tools to assess the potential impact of new nanomaterials and options for their safe design. It is important to first establish the range of questions and decision areas that may be of interest with respect to nanomaterials production, use, environmental releases, expected exposure levels, and toxicity, as well as perception of various stakeholders. In collaboration with IRG 7, during the third year of the program, the questions and decisions issues (e.g., with respect to production, use and environmental emissions/discharges, NM toxicity and expected exposure levels) will be identified and compiled, along with the main parameters affecting these decisions. Preliminary cause-effect graphs will be generated and Bayesian reasoning models will be derived based on quantitative and qualitative information provided by QSAR models (IRG 6-3 and IRG 6-4) and the fate and transport model developed in IRG 6-5 and IRG 6-6. Impact of this progress on the overall goals of the Center Project IRG 6-1 provides the main computational infrastructure required for NP data analysis and model development. The capacity of the computing cluster has been increased to support massive parallel simulations by using GPU processors. Projects IRG 6-1 and IRG 6-2 provide an important CEIN function by enabling a collaborative computer cluster/software environment for sharing data, documents and models in an efficient workflow mode. These two projects provide the basic infrastructure required for the CEIN Data Management System. The work in IRG 6-3 on algorithms for data analysis (e.g., feature extraction, clustering, and hit identification), along with data mining tools being developed provide the algorithms/software building blocks for the development of HTS data-driven models. Corresponding software applets developed in IRG 6-4 are being applied to CEIN data (IRG 1, IRG 2 IRG 5) to improve data analysis capabilities. The NP aggregation modeling (IRG 6-5) effort is providing information on the expected size distribution of NP suspensions, under various environmental and experimental conditions, and thus supplying information crucial for the design of NP experimental protocols (for both physicochemical properties and toxicity) and for assessing the relative importance of transport pathways pertinent for modeling the transport and fate of nanoparticles. The relevant intermedia NP transport pathways (IRG 4) and associated predictive (and correlative) relations (IRG 6-5), along with aggregation modeling information (and CEIN data; IRG 4, IRG 1), are the necessary foundation for the construction of a multimedia model (IRG 6-5) and a decision tool (IRG 6-7) that will be an integral part of a software package (IRG 6-6 and IRG 6-7) for a NP decision making tool. Major planned activities for the next year During the next year IRG 6 will focus its activities on: (i) Integration of the CEIN Data Management System component to automate the data repository function and data queries; (ii) Expansion of CEIN’s

Page 67: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

66

computational capabilities through additional CPUs and support for GPU-oriented massive parallel computing; (iii) Development of data-driven nano-QSAR models (using the statistical and data-mining/knowledge extraction tools developed in IRG 6-3 and IRG 6-4) in close collaboration with the CEIN IRG's generating experimental data; (iv) Extension of the NP aggregation model to arrive at parameterized relationships of NP aggregation under different environmental conditions; (v) Development of a modeling framework for the multimedia distribution of nanoparticles that will be interoperable with the CEIN’s Data Management System and integrated with the NP model of IRG 6-5; and (vi) Development of a hazard/risk scoring methodology within a risk evaluation framework that considers the transport and fate of nanomaterials, potential exposures and toxicity measures. Recruitment is nearly completed for a Data Manager to join IRG 6. The Data Manager will analyze a detailed inventory of the data generated across CEIN projects. This inventory will include vital information necessary in the creation of the CEIN database that will feed the modeling activities. The Data Manager will implement procedures for compiling data, developing metadata descriptors for each type of data, and work with individual researchers to ensure data is uploaded into the Sharepoint database. After this initial project, the Data Manager will develop the user interface for data entry, develop scripts for data retrieval, develop query and visualization capabilities, and develop data reports for use by Center participants.

Page 68: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

67

IRG 7: Risk Perception of Potential Environmental Impacts of Nanotechnology Faculty Investigators: William Freudenberg, UC Santa Barbara - Professor, Environmental Studies and Sociology Barbara Herr Harthorn, UC Santa Barbara - Associate Professor, Women’s Studies/Anthropology – AREA LEAD Patricia Holden, UC Santa Barbara - Professor, Environmental Microbiology Milind Kandlikar, University of British Colombia - Assistant Professor, Institute for Global Issues Nick Pidgeon, Cardiff University - Professor, Applied Psychology Theresa Satterfield, University of British Colombia - Associate Professor, Institute of Resources Number of Graduate Students: 8 Number of Undergraduate Students: 0 Number of Postdoctoral Researchers: 2 Goals of IRG 7: Overall: IRG 7 aims to produce new findings on factors driving emerging public and special interest group perceptions of risks to the environment with regard to specific NMs and their enabled products, on NM emergent perceptions in comparison to past controversial technologies, and on the risk assessment and regulatory challenges posed by NMs, particularly the problem of uncertainty. IRG 7 aims to use the knowledge gained from this research to help UC CEIN incorporate societal concerns in its research and education efforts and to provide inputs for UC CEIN design of outreach components, including responsible risk communication for distinct communities of users. Training of diverse students and postdocs, and integration of social science students with physical and life science researchers in the UC CEIN are additional goals. Goals for past year: IRG 7 aimed to develop and conduct a bibliographic review on the current literature and a new international industry survey of views on safe handling and environmental risks (IRG 7-3), conduct background research and develop a new stage 1 public survey research instrument that will cover publics’ views on the environment, drivers of relative perceptions of risk to different media (air, water, & soil environments), and relative perception of risk of different NMs and NM characterizations (IRG 7-4), to further research on expert and regulator views of risks and the current regulatory environment across the nano product life cycle (IRG 7-2), and to continue comparative environmental risk case analysis, focusing particularly on the early days of nuclear energy (IRG 7-1). Organization and Integration of IRG 7 projects Current IRG 7 Projects include: • IRG 7-1: Comparative Historical Analysis of Environmental Risk Controversies (William Freudenberg) • IRG 7-2: Risk Assessment and Nanomaterial Regulation (Previously titled “ The Impact of Toxicity

Testing Costs on Nanomaterial Regulation.”) (Milind Kandlikar) • IRG 7-3: Environmental Risk and Emerging regulation in Nanomaterials: A 2009 Inventory and Survey

of Industry Perceptions and Practices (Barbara Herr Harthorn and Patricia Holden) • IRG 7-4: Environmental Risk Perception (Barbara Herr Harthorn and Theresa Satterfield)

Detailed information about each research project, including an abstract of the project, are available on the CEIN website: http://cein.cnsi.ucla.edu

Page 69: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

68

Major Accomplishments of IRG 7 (since March 2009): IRG 7 has accomplished its main goals for the year.

• Industry survey project (IRG 7-3) is nearing the final stages of data collection, and the group has already made public presentations on the findings at UCSB and in Japan to a Japanese nano industry group. Endorsements for the project were obtained from ICON, AIST (Japanese govt.), Singapore’s Institute of Materials Research and Engineering, A*STAR, and the American Industrial Hygiene Association (AIHA) Nanotechnology Working Group. Overall response rate so far is a respectable 13% (n=57) of contacted nano industries in North America, Europe, Asia, and Australia; we anticipate increasing this to ~18-20% before completion of data collection. A few highlights (sample viewgraphs appended):

o 30% or more of companies report handling SWCNTs, nano-silver, nano-gold, TiO2 , ZnO, & silica

o 43% of industry respondents disagree or disagree strongly that volunatry approaches to risk management are effective for protecting human health & environment (see appendix)

o 91% of respondents report having an EHS program; 45% report having a nano-specific program

o ~80% report advertising NM product content and report providing guidance to customers on safe use

o Younger companies (< 10 yrs) are more likely to disclose NM content and to have nano-EHS program

o Companies handling smaller amounts of NM (< Kg at a time) are more likely to dispose of NMs as hazardous waste

• Because of the challenges of upstream conditions of uncertainty about the risks, low public

awareness of nanotechnologies and NMs, and lack of past environmental risk perception research, IRG 7-4 research must be staged carefully, to assess public and special interest views without overly influencing them in the course of the research. Nano environmental risk perception survey (IRG 7-4) has conferred extensively with leading environmental risk perception researchers on design feature, conducted a comprehensive literature review to assess novel aspects of the research, has conducted dozens of ‘mental models’ interviews in Vancouver and Santa Barbara with lay persons and toxicology experts, and is incorporating these results into the draft survey instrument. Lack of fundamental research on environmental risk and values increases the scholarly contribution of this research but likewise adds to the design challenges and preparatory work required.

In preparation for putting the survey in the field, we have interviewed possible web survey providers nationally, identified the most suitable for this highly specialized risk perception survey work and are in contract negotiations with our chosen provider for a national web survey of 1000, with a projected 20-min. survey. We hope to pilot in Mar/Apr and have data by May 1, provided contract terms can be negotiated with the university in a timely fashion.

o Nanotech public risk perception work that serves as background for this research has resulted in publications in Nature Nanotechnology (Satterfield et al 2009), The Chemical Engineer (Pidgeon, Harthorn & Satterfield 2009), AzoNano (Harthorn, Pidgeon & Satterfield 2009), U of Wash Center for Workforce Devt (Harthorn, Bryant & Rogers 2009), and others.

o The group convened a CNS-UCSB funded nano risk perception expert meeting Jan 29-30 2010 that brought together leading experts from around the globe and allowed

Page 70: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

69

discussion of a number of key emergent issues in perception and regulation (e.g. labeling). We hope to publish these papers in a special issue of Risk Analysis.

o Data from mental models interviews are providing a research contribution in their own right, and we are discussing possible publication.

o Extensive record of public, scientific, social science, governmental, and industry presentations that gives visibility to UC CEIN,

• IRG 7-1 has continued work on one paper and completed another. Both examine comparative aspects of early nanotech with early days of nuclear technology (which experienced a long horizon of high benefit/low risk perception by US publics before risk controversies produced extensive and enduring stigmatization).

• IRG 7-2 has advanced its NM regulatory life cycle analysis by preparation of an invited lengthy

report for the Chemical Heritage Foundation (Beaudrie, forthcoming). A planned web survey of nano S&E, nanotoxicology, and regulator experts is readying to put in the field after extensive redesign and arduous sample construction requiring many months of preparation.

Impacts on the Overall Goals of the Center: IRG 7 contributes to research, education and outreach goals of the UC CEIN. IRG 7 research findings can be applied to UC CEIN research design that will address societal concerns and can assist in the design of responsible risk communication. In the research arena, research on the societal context in which UC CEIN risk assessment is taking place will be vital to connect NM risk assessment with particular publics, with specific concerns. Industry survey data from the Year 2 survey can be put to use to help UC CEIN tailor industry planned outreach programs to focus on specific needs and knowledge gaps. Knowledge of the detailed profiles of past risk controversies and full life cycle analyses of regulatory capabilities and problems can provide early warning for needed course adjustments for UC CEIN (and the NNI) as they move forward with nanotech risk communication and regulation. IRG 7 has recruited a diverse and excellent set of postdoctoral and predoctoral researchers and is providing strong mentorship of them as well as educational and training opportunities for 4 UCSB Bren master’s students. IRG 7 students, postdocs, and researchers can contribute societal implications and contexts for the risk characterization research emerging from the other groups. Major Planned Activities for the Next Year:

• Nano Industry survey project (IRG 7-3) will complete data collection and data analysis, produce a final report on the project (including biblographic literature review and project findings), give presentations at a number of national, international and regional venues, and prepare and submit publications to EST, JNR, and other journals.

o IRG 7-3 is researching possibilites for adding a California oversample to the study that will help situate California in comparison with other N. American respondents and the overall international sample, along with results from the 2006 survey, and will provide environmental risk perception data on industry CEOs/EHS personnel that is not being collected in other surveys.

• IRG 7-4 will pilot, put in the field, and analyze data from the first UC CEIN nano environmental risk perception public survey. Data analysis is expected to extend through summer and fall, with some very preliminary findings available by mid-June. Publication plans include submission to EST, JNR,

Page 71: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology Annual Report 2010

70

NN and other leading journals in the nano/environmental risk world, as well as submissions to Risk Analysis and other risk & society journals.

• IRG 7-2 will complete its planned expert web survey of nano S&E, nanotoxicologists, and regulators, analyze data and

• IRG 7-1 will complete 2 papers and submit them for publication on comparative historical analyses of emerging nanotech with the early days of nuclear power technologies. Additional case analyses that highlight key aspects of emergent nanotech risk issues are under discussion.

• As research data are produced and provide an empirical basis for contribution, IRG 7 seeks to co-produce with other IRG personnel mechanisms to integrate these with the other IRGs in the UC CEIN. The ICEIN meeting in May 2010 will provide one mechanism, as do regular meetings of the UCSB CEIN. Additional contexts for this interaction will be sought.

Page 72: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

72 

 

10.  Center Diversity Progress and Plans The UC CEIN is strongly committed to ensuring the cultural, gender, racial, and ethnic diversity of the UC CEIN at all levels, particularly courting active involvement of women and underrepresented minorities as UC CEIN participants.  In Years 1 and 2, our primary plans to seek increased diversity included:  

Partnering with UC CEIN  investigator  Jorge Gardea‐Torresdey  from  the University of Texas, El Paso.  UTEP is a Hispanic serving institution.  Dr. Gardea‐Torresdey interacts with the Education and  Outreach  staff  of  the  UC  CEIN  to  develop  increased  training  opportunities  for minority undergraduates  ‐  primarily  through  seminars  and  internships.    UC  CEIN  has  supported  the participation  of  graduate  students  and  postdocs  from  UTEP  in  our  Student  Postdoctoral Leadership Workshops and attendance at ICEIN 2009 and the upcoming ICEIN 2010.   

UCLA has partnered with  the Center  for Nanotechnology and Society at UC  Santa Barbara  to recruit social science graduate students to work on  IRG 7 research.   8 social sciences graduate students  (including 5  females) have participated  in our  industry and public perception surveys over the past year.  

Provide research mentoring for undergraduate and graduate researchers through partnerships with existing REU programs at UCLA, UC Santa Barbara, and UTEP, as well as with support from the UC Nanotoxicology Research and Training Program.   

Seeking  partnerships  with  faculty  in  minority  serving  academic  institutions  to  serve  as  a distribution portal of curriculum developed by the Center.   

Exploring partnerships that will allow for the expansion of our online graduate course offerings to participants at other Universities on an audit basis.    Initial discussions have  taken place  to partner the NIH‐funded Fogarty Training Program in Environmental Health at UCLA to make our course offerings available to graduate students at partner institutions in Mexico.   

Through a partnership with California TEACH, the UC CEIN  is providing mentoring and teacher training experiences  to undergraduate students majoring  in math, science and engineering.   8 undergraduates  have  undergone  teacher  training  an  orientation  for  participation  in UC  CEIN outreach  events  at  the  California  Science  Center,  Santa Monica  Library,  and  other  upcoming outreach events.   

Recruitment of a diverse postdoctoral  researcher pool.   All postdoctoral  scholar positions are advertised widely and publicly to ensure the broadest applicant pool.   

 Progress since the last period:  As our Center reached full operating capacity over the past year, we have engaged a diverse range of faculty,  research  staff, postdoctoral  scholars,  graduate  students,  and undergraduates  in our  research and education/outreach activities.    We  have  successfully  engaged  a  high  percentage  of  female  researchers  amongst  our  research  staff, graduate students, postdocs, and undergraduates, which is notable given the traditionally low numbers of females in the fields of science and engineering.  Additionally, 68% of our graduate students and 87% of our undergraduate participants were US citizens.    While the Center does not have influence over the recruitment of new female and/or minority faculty at our member  institutions, we are proud of  the  strong  female  representation  in our Center  leadership, with 3 area  leads serving on our Executive Committee and an additional 2 female faculty active  in our IRG activities.  We feel this strong representation of female faculty leadership sets a strong example to up and coming scientists.    

Page 73: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

73 

 

Plans for the next reporting period:  Over the next year, we will more fully develop our education and outreach activities, particularly with attention to our public outreach programs and our K‐12 outreach.   We are also exploring opportunities for  expanding  our  undergraduate mentoring  capabilities,  through  stronger  partnerships with  existing REU programs as well as seeking supplemental funds for REU student support here at UCLA.  The Center remains  committed  to  our  partnership  with  UC  Riverside  (a  minority  serving  institution)  and  the University of El Paso, Texas (a minority serving institution) and will explore avenues through existing and new programs  to strengthen  the path  to higher education opportunities  for minorities and women  in the field of environmental nanotechnology.    We have recruited a diverse External Science Advisory Committee who will provide us valuable input on the Center's outreach and diversity goals.   

Page 74: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010  

74  

11.  Education and Outreach  Summary of Education and Outreach Goals The Education and Outreach division of  the UC CEIN  fosters  cross‐IRG  interaction and  communicates Center research to industry, policy makers, the K‐12 community and the public.  In order to accomplish this, our activities are focused on:   

1) Co‐organize Annual International Meetings with CEINT; 2) Develop courses related to nanotechnology and the environment and make these available to CEIN 

members and member institutions in real‐time via webcasting and in the CEIN’s digital archives;  3) Sponsor seminars on the environmental impacts of nanotechnology in partnership with the CNSI at 

UCLA  and  make  these  available  to  CEIN  members  and  member  institutions  in  real‐time  via webcasting and in the CEIN’s digital archives; 

4) Develop a series of practical training modules on Safe Handling and Disposal of Nanomaterials; 5) Bring  in  outside  experts  to  conduct  workshops  for  CEIN  members  on  Journalist‐Scientist 

Communication; 6) Foster an interactive research environment among UC CEIN participants; 7) Continue work with legislators/policy makers to ensure future legislation is based on sound science; 8) Reach a broader audience through public outreach partnerships with libraries, museums, schools; 9) Develop  a  family  of web‐based  survey  tools  that will  be  used  to  assess  the  effectiveness  of  the 

Education and Outreach activities;  10) Develop  partnerships  with  K‐12  institutions  to  encourage  introduction  of  activities  related  to 

nanotechnology into school curriculum;  11) Provide  research mentoring  for  undergraduate  researchers  to  conduct  summer  research  on  the 

Environmental  Implications of Nanotechnology  in  the REU programs  that  are  run  by  the CNSI  at UCLA (NANOCER), the CNSI at UCSB (INSET), and the University of Texas at El Paso (UTEP); 

12) Develop  lectures on  the  “Environmental  Impacts of Nanotechnology”  and  “Environmental Health and Safety of NMs” to incorporate in the existing Capstone course on Nanotoxicology that is offered through the UC Nanotoxicology Research and Training Program (UC‐NRTP), and  

13) Develop short learning modules and examples from topics related to the environmental impacts of nanotechnology  that  can be  included  in existing  courses  such as Ecology, General Chemistry, and Environmental Engineering. 

 

Note that some of these aims span over multiple years of the program.     Significant progress has been made on each most of  the  initial  set of goals.    Items 9‐13 are  long‐term goals  for  the Education and Outreach program.    

In addition to these formal aims, the Director for Education & Outreach has assumed responsibility for the following Center‐wide activities: 

Coordinate a Student‐Postdoctoral Advisory Committee 

Establish and maintain a Volunteer Educator Program 

Develop a Postdoctoral Training Program 

Establish and develop a Minority Recruiting Program 

Develop a system for monitoring the Center’s progress towards center‐wide aims (“metrics for success”) 

 

Organization and Integration of Education/Outreach Projects The Education/Outreach Coordinator, Katy Nameth, assists Hilary Godwin, Education/Outreach Director in coordinating activities and following through on objectives  in order to meet the goals set above.   In 

Page 75: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010  

75  

addition to being the point person for Education/Outreach, Katy has taken the lead on establishing K‐12 and public outreach events and programs as well as designing and maintaining the Volunteer Educator program,  managing  the  Center’s  Elluminate  account,  and  transforming  the  training  modules  into interactive learning modules.    

Major Accomplishments to Date 1) Co‐organized and co‐sponsored  the Working Conference on Nanoregulatory Policy with UCLA Law 

School at UCLA on April 17th, 2009; 2) Developed  and  webcast  courses  for  Center  synergism:  Capstone  on  Nanotechnology  (UCLA  Fall 

2008);  Nanotechnology  and  the  Environment  (Erik  Hoek,  UCLA  Spring  2009);  Fundamentals  of Toxicology  (UCLA, Spring 2009);  

3) Organized Student‐Postdoctoral Advisory Committee (SPAC) conference calls and meetings (two  in 2009), held a daylong SPAC Retreat at UCSB in July 2009, and ran a Leadership Workshop for thirty graduate  students  and  postdoctoral  fellows  from  UC  CEIN  and  CEINT  in  Washington,  D.C.  on September 8, 2009; 

4) Held  first  Annual  International  Meeting  (ICEIN)  with  Duke  CEINT  at  Howard  University  in Washington, D.C. on September 9‐11, 2009;    

5) Partnered with UCLA Software Central for CEIN access to Elluminate, a web‐based platform for web conferencing and document sharing, established Katy Nameth as the System Administrator, and use Elluminate to broadcast and record CEIN seminars and meetings; 

6) Organized Protocols Working Group, which has met monthly  since October 2009,  recorded  these meetings with Elluminate, and archived these webcasts on SharePoint; 

7) Participated  in  National  Distance  Learning  Week  (United  States  Distance  Learning  Association, November 9‐13, 2009) by broadcasting Protocols Working Group meeting on November 12; 

8) Compiled  and  released Guidelines  for  Safe Handling and Disposal of Nanomaterials document  to CEIN members;   

9) Liz Suarez (postdoc) and Hilary Godwin collaborated with UCLA’s EH&S staff and developed practical training modules  on  Safe  Handling  and  Disposal  of Nanomaterials  for  Laboratory Workers;  Katy Nameth  is converting these modules to an  interactive web‐based format, and these will be tested and validated in conjunction with UCLA EH&S;  

10) On July 8, 2009, CEIN Education/Outreach partnered with SciArt UCLA, a summer program for high school students which explores the intersection of art, nanoscience, and biotechnology, by providing an  afternoon  educational  session  for  the  47  participants.   After  showing  a  Dragonfly  TV  clip  on nanosilver, Dr. Hilary Godwin gave a short talk on nanotoxicology, held a Q&A session, and then the students participated in a hands‐on learning activity.   

11) Established Volunteer  Educator program  and now have  fifteen  volunteer  science  educators  from UCLA’s California Teach program (undergraduates) as well as CNSI and CEIN membership (graduate students, postdoctoral fellows, faculty); 

12) Established  long‐term  partnership with  the California  Science Museum  in  Los Angeles  to provide Volunteer Educators and faculty trainers for NanoDays 2010 (April 3) and other future events; 

13) Partnered with Santa Monica Public Library to host a CEIN‐designed K‐12 and public outreach event on Saturday, April 24, “Nanotechnology: Small is Big!” and  

14) Sponsored 3 seminars at UCLA and 4 at UCSB during Year Two.    

Elluminate Elluminate  is  a  web‐based  (Java‐based)  learning  platform  that  allows  users  to  participate  in  online courses, meetings, or  seminars. Elluminate  is user‐friendly and  requires  that participants have only a computer with an internet connection and a telephone.  The CEIN uses the Elluminate platform to hold 

Page 76: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010  

76  

meetings (Protocols Working Group;  IRG5/High Throughput Screening Group; ESAC) where documents are shared, to broadcast seminars  from UCLA or UCSB to CEIN members worldwide, and  to broadcast faculty talks (Director Dr. Andre Nel) to external audiences when scheduling conflicts preclude travel.  As CEIN’s Elluminate Systems Administrator, Katy Nameth sets up and moderates each online meeting,  is responsible for training graduate students to moderate future Elluminate sessions, and attends monthly meetings to stay up‐to‐date on system upgrades and best practices.  Each Elluminate session is recorded and made available to Center members on SharePoint (and to the public by contacting Katy).  CEIN Volunteer Educators (Program) The  CEIN  Volunteer  Educator  program  allows  California  Teach  undergraduates  and  CEIN‐affiliated graduate students, postdocs, and  faculty  to participate  in public outreach events by  leading hands‐on nanotechnology‐focused  activities  and  by  participating  in  public  panel  discussions  (postdocs/faculty only).   CNSI  (California nanoSystems  Institute) members have also been encouraged  to participate  in CEIN outreach events. Currently, seven undergraduates  (CA Teach),  four graduate students  (3 CEIN, 1 CNSI),  three  postdoctoral  fellows  (CEIN),  and  three  faculty  (2  CEIN,  1  CNSI)  have  committed  to participating in public outreach events for the first six months of 2010.  

UCLA California Teach (Partner) The  California  Teach  program  encourages  undergraduate  students  majoring  in  math,  science,  and engineering  to  consider  a  career  in  teaching,  and  participating  students  attend  a  series  of  teaching seminars,  complete  (math or  science)  teaching  internships,  and  receive  a  stipend  from UCLA.   UCLA California  Teach  students  are  encouraged  by  their Academic  Coordinator  to  gain more  teaching  and presenting experience by participating in the CEIN Volunteer Educator program.    

California Science Center (Partner) The CEIN has  established  an outreach partnership with  the California  Science Center  in  Los Angeles, California.  On April 3, the museum and the Center will co‐host a NanoDays event at the museum, where CEIN  Volunteer  Educators  (undergraduate  and  graduate  students)  and museum  educators  will  lead activities from the NanoDays kit and other CEIN Volunteer Educators (postdocs/faculty) will answer the public’s questions (i.e., “Ask a scientist”).  In order to prepare for NanoDays 2010, the museum hosted a volunteer  training  for  the Center’s  (eleven) Volunteer Educators on  January 30 and one  for museum staff  on  February  27.    For  the  latter,  CEIN  provided  four  panelists  (2  faculty,  2  postdocs),  and  the museum  staff presented  their  assigned NanoDays  activity  to  the panel,  received  feedback,  and were able to engage in Q&A with Center researchers.  In May, the museum will host the California Science Fair and has asked CEIN  to provide  judges  (faculty/postdocs only).    For  summer  camps,  the museum has requested that CEIN provide faculty and postdocs to be guest speakers.    

Santa Monica Public Library (Partner) The Santa Monica Public Library hosts free public events which complement its mission of supporting an informed and educated community, and  it has a program‐proposal system to determine these events.  In November 2009, Katy Nameth submitted a proposal, and it was accepted.  On April 24, from 2pm to 3:30pm, the  library will host CEIN’s public outreach event, “Nanotechnology: Small  is Big!”   This event will provide an opportunity for scientists and the community to interact through discussions, Q&A, and hands‐on activities. The panel  consists of one  faculty member and  two postdocs, and  two Volunteer Educators (one undergraduate, one graduate) will each lead an activity from the NanoDays kit.    

Protocols Working Group The  Protocols Working  Group  is  an  interdisciplinary  group  tasked with  establishing  procedures  and policies  for dissemination  and  validation of protocols  across  the UC CEIN.    It  has met monthly  since 

Page 77: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010  

77  

October 2009, and each meeting is webcast and recorded with Elluminate, and these recorded sessions are archived on the Center’s SharePoint platform.  After discussion and validation, the protocols will be made public via the CEIN website.  

 Postdoctoral Training Plan (Program) The  postdoctoral  training  plan  for  the  UC  CEIN  focuses  on  activities  that  will  ensure  coherent  and effective mentoring  for all of  the Center’s postdoctoral  fellows.   On September 8, 2009,  the UC CEIN Education & Outreach group held a daylong Leadership Workshop prior to  ICEIN 2009.   This workshop was open to postdoctoral fellows and graduate students from both centers, and thirty participated.  This interactive workshop was divided  into  three parts: Getting  the Mentoring You Need;  Introduction  to Principles of Quality Control and Quality Assurance, and Guidelines for Development and Validation of Standard Protocols.  On February 12, 2010, the SPAC met to plan the 2010 Leadership Workshop, which will  precede  ICEIN  2010  and  other  activities  for  the  coming  year.    In  April  2010,  there  will  be  a Presentation Skills Workshop (UCSB) and a Writing Workshop (UCLA) offered to all Center students and postdoctoral fellows to assist them in their professional development.  The Student‐Postdoctoral Advisory committee will be an ongoing part of the UC CEIN infrastrucutre, and will  place  a  critical  role  in  determining  then  content  and  format  of  upcoming  leadership  training activities.    Future  topics  will  include:    preparation  of  grant  proposals,  effective  collaboration  with researchers from various backgrounds, and communication of science to the general public.    

Major Planned Activities for Next Reporting Period  Over the next six months, the Education & Outreach division will:  1) Continue  monthly  meetings  of  the  Protocols  Working  Group  and  facilitate  training  related  to 

protocol  development  and  data management;  and  develop  a  plan  for  dissemination  of  standard methods across the CEIN and in collaborative work on protocols with CEINT; 

2) Organize ICEIN 2010 (May 11‐13), the joint Annual International Meeting with CEINT and lead SPAC Leadership Workshop (May 10); 

3) Hold  a  SPAC  (Student  Postdoc  Advisory  Committee)  planning meeting  on  February  12,  2010  to identify activities of interest for SPAC Leadership Workshop (May 10, 2010) and a Summer Activity; 

4) Hold a curriculum meeting on March 17 with EH&S staff to  finalize Safe Handling  training module content and format; 

5) Participate  in NanoDays 2010 by providing Volunteer Educators (six undergraduate, four graduate, and five posdocs or faculty confirmed) at the California Science Center in Los Angeles; 

6) Participate in NanoDays 2010 in Santa Barbara by partnering with SB Museum of Natural History; 7) Provide  professional  development  training  for  CEIN  students  and  postdocs  by  running  (Julie 

Dillemuth, CNS Education Director) a Presentation Skills Workshop, in partnership with UCSB’s CNS (Center for Nanotechnology in Society) at UCSB in April 2010; 

8) Provide professional development training for CEIN students and postdocs by running (Katy Nameth, CEIN Education/Outreach Coordinator)  the  first  in a  series of writing workshops, “Communicating Clearly: Elements of Effective Writing,” at UCLA in April 2010; 

9) Hold a K‐12 and public outreach event (panel discussion, Q&A, hands‐on science activities) at Santa Monica Public Library on Saturday, April 24 and collect demographic data at this event; 

10) Work with UC CEIN faculty, students & postdocs to identify opportunities to develop short learning modules and examples from topics relate to the environmental impacts of nanotechnology that can be included in existing courses such as Ecology, General Chemistry, and Environmental Engineering; 

11) Indentify upcoming funding opportunities relevant to education & outreach activities; 

Page 78: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010  

78  

12) Continue to work with the State of California DTSC on EH&S  issues related to carbon nanotubes & collaborate/provide guidance for industries working in the field of nanotechnology in California; 

13) Establish working relationship with National Center for Research on Evaluation, Standards; Student Testing (CRESST) at UCLA to develop a family of web‐based survey tools that will be used to assess the  effectiveness  of  the  Education  and  Outreach  activities  and  to  Development  of  system  for monitoring our progress towards center‐wide aims/metrics for success, and  

14) Sponsor  additional  seminars  relating  Environmental Nanotechnology  at UCLA  (Tanguay, April  13; Don Tomalia, May 4) and UCSB. 

 

Impacts on the Overall Goals of the Center We have made considerable progress on a number of goals  that are central  to communication across the Center and have an exciting agenda of activities lined up for the upcoming months.  There is a sense of  community  developing  amongst  our  graduate  student  and  postdoctoral  researchers  within  the Center.  The protocols working group and the high throughput working group involve researchers from all  aspects  of  the  Center  and  creates  a  regular  forum  for  discussion  of  integrated  research  topics.  Development of  the  Safe Handling of Nanomaterials  training modules has  captured  the  interest  and support of the UCLA Office of Environmental Health & Safety as well as the University of California EH&S taskforce.    Discussions  are  underway  to  develop  a  campus  wide  testing  of  these  new  educational modules for implementation across UC and within Industry.  The Center has quickly become a valuable resource  on  Nano‐EHS  for  policy  makers,  federal  and  state  regulatory  and  funding  agencies,  and industries within California.  We plan on expanding our capacity to serve as a leading reference on Nano‐EHS research at the national level.   

Page 79: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

Table 3a: Education Program Participants - All, irrespective of citizenship - Draft ReportNSEC Center: CEIN: Predictive Toxicology Assessment and Safe Implementation of Nanotechnology in the Environment

Student Type Total

Gender Race Data

Ethnicity:Hispanic Disabled

Male Female AI/AN NH/PI B/AA W A

More thanone racereported,AI/AN,B/AA,NH/PI

More thanone racereported,

W/A

NotProvided

Enrolled in Full Degree Programs

Subtotal 71 29 42 0 0 1 43 23 0 2 2 5 0

Undergraduate 29 13 16 0 0 1 16 8 0 2 2 2 0

Master's 3 1 2 0 0 0 2 1 0 0 0 0 0

Doctoral 39 15 24 0 0 0 25 14 0 0 0 3 0

Enrolled in NSEC Degree Minors

Subtotal 0 0 0 0 0 0 0 0 0 0 0 0 0

Undergraduate 0 0 0 0 0 0 0 0 0 0 0 0 0

Master's 0 0 0 0 0 0 0 0 0 0 0 0 0

Doctoral 0 0 0 0 0 0 0 0 0 0 0 0 0

Enrolled in NSEC Certificate Programs

Subtotal 0 0 0 0 0 0 0 0 0 0 0 0 0

Undergraduate 0 0 0 0 0 0 0 0 0 0 0 0 0

Master's 0 0 0 0 0 0 0 0 0 0 0 0 0

Doctoral 0 0 0 0 0 0 0 0 0 0 0 0 0

Practitionerstaking courses 0 0 0 0 0 0 0 0 0 0 0 0 0

K-12 (Pre-college) Education

Subtotal 47 0 0 0 0 0 0 0 0 0 0 0 0

Teachers 0 0 0 0 0 0 0 0 0 0 0 0 0

Students 47 0 0 0 0 0 0 0 0 0 0 0 0

Total 118 29 42 0 0 1 43 23 0 2 2 5 0

LEGEND:

AI/AN American Indian or Alaska Native

NH/PI Native Hawaiian or Other Pacific Islander

B/AA Black/African American

W White

A Asian, e.g., Asian Indian, Chinese, Filipino, Japanese, Korean, Vietnamese, Other Asian

More than onerace reported,AI/AN, B/AA,NH/PI

Personnel reporting a) two or more race categories and b) one or more of the reported categories includes American Indian or Alaska Native, Black orAfrican American, or Native Hawaiian or Other Pacific Islander

More than onerace reported,W/A

Personnel reporting a) both White and Asian and b) no other categories in addition to White and Asian

US/Perm U.S. citizens and legal permanent residents

Non-US Non-U.S. citizens/Non-legal permanent residents

1 of 1 4/9/2010 9:48 AM

AveryCEIN
Typewritten Text
UC CEIN
AveryCEIN
Typewritten Text
ANNUAL REPORT 2010
AveryCEIN
Typewritten Text
79
Page 80: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

Table 3b: Education Program Participants - US Citizens and Permanent Residents - Draft ReportNSEC Center: CEIN: Predictive Toxicology Assessment and Safe Implementation of Nanotechnology in the Environment

Student Type Total

Gender Race Data

Ethnicity:Hispanic Disabled

Male Female AI/AN NH/PI B/AA W A

More thanone racereported,AI/AN,B/AA,NH/PI

More thanone racereported,

W/A

NotProvided

Enrolled in Full Degree Programs

Subtotal 55 22 33 0 0 0 37 15 0 2 1 5 0

Undergraduate 25 10 15 0 0 0 15 7 0 2 1 2 0

Master's 3 1 2 0 0 0 2 1 0 0 0 0 0

Doctoral 27 11 16 0 0 0 20 7 0 0 0 3 0

Enrolled in NSEC Degree Minors

Subtotal 0 0 0 0 0 0 0 0 0 0 0 0 0

Undergraduate 0 0 0 0 0 0 0 0 0 0 0 0 0

Master's 0 0 0 0 0 0 0 0 0 0 0 0 0

Doctoral 0 0 0 0 0 0 0 0 0 0 0 0 0

Enrolled in NSEC Certificate Programs

Subtotal 0 0 0 0 0 0 0 0 0 0 0 0 0

Undergraduate 0 0 0 0 0 0 0 0 0 0 0 0 0

Master's 0 0 0 0 0 0 0 0 0 0 0 0 0

Doctoral 0 0 0 0 0 0 0 0 0 0 0 0 0

Practitionerstaking courses 0 0 0 0 0 0 0 0 0 0 0 0 0

Total 55 22 33 0 0 0 37 15 0 2 1 5 0

LEGEND:

AI/AN American Indian or Alaska Native

NH/PI Native Hawaiian or Other Pacific Islander

B/AA Black/African American

W White

A Asian, e.g., Asian Indian, Chinese, Filipino, Japanese, Korean, Vietnamese, Other Asian

More than onerace reported,AI/AN, B/AA,NH/PI

Personnel reporting a) two or more race categories and b) one or more of the reported categories includes American Indian or Alaska Native, Black orAfrican American, or Native Hawaiian or Other Pacific Islander

More than onerace reported,W/A

Personnel reporting a) both White and Asian and b) no other categories in addition to White and Asian

US/Perm U.S. citizens and legal permanent residents

Non-US Non-U.S. citizens/Non-legal permanent residents

1 of 1 4/8/2010 2:46 PM

AveryCEIN
Typewritten Text
UC CEIN
AveryCEIN
Typewritten Text
ANNUAL REPORT 2010
AveryCEIN
Typewritten Text
80
Page 81: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

81 

 

12.  Outreach and Knowledge Transfer Outreach  and  knowledge  transfer  activities  have  escalated  as  the  Center  entered  its  second  year  of operation.    The  Center  has  quickly  become  a  valuable  resource,  and  our  public  profile  as  a  leading Center  for  research  on Nanotechnology  Environmental Health  and  Safety  is  rising  on  both  the  local, national,  and  international  level.    In  addition  to  seminars  and workshops  hosted  for  our  University constituencies,  we  co‐hosted  the  first  International  Center  for  Environmental  Implications  of Nanotechnology meeting (September 2009, Howard University, Washington DC), contributed a number of  high  profile  national  Nanotechnology  workshops  and  conferences,  and  have  begun  forming  key collaborations  nationally  and  internationally.    Key  outreach  and  knowledge  transfer  activities  of  the Center for the period of April 1, 2009 – March 31, 2010 include:   UC CEIN Sponsored Activities  UC CEIN Seminar Series  

April 22, 2009 –Fate and Transport of Metal Oxides Nanoparticles  in Aquatic Environments – Sharon Walker, University of California Riverside – Webcast from UCSB 

 

May 15, 2009 – Atmospheric Organic Aerosols – John Seinfeld, California Institute of Technology ‐ Co‐sponsorship of Friedlander Seminar, UCLA 

 

July  15,  2009  ‐  UCMicro‐  and  Nanoparticle  Adhesion  to  Polymeric  Surfaces:  AFM Characterization  and  Antisolvent  Surface  Modification  Techniques  ‐  Reginald  Thio,  Georgia Institute of Technology ‐ Held at UC Santa Barbara  

October  22,  2009  –  Environmental  Fate,  Transformations,  Bioavailability,  and  Effects  of Manufactured Nanomaterials in Terrestrial Environments – Jason Unrine, University of Kentucky – Webcast from UCSB  

January 13, 2010 ‐ Characterization and Transport Studies ‐ Indranil Chowdry, Graduate Student, University of California Riverside ‐ Held at UC Santa Barbara  

January 20, 2010 – Regulatory Monitoring of Nanomaterials across California – Stan Phillippe, California Department of Toxic Substances Control – Webcast from UC Santa Barbara 

 

January 25, 2010 – Analytical Methods at the Nano‐Bio Interface – Wenwan Zhong, University of California Riverside – Webcast from UCLA 

 

February 9, 2010 – Pulmonary Responses to Multi‐walled Carbon Nanotube Exposure – Vincent Castranova, National Institute of Occupational Health & Safety – Webcast from UCLA 

 

March 8, 2010 – Assessing the Ecotoxicity of Nanoparticles: Challenges, Approaches, and Results – Stephen Klaine, Clemson University – Webcast from UC Santa Barbara 

Workshops co‐sponsored by UC CEIN April 17, 2009 – 2009 Working Conference on Nanotech Regulatory Policy 

The  2009 Working  Conference  on Nanotech  Regulatory  Policy was  held  at  the University  of California, Los Angeles campus on April 17. The Conference brought together an interdisciplinary group  of  scholars  and  researchers,  policymakers,  non‐governmental  organizations,  and 

Page 82: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

82 

 

businesses  for action‐oriented workshop panels on  the  science and policy of nanotechnology. The  goal  of  the  Conference  was  to  critically  evaluate  several  specific  policy  proposals  for responding  to  the  potential  public  health  and  environmental  impacts  of  nanotechnology.  In particular,  the  Conference  examined  three  categories  of  policy  responses  through  several panels:  

Reliance on existing regulatory programs (with or without amendment)  

Development of innovative nano‐specific. regulatory programs  

Reliance upon private regulation (e.g., industry initiatives, insurance mechanisms, etc.)  

The policy proposals are set out in a series of succinct papers commissioned by the Conference sponsors.  These papers will be published in the UCLA Journal of Environmental Law and Policy 

 International Conference on Environmental Implications of Nanotechnology 2009  September 9‐11, 2009 – Howard University, Washington, DC.  Co‐sponsored by CEINT. 

The first joint international meetings of the NSF/EPA funded CEIN programs took place over the course of 3 days in September on the Howard University in Washington, DC.  Researchers from around  the  globe  in  Environmental  Nanotechnology  presented  findings  to  an  audience  of scientists, policy makers, and stakeholders.  55 talks across 6 topic areas were presented over a 2  day  period,  followed  by  integrative  discussions  between  the  two  Centers  on  the  topics  of protocol  harmonization,  nanomaterials  availability  and  standards,  methodologies  for measurements  in  complex  media,  and  ecosystems  research.    UC  CEIN  presentations  are indicated  in  the  following  pages  by  the  indication  ICEIN  2009.    Scientific  presentations  and posters were presented in the following tracks:  1. Fate, Transport, and Transformation 2. Toxicity/Ecotoxicity 3. Risk Perception, Risk Assessment, and Life Cycle Analysis 4. Natural Nanomaterials and Nanobiogeochemistry 5. Nanomaterials Characterization and Toxicity Screening 6. Ecology and Ecosystem Response  The Second  international meeting will be held on  the UCLA  campus May 11‐13, 2010.    For a detailed  agenda  of  this  meeting,  visit  the  meeting  website:  http://cnsi.ctrl.ucla.edu/icein/pages/ 

 Nano 2010 

UC  CEIN  is  a  co‐sponsor  of  the  upcoming  Nano  2010  conference  to  be  held  at  Clemson University August 22‐26, 2010.  http://www.clemson.edu/public/nano2010/  Nano 2010 will provide a venue  for presentation and discussion of current  research on  these issues.   The  interdisciplinary mix of  environmental  scientists,  toxicologists, material  scientists, and engineers should provide for a robust discussion  in a creative atmosphere. This meeting  is the fifth annual  international meeting on this topic following the success of previous meetings held in the United Kingdom and, most recently, Nano 2009 held in Vienna. 

    

Page 83: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

83 

 

UC Nanotoxicology Research and Training Program Seminar Series UC CEIN members, students in the UC NRTP and students and faculty in the UCLA Environmental Health Sciences Department participate in a weekly seminar series  which often includes topics directly related to the UC CEIN research.    

April  9,  2009  –  Shades  of  Green:  Chemical  Policy  Reform  in  California  ‐  Tim  Malloy,  J.D., University of California at Los Angeles 

April  16,  2009  –  Fundamental  Information  on  Respirable  Particles  ‐ Dr.  Terence  Risby,  Johns Hopkins University 

May  14,  2009  –  CYP2S1,  a  novel  cytochrome  P450  enzyme  affecting  plasma  and  organ concentrations of prostaglandins and other eicosanoids, and with a potential role in cancer ‐ Dr. Oliver Hankinson, UCLA 

May  21,  2009  –  Laboratory  Animal Workers'  Exposures  to  Particulate Matter,  Allergen,  and Endotoxin – Dr. Lorraine Conroy, University of Illinois at Chicago 

May  28,  2009  –  Perfluorinated  Chemicals:  The  History  of  an  Environmental  Issue  ‐  Dr.  John Giesy, University of Saskatchewan 

June 4, 2009 – Parkinson's Disease as a Model of Accelerated Neuronal Aging: An Argument for a Prime Role for Oxidative Stress ‐ Dr. Julie Anderson,  Buck Institute for Age Research 

UC CEIN Santa Barbara Monthly Seminar Series UC CEIN members from UC Santa Barbara meet once a month to review progress across projects.  EAch meeting, project presentations are made  from select projects and a discussion  is held.   Presentations over the past year included:  

April 8, 2009 UC CEIN Meeting: Barbara Herr Harthorn (IRG 7) and Chia‐Hung Hou (IRG 4) 

August  21,  2009 UC  CEIN Meeting:  Students/postdocs  attending  ICEIN  2009  presented  their posters 

September 23, 2009 UC CEIN Meeting: Bob Miller (IRG 2) 

November 17, 2009 UC CEIN Meeting: Konrad Kulacki (IRG 3)  

February 18 2010 UC CEIN Meeting: Raja Vukanti (IRG 2) and Shannon Hanna (IRG 3)  Academic Courses incorporating CEIN‐related content Courses Made Available to UC CEIN Members via Webcast 

Spring 2010 – Advanced Special Topics  in Biological Sciences  (UCSB EEMB 292).   This graduate level course, taught by CEIN faculty member Roger Nisbet, focuses on Dynamic Energy Budget (DEB)  theory,  and will  incorporate  the  DEB modeling  from  CEIN  projects  in  the  curriculum. Course made available to UC CEIN members for participation via webcast.  

Courses taught incorporating CEIN content (not webcast) 

Winter  2010  –  Environmental  Multimedia  Assessment  (UCLA  CE  118/218).    This  joint undergraduate/graduate  course,  taught  by  CEIN  faculty  member  Yoram  Cohen  focuses  on:  Pollutant  sources,  estimation  of  source  releases,  waste minimization,  transport  and  fate  of chemical pollutants in environment, intermedia transfers of pollutants, multimedia modeling of chemical  partitioning  in  environment,  exposure  assessment  and  fundamentals  of  risk assessment, risk reduction strategies. 

Fall  2009  –  Research  Methods  –  Pollution  Prevention  and  Remediation  (UCSB  ESM401B).  Patricia Holden, Instructor. 

Page 84: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

84 

 

Fall 2009 – Applied Freshwater Ecology  (UCSB EEMB 167).   Bradley Cardinale,  Instructor.   This course  explores  the  scientific  bases  for  environmental  change  in  freshwater  ecosystems  and their consequences for modern society.  Course included a one‐week module on nanomaterials as an emerging area of concern. 

Winter  2010  –  Research Methods  –  Pollution  Prevention  and  Remediation  (UCSB  ESM401C).  Patricia Holden, Instructor.  

Winter 2010 – Gender, Science, & New Technology  (UCSB Feminine Studies 132) – 25% nano content.   Barbara Herr Harthorn,  Instructor.   Examines  the role of women  in science,  feminist critiques  of  science,  gendered  construction  of  technology  and  technological  construction  of gender, cross‐cultural analysis of emerging technologies, and intersections of gender, ethnicity, class, and sexuality. 

Winter 2010 – Applied Marine Ecology  (UCSB ESM 260) – 10% nano content. Hunter Lenihan, instructor.  Examines ecotoxicology  in marine ecosystems,  including  the  fate &  transport, and biological  and  ecological  effects  on  NPs  on  populations  and  communities  of  phytoplankton, zooplankton, benthic invertebrates and fishes, and the food webs in which they are embedded. 

 Lectures, Seminars, and Presentations by UC CEIN members to external audiences Rebecca Armenta, University of Texas, El Paso 

ZnO nanoparticle toxicity on seed germination/root elongation in alfalfa (Medicago sativa). 2009 National Society for the Advancement of Chicanos and Native Americans  in Science. Dallas, TX October 15‐18, 2009. 

ZnO nanoparticle toxicity on seed germination/root elongation in alfalfa (Medicago sativa). 65th Southwest Regional Meeting of the ACS, El Paso, TX November 4‐7, 2009. 

 Lynne Baumgartner and Allison Fish, UC Santa Barbara 

Current Practices and Perceived Risks Related to Health, Safety, and Environmental Stewardship of Nanomaterials Industries.  ICEIN 2009, Washington, DC, September 9, 2009. 

 Christian Beaudrie, University of British Columbia 

Risk  Ranking  for  Nanomaterials  using  Hazard  and  Intake  Fraction Models.    Society  for  Risk Analysis, Baltimore, MD, December 6‐9, 2009.  

Samuel Bennett, UC Santa Barbara 

UV  Irradiation  of  Nanoparticles  in  Simulated  Freshwater  and  Seawater  Systems,  UC  TSR&TP Annual Meeting, Berkeley, CA – May 1‐2, 2009 

UV  Irradiation of Nanoparticles  in Simulated Natural Water Systems.  ICEIN 2009, Washington, DC, September 9, 2009. 

 Bradley Cardinale, UC Santa Barbara 

On the causes and consequence of extinction.  Audobon Society’s seminar series, co‐sponsored by the Santa Barbara Museum of Natural History, May 27, 2009.  

Biodiversity and the functioning of ecosystems. School of Natural Resources and Environment, University of Michigan, November10, 2009. 

“TiO2 nanoparticles stimulate biomass production in freshwater algae.” ICEIN 2009, Washington, D.C., September 10, 2009. 

Biodiversity and the functioning of ecosystems. Department of Biological Sciences, Notre Dame University, January 19, 2010. 

Page 85: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

85 

 

Biodiversity  and  the  functioning  of  ecosystems.    Colorado  State  University,  Distinguished Ecologist Lecture.  March 31, 2010. 

 H.  Castillo‐Michel, University of Texas, El Paso 

Study of  localization and chemical forms of arsenic  in three species of Parkinsonia plant genus using x‐ray spectromicroscopy. 10th  International Conference on  the Biogeochemistry of Trace Elements, Chihuahua City, Chih., Mexico July 13‐16, 2009. 

Phytostabilization  of  arsenic  by  three  species  of  the  Parkinsonia  plant  genus.  2009  National Society  for  the Advancement of Chicanos and Native Americans  in Science. Dallas, TX October 15‐18, 2009. 

Use of synchrotron techniques to determine coordination and speciation of arsenic in the desert plant Parkinsonia florida. 65th Southwest Regional Meeting of the ACS, El Paso, TX November 4‐7, 2009. 

 Gary Cherr, UC Davis 

Ecotoxity  studies  and  environmental  implications  of  nanomaterials.    UC  Davis  Summer International Undergraduate program, Davis, CA – July 2009.  

 Qiaolin Chen, UC Los Angeles 

Toxicity  and  Efficacy  pH‐responsive Mesoporous  Silica  Nanoparticles  that  Deliver  Anticancer Drug, UC TSR&TP Annual Meeting, Berkeley, CA – May 1‐2, 2009 

 Eunshil Choi, UC Los Angeles 

Light‐Activated  Nanoimpellers‐Controlled  Drug  Release  in  Cancer  Cells,  UC  TSR&TP  Annual Meeting, Berkeley, CA – May 1‐2, 2009 

 Indranil Chowdhury, UC Riverside 

Container  to  Characterization:  Impacts  of  Sonication,  Nanoparticle  Concentration  and  Ionic Strenght  on Metal  Oxide  Nanoparticle  Stability.  ICEIN  2009, Washington,  DC,  September  9, 2009.  

 Yoram Cohen, UC Los Angeles 

Nanoparticles  and  the  Environment.    Presentation  at  University  of  Southern  California,  Los Angeles, CA – November 16, 2009.   

Modeling of the Environmental Multimedia NM Distribution and Toxicity. Presentation to caBIG workgroup regarding to CEIN Data Management Approach.  January 7, 2010. 

 Guadalupe de la Rosa, University of Texas, El Paso 

Nanophytotoxicity  Assessment  and  Potential  Biotransformation  of  ZnO  in  Selected  Desert Plants. ICEIN 2009, Washington, DC, September 9, 2009. 

Nanotoxicity assessment for ZnO and CeO2 in Salsola kali, a desert plant species. 2009 National Society  for  the Advancement of Chicanos and Native Americans  in Science. Dallas, TX October 15‐18, 2009. 

 Cassandra Engeman, UC Santa Barbara 

Reported  Practices  and  Perceived  Risks  Related  to  Health,  Safety  and  Environmental Stewardship  in  Nanomaterials  Industries”  Poster  presentation  of  research  design  to  the 

Page 86: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

86 

 

California  Groundwater  Resources  Association  (GRA)/Department  of  Toxic  Substance  Control (DTSC) Nanosymposium; Sacramento, Nov 16, 2009. 

Reported  Practices  and  Perceived  Risks  Related  to  Health,  Safety  and  Environmental Stewardship  in  Nanomaterials  Industries”  invited  speaker,  Nanotech  2010  Exhibition  and Conference; invited by the strategic area of nanotechnology working group, National Institute of Advanced Industrial Science and Technology (AIST), Japan; Tokyo, Feb 19, 2010. 

Video conference presentation of preliminary findings to the Nanotechnology Colloquium, a bi‐weekly  meeting  of  industry  and  academics  on  the  issue  of  nanotechnology  (with  Lynn Baumgartner); invited to speak by Applied Nanotechnology, Inc. in Austin, TX; March 8, 2010. 

 Elise Fairbairn, UC Davis 

Effects  of  Metal  Oxide  Nanomaterials  on  Sea  Urchin  Embryo  Development.  ICEIN  2009, Washington, D.C., September 9, 2009. 

 Xiaohua Fang, Columbia University 

Evaluating  the Hydrophobicity  of Nanoparticles.    ICEIN  2009, Washington, DC,  September  9, 2009. 

 Daniel Ferris, UC Los Angeles 

Surface  Functionalization  of Nanoparticles  to  Produce  a  Bio‐Interactive Material.  ICEIN  2009, Washington, DC, September 9, 2009. 

 William Freudenburg, UC Santa Barbara 

Improving  the  Recognition  of  Political‐Economic  Factors  in  the  Creation  of  Disasters  and Tragedies .  Rural Sociological Society Meeting, Madison, Wisconsin, July 31, 2009. 

Real  Risk,  Perceived  Risk,  and  nanotechnology:  Lessons  from  Current  Research  and  Past Environmental Controversies.  ICEIN 2009, Washington D.C., Sept. 9, 2009. 

 Jorge Gardea‐Torresdey, University of Texas, El Paso 

Phytoremediation  of  Heavy  Metals  and  Studies  of  the  Impact  of  Nanoparticles  in  the Environment. Seminar Speaker. UTEP Department of Chemistry, January 23, 2009.  

The  impact of stabilized and non‐stabilized nickel hydroxide nanoparticles on mesquite plants. Invites seminar speaker, University of California Santa Barbara, February 12, 2009.  

Enhancement  of  lead  phytoextraction  by  Medicago  sativa  assisted  by  phytohormones  and EDTA: Effects of Nanotechnology  in the Environment. Invited Seminar Speaker, National Cheng Kung University, Taiwan, February 24, 2009. 

How  to  get  published.  Invited  Seminar  Speaker,  National  Cheng  Kung  University,  Taiwan February 24, 2009. 

How  to  get  published.  Invited  Seminar  Speaker,  National  Chung  Hsing  University,  Taiwan, February 25, 2009. 

Enhancement  of  lead  phytoextraction  by  Medicago  sativa  assisted  by  phytohormones  and EDTA: Effects of Nanotechnology  in the Environment. Invited Seminar Speaker, National Chung Hsing University, Taiwan, February 25, 2009. 

How  to  get  published.  Invited  Seminar  Speaker,  Taiwan  National  Central  University,  Taiwan February 26, 2009. 

Page 87: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

87 

 

Enhancement  of  lead  phytoextraction  by  Medicago  sativa  assisted  by  phytohormones  and EDTA: Effects of Nanotechnology in the Environment. Invited Seminar Speaker, Taiwan National Central University, Taiwan February 26, 2009. 

Environmental  Engineering  Program  ‐  "The  Impact  of  Stabilized  and  Non‐Stabilized  Nickel Hydroxide  Nanoparticles  on  Mesquite  Plants.  Invited  Seminar  Speaker,  University  of Connecticut, March 4, 2009 

My phytoremediation  journey and metal nanoparticle  formation using plants.  Invites Seminar Speaker, Stevens  Institute of Technology, Nanotechnology Graduate Program, Nanotechnology Seminar Series Spring 2009. April 8, 2009.  

ZnO Nanoparticle  toxicity  on  alfalfa  (Medicago  sativa)  sprouts, UTEP  SACNAS  Research  Expo 2009. The University of Texas at El Paso, April 16, 2009. 

Hydrolisis of chromium. UTEP SACNAS Research Expo 2009, April 16, 2009. 

Biological  Impact  of  ZnO  Nanoparticles  in  the  Desert  Plant  Mesquite  (Prosopis  spp).  UTEP SACNAS Research Expo 2009. The University of Texas at El Paso, April 16, 2009. 

Tribute  to  Bill  Glaze:  A  leader  in  environmental  science  and  technology,  ACS,  Division  of Environmental Chemistry, 238th meeting, Washington, DC, August 16‐20, 2009. 

World synchrotrons, University of Puerto Rico, Mayaguez campus, August 5, 2009. 

How  to  get  published  in  chemistry workshop,  University  of  Puerto  Rico, Mayaguez  campus, August 4, 2009. 

CeO2  and  ZnO  NPs  undergo  differential  biological  transformations  in  soybean  plants.    ICEIN 2009, Washington, DC, September 9‐10, 2009. 

Biological transformation of nanoparticles  in soybean plants via x‐ray absorption spectroscopy. 65th Southwest Regional Meeting of the ACS, El Paso, TX November 4‐7, 2009. Invited talk. 

Toxicity  and  biotransformation  of  uncoated  and  coated  nickel  hydroxide  nanoparticles  on mesquite plants. 6th International Phytotechnologies Conference, St. Louis, MO, December 1‐4, 2009, invited talk. 

 Yuan Ge, UC Santa Barbara 

Ecotoxicity  of  Nanoparticulate Metal  Oxides  on  Soil Microbial  Community  Composition  and Function. ICEIN 2009, Washington, DC, September 9, 2009. 

Effects of engineered nanoparticles on soil nitrogen mineralization and nitrification.  ASA‐CSSA‐SSSA 2009 International Annual Meetings in Pittsburgh, Pennsylvania (November 1‐5, 2009). 

 Saji George, UC Los Angeles 

Optimization and Validation of a High Content Screening (HCS) Assay for Evaluating Cytotoxicity of Nanomaterials, UC TSR&TP Annual Meeting, Berkeley, CA – May 1‐2, 2009 

High  Throughput  Multiparametric  Cytotoxicity  Screening  For  Predictive  Toxicological Assessment of Nanoparticles. ICEIN 2009,  Washington, D.C., September 10, 2009. 

Rapid  Throughput  Multiparametric  Cytotoxicity  Screening  For  Predictive  Toxicological Assessment  of  Nanoparticles.  Third  Annual  Global  Symposium  on  NanoBioTechnology  ‐  November 19, 2009 

 Hilary Godwin, UC Los Angeles 

Nanotechnology:  Opportunities  and  Challenges,  Personal  Care  Products  Council  ‐  Emerging Issues Conference, Santa Monica, CA, October 6, 2009. 

Page 88: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

88 

 

Engaging  and  Effectively  Communicating  our  Results  to  a  Broad  Range  of  Stakeholders: Education and Outreach Actvities of the UC CEIN.  ICEIN 2009,  Washington, D.C., September 10, 2009. 

 Shannon Hanna, UC Santa Barbara 

Creosote  and  polycyclic  aromatic  hydrocarbons  in  the marine  environment.   UC  Toxics  short course, Bodega Marine Lab, UC Davis, September 2009. 

 Jose Angel Hernandez‐Viezcas, University of Texas, El Paso 

Application of laser ablation inductively coupled plasma mass spectroscopy for lead copper and nickel  quantification  in  mesquite  (Prosopis)  tissues.  10th  International  Conference  on  the Biogeochemistry of Trace Elements, Chihuahua City, Chih., Mexico July 13‐16, 2009. 

ZnO  Nanoparticle  Toxicity  on Mesquite  (Prosopis  sp.)  Sprouts.  ICEIN  2009, Washington,  DC, September 9, 2009. 

 Barbara Herr Harthorn, UC Santa Barbara 

Nanotechnology  in  Society  Network:  Research  on  Societal  Implications  of  Emerging Technologies, (INC5) UCLA CNSI‐May 1‐2, 2009 

Social  Risk  and  Challenges  to  the  Sustainability  of  Emerging  Nanotechnologies,  session  on Sustainability and Emerging Technologies, Society for Social Study of Science, Arlington VA Oct 28‐31, 2009 

Constraints on Benefit of New Technologies  for  the World’s Poor. Panel: Governing Emerging Technologies:  Regulating  Risk  &  Ethical  Dimensions  in  Development.    Emerging  Economies, Emerging  Technologies:  [Nano]technologies  for  Equitable  Development,  Woodrow  Wilson International Center, Washington DC Nov 4‐6, 2009. 

Imagining  Nanotech  Futures:  The  Anthropology  of  Risk  and  Gender  in  Deliberative  Settings,  American Anthropological Association annual meeting, Philadelphia, Dec 4, 2009. 

NSEC  Centers  for  Nanotechnology  in  Society:  CNS‐UCSB.    NSF  Nanoscale  Science  and Engineering Grantees Conference, Arlington, VA Dec 7‐9, 2009. 

Nanotech  Risk  Perception—Issues  and  Challenges.  Overview  presentation,  Nanotech  Risk Perception Specialist Meeting, Santa Barbara, Jan 29‐30, 2010. 

Gender,  Application  Domain,  and  Ethical  Dilemmas  in  Nano‐Deliberation.  Nanotech  Risk Perception Specialist Meeting, Santa Barbara, Jan 29‐30, 2010. 

 Eric Hoek, University of California, Los Angeles 

Influence  of  Water  Chemistry  on  the  Stability  and  Toxicity  of  metal  and  Metal  Oxide Nanoparticles. ICEIN 2009, Washington, D.C., September 9, 2009. 

 Patricia Holden, UC Santa Barbara 

Engineered Nanomaterials:  Environmental Considerations.  Bren School Advisory Board Annual Meeting. Santa Barbara, CA,  April 2, 2009. 

Manufactured Nanomaterials, Organisms,  and  the  Environment:   Discerning  the Nanoparticle Effect. Bren School Corporate Partners Summit on Environmental Applications and Implications of Nanomaterials. May 7‐8, 2009. 

Co‐chair  conference  session  entitled  Nanomaterials: What  are  the  Concerns?   Micropol  and Ecohazard 2009, International Water Association, San Francisco, CA, June 8‐9, 2009. 

Page 89: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

89 

 

Interactions  Between  Pseudomonas  aeruginosa  and  CdSe  Quantum  Dots.    Bren  School  of Environmental Science & Management.  Lecture open to UCSB campus, and recorded /televised on UC TV (University of California web television), October 15, 2009.  

Invited Participant US EPA Nanomaterial Case Studies Workshop: Developing a Comprehensive Environmental  Assessment  Research  Strategy  for  Nanoscale  Titanium  Dioxide.  Durham,  NC, September 29 and 30, 2009. 

Potential  environmental  interactions  of  bacteria  and manufactured  nanomaterials  ASA‐CSSA‐SSSA 2009 International Annual Meetings in Pittsburgh, Pennsylvania, November 1‐5, 2009. 

Collaborative  efforts  with  Industry.    Presenter/commentator  at  the  DTSC  Symposium  for Nanotechnology Industry, Nanotechnology 5, Sacramento, CA, November 16, 2009. 

Bioavailability and Fates of CdSe and TiO2 Nanoparticles in Eukaryotes and Bacteria. Interagency Nanotechnology  Implications Grantees Workshop–EPA, NSF, NIH/NIEHS, NIOSH, and DOE, held on November 9‐10, 2009.   

Substrate  Bioavailability  In  Relation  to  Microbial  Growth  Habits  in  Soils.    RaiseBio  2010: International Symposium on Microbial Contaminant Degradation at Biogeochemical  Interfaces, Leipzig, March 2‐4, 2010.  

Yongsuk Hong, UC Riverside 

Fate  and  Transport  of  Iron‐based  nanoparticles  in Aquatic  Environments, UC  TSR&TP Annual Meeting, Berkeley, CA – May 1‐2, 2009 

 Allison Horst, UC Santa Barbara 

Disagglomeration  of  TiO2  Nanoparticles  by  Pseudomonas  aeruginosa,  UC  TSR&TP  Annual Meeting, Berkeley, CA – May 1‐2, 2009 

 Zhaoxia Ji, UC Los Angeles 

Optimization of Nanoparticle Dispersion in Various Cell Culture Media. ICEIN 2009, Washington, D.C., September 10, 2009 

 Milind Kandlikar, University of British Columbia 

The Impact of Toxicity Testing Costs on Nanomaterial Regulation.  ICEIN 2009, Washington D.C., Sept. 9, 2009 

 Arturo Keller, UC Santa Barbara  

Fate  and  Transport  of  Nanomaterials.    Presentation  at  Los  Alamos  National  Laboratory,  Los Alamos, New Mexico, June 2009.  

Fate and Transport of Nanomaterials  in Environmental Media.   Micropol and Ecohazard 2009, International Water Association, San Francisco, CA, June 8‐9, 2009  

A  New  Paradigm  for  Monitoring  the  Implications  of  Nanotechnology  in  the  Environment. National Environmental Monitoring Conference, Austin Texas, August 2009 

Overview of the Challenges in Predicting NP Fate and Transport.  ICEIN 2009, Washington, D.C., September 9, 2009. 

Behavior  of metal  oxide  nanoparticles  in  natural  waters.  American  Geophysical  Union,  San Francisco, CA, December, 2009 

Stability  and  aggregation  of metal  oxide  nanoparticles  in  natural waters.  American  Chemical Society, San Francisco, CA, March, 2009 

Page 90: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

90 

 

Probing  the  influence  of  solution  chemistry  on  the  adhesion  of  Au  nanoparticles  to  mica. American Chemical Society, San Francisco, CA, March, 2009 

 Tin Klanjscek, UC Santa Barbara 

Modeling  Effects  of  Soluble  Cadmium  Salts  and  CdSe  Quantum  Dots  on  Pseudomonas aeruginosa. ICEIN 2009, Washington, DC, September 9, 2009. 

 Hunter Lenihan, UC Santa Barbara 

      Differential  Effects  of  Nano‐Particulate  Zinc  Oxide  and  Titanium  Dioxide  on  the  Population Growth  Rates  of  Marine  Phytoplankton  and  benthic  invertebrates.   UCLA  Engineering Departmental Seminar, Los Angeles, CA, February 2010 

      Ecological  Effects  of  NP  on  Coastal  Marine  Species:  Developing  Predictions  for  Ecosystems Impacts. Bren School‐UCSB Marine Ecology Seminar Series, March 2010. 

 Haven Liu, UC Los Angeles 

Unsupervised Feature Subset Selection with Feature Simliarity for the Analysis of Chemical and Nanoparticle Toxicity. ICEIN 2009, Washington, DC, September 9, 2009.  

 Martha L. López‐Moreno, University of Texas, El Paso 

X‐ray absorption spectroscopy workshop, University of Puerto Rico, Mayaguez campus, August 6, 2009. 

Toxicity of ZnO and CeO2 nanoparticles to Glycine max Seedlings: effects on germination, root growth and metal uptake. 2009 National Society  for the Advancement of Chicanos and Native Americans in Science. Dallas, TX October 15‐18, 2009. 

 Lutz Mädler, Universitat Bremen 

Columbia University New York, New York, USA, July 16, 2009 

Rutgers University New York, New York, USA, October 13, 2009 

NSF – DFG Workshop on Nanomaterials, New York, USA, October 14, 2009 

BMBF‐Innovation Forum, Sao Paulo, Brazil, November 24, 2009 

University Tübingen, Tübingen, Germany, November 30, 2009 

Polytecnico di Milano, Milano, Italy, January 21, 2010  

Catalina Marambio Jones, UC Los Angeles  

Influence of Water Chemistry on Bacterial Toxicity of Silver Nanoparticles, UC TSR&TP Annual Meeting, Berkeley, CA – May 1‐2, 2009 

 Huan Meng, UC Los Angeles 

Using Predictive Toxicological Paradigm  to Study Nanotoxicity and Design Safe Nanomaterials. ICEIN 2009, Washington, DC, September 9, 2009. 

 Randy Mielke, UC Santa Barbara 

Bioaccumulation  and  biomagnification  of  CdSe Quantum  Dots  in  a  simplified microbial  food chain.  ICEIN 2009, Washington, D.C., September 10, 2009 

   

Page 91: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

91 

 

Robert J. Miller, UC Santa Barbara 

Differential  Effects  of  Nano‐Particulate  Zinc  Oxide  and  Titanium  Dioxide  on  the  Population Growth Rates of Marine Phytoplankton.  ICEIN 2009, Washington, D.C. September 10, 2009 

Multi‐drug‐resistance activity of barnacles.  UC Toxics short course, Sept 09, Bodega Marine Lab, UC Davis. 

 M O Motes, University of Texas, El Paso 

Nanotechnology  in  the  environment workshop, University of Puerto Rico, Mayaguez  campus, August 5, 2009. 

 Sumitra Nair, UC Los Angeles 

Analysis of Nanoparticle Toxicity Using Machine Learning Techniques.  ICEIN 2009, Washington, DC, September 9, 2009. 

 André Nel, UC Los Angeles 

Emerging Issues for Nanomaterials, UC TSR&TP Annual Meeting, Berkeley, CA May 1‐2, 2009 

Nanotoxioclogy  as  a  Predictive  Science,  5th  International  Nanotechnology  Conference  on Communication and Cooperation (INC5) UCLA CNSI‐May 21, 2009 

Invited Keynote Lecture, ChinaNANO2009 Conference, Beijing, China, September 1‐3, 2009.  

Nanotoxicology  as  a  Predictive  Science.    Invited  Speaker, Award  Ceremony  for Distinguished Visiting Professor in the Chinese Academy of Sciences, Institute of High Energy Physics, Beijing, China, September 2009. 

Using Predictive Toxicological Paradigm  to Study Nanotoxicity and Design Safe Nanomaterials.  ICEIN 2009, Washington, D.C., September 9, 2009. 

Nanotoxicology  as  a  Predictive  Science  in  the  UC  Center  for  Environmental  Impact  of Nanotechnology (CEIN).  Invited Speaker, International Institute for Nanotechnology Symposium Nanotechnology  in Biology  and Medicine, Northwestern University,  Evanston,  IL, October 29, 2009. 

Nanotoxicology  as  a  Predictive  Science  Use  of  a  Hierarchical  Oxidative  Stress  Paradigm  for Evaluation  of  Safety.    Invited  Speaker,  4th  International  Conference  on Oxidative/Nitrosative Stress and Disease, The New York Academy of Sciences, October 28‐30, 2009 

Nanotoxicology,  including use of nanomaterial structure‐activity relationships for nanomaterial safety testing.   Plenary Lecture,   American Vacuum Society 56th  International Symposium, San Jose, CA., November 7, 2009. 

New  Products  Come  Out  of  the  Safe  Design  of  Mesoporous  Silica  Nanoparticles.    Invited Speaker,  3rd  Annual   Nanobiotechnology Global  Symposium, New Directions  in NanoHealth, November 19‐20, 2009. CNSI Building, UCLA.  

Nanotoxicity  as  a  Predictive  Science.    NSF  Nanoscale  Science  and  Engineering  Grantees Conference, Arlington, VA, December 7‐9, 2009.  

Roger Nisbet, UC Santa Barbara 

Dynamic  Energy  Budget  theory  and  ecology.    Keynote  lecture,  International  Symposium  on Dynamic Energy Budget Theory, Brest, France, April 2009 

Dynamic Energy Budget theory for zooplankton and fish.   Invited  lecture, University of Iceland, Reykjavik, August 2009 

  

Page 92: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

92 

 

Suman Pokhrel, Universitat Bremen 

Solubility as Paradigm for nanotoxicity, NanoToxCom, UFT, University of Bremen, October 2009. 

Ultrafine WO3 Nanoparticle synthesis, University Tubingen, Tubingen, Germany, November 30, 2009.  

 Terre Satterfield, University of British Columbia 

Reflections on Chasing the Elusive: Hope, Intention and Disruption  in the Anticipation of Social Response  to Nanotechnologies.   American Anthropological Association meetings, Philadelphia, Dec 4, 2009. 

Designing  for Upstream  Risk  Perception  Research: Malleability  and Asymmetry  in  Judgments about Nanotechnologies.   Nanotech Risk Perception Specialist Meeting, Santa Barbara, Jan 29‐30, 2010. 

 Joshua Schimel, UC Santa Barbara 

Known Knowns, Unknown Knowns, and Unknown Unknowns: Challenges to Understanding the Impacts of Nanomaterials in Ecosystems.  ICEIN 2009, Washington, D.C., September 10, 2009. 

 Sharona Sokolow, UC Los Angeles 

UC CEIN Protocols Project: Tools and Guidelines  for Development and Validation of  Standard Protocols.  ICEIN 2009, Washington, DC, September 9, 2009. 

 Ponisseril Somasundaran, Columbia University 

Correlation of Wettability/Hydrophobicity of Nanoparticles with their Toxicity on Nitrosomonas europea.  ICEIN 2009, Washington, D.C., September 10, 2009. 

 Galen Stucky, UC Santa Barbara 

Synthesis,  Size‐Selective  Separation,  and  Chemistry  of  Composite  Synthetic  Natural Nanoparticles.  ICEIN 2009, Washington, D.C., September 10, 2009. 

 Elizabeth Suarez, UC Los Angeles 

UCLA  Molecular  Shared  Screening  Resource  (MSSR):  Capabilities  and  Applications  for Nanotoxicity Studies for CEIN.  ICEIN 2009, Washington, D.C., September 10, 2009. 

 Sirikarn Surawanvijit, UC Los Angeles 

Removal  of  Nanoparticles  via  Coagulation  followed  by  Sedimentation.      AIChE  Conference, Nashville, TN, November 2009. [session: Advances in Fluid‐Particle Separations, paper 128c] 

Removal  of  Nanoparticles  by  Coagulation  Integrated  with  Membrane  Filtration.    AIChE Conference,  Nashville,  TN,  November  2009.  [session  412:  Hybrid  and  Emerging Membrane‐Based Separations Technologies, paper 412f] 

 Courtney Thomas, UC Los Angeles 

Toxicity of Functionalized Silica Nanoparticles, UC TSR&TP Annual Meeting, Berkeley, CA – May 1‐2, 2009. 

 Raja Vukanti, UC Santa Barbara 

Bacterial‐nanoparticle  Interactions: Insights from Axenic Cultures. ICEIN 2009, Washington, DC, September 9, 2009. 

Page 93: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

93 

 

 Sharon Walker, UC Riverside 

Water Quality and Food Safety. Imagining the Future Lecture Series – included some discussion of  nanomaterials  as  an  emerging  water  quality  issue.    Public  seminar  at  UCR  Palm  Desert Campus, March 4, 2009. 

Transport of TiO2 Nanoparticles:   Role of Solution Chemistry and Particle Concentration.    ICEIN 2009, Washington, D.C., September 10, 2009. 

 Rebecca Werlin, UC Santa Barbara 

Trophic Bioaccumulation and Toxicity of CdSe Qdot Nanoparticles  in Fresh Water Protozoa, UC TSR&TP Annual Meeting, Berkeley, CA – May 1‐2, 2009. 

 Tristan Winneker, UC Santa Barbara  

Effects of TiO2 nanoparticles on microbial soil communities: an  investigation of respiration and community structure, UC TSR&TP Annual Meeting, Berkeley, CA – May 1‐2, 2009. 

Gene Expression of P. aeruginosa Exposed to Cd(II) Salts and CdSe Quantum Dots.  ICEIN 2009, Washington, DC, September 9, 2009. 

 Tian Xia, UC Los Angeles 

Design of a mesoporous silica nanoparticles for dual delivery of drugs and SiRNA. Department Of Medicine Research Day, University of California, Los Angeles, October 3, 2009. 

 Sijing Xiong, Nanyang Technological University 

In vitro Toxicity Study of PLGA and HA Nanoparticles. ICEIN 2009, Washington, DC, September 9, 2009. 

 Kristin Yamada – UC Los Angeles  

Health Effects Risk Assessment of Nominated Nanomaterials and Trends  in the Nanotoxicology Literature,  UC TSR&TP Annual Meeting, Berkeley, CA – May 1‐2, 2009. 

Health Effects Risk Assessment of Nominated Nanomaterials and Trends  in the Nanotoxicology Literature. ICEIN 2009, Washington, DC, September 9, 2009. 

 Dongxu Zhou, UC Santa Barbara  

Aggregation of  ZnO Nanoparticles Under Different Aqueous  Solution Chemistries, UC TSR&TP Annual Meeting, Berkeley, CA – May 1‐2, 2009. 

Stability  and  Photoactivity  of  Metal  Oxide  Nanoparticles  in  Natural  Waters.    ICEIN  2009, Washington, D.C., September 10, 2009. 

Fractal  aggregation  of  ZnO  nanoparticles  under  different  aqueous  solution  chemistries. American Geophysical Union, San Francisco, CA, December, 2009 

Fractal  aggregation  of  ZnO  nanoparticles  under  different  aqueous  solution  chemistries. American Chemical Society, San Francisco, CA, March, 2009 

 Outreach Activities by UC CEIN Members Collaborations with International Researchers 

Chinese Academy of Sciences 

University of Tsukuba, Japan 

University of Kyoto, Japan 

Page 94: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

94 

 

National Institute of Chemical Physics and Biophysics Akadeema, Estonia 

Bristol University, Center for NanoScience and Quantum Information 

Established  collaborative  discussions  with  Canada‐California  Strategic  Partnership  Program.  Ongoing meetings with  Director  Pamela  Johnson  to  identify  areas  of  potential  collaborative reserach  between  UC  CEIN  and  researchers  from  Canadian  institutions  of  higher  learning.    Hosted at UCLA, September 21, 2009 with followup scheduled for Spring 2010.  

 Collaborations with Industry 

Held  collaboration  discussions  with  and  hosted  visit  to  UCSB  and  UCLA  by  Perkin  Elmer  to discuss  possible  technology  platform  development.    Initial  visit  on November  4‐5,  2009 with follow‐up on April 13, 2010 to UCSB.   

Hosted William Clark and Akira Nakasuga from the Sekisui Chemical Corporation of Japan,  UCLA campus, August 24 and 31, 2009.   Discussed research platforms of UC CEIN as they related to industry development.   

Hosted Dr. Rainer  Fischer,  Senior  Executive Director of  the  Fraunhofer  Institute of Molecular Biology.  Discussed research platforms of the UC CEIN and potential collaborative activities.  

 Development of NanoSafety Materials 

Work  with  the  International  Alliance  of  Nano  Harmonization  to  develop  nano  materials protocols for material dispersal, DLS, and cellular toxicity testing.  CEIN members: Andre Nel. 

Collaborate with UCLA Environmental Health and Safety office to develop interim guidelines for Safe  Handling  of  Nanomaterials,  and  development  on  online  safety  training  modules  (in development).  CEIN members: Hilary Godwin, Elizabeth Suarez. 

 Legislative/Policy Activities 

Co‐sponsored  2009  Working  Conference  on  NanoRegulatory  Policy,  April  17,  2009,  UCLA Campus 

UC  CEIN  participation  in  the  President’s  Council  for  Science  and  Technology  review  of  the National  Nanotechnology  Initiative.    March  12,  2010.    Andre  Nel  and  Barbara  Harthorn participated  in a panel on  the state of Nanotechnology  research  in  the US.    Information  from this panel was incorporated into the PCAST report to President Obama.  

UC  CEIN  Director  Andre  Nel  is  co‐chair  of  the World  Technology  Evaluation  Center  Nano  2 project.  The project will conduct a review of the future of Nanotechnology in the next 10 years entitled “International Study of the Long‐Term Impacts and Future Opportunities for Nanoscale Science and Engineering”.  An initial workshop was held on March 9‐10, 2010 in Chicago Illinois, with  future  workshops  scheduled  for  June  in  Hamburg  Germany  and  July  in  Japan  and Singapore.  The review will be published as a report.   

Planning is underway for the UC CEIN to host California Department of Toxic Substances Control “Nano 6 Workplace Safety Symposium” at UCLA in October 2010.   

 Educational Mentoring Bradley Cardinale, University of California Santa Barbara 

Mentor Courtney Kwan in the UCSB Research Mentorship program  (6‐week summer internship program for high school students, June ‐ August 2009).   

   

Page 95: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

95 

 

Patricia Holden, University of California Santa Barbara 

Mentor Gwen  Christiansen  in  the UCSB  Research Mentorship  program    (6 month  laboratory mentorships  from  September  2009  –  February  2010  involving  Holden  and  postdoctoral associates Raja Vukanti and Yuan Ge from CEIN).   

Mentor  and  advise,  including  providing  several  interviews  and  many  published  references materials, freelance author and editor James Badham for production of an article  in the Miller McCune  publication.    February  4,  2010:  Toxicology  of  the  Tiny.    http://www.miller‐mccune.com/science‐environment/toxicology‐of‐the‐tiny‐7171/  

Mentor Barbora Bakajova  ([email protected].   Ph.D.  student  visiting  in Winter quarter 2010 from the Faculty of Chemistry, Brno University of Technology, Czech Republic. 

Mentored  two  1st  year  Bren  School Masters  students  (Adeyemi  Adeleye  and  Sudhir  Sudhir Paladugu)  in co‐developing and authoring successful Group Project proposal  for 2010‐11, with CA DTSC and UCLA CEIN as clients. 

 Catalina Marambio‐Jones, University of California Los Angeles, Graduate Student 

Mentor  high  school  student  from  Palos  Verdes  Penninsula  High  School.    Study  on  bacterial toxicity of silver and other nanoparticles.  The student has won a number of major awards from the State of California and was selected to represent California at the Stockholm Junior Water Prize contest this summer.   

 

Page 96: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

96 

13.  Shared and other Experimental Facilities  UCLA Facilities The UC CEIN  is housed  in the California NanoSystems Institute (CNSI) building, centrally  located on the UCLA campus.   Administrative office  space  for CEIN  support  staff and access  to CNSI meeting  rooms, conference rooms, state of the art media facilities, and meeting planning assistance are provided within CNSI.  Additionally, over 1000 square feet of shared laboratory bench space has been allocated to CEIN researchers participating  in the UC Nanotoxicology Research and Training Program.   The CEIN recently installed  a  Wyatt  DynaPro  Plate  Reader  Dynamic  Light  Scattering  instrument,  a  Brookhaven  Zeta Potential  analyzer,  and  an  Elisa Plate  reader  for use by CEIN  researcher  in  characterization  and high content  screening  studies.    Bench  space  has  also  been  outfitted  to  accommodate  approximately  10 working  bays.    Finally,  the Data Management  activities  have  the  Center  have  been  assigned  private space in the CNSI Data Center, providing workstations and a server room to serve as the hub of the UC CEIN data management and modeling activities as described in IRG 6.    Molecular Screening Shared Resource (MSSR): Established in 2003, the MSSR provides HTS technology. Since 2005,  it has been directed by Kenneth Bradley, who reports to an Advisory Board with members from UCLA’s CNSI, Chemistry, Biology, Medicine, and other departments. Located in the UCLA CNSI, the MSSR occupies 1085 square foot of  laboratory space. The MSSR contains two fully  integrated systems: (i)  Automated  liquid  handling,  multiple  plate  reading,  plate  filling  and  washing,  deshielding,  and delidding, and online incubators for cell‐based assays using a Beckman/Sagian system equipped with an Orca  robotic arm  that delivers plates  to  individual work  stations; Beckman Biomek FX  liquid handling robot  (96‐well pipetting, 96‐ or 384‐pin  transfer); Perkin–Elmer Victor3(V) plate  reader  (96–1536 well plates  in  luminescence,  fluorescence,  fluorescence  polarization,  time‐resolved  fluorescence,  UV–Vis absorbance modes); Molecular Devices FlexStation II plate reader equipped with an integrated pipetter and general fluorescence and luminescence plate applications in 96‐ or 384‐well format; Cytomat 6001 incubator: CO2 incubator; Multidrop 384: manifold liquid dispensing into 96‐ or 384‐well plates; ELx 405 plate washer: well washing, aspiration, dispensing. Current capacity of cell‐based assay  is ca. 105 wells (conditions)/day. Multiple  plate  readers  allow  fluorescence,  FRET,  BRET,  time‐resolved  fluorescence, fluorescence polarization,  luminescence, and UV–Vis absorption assays.  (ii) A  second Beckman/Sagian Core  system  for HCS using automated microscopy with an Orca arm; Molecular Devices  ImageXpress (micro)  automated  fluorescence  microscope  and  a  Cytomat  6001  incubator.  Equipment  at  MSSR available  for off‐line use: Genetix Q‐bot colony‐picking robot: maintain and re‐order clone collections; Precision  2000:  automated  pipetting  and manifold  dispensing  of  BSL‐2  agents;  6‐ft  Class  II  biosafety cabinet,  tabletop  centrifuge, –80  °C  freezers, 96‐well  thermal  cycler, CO2  incubators. MSSR  screening capabilities  include two genome‐wide knockout  libraries of S. cerevisiae yeast and genome‐wide small interfering RNA libraries for mouse and human, providing functional genomic capabilities for identifying cellular pathways governing responses to nanomaterials.   The following research facilities on the UCLA campus are available to the CEIN on a recharge basis:  CNSI  Core  Facilities  including  an  Advanced  Light  Microscopy/Spectroscopy,  X‐ray  Diffraction,  and Imaging  Lab,  Electron  Imaging  Center  for  NanoMachines,  Integrated  NanoMaterials  Lab,  Integrated Systems  Nanofabrication  Clean  Room,  Macro‐Scale  Imaging,  Molecular  Screening  Shared  Resource, Nano  &  Pico  Characterization.  Water  Quality  Research  Laboratory  includes  NF/RO  membrane simulators  for  desalination  and  wastewater  reclamation  studies, MF/UF membrane  simulators  with rapid  permeate  back‐flushing,  integrated membrane  filtration/mixed  reactors  for  hybrid membrane process studies,  flow through electrochemical reactor  for electrodialysis and electro‐oxidation studies. Water Quality  Instrumentation Laboratory  includes GCs with FID, ECD, MS, and TCD detectors, HPLC, 

Page 97: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

97 

ion  and  hydrophobic  chromatography,  flame  atomic  absorption  spectrophotometer  for  trace metal analyses,  TOC,  UV–Vis,  and  fluorospectrophotometer  for  organic  characterization  and  analyses  and instrumentation for pH, conductivity/TDS, ions, turbidity, color, particle size, and solids analyses. Water Technology Research Center includes atomic force microscopy (AFM), IR spectroscopy (FTIR, ATR‐IR), X‐ray  photoelectron  spectroscopy.  Nanoelectronics  Research  Facility  includes  scanning  electron microscopy  (SEM) with energy‐dispersive analysis of X‐rays;  transmission electron microscopy; surface profilometers and ellipsometers. Molecular Instrumentation Center includes SEM, differential scanning calorimetry,  thermogravimetric  analysis,  magnetic  resonance  imaging,  X‐ray  diffraction,  mass spectrometry  for  proteomics  and  biochemistry  instrumentation,  ICP‐AES  for  elemental  analysis  and speciation.  UCLA’s  Environmental  Nanotechnology  Research  Laboratory  includes  a  programmable oven,  furnace,  and  microwave  systems  for  NM  synthesis,  bench‐top  micro‐centrifuge  and  stirred filtration cells for NM isolation, BET analyzer for powder surface area and pore size analyses, equipment for  polymer  phase  inversion,  interfacial  polymerization,  and  solution  casting.  Nano‐Bio  Interfacial Forces  Laboratory  includes  a  contact  angle  goniometer  for  powder/substrate  wetting  and  surface energy  analyses;  particle  micro‐electrophoresis  system  for  particle  electrophoretic  mobilities  (zeta potentials);  dynamic  and  static  light  scattering  for  evaluating  particle  sizes  and  polymer molecular weights;  upright  optical  and  epi‐fluorescence microscope;  and  AFM  integrated with  inverted  optical microscopy.  UC Santa Barbara Facilities Three clusters of laboratories are available to CEIN researchers:  (1) CNSI‐UCSB provides access on a recharge basis: The Microscopy and Microanalysis Facility  includes three transmission electron microscopes (FEI Titan FEG and two FEI Tecnai G2 Sphera), three SEMs (FEI XL40 Sirion FEG, FEI XL30 Sirion, FEI Inspect S), five scanning probe STM/AFM microscopes (Digital Multi‐mode Nanoscope, Digital Dimension 3000, Digital Dimension 3100, Asylum MFP‐3D SL, Asylum MFP‐3D Bio), a  secondary  ion mass  spectrometer  (Physical Electronics 6650 Quadrupole), X‐ray Photoelectron Spectroscopy  Kratos  Axis  Ultra  System,  Focused  Ion  Beam  System  (Model  DB235  Dual  Beam).  The Spectroscopy  Facility  has  seven  state‐of‐the‐art  spectrometers  (Nicolet Magna  850  IR/Raman, Varian Cary Eclipse Fluorimeter, Bruker DPX200 SB NMR for solutions, DSX300 WB NMR for solids, DMX500 SB NMR  for  solutions, Bruker  IPSO500 WB NMR  for  solids, Bruker EMX Plus EPR  spectrometer). Stucky’s laboratory  (3000  sf)  contains:  Malvern  Nano‐sizer,  Invitrogen  Xcell  SureLock  Mini‐Cell  Gel Electrophoresis, Nikon Eclipse ME600 Microscope with CCD camera, Arbin Instruments, MSTA+ & EG&G Princeton Applied Research potentiostat/galvanostat, Netzsche STA 409C  thermogravimetric analyzer, Tempress  hydrothermal  system,  Brinkman  Tuttnauer  autoclave,  humidity‐environment‐controlled reaction  chamber,  vacuum  oven,  1‐gallon  Parr  autoclave  reactor,  three  vacuum‐atmosphere  boxes, Labconco Free Zone 4.5‐L benchtop freeze dry system,  IEC Multi‐RF high‐performance centrifuge, OLIS Cary 14 UV–Vis–near‐IR  spectrophotometer, StellarNet UV–Vis  spectrophotometer with a photodiode detector.   (2) Bren School of Environmental Science and Management. The School  Infrastructure Lab  (2350  sf) includes  a  Shimadzu HPLC with  fluorescence  and  diode  array  detectors,  Shimadzu GC/FID,  Beckman scintillation  counter,  total‐carbon  analyzer,  –80  °C  Revco  freezer,  high‐speed  refrigerated  Sorvall centrifuge,  two  static  incubators  for  cultivation  at  37  and  41  °C,  refrigerator,  water  baths, spectrophotometers, hybridization oven, UV crosslinker, Nanopure water system, autoclave,  icemaker, laboratory microwave, two multi‐user walk‐in 4 ºC rooms for sample storage and two walk‐in freezers, and two variable‐temperature rooms for experimental work. Use of this central facility is available at no cost  to  the  project. Holden’s  laboratory  (930  sf)  includes: HP  6890 GC/MS with  autosampler;  Baker biological control cabinet; Sorvall microcentrifuge; New Brunswick shaker/incubator; analytical balances; 

Page 98: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

98 

Nikon E‐800 epifluorescent microscope equipped with a CCD camera and NIS‐Elements acquisition and analysis software; BioTek Synergy2 microplate shaker/incubator/reader with UV/Vis/TRF detectors; PCR thermal  cycler  and  other  equipment  related  to  electrophoresis,  PCR  product  quantification,  and analyzing  terminal  labeled restriction  fragment  length polymorphisms. Holden’s  laboratory houses the Micro‐Environmental  Imaging and Analysis Facility  (MEIAF), an environmental SEM with a cryo‐stage for imaging frozen materials and an X‐ray detector for elemental analysis (300 sf). The MEIAF is available to the public on a recharge basis. Keller’s laboratory (940 sf) includes: Varian Saturn 2100T GC/MS with autosampler; Nikon Optiphot‐M epi‐fluorescent microscope with CCD camera; Thermo Cahn Radian 315 dynamic contact angle analyzer; Brookfield viscometer; ozone generator; UV reactor; column transport pumps  and  controllers;  silicone micromodels. The  School has  a Videoconferencing  Facility  (Bren Hall 1424, 750 sf) for telecommunication (e.g., graduate training courses, seminars, REC meetings) related to the  project,  with  capacity  for  50  people.  It  supports  h242  video  conferencing  or  ISDN  over  IP connections at 100 Mbps. There are  two data projectors and  corresponding  screens  that  can display input from a remote video connection or from local inputs including a dedicated computer or portable DVD/VHS video camera and a document camera.   (3) Department of Ecology, Evolution, and Marine Biology. Laboratories from three EEMB faculty will be used for the proposed work. Schimel’s laboratory includes: two Finnegan MAT Delta Plus MS systems equipped with elemental  analyzer, gas bench, pyrolysis, and GC  inlet  systems  (available  through MSI analytical  lab);  two multichannel  Lachat  autoanalyzers  for  dissolved  nutrients;  C/N  analyzer  for  solid samples; Shimadzu GC 14 for simultaneous CO2, CH4, and N2O analyses; microtiter plate reader (UV/Vis) for enzyme and chemical assays. Cardinale’s laboratory (1200 sf) is fully equipped for work with aquatic algae and invertebrates; it includes: two environmentally controlled walk‐in chambers for the culture of organisms; a “clean  lab” equipped with a Millipore water purification system for nutrient analyses and water  chemistry;  an  800‐sf  state‐of‐the‐art  freshwater  flume  facility  (temperature‐controlled  facility with  120  recirculating  stream  channels);  two  Olympus  stereomicroscopes  for  invertebrate  work; Barnstead–Themolyne  spectrophotometer;  Turner  fluorometer;  two  YSI  Model  556  oxygen  probes; Sontek  Flowtracker  Acoustic  Doppler  Velocimeter  for  field work;  Li‐Cor  LI‐192  underwater  quantum sensor  with  LI‐1400  datalogger.  Nisbet’s  laboratory  has  high‐end  PCs  for  DEB  modeling;  it  has substantial computing requirements and requires Linux and Windows applications. Additional access to a high‐performance computing multi‐node facility at UCSB is available on a recharge basis.  Lawrence Livermore National Laboratory Facilities Center for Accelerator Mass Spectrometry. Although CEIN samples can be analyzed at CAMS, LLNL staff operates  these  specialized  instruments  and equipment. CEIN  collaborators  can be  trained on  sample preparation techniques to perform as much work as possible on their home campuses prior to traveling to LLNL. CAMS includes an NEC 1‐MV AMS automated, highly modified, custom‐built General Ionex 846 Cs  sputter  source,  low‐energy  injection  beam  line,  and  a  high‐energy  mass  spectrometer.  The spectrometer analyzes ca. 5000 AMS samples  in a semi‐automated mode annually and has capacity of up to 25,000. All AMS samples are oxidized to CO2 and then reduced to filamentous graphite for isotope analysis. All gas‐handling manifold graphitization ovens are custom‐built LLNL designs  for AMS sample processing,  including  Uniquip  Unijet  II  refrigerated  aspirators;  Jouan  RC  10.10  vacuum concentrators/dryers; Neytech muffle  furnaces  for  sample combustion; Exeter 440 CHN Analyzer  (PC‐controlled);  and VWR  vacuum oven.  The nanoSIMS  laboratory  includes:  Leica Ultra Cut 6 microtome with  cryo‐capability;  Leica  light microscope with precision X,Y  stage  for  sample mapping; and a  clean bench.  Other  major  equipment  available  at  CAMS  include:  Shimadzu  UV‐1700  UV–Vis  scanning spectrophotometer; Agilent HPLC with fluorescent and diode array detectors; Waters 2690 Millennium Alliance  gradient  HPLC  system  with  photodiode  array  detection  and  auto  sampling  capabilities; 

Page 99: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

99 

Shimadzu HPLC with UV–Vis detector  (SPD‐10Avp) and  two  liquid chromatograph pumps  (LC‐10ATvp); Pharmacia Wallac 1410 liquid scintillation counter.  Lawrence Berkeley National Laboratory Facilities Molecular Foundry. Molecular Foundry users apply to use the facilities and are trained by LBNL staff to conduct  their  studies.  The  Inorganic  Nanostructures  Facility  will  provide  CEIN  users  with  the instrumentation to synthesize and characterize nanocrystals, nanotubes, and nanowires, as well as their expertise and training on manufacturing processes. The following equipment is available free of charge: Automated nanocrystal synthesizer robot; Bruker AXS D8 Discover GADDS XRD diffractometer system; Thomas Swann 3x2 CCS MOCVD for nitride films and nanowires; Thomas Swann 3x2 CCS MOCVD for III‐V and  other  semi‐conducting  materials;  Yobin  Ivon  Fluorolog  3  spectrofluorimeter  with  PL  life‐time capability; Agilent  Precision  semiconductor  parameter  analyzer; Malvern  Zetasizer  ZS;  Shimadzu UV–near  IR spectrophotometer; Rucker and Kolls probe station;  low‐temperature,  inert‐atmosphere probe station;  custom‐built  robotic  combinatorial  synthesizers;  Beckman  NXp  HTS  robot;  total‐internal‐reflection  microscopy  system  equipped  with  Olympus  IX‐81w/Andor  EMCCD  camera;  Amersham Biosciences Akta FPLC; Agilent 1100 series  (ion  trap) LC‐MC‐MC mass spectrometer; Varian analytical, semi‐prep,  and  prep  HPLCs;  CEM  Liberty  microwave  peptide  synthesizer;  Biotage  SP1  flash chromatography system; ACT Apex 396 peptide synthesizer; Beckman Optima ultracentrifuge; Real‐time PCR  7000  sequence  detection  system;  New  Brunswick  BioFlo  310  fermentor;  Molecular  Devices absorbance  and  fluorescence  plate  readers;  Jobin  Yvon  FluoroMax  flourimeter;  and  cell  culture incubators and biosafety cabinets.  Columbia University Facilities The Industry/University Cooperative Research Center (I/UCRC) for advanced studies on novel surfactants has shared resources  in the MRSEC and Chemistry Departments for work on this project: Hitachi 4700 SEM;  JEOL SEM and TEM;  Inel X‐ray diffractometer; Bruker NMR  spectrometer; Raman  spectroscope; ellipsometer. Somasundaran’s laboratory includes: Digital Instruments AFM; PenKem 3.0+ Zeta meters; Perkin–Elmer  Spectrum100  FTIR  spectrophotometer;  Horiba  Jobin  Yvon  Fluorolog  fluorescence spectrophotometer (steady state); Horiba Jobin Yvon IBH5000F fluorescence spectrophotometer (time‐resolved); Quantachrome Instruments Quantasorb surface area analyzer; Bruker EMX EPR spectroscope; Perkin–Elmer Plasma 400 ICP spectrophotometer; Kruss K12 surface and interfacial tensiometers; NIMA Tech DST9005 dynamic  surface  tension analyzer; Nikon optical microscope; Beckman–Coulter Optima XL‐1 analytical ultracentrifuge; SORVALL RC‐5B bench‐scale and temperature‐controlled centrifuge.  University of Bremen Facilities Foundation  Institute  for Materials  Science. The  IWT  Foundation  Institute of Material  Science has  all major material characterization equipment available: X‐ray diffraction (with extended Rietveld analysis); TEM  and  SEM;  surface  adsorption  analysis  (adsorption  isotherms).  Recharge‐based  access  to thermogravimetric analysis and zeta‐potential instrumentation is also available. Mädler’s laboratory has state‐of‐the‐art  flame  spray  pyrolysis  reactors  for  the  synthesis  of  various metal  oxide‐based  NMs, including their functionalization with noble metals.  UC Riverside Facilities Center for Nanoscale Science and Engineering.  A 1900‐sf laboratory space with environmental controls necessary  to  provide  Class  1000  and  Class  100  clean  areas.  CNSE  has  four  staff members:  a  Facility Manager,  a  dedicated  operator  for  the  e‐beam  and  FIB  instruments,  and maintenance  and  process technicians. In addition to the nanofabrication center, the following major resources are available on a recharge basis: NMR  spectroscopy; mass  spectrometry;  small‐molecule  X‐ray  crystallography  (SMXC); 

Page 100: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

100 

optical  spectroscopy;  fluorescence‐activated  cell  scanner  (to  analyze  cell  morphology,  cell  surface proteins,  and  cell  cycle‐related processes); high‐precision CNC  lathe; mill  and  Sinker‐  and Wire‐EDM; electron beam techniques;  laser confocal microscopy. Walker‘s  laboratory at UCR  is equipped with an inverted Olympus  IX70 microscope (phase contrast or fluorescent mode), used to  image bacterial cells or particle attachment to test surfaces within a parallel plate flow cell or a radial stagnation point flow cell. Image analysis software allows quantification of the kinetics of cell–particle attachment to the test surfaces.  Nanyang Technological University (NTU) Facilities.  Boey’s  laboratory at NTU has the following equipment for characterizing NMs for the proposed work: dynamic light scattering; zeta potential analyzer; FE‐SEM; HR‐TEM; XPS; MALDI‐TOF MS; ASAP‐BET; FTIR spectrometer; a range of XRDs.  UC Davis Facilities Bodega  Marine  Laboratory  (BML).  BML  has  an  outstanding  flow‐through  seawater  system,  a sophisticated computer‐controlled 600,000‐gallon/day system providing seawater to 16 wet lab areas. A Seawater Monitoring and Control Network provides automated and centralized control of temperature in 10 labs and salinity in two. Photoperiod control is also available in several areas and natural sunlight in two outdoor laboratories. Other functional spaces include 49 dry laboratories, three classrooms, and one auditorium as well as a library, computer lab, and two conference rooms. BML is also equipped with a Horiba JY Ultima 2C  ICP‐OES (optical emissions spectrometer); New Wave  laser ablation system; two semi‐automated  quantitative  fluorescence  imaging  systems  (Olympus  Fluoview  500  scanning  laser confocal; Metamorph/Metafluor  imaging system with cooled high‐speed CCD); Tecan fluorescent plate reader.  Cherr’s  laboratory  houses  the  BML’s  Fluorescence  Imaging  Facility, which  includes  a  Photon Technology spectrofluorometer with ratiometric and ion quantitation software; high‐speed fluorescence video  imaging  system;  three  epifluorescence  microscopes;  UVP  Epichem  II fluorescence/chemiluminescence gel documentation system; Tecan Genios time‐resolved fluorescence/ and  luminescence/absorbance plate  reader; confocal scanning  laser microscope; Expert Vision System software.  This  facility  is  equipped  to  analyze motion of microscopic  samples  as well  as  larger macro samples (e.g., adult fish and crustaceans).  University of Texas, El Paso Facilities Gardea‐Torresdey’s  laboratory  has  available  the  following  major  equipment  for  this  project:  3100 Perkin–Elmer  flame atomic absorption  spectrometer; 4100 ZL Perkin–Elmer Zeeman  graphite  furnace atomic  absorption  spectrometer;  4300  DV  Perkin–Elmer  ICP  OES;  Perkin–Elmer  Elan  DRC  IIe  Laser ablation/HPLC/ICP‐MS;  EG&G Model  394  electrochemical  trace  analyzer;  Hewlett–Packard  5890  GC; Hewlett–Packard  5972  GC/MS;  Perkin–Elmer  Spectrum  100  FTIR  spectrometer  coupled  to  a  Perkin–Elmer  Spectrum  spotlight  300  FTIR microscope.  Additional  shared  resources:  Bruker  250‐MHz  NMR spectrometer; Bruker 300‐MHz multi‐nuclei NMR spectrometer; Electroscan 2020 environmental SEM; Kevex omicron X‐ray microfluorescence spectrometer; Hitachi S‐4800‐II SEM with EBSD; EDAX/TSL X‐ray analyzer  and  electron  backscatter  diffraction  imaging  equipment;  Zyvex  Nanomanipulator  and Nanoprobe; Hitachi H‐8000 TEM. The XAS studies planned for this project will be performed at Stanford Synchrotron Radiation  Laboratories  (SSRL),  Stanford, CA, where Gardea‐Torresdey has  received beam time for performing X‐ray absorption spectroscopic studies for the duration of this project.  Sandia National Lab Facilities Brinker's  Biocharacterization  laboratory  includes  a  facility  for  the  integration  of  biological organisms/components with  engineered  platforms.  The  lab  is  capable  of  handling  Level  2  biological 

Page 101: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

101 

organisms  and  the  isolation  and  analysis  of  DNA,  RNA,  and  proteins.  Various methods  are  used  to incorporate  biological  organisms/components  onto  engineered  platforms,  such  as  vesicle  fusion, multiple tethering schemes, and plugged flow packing. Other capabilities  include: ellipsometry for film characterization;  electrochemistry;  a  PCR  instrument  for DNA  amplification;  a  laser  connected  to  an inverted  microscope  for  fluorophore  interrogation;  and  a  hyperspectral  microarray  scanner  for microarray analysis. A Biosafety Level 1 laboratory is in operation at the AML with access to BSL2 status facilities at Sandia. The AML facility contains standard microbiological and biochemical equipment and supplies  for handling  the microorganisms and cell  lines proposed  for use on  this project: Class  II  flow bench;  standard  and  CO2  incubators;  cryo‐storage;  freezers  and  refrigerators;  autoclave;  and  a fluorescence  microscope.  In  Spring  2008,  Sandia  will  install  an  Asylum  Research  MFP‐3D‐BioAFM integrated  with  a  Nikon  TE2000‐U  inverted  fluorescence  microscope,  which  combines  molecular resolution imaging and picoNewton force measurements on an inverted optical microscope to allow: in situ  imaging of  the surfaces of  living cells upon exposure  to NMs; measurement of adhesive  forces of proteins/NMs on cell surfaces; single‐molecule  force spectroscopy of single NPs; and nanolithography and manipulation of samples on the nanometer and picoNewton scale.  

Page 102: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

102 

 

14.  Personnel  Management and Organization Strategy The UC CEIN strategy  is to maintain a strong organizational  infrastructure that supports and  integrates our  research,  technology  development,  educational  and  diversity  efforts,  internal  and  external stakeholders, as well as facilitating seamless communication among all these communities.  To this end our  organizational  structure  allows  for  selection,  prioritization,  distribution,  and  management  of resources within a multi‐institutional center structure.    Leadership Andre  Nel  (UCLA)  serves  as  the  Center  Director  and  Principal  Investigator.    As  Director,  Dr.  Nel  is responsible  for  the  integration  of  the  Center’s  overall  research,  education  and  outreach  activities.  Arturo  Keller  (UCSB)  is  the Associate Director,  responsible  for  coordinating  the  research  integration, seminars, student training, and outreach activities at UC Santa Barbara to provide seamless integration with  the  activities  at UCLA.    Focused  leadership  for  the  education  and  outreach  components  of  the Center  is provided by Hilary Godwin  (UCLA).   This  faculty management  team provides complimentary expertise and strategic leadership to ensure the Center’s vision and mission.    Integrated Research Groups (IRGs).  CEIN research is organized into seven research groups, each under the  leadership  of  a  CEIN  faculty  member.    Each  IRG  is  composed  of  several  faculty,  postdoctoral researchers, research staff, and graduate students.  Key to the success of the CEIN is the integration of research within and across IRGs.  IRG leaders are responsible for setting priorities, allocating resources, and tracking progress towards achievement of IRG goals.  Frequent formal communication between IRG leaders is key to ensuring that progress is made across all groups, and the findings of one IRG are rapidly disseminated other IRGs.  Projects submit quarterly progress updates to their IRG leader, the results of which are shared and discussed by the CEIN Executive Committee.  Executive Committee   The Executive Committee is composed of the Director, Associate Director, Education/Outreach Director, Co‐PIs, IRG leaders, and the Center Chief Administrative Officer.  The Executive Committee meets twice per month and is responsible for assisting the Director with integration and coordination of research and education, overall resource allocation, and outreach to the scientific,  industrial, and policy community.  Each quarter, the Executive Committee reviews long‐term directions of the Center and possible strategic redirections.    Prior  to  any  Research  Reviews,  Site  Visits,  and  External  Science  Advisory  Committee meetings  the  EC  focuses on  strategic planning.   Research progress  for  all projects  is  reviewed on  an ongoing basis, with projects submitting Quarterly progress updates.     Allocation of Center resources  is based  on  the  following metrics:  (i)  contribution  of  the  proposed work  to  the  CEIN’s  core  goals;  (ii) productivity, publication, and product delivery record; (iii) novelty; (iv) integration and cooperation with other funded CEIN projects; (v) availability of resources and facilities to carry out proposed projects; and (vi) timely delivery of tangible results.  Approximately 5% of the total research budget is designated for new and exploratory integrated research seed funding.    Proposals for seed funding are reviewed by the EC on an annual basis.   Each March, the Executive Committee meets for a day long research retreat.  The retreat focuses on the review of overall Center priorities and is a forum for discussing and establishing key short and long term goals for the Center, with particular focus on strengthening integration across all IRGs.    

Page 103: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

103 

 

External Science Advisory Committee The  CEIN  has  convened  an  11‐member  External  Science  Advisory  Committee  (ESAC)  comprised  of scientists, technologists, industry members, and policy and education specialists.  The ESAC advises the Center’s Executive Committee with respect to CEIN strategic directions and management policies.   The ESAC provides feedback on the focus and direction of CEIN research, progress made toward achieving Center goals, and  illuminating new research and educational opportunities.   The diversity of this group provides a comprehensive perspective on  the major advances  in nanotechnology and key  issues with regards  to potential environmental  implications.   The ESAC has met  twice with  the Center  leadership utilizing  videoconferencing  technology.    This  allows  for  interactive  discussions  with  the  committee without the need for travel and a large time commitment.  The first in‐person meeting of the ESAC will take place on Monday, May 10 on the UCLA Campus.  A daylong meeting has been developed to involve in  depth  discussions  about  the  CEIN  approach  to  research,  the  methods  of  integration,  and  the organization of Center research.   This meeting will be held  in conjunction with  the 2010  International CEIN meeting.  The ESAC will provide an annual written report on CEIN progress in research, education, external collaborations, and outreach, as well as the performance of the CEIN leadership.    Student‐Postdoctoral Advisory Committee A Student‐Postdoctoral Advisory Committee (SPAC) has been convened within the CEIN.  The committee includes  graduate  student  and  postdoctoral  scholar  representatives  from  each  of  the  IRGs.    Initial meetings of the SPAC focused on providing input into the development of the CEIN education program (including development of undergraduate mentoring opportunities), development of a  full‐day annual leadership workshop  (the  first of which was held  in September 2009,  the  second will be held  in May 2010), and formulation of goals for future Center workshops and seminar series.   With  input from the SPAC,  the  Education/Outreach  Director  and  Coordinator  are  developing  an  assessment  document reviewing the educational and training achievements of Center trainees as well as an assessment of the educational quality of our outreach program.  Annual participation surveys will be sent out to all Center members and will be reviewed with the assistance of the SPAC.    Administrative Support An administrative  staff has been  compiled at UCLA  to  support  streamlined operations of  the Center.  David Avery  serves  as  the Chief Administrative Officer of  the CEIN.    The CAO  assists  the Director by overseeing  the  general  administration,  cooperation,  communication,  planning,  financial implementation,  goals  setting,  and  development  of  Center  activities.    The  CAO  is  supported  by  the following dedicated staff:  

o Financial/Budget  Coordinator  –  responsible  for  financial management  and  reporting systems across partner institutions 

o Administrative  Assistant  –  provides  general  support  for  all  Center  activities  including meeting coordination 

o Education/Outreach  Coordinator  –  under  joint  supervision  of  the  CAO  and Education/Outreach  Director,  organizes  the  training,  communication,  diversity,  and evaluation components of the program.   

To assist in the administrative coordination of the UC Santa Barbara activities, a half time administrative support staff position has been allocated to UCSB.    

Page 104: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

104 

 

Organization Chart 

IRG 1 Leader

IRG 2 Leader

IRG3 Leader

IRG4 Leader

CEIN Exec utive Committee (CEC)

CEIN Director

External ScienceAdvisory Committee

( ESAC )

CEIN Associate Director

Student

Advisory Committee

SPAC

IRG5 Leader

Modeling of NP Environmental Distribution &

Toxicity

IRG 6 Leader

Combinatorial Nanoparticle

Libraries

NMs Interactions ( Molecular ,

Cellular , Organ & Systemic

Levels )

Organismal & Community Toxicology

Nanoparticles Fate &

Transport

High Throughput Screening (Data Mining, QSRs)

IRG7 Leader

Risk Perception

Education / Outreach ( EO )

Director

Vice Chancellor for

Research

Education , Outreach & Human

Resource Objectives

Chief Admin

Officer

Financial/Budget

Coordinator

Administrative Assistant

EO Coordinator /

Assistant

Administrative Assistant

Data/IT Coordinator

Postdoc

  Changes in Personnel The UC CEIN Executive Committee unanimously voted to add UCLA Biostatistics/Public Health Professor Donatello Telesca to the Center membership.  Dr. Telesca’s research interests are focused on dependent data and nonparametrics.  He is also interested in Decision Theory, MCMC Computation, and statistical methods in bioinformatics.  Since joining the Center, Dr. Telesca has worked closely with researchers in IRG 5 (High Throughput) and IRG 6 (Data Modeling and Management) to provide assistance in statistical analysis of  large data sets and how this data can be used to develop models predicting environmental impacts.  Dr. Telesca’s bio follows in Section 16.   Dr. Bradley Cardinale (IRG 3 freshwater mesocosm studies) will be leaving UC Santa Barbara in Summer 2010  to  accept  a  position  at  the  University  of Michigan.    The  CEIN  has  selected  and  the  Executive Committee has unanimously approved to add UCSB Ecology, Evolutionary and Marine Biology Professor Edward McCauley  to  the Center membership.   Dr. McCauley will  share  supervision of  the  freshwater mesocosm  postdoctoral  fellow  as  the  current  round  of  mesocosm  experiments  are  conducted  as previously planned.  Dr. McCauley will assess whether the experimental plan for these studies will need to be modified over  the  coming year  to best  suit  the objectives of  the UC CEIN.   Dr. McCauley's bio follows in Section 16.  

Page 105: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

105 

 

The UC CEIN Executive Committee conducted an annual review of the integrated research plans of all of our  current projects.  Through a  review of  the activities of our nanomaterial  libraries,  the  committee decided  that  the  current  strategy  for dealing with  carbon  nanotubes in  the  Center is  not  logistically optimal  for introducing  sufficient CNTs  to  perform  mesocosm  studies.   The  committee  decided to discontinue  the  current project on  SWCNT studies in  collaboration with UC Riverside at  the  end of Year  2  (August  31,  2010).    The  Center  Director  and  IRG  1  leader  are  working  with  Dr.  Haddon  to conclude these ongoing studies and develop a publication reflecting the work to date.  The allocation for this  project  will  be  returned  to  IRG  1  and  redistributed  to  engineered  nanomaterials  library development  following  a  course  of  action  that  will  be  reviewed  and  approved  by  our  Executive Committee.   

Page 106: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

Table 4a: NSEC Personnel - All, irrespective of Citizenship - Draft ReportNSEC Center: CEIN: Predictive Toxicology Assessment and Safe Implementation of Nanotechnology in the Environment

Personnel Type Total

Gender Race Data

Ethnicity:Hispanic Disabled

%NSEC

DollarsMale Female AI/AN NH/PI B/AA W A

More thanone racereported,AI/AN,B/AA,NH/PI

More thanone racereported,

W/A

NotProvided

Leadership, Administration/Management

Subtotal 17 8 9 0 0 0 15 2 0 0 0 1 0 100%

Directors1 2 2 0 0 0 0 2 0 0 0 0 1 0 100%

Thrust Leaders1 7 4 3 0 0 0 7 0 0 0 0 0 0 100%

AdministrativeDirector andSupport Staff

8 2 6 0 0 0 6 2 0 0 0 0 0 -

Research

Subtotal 145 88 56 0 0 1 91 51 0 1 0 12 0 93%

SeniorFaculty1 21 19 2 0 0 0 18 3 0 0 0 3 0 71%

Junior Faculty1 5 4 1 0 0 0 3 2 0 0 0 0 0 80%

Research Staff 18 8 10 0 0 0 13 5 0 0 0 1 0 -

VisitingFaculty1 0 0 0 0 0 0 0 0 0 0 0 0 0 0%

IndustryResearchers 0 0 0 0 0 0 0 0 0 0 0 0 0 -

Post Docs1 40 30 10 0 0 0 16 24 0 0 0 3 0 98%

DoctoralStudents1 37 15 22 0 0 0 25 12 0 0 0 3 0 97%

MastersStudents1 0 0 0 0 0 0 0 0 0 0 0 0 0 0%

UndergraduateStudents (non

REU)123 12 11 0 0 1 16 5 0 1 0 2 0 100%

High SchoolStudents 1 0 0 0 0 0 0 0 0 0 0 0 0 -

Curriculum Development and Outreach

Subtotal 15 5 10 0 0 0 6 6 0 1 2 0 0 46%

SeniorFaculty1 1 1 0 0 0 0 1 0 0 0 0 0 0 100%

Junior Faculty1 1 1 0 0 0 0 1 0 0 0 0 0 0 0%

Research Staff 2 1 1 0 0 0 2 0 0 0 0 0 0 -

VisitingFaculty1 0 0 0 0 0 0 0 0 0 0 0 0 0 0%

IndustryResearchers 0 0 0 0 0 0 0 0 0 0 0 0 0 -

Post Docs1 0 0 0 0 0 0 0 0 0 0 0 0 0 0%

DoctoralStudents1 2 0 2 0 0 0 0 2 0 0 0 0 0 100%

MastersStudents1 3 1 2 0 0 0 2 1 0 0 0 0 0 100%

UndergraduateStudents (non

REU)16 1 5 0 0 0 0 3 0 1 2 0 0 0%

High SchoolStudents 0 0 0 0 0 0 0 0 0 0 0 0 0 -

REU Students

Subtotal 0 0 0 0 0 0 0 0 0 0 0 0 0 0%

REU studentsparticipating in NSEC

Research10 0 0 0 0 0 0 0 0 0 0 0 0 0%

1 of 2 4/8/2010 2:48 PM

AveryCEIN
Typewritten Text
UC CEIN
AveryCEIN
Typewritten Text
ANNUAL REPORT 2010
AveryCEIN
Typewritten Text
106
Page 107: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

NSEC FundedREU Students1 0 0 0 0 0 0 0 0 0 0 0 0 0 0%

Pre-college(K-12)

Subtotal 0 0 0 0 0 0 0 0 0 0 0 0 0 0%

Students 0 0 0 0 0 0 0 0 0 0 0 0 0 -

Teachers (RET) 0 0 0 0 0 0 0 0 0 0 0 0 0 -

Teachers(non-RET) 0 0 0 0 0 0 0 0 0 0 0 0 0 -

Total1 177 101 75 0 0 1 112 59 0 2 2 13 0 75%

1 The percentage of people in the personnel category receiving at least some salary or stipend support from NSF NSEC Program must be provided in the far right column, "%NSEC Dollars." Details are described in the Instructions section for this table.

LEGEND:

AI/AN American Indian or Alaska Native

NH/PI Native Hawaiian or Other Pacific Islander

B/AA Black/African American

W White

A Asian, e.g., Asian Indian, Chinese, Filipino, Japanese, Korean, Vietnamese, Other Asian

More than onerace reported,AI/AN, B/AA,NH/PI

Personnel reporting a) two or more race categories and b) one or more of the reported categories includes American Indian or Alaska Native, Black orAfrican American, or Native Hawaiian or Other Pacific Islander

More than onerace reported,W/A

Personnel reporting a) both White and Asian and b) no other categories in addition to White and Asian

US/Perm U.S. citizens and legal permanent residents

Non-US Non-U.S. citizens/Non-legal permanent residents

2 of 2 4/8/2010 2:48 PM

AveryCEIN
Typewritten Text
UC CEIN
AveryCEIN
Typewritten Text
ANNUAL REPORT 2010
AveryCEIN
Typewritten Text
107
Page 108: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

Table 4b: NSEC Personnel - US Citizens and Permanent Residents - Draft ReportNSEC Center: CEIN: Predictive Toxicology Assessment and Safe Implementation of Nanotechnology in the Environment

Personnel Type Total

Gender Race Data

Ethnicity:Hispanic Disabled

%NSEC

DollarsMale Female AI/AN NH/PI B/AA W A

More thanone racereported,AI/AN,B/AA,NH/PI

More thanone racereported,

W/A

NotProvided

Leadership, Administration/Management

Subtotal 17 8 9 0 0 0 15 2 0 0 0 1 0 100%

Directors1 2 2 0 0 0 0 2 0 0 0 0 1 0 100%

Thrust Leaders1 7 4 3 0 0 0 7 0 0 0 0 0 0 100%

AdministrativeDirector andSupport Staff

8 2 6 0 0 0 6 2 0 0 0 0 0 -

Research

Subtotal 82 46 35 0 0 0 69 11 0 1 0 9 0 99%

SeniorFaculty1 13 12 1 0 0 0 11 2 0 0 0 1 0 92%

Junior Faculty1 2 1 1 0 0 0 2 0 0 0 0 0 0 100%

Research Staff 11 5 6 0 0 0 11 0 0 0 0 1 0 -

VisitingFaculty1 0 0 0 0 0 0 0 0 0 0 0 0 0 0%

IndustryResearchers 0 0 0 0 0 0 0 0 0 0 0 0 0 -

Post Docs1 10 7 3 0 0 0 10 0 0 0 0 2 0 100%

DoctoralStudents1 25 11 14 0 0 0 20 5 0 0 0 3 0 100%

MastersStudents1 0 0 0 0 0 0 0 0 0 0 0 0 0 0%

UndergraduateStudents (non

REU)120 10 10 0 0 0 15 4 0 1 0 2 0 100%

High SchoolStudents 1 0 0 0 0 0 0 0 0 0 0 0 0 -

Curriculum Development and Outreach

Subtotal 14 4 10 0 0 0 6 6 0 1 1 0 0 50%

SeniorFaculty1 1 1 0 0 0 0 1 0 0 0 0 0 0 100%

Junior Faculty1 1 1 0 0 0 0 1 0 0 0 0 0 0 0%

Research Staff 2 1 1 0 0 0 2 0 0 0 0 0 0 -

VisitingFaculty1 0 0 0 0 0 0 0 0 0 0 0 0 0 0%

IndustryResearchers 0 0 0 0 0 0 0 0 0 0 0 0 0 -

Post Docs1 0 0 0 0 0 0 0 0 0 0 0 0 0 0%

DoctoralStudents1 2 0 2 0 0 0 0 2 0 0 0 0 0 100%

MastersStudents1 3 1 2 0 0 0 2 1 0 0 0 0 0 100%

UndergraduateStudents (non

REU)15 0 5 0 0 0 0 3 0 1 1 0 0 0%

High SchoolStudents 0 0 0 0 0 0 0 0 0 0 0 0 0 -

Total1 113 58 54 0 0 0 90 19 0 2 1 10 0 75%

1 The percentage of people in the personnel category receiving at least some salary or stipend support from NSF NSEC Program must be provided in the far right column, "%NSEC Dollars." Details are described in the Instructions section for this table.

LEGEND:

AI/AN American Indian or Alaska Native

1 of 2 4/8/2010 2:50 PM

AveryCEIN
Typewritten Text
UC CEIN
AveryCEIN
Typewritten Text
ANNUAL REPORT 2010
AveryCEIN
Typewritten Text
108
Page 109: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

NH/PI Native Hawaiian or Other Pacific Islander

B/AA Black/African American

W White

A Asian, e.g., Asian Indian, Chinese, Filipino, Japanese, Korean, Vietnamese, Other Asian

More than onerace reported,AI/AN, B/AA,NH/PI

Personnel reporting a) two or more race categories and b) one or more of the reported categories includes American Indian or Alaska Native, Black orAfrican American, or Native Hawaiian or Other Pacific Islander

More than onerace reported,W/A

Personnel reporting a) both White and Asian and b) no other categories in addition to White and Asian

US/Perm U.S. citizens and legal permanent residents

Non-US Non-U.S. citizens/Non-legal permanent residents

2 of 2 4/8/2010 2:50 PM

AveryCEIN
Typewritten Text
UC CEIN
AveryCEIN
Typewritten Text
ANNUAL REPORT 2010
AveryCEIN
Typewritten Text
109
Page 110: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

110 

 

15.  Publications and Patents  Publications ‐  May 1, 2009 to March 31, 2010 

 Note: Interdisciplinary/cross IRG publications indicated with an *  Arias, A., J., Peralta‐Videa, J.R., Ellzey, J.T., Viveros, M.N., Gardea‐Torresdey, J.L. 2010.  Effects of Glomus 

desertícola  inoculation on Prosopis: Enhancing chromium and  lead uptake and translocation as confirmed  by  x‐ray mapping,  ICP‐OES  and  TEM  techniques.  Environmental and  Experimental Botany 68 139–148.  doi:10.1016/j.envexpbot.2009.08.009 

 Castillo‐Michel,  H.,  Valente,  N.,  Martinez‐Martinez,  A.,  Parsons,  J.G.,  Peralta‐Videa,  J.R.,  Gardea‐

Torresdey, J.L. 2009.  Coordination and speciation of cadmium  in corn seedlings and  its effects on  macro  and  micro  nutrients  uptake.  Plant  Physiology  and  Biochemistry    47,  608‐614.   doi:10.1016/j.plaphy.2009.02.005 

 Samuel  Clarke,  Randall  E. Mielke,  Andrea  Neal,  Patricia  Holden,  and  Jay  L.  Nadeau;    Bacterial  and 

Mineral  Elements  in  an  Arctic  Biofilm:  A  Correlative  Study  Using  Fluorescence  and  Electron Microscopy. Microscopy and Microanalysis, 16, 1‐13, 2010. doi:10.1017/S1431927609991334 

 de la Rosa, G., Martínez, A., Castillo, H., Fuentes‐Ramírez, R., Gardea‐Torresdey, J. 2009. Insights into the 

mechanisms of Cd hyperaccumulation  in S. kali, a desert plant species. Nova Scientia 2(1), 33‐53. 

 de la Rosa, G., Torres, J., Parsons, J.G., Peralta‐Videa, J.R., Castillo‐Michel, H., Lopez, M.L., Cruz‐Jiménez, 

G., Gardea‐Torresdey,  J.L. 2009. X‐ray Absorption Spectroscopy Unveils  the Formation of Gold Nanoparticles in Corn (Zea mays) Acta Universitaria 19, Special Volume 2, 76‐81 

 Del Toro, I. Floyd, K., Gardea‐Torresdey, J., Borrok D. Heavy Metal Distribution and Bioaccumulation  in 

Chihuahuan Desert Rough Harvester Ant (Pogonomyrmex rugosus) Populations. Environmental Pollution, 158 (5), 1281‐1287. doi:10.1016/j.envpol.2010.01.024 

 *Saji    George,  Suman  Pokhrel,  Tian  Xia,  Benjamin  Gilbert,  Zhaoxia  Ji,  Marco  Schowalter,  Andreas 

Rosenauer, Robert Damiseaux, Kenneth A. Bradley, Lutz Maedler, Andre E. Nel.  Use of a Rapid Cytotoxicity  Screening  Approach  to  Engineer  a  Safer  Zinc  Oxide  Nanoparticle  through  Iron Doping.  ACS Nano, 2010, 4 (1), pp. 15‐29.  doi:10.1021/nn901503q    

 Harthorn, Barbara, Nick Pidgeon, & Terre  Satterfield.   2009.  “Risks and Benefits of Nanotechnology.” 

http://www.azonano.com/details.asp?ArticleId=2452AZoNano , online Nov 22, 2009.  Barbara Herr Harthorn, Karl Bryant, &  Jennifer Rogers. 2009.  “Gendered Risk Beliefs  about Emerging 

Nanotechnologies  in  the US.” Univ of Washington Center  for Workforce Development; pages 92‐112. Monograph available on‐line at:  

http://depts.washington.edu/ntethics/symposium/index.shtml  Barbara Herr Harthorn. “Methodological Challenges Posed by Emergent Nanotechnologies and Cultural 

Values.”  In The Handbook of Emergent Technologies and Social Research, Ed. Sharlene Nagy Hesse‐Biber, Oxford University Press. 2010 (in press) 

Page 111: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

111 

 

 Y.  Hong,  R.  Honda,  N. Myung,  S. Walker,  “Transport  of  iron‐based  nanoparticles:  Role  of magnetic 

properties”.    Environmental  Science  and  Technology    2009  43,  8834–8839. doi:10.1021/es9015525 

 *Keller, A., X. Wang, D. Zhou, H. Lenihan, G. Cherr, B. Cardinale, RJ Miller, Stability and aggregation of 

metal oxide nanoparticles in natural aqueous matrices. Environmental Science and Technology, 2010, 44(6): 1962‐1967. doi:10.1021/es902987d. 

 Kovochich,  M.,  Espinasse,  B.,  Auffan, M.,  Hotze,  E.M., Wessel,  L.,  Xia,  T.,  Nel,  A.E., Wiesner, M.R. 

Comparative  toxicity of C60 aggregates  towards mammalian cells:  role of  the  tetrahydrofuran (THF)  decomposition.  Environmental  Science  and  Technology,  2009,  43:  6378‐6384. doi:10.1012/es900990d 

 Huan   Meng, Tian Xia, Saji George, Andre E. Nel.   A Predictive Paradigm  for  the Safety Assessment of 

Nanomaterials.  ACS Nano , 2009, 3 (7), pp 1620–1627.   doi:10.1021/nn9005973  Mokgalaka‐Matlala,  N.S.,  Flores‐Tavizόn,  E.,  Castillo‐Michel,  H.  Peralta‐Videa,  J.R.,  Gardea‐Torresdey, 

J.L.2009. Arsenic tolerance in mesquite (Prosopis sp.): Low molecular weight thiols synthesis and glutathione  activity  in  response  to  arsenic.   Plant Physiology and Biochemistry.   Volume 47, Issue 9, September 2009, Pages 822‐826, doi:10.1016/j.plaphy.2009.05.007 

 Muller, E.B. Nisbet, R.M. and Berkley, H.  Sublethal toxicant effects with dynamic energy budget theory: 

model formulation.  Ecotoxicology, 2010, 19, 1:48‐60. DOI 10.1007/s10646‐009‐0385‐3  *Nel, A.E., Maedler, L., Velegol, D., Xia, T., Hoek, E.M., Somasundaran, P., Klaessig, F.,   Castranova, V., 

and Thompson, M.   Understanding biophysicochemical  interactions at  the nano–bio  interface.   Nature Materials 8, 543‐557 (14 June 2009) doi:10.1038/nmat2442 

 Parsons, J.G., Lopez, M.L., Peralta‐Videa, J.R., Gardea‐Torresdey, J.L. 2009. Determination of arsenic(III) 

and  arsenic(V)  binding  to  microwave  assisted  hydrothermal  synthetically  prepared  Fe3O4, Mn3O4,  and MnFe2O4  nanoadsorbents.   Microchemical  Journal  91,  100‐106  (January  2009) doi:10.1016/j.microc.2008.08.012 

 Parsons,  J.G., Lopez, M.L., Castilo‐Michel, H., Peralta‐Videa,  J.R., Gardea‐Torresdey,  J.L.   2009.  Arsenic 

Speciation  in Biological Samples Using XAS and Mixed Oxidation State Calibration Standards of Inorganic Arsenic. Applied Spectroscopy , 63, 10:961‐970. doi: 10.1366/000370209788964359 

 

Parsons,  J.G., Armendariz, V. Lopez, M.L.,  Jose‐Yacaman, M., Gardea‐Torresdey,  J.L. 2009. Kinetics and thermodynamics of the bioreduction of potassium tetrachloroaurate using  inactivated oat and wheat  tissues.    Journal  of  Nanoparticle  Research,  2009,  online  Jun  17,  2009.  doi: 10.1007/S11051‐009‐9674‐2. 

 Peralta‐Videa,  J.R.,  Lopez,  M.L.,  Narayan,  M.,  Gardea‐Torresdey,  J.L.  (2009).  The  biochemistry  of 

environmental  heavy metal  uptake  by  plants:  implications  for  the  food  chain.    International Journal  of  Biochemistry  &  Cell  Biology    41,  1665‐1677,  (August‐September  2009)  doi:10.1016/j.biocel.2009.03.005 

 

Page 112: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

UC Center for Environmental Implications of Nanotechnology  Annual Report 2010 

112 

 

Pidgeon,  Nick,  Barbara  Harthorn,  Terre  Satterfield  2009.  “Nanotech:  Good  or  Bad?”The  Chemical Engineer Today (tce Today), (Dec 2009/Jan 2010): 37‐39.  

 *S. Pokhrel, T. Xia, M. Kovochich, M. Liong, M. Schwalter, A. Rosenauer, B. Gilbert, J. I. Zink, A. E. Nel, L. 

Mädler,  Comparison  of  the mechanism  of  toxicity  of  binary  and mixed  binary metal  oxide nanoparticles based on dissolution and oxidative stress properties, Chemie  Ingenieur Technik, 2009, 81(8) 1167.  doi:10.1002/cite.200950629 

 S. Pokhrel, J. Birkenstock, M. Schowalter, A. Rosenauer, L. Mädler, Growth of ultrafine single crystalline 

WO3 nanoparticles using Flame Spray Pyrolysis, Crystal Growth & Design, 2010, 10(2), p. 632‐639. DOI: 10.1021/cg9010423 

 Satterfield,  T.,  Kandlikar, M.,  Beaudrie,  C,  Conti,  J.,  Harthorn,B.,  Anticipating  the  Perceived  Risk  of 

Nanotechnologies:  Will  They  Be  Like  Other  Controversial  Technologies?    Nature Nanotechnology , 2009, 4, 752‐758. doi:10.1038/nnano.2009.265 

 *Tian Xia, Michael Kovochich, Monty Liong, Huan Meng, Sanaz Kabehie, Saji George,  Jeffrey  I. Zink and 

Andre  E. Nel.  “Polyethyleneimine  Coating  Enhances  the  Cellular Uptake  of Mesoporous  Silica Nanoparticles and Allows Safe Delivery of siRNA and DNA Constructs”. ACS Nano, 2009, 3 (10), pp 3273‐3286. doi: 10.1021/nn900918w. 

 Peng Wang  and  Arturo  Keller,  “Natural  and  engineered  nano  and  collodial  transport:  role  of  zeta 

potential  in  prediction  of  particle  distribution,  Langmuir,  2009,  25(12),  6856‐6862.  doi: 10.1021/l900134f 

 Zhao, Y., Parsons,  J.G.,  Lopez‐Moreno, M.L., Peralta‐Videa,  J.R., Gardea‐Torresdey,  J.L.     2009. Use of 

synchrotron‐  and  plasma‐based  spectroscopic  techniques  to  determine  the  uptake  and biotransformation of chromium(III) and chromium(VI) by Parkinsonia aculeata. Metallomics 1, 330‐338.   doi:10.1039/b822927a 

 Patents There are no patentable activities to report to date.  16.  Biographical Information Short biographical information for new Center faculty members follow:  

Donatello Telesca, UCLA, Assistant Professor, Biostatistics 

Edward McCauley, UC Santa Barbara, Professor, Ecology, Evolutionary and Marine Biology 

Page 113: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

BIOGRAPHICAL SKETCH Provide the following information for the key personnel and other significant contributors in the order listed on Form Page 2. Follow this format for each person. DO NOT EXCEED FOUR PAGES.

NAME

Donatello, Telesca

POSITION TITLE

Assistant Professor eRA COMMONS USER NAME

DTELESCA2 EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, and include postdoctoral training.)

INSTITUTION AND LOCATION DEGREE (if applicable)

YEAR(s) FIELD OF STUDY

Bocconi University, Milano, Italy BS 2002 Economics and Statistics University of Washington, Seattle, Washington

MS 2004 Statistics

University of Washington, Seattle, Washington

PHD 2007 Statistics

A. Positions and Honors.

Positions and Employment

2002-2005 Teaching Assistant, Department of Statistics, University of Washington, Seattle, Washington

2004-2005 Pre Doctoral Lecturer, Department of Statistics, University of Washington, Seattle, Washington

2003-2004 Research Assistant, Department of Statistics, University of Washington, Seattle, Washington

2004-2007 Pre Doctoral Research Fellow, Public Health Division, Fred Hutchinson Cancer Research Center, Seattle, Washington

2007-2009 Postdoctoral Fellow, Department of Biostatistics, Division of Quantitative Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas

2009-Present Assistant Professor. UCLA School of Public Health, Department of Biostatistics. Los Angeles, California.

Professional Memberships

2002-present Member, American Statistical Association 2003-present Member, Institute of Mathematical Statistics 2003-present Member, International Biometric Society 2003-present Member, International Society for Bayesian Analysis (ISBA) Editorial Service Referee for a number of Statistical Journals including (Bioinformatics, Computational Statistics and Data Analysis, Genetics, Technometrics.) 2007-present Associate Editor, ISBA Bulletin.

AveryCEIN
Typewritten Text
UC CEIN
AveryCEIN
Typewritten Text
ANNUAL REPORT 2010
AveryCEIN
Typewritten Text
113
Page 114: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

Invited Talks 2006 Fred Hutchinson Cancer Research Center, Seattle (WA). 2006 University of Washington, Department of Statistics, Seattle (WA). 2007 MD Anderson Cancer Center, Houston (TX). 2007 Fred Hutchinson Cancer Research Center, Seattle (WA). 2007 Joint Statistical Meeting, Salt Lake City (UT). 2008 CRG/PIMS meeting Simihamoo Resort (WA). 2009 UC Santa Barbara, Department of Statistics and Applied Probability, (CA). 2009 North Carolina State University, Department of Statistics, Raleigh (NC). 2009 UCLA, Department of Biostatistics, (CA). 2009 Boston University, Department of Mathematics and Statistics, (MA). 2009 UT, IROM Department, Austin (TX). 2009 Temple University, Department of Statistics, Philadelphia (PA). 2009 McGill University, Department of Statistics, Montreal (Canada). 2009 UK, Department of Statistics, Lexington (KY). 2009 Joint Statistical Meeting, Washington (DC). Honors 1997 University Bocconi Scholarship for Undergraduate Studies (1997 - 2002). 2002 Gold Medal for Best Graduates, University Bocconi. 2007 Graduate Student Travel Award from UW Graduate School Fund for Excellence and Innovation for travel to the 2007 ENAR spring meeting, Atlanta (GA). 2007 American Statistical Association, SBSS Student Paper Award. Joint Statistical Meeting, Salt Lake City 2009 American Statistical Association, ISBA Savage Honorable Mention for a Dissertation that

makes outstanding contributions and has potential to impact statistical practice in a field of application. Joint Statistical Meeting, Washington DC.

B. Peer-reviewed Publications. Published Papers 1. Telesca D. Etzioni R. and Gulati R. (2008). Estimating Lead Time and Overdiagnosis

Associated with PSA Screening from Prostate Cancer Incidence Trends. Biometrics, 64, 10-19. 2. Sim HG, Telesca D, Culp SH, et al. (2008). Tertiary gleason pattern 5 in gleason 7 prostate

cancer predicts pathologic parameters and biochemical recurrence. Journal of Urology 177 (4): 157-158.

3. Sim HG, Telesca D, Culp SH, et al. (2008). Cancer to total prostate volume ratio influences pathological parameters and biochemical recurrence in localized prostate cancer treated by radical prostatectomy. Journal of Urology 177 (4): 340-340.

4. Telesca D. and Inoue L.Y.T. (2008). Bayesian Hierarchical Curve Registration. Journal of The American Statistical Association, Volume 103, Number 481, pp. 328-339(12).

5. Telesca D. , Inoue L.Y.T., Neira M., Etzioni R., Gleave M. and Nelson C., (2008). Differential Expression and Network Inferences through Functional Data Modeling. (To appear in Biometrics).

Papers Currently Under Peer Review 1. Telesca D., Erosheva E., Kreger D. and Matzueda R. (2008). Hierarchical Poisson Registration

of Longitudinal Crime Trajectories. JASA (Invited revision). 2. Telesca D., Muller P. and Parmiggiani G. (2008). Modeling Dependent Gene Expression.

(Submitted to JRSS–B).

AveryCEIN
Typewritten Text
UC CEIN
AveryCEIN
Typewritten Text
ANNUAL REPORT 2010
AveryCEIN
Typewritten Text
114
Page 115: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

NSF Biosketch: Edward McCauley

a) Professional Preparation

University of Ottawa Biological Sciences B.Sc. (Hon.) 1976 University of Ottawa Aquatic Ecology M.Sc. 1978 McGill University Ecology Ph.D. 1983 University of California Santa Barbara Theoretical Ecology Post-Doc 1983-1985

b) Appointments

2010 Director, National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara

2010 Professor, Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara

2009 International Research Chair, Institute for Advanced Studies, Orléans et Tours, France 2001-2009 Tier 1 Canada Research Chair in Population Ecology, University of Calgary 2003-2008 Co-Director, Alberta Ingenuity Centre for Water Research 2003-2004 Fellow, Centre of Advanced Studies, Norwegian Acad. Sciences and Letters, Oslo, Norway 2000 Visiting Professorship, Dept. of Ecology and Environmental Science, University of Umeå, Sweden 2000-2001 Visiting Professorship and Max Planck Fellowship, Max Planck Institute for Limnology, Plön,

Germany 1997-2009 Professor, Department of Biological Sciences, University of Calgary 1997-2000 Chair, Biocore, Department of Biological Sciences, University of Calgary 1993 Visiting Professorship and National Lecturer in Programme on Nonlinear Dynamics. Netherlands

Organization for Scientific Research, University of Amsterdam, Amsterdam, The Netherlands 1991-1997 Associate Professor, Department of Biological Sciences, University of Calgary 1994-1996 Chair, Ecology Division, University of Calgary 1985-1991 Assistant Professor and Natural Sciences and Engineering Research Council (Canada)

University Research Fellow, Biological Sciences, University of Calgary

c) Selected Publications (from over 100 peer-reviewed papers and 4 book chapters) – most closely related and others

1. Fox, J. W., Nelson, W. A., and E. McCauley. 2010. Coexistence mechanisms and the paradox of the plankton: quantifying selection from noisy data. Ecology (in press) 2. Sterner, R.W., Andersen, T., Elser, J.J., Hessen, D.O., Hood, J., McCauley, E. & J. Urabe. 2008. Scale-dependent carbon:nitrogen:phosphorus seston stoichiometry in marine and freshwaters. Limnology and Oceanography 53:1169-1180 3. Lutscher, F., E. McCauley and M. A. Lewis. 2007. Spatial patterns and coexistence mechanisms in rivers. Theoretical Population Biology 71: 267-277. 4. Anderson, K.E., A.J. Paul, E. McCauley, L.J. Jackson, J.R. Post and R.M. Nisbet. 2006. Ecological dynamics and the management of instream flow needs in rivers and streams. Frontiers in Ecology and the Environment 4: 309-318. 5. Flanagan, K. and E. McCauley. 2006. Freshwater foodwebs control carbon dioxide flux through sedimentation. Global Change Biology 12: 644-651. 1. Bailey, S. and E. McCauley. 2009. Extrinsically and intrinsically generated spatial patterns of algal abundance in experimental streams. Ecological Complexity 6: 328-336 2. McCauley, E., W. Nelson, and R. Nisbet. 2008. Small-amplitude cycles emerge from stage-structured interactions in Daphnia- algal systems. Nature 455: 1240-1243.

AveryCEIN
Typewritten Text
UC CEIN
AveryCEIN
Typewritten Text
ANNUAL REPORT 2010
AveryCEIN
Typewritten Text
115
Page 116: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

3. Anderson K.E., R.M. Nisbet, and E. McCauley. 2008. Transient responses to spatial perturbations in advective systems. Bulletin of Mathematical Biology 70: 1480-1502. 4. Simpson, K., E. McCauley and W. Nelson. 2008. Spatial heterogeneity has differential impacts on upstream and downstream rates of spread in experimental streams. Oikos 117: 1491-1499. 5. Nelson, W.A., E. McCauley and F.J. Wrona. 2005. Stage-Structured cycles promote genetic diversity in a Daphnia-algal predator-prey system. Nature 433: 413-417.

d) Synergistic Activity:

E. McCauley began as Director of NCEAS in 2010 with a history of leadership in collaborative research initiatives, teaching in interdisciplinary areas, and professional service to academic communities. i. He was Co-PI in creating the Alberta Ingenuity Center for Water Research, now morphed into a major Water Research Institute, designed for interdisciplinary research (Science, Engineering, Law, Policy, and Economics). ii.He is PI in two major research projects directly relevant to the Environmental Synthesis Center (“Impacts of Permafrost Activity on Carbon Fluxes in Arctic Lakes” and “Flowing to the Future: Advancing Instream Flow Assessment Tools and Policy”). iii. As the PI and Project Leader, he was recently awarded $22 million to establish a new interdisciplinary research infrastructure that will investigate novel treatment techniques for emerging pollutants (e.g. biologically active compounds) and new assessment techniques for the impact of these pollutants on river systems. iv. Together with mathematicians from three Universities, he was Co-PI on awards to establish new curricula for Mathematical Biologists that focused on early-stage Ph.D. Biology students interested in acquiring modeling skills for their thesis research. v. He has chaired major grant panels in Canada, both in Ecology and interdisciplinary strategic areas (Medicine, Social Science, Science, and Engineering). McCauley has also served on EU Biodiversity Grant Panels and is currently advising the French Foundation for Biodiversity Research on the creation of a new Biodiversity Synthesis Center.

e) Collaborators and Other Affiliations: Collaborators Graduate Advisors and Postdoctoral Sponsors: F. Briand (Director, Mediterranean Science Commission), J. Kalff (McGill), R. Peters (McGill), W. Leggett (Queens), W. Murdoch (UCSB)

Thesis Advisor and Post-Graduate Scholar (current and last 5 years) Thesis Advisor (Supervisor for a total of 17 graduate students/completed): R. Richard (Calgary), M. Kobryn (Calgary), G. Schatz (Calgary), S. Bailey (Toronto), P. Crumribe (Durham), K. Simpson (Calgary), W. Nelson (Queens), S. Watson (Waterloo), T. Satchwill (Montreal)

Postgraduate (Supervisor for a total of 12 post-doctoral fellows): F. Lutscher (Ottawa), C. Davidson (Michigan State), K. Anderson (UC Riverside), K. Flanagan (Victoria), T. Romanuk (Dalhousie), J. LaMontagne (Asian University for Women), G. Benoy (UNB).

Collaborators: B. Ananthasubraaniam (UCSB), K. Anderson (UC Riverside), T. Anderson (Oslo), S. Bailey (Toronto), N. Banks (Calgary), B. Beisner (Montreal), M. Belosovic (Alberta), L. Börger (Guelph), J. Casas (Tours), I. Cousins (Princeton), J. Culp (UNB), S. Diehl (Umea), M. Dobelli (UBC), J. Elser (ASU), K. Flanagan (Victoria), J. Fox (Calgary), J. Fryxell (Guelph), W. Gurney (Strathclyde), H. Habibi (Calgary), D. Hessen (Oslo), F. Hilker (Bath), R. Holdo (Gainesville), R. Holt (Gainesville), L. Jackson (Calgary), A. Kirkwood (Toronto), J. LaMontagne (Asian University for Women), R. Law (York), M. Lewis (Alberta), F. Lutscher (Ottawa), J. Matthiopoulos (St. Andrews), B. Mayer (Calgary), E.J. Milner-Gulland (Imperial), W. Nelson (Queens), R. Nisbet (UCSB), A. Paul (Alberta), J. Post (Calgary), T. Prowse (Victoria), J. Rasmussen (Lethbridge), S. Rood (Lethbridge), A. Roques (Orleans), T. Shea (Calgary), K. Simpson (Calgary), A. Sinclair (UBC), D. Smith (Alberta), R. Sterner (Minnesota), J. Urabe (Japan), S. Watson (Waterloo), S. Wood (Bath), F. Wrona (Victoria).

AveryCEIN
Typewritten Text
UC CEIN
AveryCEIN
Typewritten Text
ANNUAL REPORT 2010
AveryCEIN
Typewritten Text
116
AveryCEIN
Typewritten Text
AveryCEIN
Typewritten Text
AveryCEIN
Typewritten Text
Page 117: for Nanotechnology (UC CEIN) NSF: EF 0830117 · 2013. 2. 7. · UC Center for Environmental Implications of Nanotechnology Annual Report 2010 2 3. Project Summary The goal of the

Table 6: Partnering Institutions - Draft ReportNSEC Center: CEIN: Predictive Toxicology Assessment and Safe Implementation of Nanotechnology in the Environment

Institution Type Name ofInstitution

ReceivesFinancial

Support FromCenter

ContributesFinancial

Support ToCenter

MinorityServing

InstitutionPartner

FemaleServing

InstitutionPartner

NationalLab/ Other

Govt.Partner

IndustryPartner

MuseumPartner

InternationalPartner

I. AcademicPartneringInstitution(s)

Cardiff University Y

ColumbiaUniversity Y

Nanyang

TechnologicalUniversity

Y

Universitat RoviraI Virgili Y

University CollegeDublin Y

University ofBremen Y Y

University ofBritish Columbia Y Y

University ofCalifornia, Davis Y

University ofCalifornia,Riverside

Y Y

University of

California, SantaBarbara

Y Y

University of NewMexico Y Y

University ofTexas, El Paso Y Y

Total Number ofAcademic Partners 12 8 1 3 0 0 0 0 6

II. Non-academicPartneringInstitution(s)

California ScienceCenter Y

Lawrence

Berkeley NationalLaboratory

Y

LawrenceLivermoreNational

Laboratory

Y

Sandia NationalLaboratory Y

Santa MonicaPublic Library Y

Total Number ofNon-academicPartners

5 0 0 0 0 3 0 2 0

1 of 1 4/8/2010 2:52 PM

AveryCEIN
Typewritten Text
UC CEINANNUAL REPORT 2010
AveryCEIN
Typewritten Text
141