f.m. f. - apem | homeapem-journal.org/archives/2016/apem11-4_287-298.pdf · cuniversity of...

12
287 Advances in Production Engineering & Management ISSN 18546250 Volume 11 | Number 4 | December 2016 | pp 287–298 Journal home: apem‐journal.org http://dx.doi.org/10.14743/apem2016.4.227 Original scientific paper Finite element method for optimum design selection of carport structures under multiple load cases Özkal, F.M. a,* , Cakir, F. b,c , Arkun, A.K. d a Erzincan University, Department of Civil Engineering, Erzincan, Turkey b Yıldız Technical University, Department of Architecture, İstanbul, Turkey c University of California, Pacific Earthquake Engineering Research Center (PEER), Berkeley, California, USA d Amasya University, Department of Urban Design and Landscape Architecture, Amasya, Turkey ABSTRACT ARTICLE INFO In the field of structural modelling, it is obvious that the number of applicable designs for a particular structural necessity is limitless. Along with the inte‐ gration of various kinds of available structural materials into this complexity, it gets harder to be able to determine the best design before the production stage. In recent years, with the improvement of computational and structural technology, there have been many studies on the optimal design selection. This study focuses on carport structures and pursuing their best producible shape. For this aim, a performance index formulation was developed to assist the decision of material efficiency as well as structural rigidity. Thereafter, five conceptual models were numerically modelled and finite element anal‐ yses (FEA) for multiple load cases were carried out. Reviewing the FEA re‐ sults, the most appropriate model was determined by the application of this performance qualification method. Results of the analyses show that optimum design of structures under multiple load cases can be determined using finite element method. © 2016 PEI, University of Maribor. All rights reserved. Keywords: Structural producibility Performance decision Multiple load cases Manufacturing Finite element method *Corresponding author: [email protected] (Özkal, F.M.) Article history: Received 26 April 2016 Revised 5 October 2016 Accepted 12 October 2016 1. Introduction Structures can be designed in many different ways to provide the structural requirements such as performance, economy and appearance. The convenient design of structures is a very im‐ portant factor for their structural performance. Shape of the structures is a very important fac‐ tor for their structural behaviour. A poor design might cause fault and quality problems in a structure. It may conduce to decrease quality, performance and to increase cost and unnecessary material usage. Therefore, structural design is a major concern in engineering structures. Design objectives are generally imprecise real‐life situations as well as structural problems and natural idea is to deal directly with these ambiguous objectives. Hence, business experience shows that in many cases, it is beneficial to specify them crispy and then solve the optimization problem [1]. Design of structures depends on not only structural problems, but also knowledge and creativity of the designer. Therefore, design concepts can technically be discussed for a structure and designers seek the best feasible design. However, it is quite difficult to determine which of the designs is more efficient and better than the other ones. In recent years, with im‐ provements of computer and structural technology, one of the ways to achieve an efficient struc‐ tural design has been mathematical design optimization. Main goal of design optimization is to determine the best producible design for a structure under various constraints. Recently, design

Upload: phamkhuong

Post on 12-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

 

 

 

   

287 

AdvancesinProductionEngineering&Management ISSN1854‐6250

Volume11|Number4|December2016|pp287–298 Journalhome:apem‐journal.org

http://dx.doi.org/10.14743/apem2016.4.227 Originalscientificpaper

  

Finite element method for optimum design selection of  carport structures under multiple load cases 

Özkal, F.M.a,*, Cakir, F.b,c, Arkun, A.K.d aErzincan University, Department of Civil Engineering, Erzincan, Turkey bYıldız Technical University, Department of Architecture, İstanbul, Turkey  cUniversity of California, Pacific Earthquake Engineering Research Center (PEER), Berkeley, California, USA dAmasya University, Department of Urban Design and Landscape Architecture, Amasya, Turkey   

A B S T R A C T   A R T I C L E   I N F O

Inthefieldofstructuralmodelling,itisobviousthatthenumberofapplicabledesigns foraparticularstructuralnecessity is limitless.Alongwith the inte‐grationofvariouskindsofavailablestructuralmaterialsintothiscomplexity,itgetshardertobeable todeterminethebestdesignbeforetheproductionstage.Inrecentyears,withtheimprovementofcomputationalandstructuraltechnology, there have beenmany studies on the optimal design selection.This study focusesoncarport structuresandpursuing theirbestproducibleshape.Forthisaim,aperformanceindexformulationwasdevelopedtoassistthe decision ofmaterial efficiency as well as structural rigidity. Thereafter,five conceptualmodelswere numericallymodelled and finite element anal‐yses (FEA) formultiple load caseswere carried out. Reviewing the FEA re‐sults, themostappropriatemodelwasdeterminedbytheapplicationofthisperformancequalificationmethod.Resultsoftheanalysesshowthatoptimumdesignofstructuresundermultipleloadcasescanbedeterminedusingfiniteelementmethod.

©2016PEI,UniversityofMaribor.Allrightsreserved.

  Keywords:StructuralproducibilityPerformancedecisionMultipleloadcasesManufacturingFiniteelementmethod

*Correspondingauthor:[email protected](Özkal,F.M.)

Articlehistory:Received26April2016Revised5October2016Accepted12October2016 

  

1. Introduction 

Structurescanbedesignedinmanydifferentwaystoprovidethestructuralrequirementssuchas performance, economy and appearance. The convenient design of structures is a very im‐portantfactorfortheirstructuralperformance.Shapeofthestructuresisaveryimportantfac‐tor for their structural behaviour. A poor designmight cause fault and quality problems in astructure.Itmayconducetodecreasequality,performanceandtoincreasecostandunnecessarymaterialusage.Therefore,structuraldesignisamajorconcerninengineeringstructures. Designobjectivesaregenerally imprecise real‐life situationsaswellas structuralproblemsandnaturalideaistodealdirectlywiththeseambiguousobjectives.Hence,businessexperienceshowsthatinmanycases,itisbeneficialtospecifythemcrispyandthensolvetheoptimizationproblem[1].Designofstructuresdependsonnotonlystructuralproblems,butalsoknowledgeand creativity of the designer. Therefore, design concepts can technically be discussed for astructureanddesignersseekthebestfeasibledesign.However,itisquitedifficulttodeterminewhichofthedesignsismoreefficientandbetterthantheotherones.Inrecentyears,withim‐provementsofcomputerandstructuraltechnology,oneofthewaystoachieveanefficientstruc‐turaldesignhasbeenmathematicaldesignoptimization.Maingoalofdesignoptimizationistodeterminethebestproducibledesignforastructureundervariousconstraints.Recently,design

Özkal, Cakir, Arkun  

288  Advances in Production Engineering & Management 11(4) 2016

optimizationwith the finiteelementmethod(FEM)hasbecomemorepopularwithsignificantadvancesincomputertechnology.TodaymanydesignerandengineersappealtofiniteelementmethodandmanystructuralanalysissoftwarepackagesaresuitableforFEA.

Thedesignprocesscanbecategorizedinvariousways,butingeneral,itconsistsoffourmainphases[2].Thefirststageistodeterminethefunctionalityrequirementsandessentialparame‐ters;thesecondstageistodevelopconceptmodels;thethirdstageistoperformoptimizationonthedevelopedconceptmodelsandthelaststageistocomparetheoptimizationresultsandde‐cidethemostsuitabledesignbeforeproduction.Thegeneralflowdiagramofthestructuralde‐signprocess is shown inFig.1. In this study, thebestdesignof carport structureswasdeter‐minedbymeansofthesefoursteps.

Inpreviousstudies,manyresearchershaveinvestigatedthedesignprocessanddesignopti‐mizationofmanydifferent structures [3‐8]. In almostallof thepast studies,urbanstructureshavenotbeencompletely investigated.Therefore, thisstudy focusesonthecarportstructuresandtheirbestproducibledesign,sincetheyareoneofthemostcommonurbanstructures.Thestudy contributes to thebest designof carport structuresundermultiple load cases in that itdevelopsaperformanceindexformulation,revealstheimpactofmaterialefficiencyandstruc‐turalrigidityonthebestdesign.Moreover,thisstudyhelpstodeviseimplementstrategiesanddevelop actions to improve best design. It is also indicated that the effective optimumdesignselectioncontributestoimproveefficientstructuraldesign.

Fig.1Flowdiagramofthestructuraldesignprocess

2. Carport structures 

Carportstructures,whicharealsoknownascarshelters,parkingshadesandparkingstructures,areopensidedstructuresthatusuallyconsistofaroofandloadbearingparts.Carportsarepop‐ular all around the world and they are widely used at houses, office buildings, public areas,shoppingmalls,retailoperationsandshoppingmalls.Carportsbringmanygreatbenefits,suchas preventing damage from hailstones, snow and rain, minimizing sun damage, protectingagainst poorer weather, moisture and corrosion. Carports, which can be freestanding or at‐tachedtoabuilding,mayhavearoofedorcanopiedformandsidesofcarportsareleftwhollyorpartiallyopen. Inotherwords, carportscanbedefinedasa semi‐openspace in thecontextofarchitectureorspacedesign. Theentranceofacarportisincontrasttoagenerallyopengarage.Acommonvariantoftheroofingisacorrugatedsheet,trapezoidalortheirtransparentformscorrugatedlightpanelsortrapezoidalplates.Opencarportswithoutaroofareusuallyusedasanopticalsettingofoutdoorspaces to emphasize this by surrounding open spaces. Increasingly, free areas of the roof arealsoused forsolarsystemsandasanextensivegreenroof.Agreenroofcancontribute tode‐creasetemperaturesandreducetheheatislandeffectintheurbanenvironment. Furthermore,usingcarports, lessmaterialsareneededandtheconstructiontimeisshorterthangarageconstruction.Carportsareassumedtobegreener.Moore[9]liststheadvantagesofcarportsasservingasacoveredmainentranceandaplacetoentertainanddooutdooractivi‐

Finite element method for optimum design selection of carport structures under multiple load cases 

Advances in Production Engineering & Management 11(4) 2016  289

ties,inadditiontotheprovidingprotectionandstorageforthecars.Healsomentionsthatcar‐ports reduce complexity providing more than sufficient shelter, necessitate less constructionmaterials, and accommodate as aesthetically architectural design. Conclusively, he states thatpeopleconsidertheenvironmentalimpactofgaragescomparedtocarportsandchoosethecosteffectivecarportsduetotherisingenvironmentalconcerns.Theseseveraladvantagescontrib‐ute to widespread use of carports. On the other hand, carports offer no privacy, protectionagainsttheftorvandalism.Agarageismoresecurethanacarport.

2.1 Historical background of carport structures 

Carownershiphasincreasedveryquicklyoverthepastfortyyears.Thisincreasecreatespark‐ing spaceneed.Besidesopen spaceparking areas, carportswhichare semiopen spaceswereemerged especially in a single‐detacheddwelling setting.Gebhardproposes theolder formoftheportecochèreasthepredecessorforthecarportssinceitservessimilarlytocarportintermsofshelteringpassengersastheyexitedcarriagesorautomobiles.Gebhard[10]alsostatedthatthearchitectWalterBurleyGriffinusedcarportsintheSloanHouseinElmhurst,Illinoisintheearly1900s.By1913,severalPrairieSchoolarchitectssuchastheMinneapolisfirmofPurcell,Feick&ElmsliealsousedcarportsinahomeatLockwoodLake,Wisconsin.AccordingtoFoxandJeffery[11],theexpression“carport”wasproposedbyDavidGebhard,anarchitecturalhistorian,forthewaythatthetermwasbegunfromthecomponent'sutilizationin1930sstreamlinepre‐sentdaystructures.Robinson[12]notesthatcarportswereusedbyAmericanfamousarchitectFrankLloydWrightinUsonianHousesdesigninthe1940s.Thesecarportstructuresaredemon‐stratedinFig.2.

Moreover, Fox and Jeffery [11]points out that carportswere accepted as an alternative togaragesbecauseoftheircostandeasyconstructionafterSecondWorldWar.AccordingtoMoore[9], inthe19thcenturycarportsbecametypicaldesignelementofsingle‐familyresidencesandhotels.Todayavastrangeofsizesanddesignsofcarportsareavailable.

Fig.2PorteCochère(a),SloanHouse(b),Usonian(c)[13‐15]

   

(a) (b)

(c)

Özkal, Cakir, Arkun  

290  Advances in Production Engineering & Management 11(4) 2016

2.2 Structural failures of carport structures 

Carportstructuresareexposedtomanydifferentexternalandinternaleffectsthroughouttheirlives.Therefore,acarportstructureshouldbedesignedtowithstandstructuralloadingscenari‐os.Hence,theaccurateestimationoftheloadsandtheircombinationsonacarportmightbethemostimportantandthemostdifficulttaskfordesigners.Loadsoncarportstructuresarebasedondifferenttypesandforces,whicharedeadloads, live loadsandlateral loads.Carportstruc‐turesaddressthecarryingproblemsoftheseloads. Althoughcarportstructuresarehighlydurable,someofthemintheworldunfortunatelyaredeteriorated,damaged, collapsedor faileddue todifferenteffects. Ingeneral, thesestructuresaredestroyedandlosttheirqualitiesduetomanyreasonssuchasenvironmentalconditionsandnatural disasters. Therefore, it causes irreversible negative effects on the structure. Observedstructural failures occurs generally due to thematerial degradations and poor design. In thepast, severalcarportproblemsarosebecauseofpoordesign. Ifacarport isnotwelldesigned,successfully analysed and well‐constructed; it may face some problems like collapse, defor‐mation,fracture,fatigue,crackingorfailureoffixtures,fittingsorpartitionsanddiscomfortforoccupants.Manycarportstructuresareexposedtodestructiveverticalloadssuchasdeadloadandsnow loads,and these loadingscenarioscancausedamages to thecarports (Figs.3a,3b).Thistypeofdamageisverydangeroussinceitmaycausefatalanddestructivecrashesandfrac‐tures,alsocausesdiversifieddisplacementof thecarport components.Therefore,damageriskshouldbeconsideredandsomeprecautionsshouldbetakenagainstit.

Inadditiontoverticalloads,lateralloadssuchasearthquakeandwindloadsmayalsoaffectthecarports.Lateralloadsgenerallycausetothelateraldisplacementandirrevocabledamage.Windloadsleadtofailureofthecarportroofandaffectthestructuralstability(Fig.3c).Moreo‐ver, many carport structures are exposed to destructive earthquakes and these earthquakescausesomedamagestothestructure.Earthquakebaseddamagesoccurespeciallyontheverticalbearingcomponentsofthecarportsuchascrackinganddisintegrationofthestructure(Fig.3d).

Fig.3Structuralfailureofcarportstructuresduetosnowload–(a)and(b),windload(c),earthquake(d)[16‐19]

(a) (b)

(c) (d)

Finite element method for optimum design selection of carport structures under multiple load cases 

Advances in Production Engineering & Management 11(4) 2016  291

3. Concept designs 

Thesecondpartof thedesignprocess is todevelopconceptualmodels. In thisstage,designerselectstheinitialforms,typeofstructuresandmaterialsintermsofrequiredstructuralfunction.Successatthisstagedependsontheability,creativityandengineeringapproachofdesigners.

3.1 Material properties 

Structural performance and behaviour of a structure technically depend on the constructionmaterials. Moreover, the cost, quality, and design of a structure vary by selected materials.Therefore,selectionoftheappropriatematerialtypeisacrucialandvitalprocessforengineer‐ingstructures.Today,thousandsofmaterialscanbeusedforthealltypesofstructures.Howev‐er,noteverymaterialmaybeacorrectchoiceforastructure;therefore,itisveryimportanttoselectsuitablematerials. Carportstructuresaregenerallymadeofsteel,wood,plasticandcomposites.Becauseofprov‐en properties and significant advantages, steel has been the dominatingmaterial for the loadbearingpartsofstructures.Moreover,polymersarewidelyusedfornon‐bearingpartsofstruc‐turesduetotheirlightweight,availability,easyusabilityandcorrosionresistance.Inthisstudy,load‐bearingpartsofthecarportsweredesignedasstructuralsteelandroofsaspolyethylene.MaterialspropertiescanbeobtainedfromANSYSlibrary[20],whicharesummarizedinTable1.

Table1Mechanicalpropertiesofthecarportmaterials

Structuralmaterials

Young’smodulus(MPa)

Bulkmodulus(MPa)

Shearmodulus(MPa)

Poisson’sratio

Density(kg/m3)

Structuralsteel 2E+5 1.67E+5 0.77E+5 0.30 7,850

Polyethylene 1,100 2,291 387 0.42 950

3.2 Conceptual models 

Conceptualmodelsmean topreparealternativemodels fora structure. In thispart, designersdevelop variousmodels such as simple and complex shapes. This step is themost interactivesectionforthedesignandmainaimofdevelopingconceptualmodelsistoconsiderallpossibleoptions.Developedconceptualmodelsdependtotallyontheimagination,skillsandexperienceofthedesigners. Inthisstudy,fivedifferentconceptualmodelsweredevelopedanditwasconsideredtocovertheequalareaforallof them.Althoughthereis infinitenumberofotherpotentialmodelsandsomeofthemsurelyfitthepurposeevenbetter,thefactaboutoptimizationapproachesisthatitisneverpossible toachieve theglobaloptimum,but just the localoptimumresult.Sincemaingoalofthisstudyistoinvestigatethesuccessoffiniteelementmethodwhileconsideringspeci‐fiedstructuralcriteria,itispossibletoapplythecurrentdesignapproachoneverysortofdiffer‐entmodels.Moreover,severalsystems,whicharethemostpopularstylesofthecarportstruc‐tures,wereusedinthisstudy.Formodel‐1andmodel‐2,aslopingflatrooftypewasused.Ontheotherhand,aconcaverooftypewaspreferredformodel‐3,model‐4andmodel‐5.Thesetypesofroofsweredesigned in order to providemaximumvehicle coverage and aesthetic.DevelopedconceptualmodelsinthisstudyareshowninFig.4.

4. Numerical models 

Numericalmodelsaremathematicalexpressionofastructuralmemberorsystemandtheyareused to determine the structural behaviour that might be subjected to multiple load cases.Therefore,numericalmodellingisabeneficiarymethodintermsofthemathematicalmodellingof thestructures.Numericalmodellingofstructuresgetseasierowingto the improvements incomputertechnologiesdaybyday.Inthescopeofthisstudy,conceptualmodelswerenumeri‐callymodelled using ANSYSWorkbench [20] software. Finite elementmodelwas constituted

Özkal, Cakir, Arkun  

292  Advances in Production Engineering & Management 11(4) 2016

withSOLID186elements,whichhavequadratic20‐nodedhexahedrons/10‐nodedtetrahedrons,andthreedegreesoffreedompernode.Meshingwasgeneratedaccordingtothecomplexityofthe designs and adequate refinementwas applied on some of the regions,whichwere deter‐minedsubsequenttothepre‐andpost‐analysischecking.Thisiswhythenumberofnodesandelementsforsomeofthedesignsvary.Fig.5showsthenumericalmodelpropertiesofthecar‐portstructureswiththeillustrationofthemesheddesigns.

Plan Elevation 3DModel

Model–1

Steel Beams

Polyethylene Roof

Steel Beams

Steel Column

Steel Beam

Steel Tie Bar

Steel Column

Model–2

Steel Beams

Polyethylene Roof

Steel Beams

Polyethylene Roof

Steel Beams

Model–3

Steel Beams

Polyethylene Roof

Steel Beams

Steel Column

Polyethylene Roof

Steel Beams

Steel Column

Model–4

Polyethylene Roof

Steel Beams

Steel Column

Steel Beams

Model–5

Polyethylene Roof

Steel Column

Steel Column

Polyethylene Roof

Fig.4Conceptualcarportmodels

Model‐1 Model‐2 Model‐3 Model‐4 Model‐5

Elements 20016 21584 3724 7286 1684

Nodes 110963 58192 26332 21765 12943

NumericalModel

Fig.5Finiteelementparametersoftheconceptualmodels

Finite element method for optimum design selection of carport structures under multiple load cases 

Advances in Production Engineering & Management 11(4) 2016  293

5. Finite element analysis 

Material typeswereassigned to the structural componentsof the carport structures from theANSYSmaterial library.Thesematerialsarepolyethyleneandstructuralsteel for theroofandloadcarrierparts,respectively.Threetypesofanalyseswereperformedforeachofthemodels.One of them is themodal analysis that examines the structural behaviour for the firstmode,whiletheothersarestaticstructuralanalysesforsnowandwindloadings.Accordingtotheas‐sumptionsbasedoninternationalbuildingcodes,asnowloadof750Pawasappliedverticallyontheroof.Windloadwasappliedonlytotheroofbecauselateralloadingtothecarrierpartscouldbeneglectedowingtotheirinconsiderablesurfaceareas.Additionally,simplificationandroundingoffbutstillbasedontheinternationalcodeswerepreferredforthecalculationofwindloaddistributioninordertogeneralizetheloadingeffectforallofthestructuraldesigns.There‐fore,apositivepressureof400Patothebottomfacetandasuctionpressureof200Patothetopfacetoftheroofwereappliedinthenormaldirectionofsurfaceelements. With respect to thedeterminationof theoptimumdesignof conceptual carport structures,volumesoftheloadcarrierpartsandtotaldisplacementvaluesofthewholestructurewererec‐ordedandusedintheperformanceindexformulation.Moreover,itisdifficultandcomplicatedto provide analysis results for each node and element. Therefore, contour pictures and scaletableswereusedtopresenttheresults(Figs.6,7).Inthisstudy,multipleloadcaseswerecon‐sideredandtheFEAresultsarediscussedwithintheresultsanddiscussionssection.

Modal Snow Wind

Model–1

Model–2

Model–3

Model–4

Model–5

max min

Fig.6Totaldisplacementdistributionofthesteelbearingcomponents

Özkal, Cakir, Arkun  

294  Advances in Production Engineering & Management 11(4) 2016

Modal Snow WindModel–1

     

Model–2

     

Model–3

     

Model–4

     

Model–5

     

max min

Fig.7Totaldisplacementdistributionoftheallstructuralcomponents

6. Determination of the optimum design 

Astructuraldesignershouldconsider theeffectiveuseofmaterialsalongwith thesafety limitandestheticalsemblanceobjectives.Althoughthispointhasbeeninvestigatedindetailbysev‐eralresearchersoverthelastfewdecades,manufacturersgenerallyputthesemblanceforwardfor thepurposeof commercial concernsandpush the structuralperformanceof theirdesignsintobackground. Ifa technique issought inorder toanswerthequestion“Whichone is thebest?”,aperfor‐mancequalificationmethod isneeded tobeconstitutedsubsequent to thedefinitionofall thedesigncriterions[21]. Inthisstudy, fivetypesofpopularcarportdesignscoveringequalareaswereevaluated.Becauseexpectedconsumerbenefitequality isprovided forallof themodels,thereisnoneedtoconsiderthisfactor.Furthermore, itshouldbenotedthateachproduct, in‐cludingcarportstructures,mustbeoptimizednotonlybasedonmaterialconcernsorstructuralbehaviour,butalsobyconsideringtheeasy‐for‐manufactureandeasy‐for‐assemblyparadigms.Themost suitabledesign is usually a compromise among the abovementioned requirements.Becausecurrentstudydealswiththeroughdesignatthepre‐productionstage,ithasalsobeenneglectedfortheaimofobtainingoptimumresult.Forinstance,astabilityanalysisincorporat‐ingstructuralassemblydetailsthatwasstudiedbyManifold[22]orageotechnicalinvestigationthatwasstudiedbyHrestaketal.[23]couldbeintegratedasapost‐verificationstagetothede‐signprocessinordertomakesureeveryconstraintissatisfiedbeforetheproduction.

Finite element method for optimum design selection of carport structures under multiple load cases 

Advances in Production Engineering & Management 11(4) 2016  295

Designobjectiveforacarportstructurecouldbesummarizedassatisfyingmaterialefficiencyobjectivewhilemaintainingarigidbehaviouragainstvariouspossibleloadcases.Althoughuni‐formstresslevelsforthewholestructurewillassistmaterialefficiency,sizeandshapedissimi‐larity of finite elements prevent an accurate calculation. Hence, a newmodified performanceindexformulation,basedgenerallyonthenodaldisplacement levels,shouldbebuiltaccordingtothefollowingproblemdefinition:

minimize ∑

subjectto ∗ ⇒ ∗

1

∗ ⇒ ∗ 1

where istheweightofthestructure, isthematerialdensity, isthevolumeoftheethele‐ment, isthetotalnumberofelements, istheabsolutevalueofthemaximumnodaldis‐placement, istheabsolutevalueoftheaveragenodaldisplacementvaluewhile ∗ and∗ aretheupperandlowerboundlimitsofthedisplacementconstraints,respectively. Forthedeterminationoftheoptimalityofcarportdesigns,aperformanceindex,whichcouldbeappliedinageneralscopeandconsidersalltheloadcases,shouldbedevelopedstepbystep.Inordertoconstitutearigidstructure,structuralperformancelevelbasedonthemaximumdis‐placementvalueoftheithmodelforthejthloadcaseisfirstlydefined.

(1)

Secondly, theaveragenodaldisplacementvalueshouldbeaddedto the formulation for thepurposeofassistingmaterialefficiencyqualification.

∗ (2)

Themathematicaldefinitionofstructuralperformancelevelisfinalizedbyimplementingtheweightvalueasfollows.

1 ∗

∗ (3)

However, there is a need to define a reference performance level in order to compare thedesignswitheachother.Consideringacertainnumberofmodelsareevaluatedinthisstudy,thisreferencelevelcouldbeformulatedasthemeanperformancelevelofallmodels.

1 1 ∗

∗ (4)

Finally, a performance index formulation is generatedby theproportionof the ithmodel’sandreferenceperformancelevelvalues.Itisnamedas becauseoftheaimtoattainarigiddesignwhileminimizingthematerialweightofthestructure;inotherwords,whilemaximizingthematerialefficiency.

1 ∑

1 ∑ 1 ∑

(5)

Özkal, Cakir, Arkun 

296  Advances in Production Engineering & Management 11(4) 2016

Thisperformanceindexissuitabletobeusedforanytypeofdesignoptimizationorcompari‐sonprobleminordertodeterminetheoptimumstructurethatachievesarigidstructuralbehav‐iourwiththeefficientmaterialuseundermultiple loadcases.Optimumdesignselectioncouldbepracticedsimplybychoosingthemodelthathasthegreatestperformanceindex.

7. Results and discussions

Fiveconceptualmodelsofcarportstructureswereanalysedandinvestigatedinthisstudy.Ex‐pectedconsumerbenefitequalityisprovidedforallofthemodelsbecausetheyhaveequalcoverarea.Modal analysis and static analyses of snow andwind loadings have been performed foreachofthemodels.Weightsofthemodelswerecalculatedaccordingtothesolidvolumeofgeo‐metricaldesignsandmaterialdensityofthestructuralparts.Subsequenttotheanalyses,maxi‐mumdisplacementandaveragedisplacementvaluesofthestructuralnodeswererecordedforthe calculation of performance index ( ). However, an important decision is needed to bemadeforthecalculationof .Becausecarportstructuresconsistofaroofand loadbearingparts,whicharemadeofdifferentkindsofmaterial,itwouldnotbecompletelyappropriatetocalculate forthewholemodel.Itshouldbenotedthatthemaximumdisplacementwascon‐firmedtooccurontheroofpartforallofthemodelsandanalyses.Itispossibletodecreasethedisplacementvalueofroofpartswiththeaidof littledesignmodificationsthatwouldnotsub‐stantiallyaffectthestructuralperformanceineitherapositivenornegativeway.Sincethestruc‐turalbehaviourof loadbearingpartsismoreimportantinordertodesignarigidmodel; ,whichiscalculatedjustfortheloadbearingparts,shouldbeconsideredfortheoptimumdesignselection.Performanceindexvaluesofthewholestructureforallofthemodelsarealsogiveninthisstudyforthepurposeofprovidinginsightintotheperformancedecisionconcept.Geometricalproperties (volume and weight) of the models, average‐maximum displacement values for themultipleloadcases(modal,snowandwindloadings)andperformanceindexvaluesarepresentedinTable2.

Table2Structuralanalysisresultsoftheconceptualmodels

Structuralparts

Volume(m3)

Weight(kg)

Modal Snow Wind

(mm)

(mm) (mm)

(mm)

(mm)

(mm)

Model‐1

Bearing 0.550 4,318 15.09 26.99 1.56 3.03 1.29 2.50 0.31

Total 0.909 4,659 15.28 49.97 1.86 27.77 1.53 22.13 0.18

Model‐2

Bearing 0.037 291 41.20 103.27 28.96 69.97 24.90 58.93 3.55

Total 0.075 326 44.56 160.13 40.54 358.99 34.27 290.77 2.94

Model‐3

Bearing 0.516 4,053 9.84 28.76 1.56 5.13 1.28 4.18 0.20

Total 1.000 4,512 12.43 29.30 2.05 5.64 1.69 4.59 0.48

Model‐4

Bearing 0.179 1,408 14.13 45.77 3.51 11.78 5.01 15.19 0.56

Total 0.611 1,818 17.62 45.84 6.89 47.26 8.34 42.63 0.75

Model‐5

Bearing 0.312 2,445 6.28 15.09 6.32 17.35 4.80 13.70 0.39

Total 0.801 2,910 27.75 92.90 29.36 82.93 22.57 63.07 0.65

Finite element method for optimum design selection of carport structures under multiple load cases 

Advances in Production Engineering & Management 11(4) 2016  297

Accordingtotheperformanceindexvaluesoftheirloadbearingparts,thebestcarportstructurethroughoutthefiveconceptualmodelsismodel‐2.ItisseeninTable2that valueofmodel‐2is thehighestonebyawidemargin incomparison to theothermodels’. Its value is3.55while thesecondbestmodel’s is0.56and the lastmodel’s is0.20.Even though themaximumdisplacementof therespectivemodel ismuchhigheraswell, theclosenessof theaveragedis‐placementvaluestothemaximumandparticularlythelowestmaterialweight,suggeststhatthismodeltohavethebeststructuralperformance. When thedifferencesof values,whichwerecalculated for thewholeofanystructuralmodels,areinvestigated,structuralperformancesoftheroofpartsshouldbeevaluatedcarefully.

values forthewholestructureofmodels‐1and‐2are lowerthanthe values forthebearingparts,whilethisrelationisinversefortheothermodels.Becausethematerialamountisequalforallthemodels,onecanassumethatmaximumdisplacementvaluesoftheroofpartsofthese twomodelsareexcessivelyhigher than thevaluesatbearingparts. It is true thatmaxi‐mumdisplacementvaluesarehigherbutthereasonwhy valueishigherformodels‐3,‐4and ‐5 is thataveragedisplacementvalue increased, asdid themaximumdisplacementvalue.Therefore,whenthestructuralbehaviourof thesefivecarportstructuresareevaluatedbytheperformance indexconcept, thismethod indicates thatmodel‐2has thebeststructuralperfor‐mance,regardlessofhavinghigherdisplacementvalues.However,thismodelcanbeimprovedin order to decrease themaximum displacement value by littlemodifications at lower levels.Magnification of cross‐sections or supplementation of newbearingmembers especially at themoststressedregionswillverifythisobjectivewithoutincreasingthematerialweighttoomuch.Thesemodellingmodificationsshoulddependondesigner’schoiceorconsumer’snecessity,alsoanyappropriategeometricaloptimizationmethodcouldbeemployedasanalternativeway.

8. Conclusion 

Astructuraldesignproblempriortotheproductionstagecomeswithmanyquestions.Thesearerevisionofprevioussimilarsolutions,selectionofthematerialstobeused,geometricalmodel‐lingmethodtobeperformedanddeterminationofthebestdesignthroughoutthepossiblede‐signs,respectively.Incasethereisaneedtoconsidermultipleloadcases,thecomplexityoftheproblemgetsbigger.Thisstudyseekstheanswertothelastquestionandevaluatesfiveconcep‐tualcarportstructuresdependingonastructuralperformancequalificationapproach.Themaincontributionof thisresearch is todevelopaperformance index formulation inorder todeter‐mine thebestdesignbefore theproduction stage.The study intended to investigate effectsofmaterialefficiencyandstructuralrigidityonthedesignofcarportstructuresbyusingfiniteele‐mentanalysis.Forthisaim,aperformanceindexformulationwasdevelopedtoassistthedeci‐sionofmaterialefficiencyaswellasstructuralrigidity,thatiscalledas .Formulationstepsconsidertheinfluenceofthegeometricalpropertiesandfiniteelementanalysisresultsthatex‐hibitthestructuralbehaviourcollectively. Subsequent to the finiteelementanalysesof theconceptualmodels,whicharesubjectedtomultipleloadcases,their valueshavebeencalculatedandcommentedwithrespecttotheanalysisresults.Actually,thebestmodelcouldhavebeenevaluatedasinadequatewithoutanyqualificationmethodbuttheperformanceindexconceptleadsthewaybynumericalresultsandfacilitatesoneofthemostimportantstepsofastructuraldesignproblem. Additionally,theproductionprocessofanytypeofstructureinvolvesnotonlymaterialsfromwhich theproduct ismadeof, but also themanufacturingprocesses,machine tools, tools, fix‐tures, assembly process, environment requirements etc. Integrating also esthetical semblancewill make the optimum design problemmore complex, however, conducting a questionnairethroughoutthesectoralexpertstoattainasensitivitydegreeispossible. Inordertoovercomemanufacturingrelatedconcerns,modificationofperformanceindexformulationusingthatsen‐sitivitydegreeorconsultingsomeotheroptimizationmethodssuchasfuzzylogiccouldbecon‐sideredinfuturestudies.

Özkal, Cakir, Arkun

References [1] Kosheleva, O., Kreinovich, V., Nguyen, H.T. (2015). Why it is important to precisiate goals. Departmental Tech-

nical Reports (CS), Technical Report: UTEP-CS-15-25, Paper 920. [2] Kirsch, U. (1981). Optimum structural design, McGraw Hill, New York, USA. [3] Cash, P., Hicks, B., Culley, S. (2015). Activity Theory as a means for multi-scale analysis of the engineering design

process: A protocol study of design in practice. Design Studies, Vol. 38, 1-32, doi: 10.1016/j.destud.2015.02.001. [4] Haldankar, M., Shirahatti, A.M. (2014). Finite element analysis and optimization of commercial bus body struc-

ture, International Journal of Engineering and Technical Research, Vol. 2, No. 12, 175-178. [5] Jain, R., Tandon, P., Kumar, M.V. (2014). Optimization methodology for beam gauges of the bus body for weight

reduction, Applied and Computational Mechanics, Vol. 8, No. 1, 47-62. [6] Srihari, P., Azad, D., Sreeramulu, D. (2014). Optimization of rail inserts using finite element analysis. Internation-

al Journal of Engineering, Science and Technology, Vol. 6, No. 2, 65-75, doi: 10.4314/ijest.v6i2.5. [7] Marczak, R.J. (2007). Optimization of elastic structures using boundary elements and a topological-shape sensi-

tivity formulation, Latin American Journal of Solids and Structures, Vol. 5, No. 2, 99-117. [8] Rajan, S.D., Belegundu, A.D., Lee, D., Damle, A.S., St Ville, J. (2004). Finite element analysis & design optimization

in a distributed computing environment, In: Collection of Technical Papers – 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, NY, USA, Vol. 3, 1716-1726.

[9] Moore, A. Carport History, from https://www.versatube.com/news/carport-history, accessed January 30, 2016. [10] Gebhard, D. (1992). The suburban house and the automobile, In: Wachs, M., Crawford, M. (ed.), The car and the

city: the automobile, the built environment and daily urban life, Ann Arbor, University of Michigan Press, Michi-gan, USA, 106-123.

[11] Fox, J., Jeffery, R.B. (2005). Carport Integrity Policy, Arizona State Historic Preservation Office, Preservation Stud-ies, University of Arizona, USA, 1-9.

[12] Robinson, M. (2000). Taj Mahal on a Cul de Sac: Concrete blocks, carports and architectural appropriation, Arris – The Journal of the Southeast Chapter of the Society of Architectural Historians, Vol. 11, 71-83.

[13] Anonymous. Vintage Designs, Gaineswood, from http://vintagedesigns.com/architecture/gkrev/gwd/index.htm, accessed January 29, 2016.

[14] Anonymous. Auto Space, The Garage Journal, from http://www.garagejournal.com/2009/03/auto-space, accessed January 29, 2016.

[15] Anonymous. Affordable, Modern, Sustainable Homes, http://www.archdaily.com/238195/connecthomes-offers-affordable-modern-sustainable-homes/4series_carport, accessed January 29, 2016.

[16] Anonymous. Carport Collapse (Spokane), from http://images.fanpop.com/images/image_uploads/Winter-in-the-Inland-Northwest-winter-708370_450_299.jpg, accessed January 21, 2016.

[17] Anonymous. Imgarcade, Homemade Carport Collapse, from http://imgarcade.com/1/homemade-carport, ac-cessed January 21, 2016.

[18] Stickney, R., NBC San Diego, Collapsed Carport Crushes Cars in Alpine, from http://www.nbcsandiego.com/news/local/Carport-Collapse-Alpine-Arnold-Way-San-Diego-Heartland--234238281.html, accessed January 21, 2016.

[19] Anonymous. Oxu.az, A powerful earthquake in California: There's destruction, from http://ru.oxu.az/world/ 39156, accessed January 21, 2016.

[20] ANSYS (2014). Releases 14.0, Finite element analysis software, USA. [21] Özkal, F.M., Uysal, H. (2012). A fully stressed design method to determine the optimum strut-and-tie model for

beam-column connections. International Journal of Computational Methods, Vol. 9, No. 3, 1250035, doi: 10.1142/S0219876212500351.

[22] Manifold, S.M. (2014). Stability analysis and finite element stress analysis of a solarwing carport structure and solar panel array, Technical Report: Concurrent Design, Inc., from http://www.concurrentdesign.com/engineering-analysis.htm, accessed September 28, 2016.

[23] Hrestak, T., Lazarević, A.J., Frgić, L. (2015). Stress and strain analysis during the Sleme tunnel excavation, Tech-nical Gazette – Tehnički Vjesnik, Vol. 22, No. 3, 703-709, doi: 10.17559/TV-20140530103847.

298 Advances in Production Engineering & Management 11(4) 2016