a lp and simulated annealing algorithm for layout...

12
259 Advances in Production Engineering & Management ISSN 18546250 Volume 11 | Number 4 | December 2016 | pp 259–270 Journal home: apem‐journal.org http://dx.doi.org/10.14743/apem2016.4.225 Original scientific paper A combined zoneLP and simulated annealing algorithm for unequalarea facility layout problem Xiao, Y.J. a,b , Zheng, Y. c , Zhang, L.M. d,* , Kuo, Y.H. e a Jiangsu Key Laboratory of Modern Logistics, School of Marketing and Logistic Management, Nanjing University of Finance and Economics, Nanjing , China b Business school, Nanjing University, Nanjing, China c College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing, China d School of Management and Engineering, Nanjing University, Nanjing, China e Stanley Ho Big Data Decision Analytics Research Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong ABSTRACT ARTICLE INFO Facility layout problem (FLP) is one of well‐known NP‐hard problems and has been demonstrated to be useful in enhancing the productivity of manufactur‐ ing systems in practice. This paper focuses on the unequal‐area FLP (UA‐FLP) whose goal is to locate departments with different areas within a given facility so as to minimize the total material handling cost. A novel approach, which we call a combined zone‐linear programming (zone‐LP) and simulated annealing algorithm, is developed for solving the UA‐FLP. The zone‐LP approach is a layout construction technique for the unequal‐area departments and consists of two phases. In the first phase, a zoning algorithm is implemented to deter‐ mine the relative positions between the departments. In this algorithm, for the sake of problem simplification and computational efficiency, each de‐ partment is treated as a rectangle with an allowable aspect ratio and the area of the facility is assumed to be unbounded. In the second phase, by using the relative positions obtained in the first phase as input, a linear programming (LP) model is developed to identify the exact locations and dimensions of departments within the facility with specified sizes while satisfying their maximum aspect ratio requirement and the shape constraints. We also design a simulated annealing algorithm to improve the placing sequence. Finally, our computational results suggest that our proposed algorithm is efficient com‐ pared with the best existing approach in the literature. © 2016 PEI, University of Maribor. All rights reserved. Keywords: Facility layout problem Unequal area Zone‐LP approach Simulated annealing *Corresponding author: [email protected] (Zhang, L.M.) Article history: Received 10 August 2016 Revised 9 October 2016 Accepted 15 October 2016 1. Introduction As the competition among the global marketplaces increases rapidly, the provision of high‐ quality products or services at low cost to customers becomes more and more crucial for com‐ panies to capture the mass market. Facilities planning “determines how an activity’s tangible fixed assets best support achieving the activity objectives” [1] and thus plays an important role in the cost reduction and productivity gain in industrial firms. Facility planning consists of facilities location, facility system design, facility layout design and handling system design. As a crucial part of facilities planning, facility layout design is to arrange departments interacting with each other within a facility so as to minimize the total material handling cost. The layout design of a facility significantly impacts manufacturing cost and the productivity and efficiency of the system. According to [1], material handling cost ac‐

Upload: others

Post on 04-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A LP and simulated annealing algorithm for layout problemapem-journal.org/Archives/2016/APEM11-4_259-270.pdf · In UA‐FLP, the areas of the departments are given and their dimensions

 

 

 

   

259 

AdvancesinProductionEngineering&Management ISSN1854‐6250

Volume11|Number4|December2016|pp259–270 Journalhome:apem‐journal.org

http://dx.doi.org/10.14743/apem2016.4.225 Originalscientificpaper

  

A combined zone‐LP and simulated annealing algorithm for unequal‐area facility layout problem 

Xiao, Y.J.a,b, Zheng, Y.c, Zhang, L.M.d,*, Kuo, Y.H.e aJiangsu Key Laboratory of Modern Logistics, School of Marketing and Logistic Management, Nanjing University of Finance and Economics, Nanjing , China  bBusiness school, Nanjing University, Nanjing, China cCollege of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing, China dSchool of Management and Engineering, Nanjing University, Nanjing, China eStanley Ho Big Data Decision Analytics Research Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 

  

A B S T R A C T   A R T I C L E   I N F O

Facilitylayoutproblem(FLP)isoneofwell‐knownNP‐hardproblemsandhasbeendemonstratedtobeusefulinenhancingtheproductivityofmanufactur‐ingsystemsinpractice.Thispaperfocusesontheunequal‐areaFLP(UA‐FLP)whosegoalistolocatedepartmentswithdifferentareaswithinagivenfacilitysoastominimizethetotalmaterialhandlingcost.Anovelapproach,whichwecallacombinedzone‐linearprogramming(zone‐LP)andsimulatedannealingalgorithm, is developed for solving the UA‐FLP. The zone‐LP approach is alayoutconstructiontechniquefortheunequal‐areadepartmentsandconsistsoftwophases.Inthefirstphase,azoningalgorithmisimplementedtodeter‐mine the relative positions between the departments. In this algorithm, forthe sake of problem simplification and computational efficiency, each de‐partmentistreatedasarectanglewithanallowableaspectratioandtheareaofthefacilityisassumedtobeunbounded.Inthesecondphase,byusingtherelativepositionsobtained inthe firstphaseas input,a linearprogramming(LP) model is developed to identify the exact locations and dimensions ofdepartments within the facility with specified sizes while satisfying theirmaximumaspectratiorequirementandtheshapeconstraints.Wealsodesignasimulatedannealingalgorithmtoimprovetheplacingsequence.Finally,ourcomputational results suggest that ourproposed algorithm is efficient com‐paredwiththebestexistingapproachintheliterature.

©2016PEI,UniversityofMaribor.Allrightsreserved.

  Keywords:FacilitylayoutproblemUnequalareaZone‐LPapproachSimulatedannealing

*Correspondingauthor:[email protected](Zhang,L.M.)

Articlehistory:Received10August2016Revised9October2016Accepted15October2016 

  

1. Introduction  As the competition among the global marketplaces increases rapidly, the provision of high‐qualityproductsorservicesatlowcosttocustomersbecomesmoreandmorecrucialforcom‐panies to capture themassmarket. Facilities planning “determines how an activity’s tangiblefixedassetsbestsupportachievingtheactivityobjectives”[1]andthusplaysanimportantroleinthecostreductionandproductivitygaininindustrialfirms.

Facility planning consists of facilities location, facility system design, facility layout designandhandling systemdesign.As a crucial part of facilitiesplanning, facility layoutdesign is toarrange departments interactingwith each otherwithin a facility so as tominimize the totalmaterialhandlingcost.The layoutdesignofa facilitysignificantly impactsmanufacturingcostand theproductivity andefficiencyof the system.According to [1],materialhandling cost ac‐

Page 2: A LP and simulated annealing algorithm for layout problemapem-journal.org/Archives/2016/APEM11-4_259-270.pdf · In UA‐FLP, the areas of the departments are given and their dimensions

Xiao, Zheng, Zhang, Kuo  

260  Advances in Production Engineering & Management 11(4) 2016

counts for20%to50%of thetotalmanufacturingcost;aneffectiveplanningof facilitiescanreduce such cost by at least 10% to 30%. It is essential to design an efficient layout beforemanufacturingsystemdesignsincefuturerearrangementofdepartmentscanresultinaconsid‐erableexpense.Forthesereasons,facilitylayoutproblem(FLP)hasbeenstudiedextensivelyforoverthreedecades[2‐10].

Therehavebeennumerousstudiesadoptingmathematicalprogrammingapproachestoob‐tain optimal solutions for FLP.Montreuil [11] proposed the firstmixed integer programming(MIP)modelforsolvingtheUA‐FLP.However,theirproposedMIPmodelcanbesolvedfortheproblemswithnomorethansixdepartments.Melleretal.[12]improvedtheformulationoftheMIPmodelofMontreuil[11]byintroducingatighteneddepartmentareaconstraintandseveralclassesofvalid inequalities.Bytheirenhancement, thenumberofdepartmentsof thesolvableproblemsincreasedtoeight.MotivatedbyMelleretal.[12],Sheralietal.[13]furtherimprovedtheaccuracyforapproximatingthedepartmentareasbyusingapolyhedralouterapproximationscheme.Moreover, Sherali et al. [13] investigated the effectivenessof the classes of valid ine‐qualitiesproposedbyMelleretal.[12]andreportedthattheMIPmodelwassolvedmosteffi‐cientlybyincorporatingonlytwoinequalitiesamongthemintotheformulation.Withthisfind‐ing,theproblemswithuptoninedepartmentscouldbeoptimallysolved.Recently,Melleretal.[14]developedanewmathematicalformulationforUA‐FLPbasedonasequence‐pairrepresen‐tation.Inthisformulation,thefeasibleregionoftheproblemwastightenedsuchthatthenum‐berofdepartmentsofthesolvableproblemshasbecomeeleven.

Exactsolutionmethodssuchasmathematicalprogrammingapproachesarenotapplicabletoobtainoptimalsolutionsforlarge‐scaleproblemssinceFLPisNP‐hard[2].Hence,heuristicap‐proachesbasedonMIPmodelshavebeendesignedtoconstructlayoutsolutionsofhighqualityefficiently [15‐17].Oneof thewell‐knownalgorithms for solvingFLP isbasedon theuseof aslicingtree[18,19],whichisabinarytreeusedtoformasubdivisionofarectanglebyrecursivecomputations.Intheslicingtree,eachinnernodecontainsaguillotinecutoperator(whichcutstheareahorizontallyorvertically),andeachleafnoderepresentsadepartment.Alayoutcanbegeneratedaccordingtoaslicingtreebyapplyingasetofguillotinecuts.LiuandMeller[20]de‐velopedasequence‐pairapproach,whereapairofsequencesisusedtodeterminetherelativelocationsbetweendepartments.Byemployingthoserelativelocations,areducedMIPmodelisutilizedtoconstruct the layoutsolutions.Bothofabovemethodareprimarilyproposed in theVLSI (very largeScale Integration)design. Similarly,BozerandWang [21]presentedagraph‐pairtechniquetofixtherelativelocationsbetweendepartmentsandthenalinearprogram(LP)issolvedtoobtainthelayoutsolutions.

Thispaperproposesanovelapproach,whichwecallacombinedzone‐LPandsimulatedan‐nealing(SA)algorithm,tosolvetheproblemefficiently.Thezone‐LPapproachisa layoutcon‐structiontechniquefortheUA‐FLPandconsistsoftwophases.Inthefirstphase,thezonealgo‐rithm is implemented to determine the relative positions between departments. In this algo‐rithm, for thesakeofproblemsimplificationandcomputationalefficiency,eachdepartment isconsideredtobearectanglewithanallowableaspectratioandtheareaofthefacilityisassumedtobeunbounded.Inthesecondphase,byusingtherelativepositionsobtainedinthefirstphaseasinput,anLPissolvedtodeterminetheexactlocationsanddimensionsofdepartmentswithinthefacilitywithspecifiedsizeswhilesatisfyingtheirmaximumaspectratiorequirementandtheshapeconstraints.Furthermore,wealsodevelopanSAalgorithmtoimprovethesolutionquali‐ty.Finally,weconductacomputationalstudytoexaminetheperformanceofourproposedalgo‐rithmandcompareitwithotherexistingsolutionapproachesintheliterature.

Ourpaper isorganizedas follows. In thenextsection,wewilldescribe theproblemofUA‐FLP.Section3willpresentourproposedsolutionmethodology.InSection4,weconductcompu‐tationalexperimentstostudytheperformanceofourproposedalgorithm.Section5concludesourpaper.

2. Problem description  

InUA‐FLP,theareasofthedepartmentsaregivenandtheirdimensionsarelimitedbyamaxi‐mumaspectratio(MAR),whichisdefinedasthelargestallowableratioofthelongestsidetothe

Page 3: A LP and simulated annealing algorithm for layout problemapem-journal.org/Archives/2016/APEM11-4_259-270.pdf · In UA‐FLP, the areas of the departments are given and their dimensions

A combined zone‐LP and simulated annealing algorithm for unequal‐area facility layout problem 

Advances in Production Engineering & Management 11(4) 2016  261

shortestsideofthedepartment.Theaspectratioofadepartmentrangesfrom1/MARtoMAR.Furthermore,materialflowquantitiesandthelocationofinput/output(I/O)pointsaregiven.Intheproblem,theI/Opointsareassumedtobelocatedatthecentroidsofdepartments.Duringthemanufacturing process,materials are transferred between I/O points for each pair of de‐partments.Theobjectiveistominimizethetotaltraveldistance(TTD),whichisthesumproductofthedistancesbetweendepartmentsandtheirmaterialflowquantities.Forsimplicity,thedis‐tancebetweendepartments isdefinedas therectilineardistancebetween the inputpointandtheoutputpoint.

Table1providesanexampleofasettingofsixdepartmentswiththeirrequiredareas( )andmaximumaspectratio ( )and thematerial flowquantitiesbetweeneachpairof thedepartments.

Table1Anexampleofasettingofsixdepartmentswiththeirrequiredareas( )andmaximumaspectratio( )

andthematerialflowquantitiesbetweeneachpairofthedepartments

Materialflowquantities

1 2 3 4 5 61 — 4 2 5 7 1 16 42 — — 4 3 3 4 16 43 — — — 2 2 6 25 44 — — — — 7 4 36 45 — — — — — 3 36 46 — — — — — — 9 4

3. Solution methodology 

It iswell‐known thatUA‐FLP isNP‐hard.For this reason,wedevelopaheuristic algorithm tosolveUA‐FLPoflargesize.OnecomplicatingfactorofUA‐FLPistodeterminetherelativeposi‐tionsbetweenthedepartmentssubjecttotheconditionthattheirareasdonotoverlap.Tocir‐cumvent this difficulty, we propose a solution methodology that integrates the zone‐LP ap‐proachandanSAalgorithmtoobtaingood‐qualitysolutions.Thezone‐LPapproachisanewlyproposedlayoutconstructiontechniquebasedonanimprovedzonealgorithmandthesolutionforanLP.Whenaninitialsolutionisobtainedfromthepreviousstage,SAisemployedtosearchwithinthesolutionspaceandactstoavoidthesearchprocedurebeingtrappedatalocalopti‐mum.

3.1 Zone‐LP approach 

The zone‐LP approach consists of two phases. In the first phase, for the simplification of theproblemandmoreefficientcomputations,weconsidertheshapeofeachdepartmentasarec‐tanglewithanallowableaspectratio.Asanexample,asshowninFig.1,thesixdepartmentsinTable1aretreatedassquares.Giventheallowableaspectratiosofthedepartments,wedevelopanimprovedzonealgorithmtodeterminetheirrelativepositions.ThezoneconceptforUA‐FLPisfirstintroducedbyXiaoetal.[22]toreduceitscomputationalcomplexityandhasbeenshowntobecomputationallyefficient.Inthesecondphase,byusingtherelativepositionsobtainedinthefirstphaseasinput,wesolveanLPtoobtaintheexactlocationsofthedepartmentswithinthefacility,andtheirdimensionssubjecttotheirshapeconstraintsaresatisfied.

Fig.1Sixdepartmentstobelocatedwithinthefacilitywhereeachofthemisofafixedaspectratio

Page 4: A LP and simulated annealing algorithm for layout problemapem-journal.org/Archives/2016/APEM11-4_259-270.pdf · In UA‐FLP, the areas of the departments are given and their dimensions

Xiao, Zheng, Zhang, Kuo  

262  Advances in Production Engineering & Management 11(4) 2016

3.2 Improved zone algorithm  

Theimprovedzonealgorithmlocatesdepartmentsonebyoneaccordingtoasequencesuchthatauniquelayoutisgenerated.Givenaninitialsequenceforlocatingthedepartmentswithinthefacility, say [1‐4‐2‐5‐3‐6], we begin the algorithm by placing the first department in the se‐quence(i.e.Department1)atthecenterofthefacility.Then,fourzonesthatarerespectivelyontheleft,above,ontheright,andbelowthisdepartmentcanbeidentified.Asanexample,thefourzonesareshadedinthegraphsofFig.2.Thenextstepistodeterminethezonethatthefollowingdepartment in the sequence (i.e.Department4) tobe located.We firstdetermine theoptimallocationsof thisdepartmentwithin the fourzonesbyusingamedianpoint(MP)method.Thedepartmentwillthenbelocatedatthebestzonethatresultsintheminimumtotaldistance.Oncethedepartmentislocatedwithinthefacility,thesetofzoneswillbeupdatedforthedetermina‐tionofthelocationofthenextdepartmentinthesequence.Thatprocedureisrepeateduntilalldepartmentsarelocated.Formoredetailaboutzoneupdatingprocedure,wereferthereadertoXiaoetal.[22].

Fig2Thefourzones(shadedingrey)forthepossiblelocationofthedepartmentinourexample

To generalize the expressionsof the zones, for 1, … , , let be the ‐thdepartment inthesequenceandlet , … , , … , bethesetofzonesthat canbelocated,wherejistheindexofzone.Notethat consistsofonlyonezonethatistheentirerectanglefacility.Foreachzoneof , isrepresentedby , , , ,where , and , arethecoordinatesofthebottomleftcornerandthetoprightcornerofthezone,respectively.Forstepofdeterminingthelocationofthedepartment,theMPmethodisappliedtoobtaintheoptimalpositionof withineachzone in . InthisMPmethod,an ideal locationof thecen‐troidof isfirstidentifiedinsuchawaythatthesumofrectilineardistancesweightedbytheflowquantitiesbetween andthedepartmentsthathavepreviouslybeenlocated,denotedbytheset ,isminimized.Theobjectivefunctionisformulatedasfollows:

Minimize D | | | | (1)

To determine the optimal location, ∗, y∗ , the objective function Eq. 1 is reformulated asEquations Eq. 2 and Eq. 3. Therefore, the values of ∗and ∗can be calculated separately. InEquations Eq. 2 and Eq. 3, and are piecewise linear and convex functions,whereall ( ),for ,arearrangedinincreasingorder,i.e. ’ ’ ⋯ | |’ ’ ’⋯ | |’ . The flow quantities associated with ( ), for , are also sorted by

Page 5: A LP and simulated annealing algorithm for layout problemapem-journal.org/Archives/2016/APEM11-4_259-270.pdf · In UA‐FLP, the areas of the departments are given and their dimensions

A combined zone‐LP and simulated annealing algorithm for unequal‐area facility layout problem 

Advances in Production Engineering & Management 11(4) 2016  263

, , … , | | ( , , … , | | ).Todeterminethevaluesof∗and ∗,wemakeuseofProp‐

erty1.

Minimize | | | ′| | ′| ⋯ | | | |′ (2)

Minimize | | | ′| | ′| ⋯ | | | |′ (3)

Property 1. Suppose that ∗is the MP and ’satisfies the median condition, i.e.∑∑| | /2and∑| | ∑| | /2. Then ∗= ’. Similarly, if ∗MP and ’, satisfies the

MPcondition∑ ∑| | /2and∑| | ∑| | /2then, ∗= ’.ByProperty1,theoptimallocationof (i.e.theoptimalsolutionforformulationEq.1)can

bedeterminedbysearchingtheMPsuchthatbothofthetotalweightssummingoverthosebe‐foretheMPinthesequenceandsummeringoverthoseaftertheMPinthesequenceisnomorethanthetotalweightsummingoverallthedepartments.Inotherwords,theMPisthefirstpointwherethepartialsumofweights fromthe firstdepartment inthesequenceto itself isno lessthan half of the total weights of all departments. Let , be the partial sums of theweightsatpointsummingfromthefirstdepartmenttothe ‐thdepartmentinthesequencein ‐direction and ‐direction respectively, and be the total weights summing over all depart‐ments.With the sequence [1‐4‐2‐5‐3‐6] for locating thedepartmentswithin the facility in thepreviousexample,weillustrateinFig.3forhowtheaforementionedprocedurecandeterminetheMP.InFig.3,thelocationsoffourdepartmentshavepreviouslybeendetermined.The between ,i.e.Department3andthefourdepartmentsthathavebeenlocatedin ‐directionis:

2 – 5 2 – 0 4| – 0| 2| – 7|. In this example, 11, 1 2,2 2 2 4, 3 2 2 4 8 /2.Hence, theMP is ’ 0and ∗ ’

0 . Similarly, 2 – 0 2| – 0| 2 – 0 4 – 4 . And 1 2 , 2 2 2 4 , 3 2 2 2 6 /2 . Hence, the MP in ‐direction is ’ 0 and∗ ’ 0.Therefore,theoptimallocationofDepartment3is(0,0),whichismarkedbythedashedrectangleinFig.3.

Nevertheless,thisoptimallocationdeterminedforDepartment3,infact,isinfeasiblebecauseitoverlapswiththeotherdepartmentsasshownininFig.3.Inthiscase,wehavetodetermineanewlocationforDepartment3tocontinueourUA‐FLPprocedure.Tothisend,wedeterminethelocationineachzoneforDepartment3suchthatthelocationisclosesttothepreviouslydeter‐minedoptimal location inbothx‐directionandy‐direction.Therationale is that suchpositioncanminimizeTTDforeachzone.Forexample,thebestpositionsforDepartment3inthosecon‐sideredzonesareshowninFig.4(a)‐4(f),whicharerespectivelytheclosestlocationstotheop‐timallocationthatwaspreviouslydetermined.Thedepartmentistobelocatedatthebestposi‐tionthatattainstheminimum amongthosezones.Inthisexample,Department3hasthesame atthepositionsasshowninFig.4(b)andFig.4(d).Thus,thistieisbrokenbyran‐domlypickingoneof the twopositions for locatingDepartment3.The locationof the lastde‐partmentinthesequenceofthisexampleisalsodeterminedinthesameway.Fig.5showsthefinallayoutofthefacility.

Fig.3OptimallocationofDepartment3(representedbyadottedsquare)

Page 6: A LP and simulated annealing algorithm for layout problemapem-journal.org/Archives/2016/APEM11-4_259-270.pdf · In UA‐FLP, the areas of the departments are given and their dimensions

Xiao, Zheng, Zhang, Kuo  

264  Advances in Production Engineering & Management 11(4) 2016

Fig.4Closestlocationineachzonetotheoptimallocation

Fig.5Layoutofthesixdepartmentsoffixedshapes

Todetermineif thedepartmentcanbelocatedattheintendedposition,wealsohavetoconsid‐erthedimensionofeachzone whichcanbemeasuredby

and ,

where and arerespectivelythewidthandtheheightofthezone.Let and bethewidthandtheheightofthedepartmenttobelocated,respectively.Ifazonesatisfiesthecondi‐tionsthat and ,itisfeasibletolocateDepartment inthiszone;otherwise,check if thesubsequentzonecanaccommodateDepartment .Theprocedureof themodifiedzonealgorithmissummarizedasfollows:

Page 7: A LP and simulated annealing algorithm for layout problemapem-journal.org/Archives/2016/APEM11-4_259-270.pdf · In UA‐FLP, the areas of the departments are given and their dimensions

A combined zone‐LP and simulated annealing algorithm for unequal‐area facility layout problem 

Advances in Production Engineering & Management 11(4) 2016  265

Step1. Set 1.Thecentroidof isplacedat(0,0)inthecoordinatesystem.Step2. Set 1.Createthezoneset, 1, … , ,byusingthezoneupdatingpro‐

cedure.Determinetheoptimallocation, ∗, ∗ ,for .Let ∗betheminimum amongthezonescontainedinthezoneset.Set 1, ∗ ∞.

Step3. If /2 ∗ – /2and /2 ∗ /2(i.e. withitscentroidlocatedattheoptimallocationcanfitentirelywithinzone ),gotoStep3.1;otherwise,gotoStep3.2.Step3.1 isoptimallylocatedat x∗, y∗ .GotoStep5.Step3.2 If ≥ and ≥ ,locate attheclosestpossiblepositionin tothe

optimal location. Calculate . If ∗, thenTTD∗ TTD ; else,∗keepsunchanged.

Step3.3 Set 1.If ,gotoStep3;otherwise,gotoStep4.Step4. isplacedinthezonewhose attains ∗,gotoStep5.Step5. If ,gotoStep2;otherwise,allthedepartmentshavealreadybeenlocatedwithinthe

facility.Terminatetheprocedure.

3.3 Linear programming (LP) 

Withfacilitylayoutdeterminedbytheimprovedzoningalgorithminthefirstphase,therelativepositionsofeachpairofdepartmentscanbeobtained.Byusingthisinformation,anLPmodelisformulatedtooptimizethedimensionsofdepartmentswithinaspecifiedfacilitywhilesatisfyingthephysicalconstraintsimposedontheirdimensions.Theadditionalnotationsusedinthisfor‐mulationarelistedasfollows:

Widthofthefacilityonthe floorplan Heightofthefacilityonthefloorplan Totalnumberofdepartmentstobelocated, Indicesusedtorepresentthedepartments, 1, … , and 1, … , . MaterialflowquantityfromDepartment toDepartment ( ). Arearequirementofdepartment Maximumaspectratioofdepartment, UpperandlowerboundofthelengthofDepartmentm inthex‐direction, UpperandlowerboundofthelengthofDepartmentm inthey‐direction, Indicators to denote if Departmentm is on the right/below Department n

respectively.More specifically,rmn =1 ifDepartmentm ison the leftofDe‐partmentn,and0otherwise;smn=1ifDepartmentmistobelowDepartmentn,and0otherwise

Thevalueofthetangentialsupportpointforthepolyhedralouterapproxima‐tiontotheareaconstraints, /2 /2

∆ Numberoftangentialsupportpoints,∆ 2 penaltyfortheviolationofthefloorboundarycondition,

,   HalfofwidthandheightofDepartment,   AmountofviolationofthefloorboundaryconditionforDepartment inthe

‐directionandthe ‐direction,respectively

OurLPmodeltodeterminethedimensionsofthedepartmentsisderivedfromtheMIPfor‐mulatedbySheralietal.[13]andpresentedbelow:

Minimize (4)

subjectto

Page 8: A LP and simulated annealing algorithm for layout problemapem-journal.org/Archives/2016/APEM11-4_259-270.pdf · In UA‐FLP, the areas of the departments are given and their dimensions

Xiao, Zheng, Zhang, Kuo  

266  Advances in Production Engineering & Management 11(4) 2016

∀ (5)

∀ (6)

∀ (7)

∀ (8)

∀   (9)

∀   (10)

2 ∀   (11)

2 ∀   (12)

∀ , , : 1  (13)

∀ , , : 1  (14)

4 2 ∀ ,   (15)

x 2⁄Δ 1

2⁄ 2⁄ ∀ , 0, … , Δ 1  (16)

, , , , , 0 ∀   (17)

, 0 ∀   (18)

ObjectivefunctionEq.4consistsoftwoterms: betweendepartmentsandthepenaltyforviolationofthefloorboundarycondition.ConstraintsEq.5toEq.8determinethe betweendepartments.ConstraintsEq.9andEq.10measuretheviolationofthefloorboundarycondition(in ‐directionand ‐direction,respectively),ifitisinfeasibletolocateallthedepartmentswith‐inthefacility.ConstraintsEq.11andEq.12imposetheboundsonthewidthandheightforeachdepartment, where the upper bounds min , , min , , andlower bounds / , / . Constraints Eq. 13 and Eq. 14 ensure that thedepartmentsdonotoverlapwitheachother.ConstraintsEq.15isthepolyhedralouterapprox‐imationfortheareafunction, 4 ,withthenumberoftangentialsupportpointsequalto∆.Thevalueofthetangentialsupportpoints isgiveninEq.(16).

Asanexample,withtherelativepositionsofthedepartmentsobtainedbytheimprovedzonealgorithm(asshowninFig.5),thefinalfacilitylayoutforlocatingthesixdepartmentswiththeexactdimensionscannowbeobtainedbytheLP.TheirpositionsanddimensionsareshowninFig.6.

Fig.6Layoutsolutionofthesixdepartmentswiththeirdimensionsdetermined

   

Page 9: A LP and simulated annealing algorithm for layout problemapem-journal.org/Archives/2016/APEM11-4_259-270.pdf · In UA‐FLP, the areas of the departments are given and their dimensions

A combined zone‐LP and simulated annealing algorithm for unequal‐area facility layout problem 

Advances in Production Engineering & Management 11(4) 2016  267

3.4 SA algorithm 

With the facility layoutsolutionobtainedby thezone‐LPapproach,we implementanSAalgo‐rithmtoimprovethequalityofthesolution.TheSAalgorithmthatweadoptisthesameastheprocedureproposedinXiaoetal.[22].Forthedetailofthealgorithm,wereferthereadertoXiaoetal.[22].

4. Computational experiments 

Inthissection,weconductcomputationalexperimentstoevaluatetheperformanceofourpro‐posed solutionmethodology forUA‐FLP – an integratedmethod of zone‐LP approach and SAalgorithm.Weuseasetofwidelytestedinstancesintheliteraturetoexaminetheefficiencyofthe solutionmethodology. There are five instances of different problem sizes included in thecomputationalexperiments:ProblemsO7(with7departments),O8(with8departments)andO9 (with9departments) fromMelleret al. [12] andTwo largest instancesSC30 (with30de‐partments)andSC35(with35departments)fromLiuandMeller[20].

Thecombinedzone‐LPandSAalgorithmisruntentimesforeachcomputationalinstance.Inthefirstphaseofzone‐LPalgorithm,thedimensionsofdepartmentsarefixedwiththeMARbe‐causealldepartments tend tohaveanarrowerrectangularshape togeta lower .Thepa‐rametercombinationused inSAwas 200°, 0.8,and 1000fromXiaoetal. [21].TheresultsonthecomputationalperformanceofourproposedapproachareshowninTable2.Wepresenttheaveragesandthestandarddeviationsofthecoststoexaminetherobustnessofourproposedmethod.Thecomputationalresultssuggestthattheproposedalgorithmappearstobequite robust.For the three small‐sizedproblems (O7,O8,O9), the standarddeviation isquitesmall,rangingfrom0to0.57(lessthan0.5%oftheaverage).Althoughthemagnitudeofthestandarddeviationbecomeslargeforthelarge‐sizedproblems(SC30,SC35),itsrelativeval‐ue isstill small (less than3%of theaverage).For thecomputationalefficiency,ourproposedsolutionmethodologycanobtainthefinalsolutionwithinareasonabletimeframe(lessthan1minuteforthesmall‐sizedproblemsandlessthan4minutesforthelarge‐sizedproblems).Giv‐enthatfacilitylayoutplanningisnotadailypractice(isusuallydeterminedforseveralyears),thiscomputationaltimeisnegligible,andourmethodissuitablefortheapplicationinpractice.

Table2ObjectivevaluesandthecomputingtimeobtainedbytheproposedalgorithmProblem Best Mean Worst Standarddeviation Averagetime(s)O7 89.25 89.25 89.25 0 33.13O8 185.00 185.30 186.00 0.46 36.93O9 185.00 185.45 186.5 0.57 41.80SC30 3441.57 3663.21 3792.71 103.50 180.27SC35 3347.94 3423.70 3555.89 69.06 225.94

Table3Objectivevalues,dimensionsofthefacilities,spaceutilizationsresultingfromthebestsolutionsfoundbyGRAPH[21]andourproposedalgorithm

ProblemGRAPH[21] Theproposedalgorithm

Diff.inTTD(%)TTD

Layoutdimen‐sion(WH)

Spaceutiliza‐tion(%)

TTDLayoutdimension

(WH)Spaceutilization

(%)O7 115.93 96.00 89.25 1213.5 68.52 23.01O8 239.00 96.00 185.00 1216.5 74.24 22.59O9 227.10 96.00 185.00 1516.5 63.03 18.54SC30 3601.20 1512 90.56 3441.57 12.7521.59 59.21 4.43SC35 3351.12 1615 80.00 3347.94 15.1424.7 51.34 0.09

Wealsocompareourproposedsolutionmethodologywithotherexistingalgorithms in theliteratureandusethemasbenchmarks.WefirstcomparethesolutionqualitiesobtainedbyourapproachandtheGRAPHalgorithm[21],whichattainsthebestknownsolutionsforthecompu‐tationalinstances.AsshowninTable3,ourproposedoutperformsGRAPH[21]intermsofTTDforallcomputationalinstances,butthespaceutilizationsresultingfromouralgorithmarelessthan those fromGRAPH. InourUA‐FLPs,departmentsarearrangedwithinanopen‐field floor

Page 10: A LP and simulated annealing algorithm for layout problemapem-journal.org/Archives/2016/APEM11-4_259-270.pdf · In UA‐FLP, the areas of the departments are given and their dimensions

Xiao, Zheng, Zhang, Kuo  

268  Advances in Production Engineering & Management 11(4) 2016

(asshowninFig.4andFig.5)andthelossofconsiderationonspaceutilizationintheobjectivefunctionoftheproposedmodelmainlycausesthepoorperformanceonspaceutilization.There‐fore,amulti‐objectiveoptimizationconsideringminimizationofTTDandmaximizationofspaceutilizationmaybeourfutureresearchtopic.Forreference,thebestlayoutssolutionsobtainedbyourproposedapproachare shown inAppendix1.Theproposedalgorithmalsohas an ad‐vantageofashortercomputingtimeduetoitscapabilityofsearchingintherestrictedsolutionspaced.We conductanother study toexamine theefficiencyofourproposedmethodology. InadditiontoGRAPH[21],wealso includeSEQUENCE[20] for thecomparisonofcomputationalefficienciesofthedifferentapproaches.ComputationalresultsinTable4suggestthatouralgo‐rithmtakesasignificantlyshorter time tosolve theUA‐FLP.More importantly, thecomputingtimeappearstogrowalmost linearlyasthenumberofdepartments increases.Comparedwiththe approaches that appear to have an exponential computing time in the number of depart‐ments, our approach is apparentlymore suitable for problems of a larger size. The linear in‐creaseofcomputingtimemaybeattributedtotheproposedzone‐LPalgorithmwhichcancon‐structthelayoutsolutioneffectively.IneachiterationofSA,thenumberofzonesproducedforputtingdepartmentsbyMPmethodisO(N)accordingtothezonealgorithm.TheproposedLPmodelisjustusedtodeterminethedimensionsofdepartments.Ingeneral,thecomputingtimeisapproximatelyproportional tothenumberofgeneratedzones ineachSAiterationandthusgrowsalmost linearlyas thenumberofdepartments increases.This furtherdemonstrates thevalue of our proposed approach in advancing the computational performance for solvingUA‐FLP.

Table4AveragecomputingtimesoftheSEQUENCE[20],GRAPH[21],andourproposedalgorithm

InstanceComputingtime(s)

SEQUENCE [20] GRAPH [21] OurproposedalgorithmO7 1644.0 228.0 33.13O8 3056.0 390.0 36.93O9 3879.0 222.0 41.80SC30 7282.8 2442.0 180.27SC35 9590.4 4728.0 225.94

5. Conclusion and future research 

ThispaperdealswithUA‐FLPandproposesanovelapproach,whichwecallacombinedzone‐LPandSAalgorithm, for solving large‐sizedUA‐FLP.Thezone‐LPalgorithm isanew layout con‐structionmethodandconsistsoftwophases. Inthefirstphase,theshapesofdepartmentsarefixedtoarectanglewithanallowableaspectratio.Thosedepartmentsoffixedshapesarethenplacedsequentiallybyusinganimprovedzonealgorithm,whereanMPmethodisproposedtolocatingdepartments.Byusingrelativepositionsofthedepartmentsobtainedinthisfirstphase,anLP is formulated todetermine theexact locationsanddimensionsofdepartments.WealsoimplementanSAalgorithmtosearchthesequencesoflocatingthedepartmentswithinthefacili‐tyandtopreventthesearchprocedurefromgettingtrappedatalocaloptimum.Computationalexperiments indicate thatourproposedcombinedzone‐LPandSAhasareasonablygoodper‐formance, comparedwithexistingalgorithms in the literatureonwidely testedcomputationalinstances.

Wealsonotethattherecanbefuturedirectionsextendedfromthisresearch.Inreality,de‐partmentsofirregularshapesarecommonplace;afuturestudymayconsiderthefacilitylayoutproblemwiththeconsiderationofdepartmentswithirregularshapes.Moreover,theresultsofcomputing experiments suggest that our proposed solution methodology may generate solu‐tionsleadingtoalowspaceutilization.Forthiscase,wemayadoptamulti‐objectiveoptimiza‐tionapproachwhosegoalsare tominimize thematerialhandling cost and tomaximize spaceutilization.Thetrade‐offbetweenthesetwoperformancemeasureswouldalsobeaninterestingresearchtopicforinvestigationinthefuture.   

Page 11: A LP and simulated annealing algorithm for layout problemapem-journal.org/Archives/2016/APEM11-4_259-270.pdf · In UA‐FLP, the areas of the departments are given and their dimensions

A combined zone-LP and simulated annealing algorithm for unequal-area facility layout problem

Acknowledgement The research has been supported by the National Natural Science Foundation of China (Grant No. 71501090, 71501093), the Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant No. 14KJD410001), the Natural Science Foundation of Jiangsu Province (Grant No. BK20150566), and the General Re-search Fund of Research Grants Council of Hong Kong (Grant No. 414313).

References [1] Tompkins, J.A., White, J.A., Bozer, Y.A., Tanchoco, J.M.A. (2010). Facilities Planning, 4th edition, John Wiley & Sons,

New York, USA. [2] Kusiak, A., Heragu, S.S. (1987). The facility layout problem, European Journal of Operational Research, Vol. 29, No.

3, 229-251, doi: 10.1016/0377-2217(87)90238-4. [3] Meller, R.D., Gau, K.Y. (1996). The facility layout problem: Recent and emerging trends and perspectives, Journal

of Manufacturing Systems, Vol. 15, No. 5, 351-366, doi: 10.1016/0278-6125(96)84198-7. [4] Singh, S.P., Sharma, R.R.K. (2006). A review of different approaches to the facility layout problems, The Interna-

tional Journal of Advanced Manufacturing Technology, Vol. 30, No. 5-6, 425-433, doi: 10.1007/s00170-005-0087-9. [5] Drira, A., Pierreval, H., Hajri-Gabouj, S. (2007). Facility layout problems: A survey, Annual Review in Control, Vol.

31, No. 2, 255-267, doi: 10.1016/j.arcontrol.2007.04.001. [6] Kulturel-Konak, S., Konak, A. (2011). Unequal area flexible bay facility layout using ant colony optimisation,

International Journal of Production Research, Vol. 49, No.7, 1877-1902, doi: 10.1080/00207541003614371. [7] Jolai, F., Tavakkoli-Moghaddam, R., Taghipour, M. (2012). A multi-objective particle swarm optimisation algo-

rithm for unequal sized dynamic facility layout problem with pickup/drop-off locations, International Journal of Production Research, Vol. 50, No. 15, 4279-4293, doi: 10.1080/00207543.2011.613863.

[8] Navidi, H., Bashiri, M., Bidgoli, M.M. (2012). A heuristic approach on the facility layout problem based on game theory, International Journal of Production Research, Vol. 50, No. 6, 1512-1527, doi: 10.1080/00207543.2010. 550638.

[9] Ficko, M., Palcic, I. (2013). Designing a layout using the modified triangle method, and genetic algorithms, Inter-national Journal of Simulation Modelling, Vol. 12, No. 4, 237-251, doi: 10.2507/IJSIMM12(4)3.244.

[10] Ficko, M., Brezovnik, S., Klancnik, S., Balic, J., Brezocnik, M., Pahole, I. (2010). Intelligent design of an unconstrai-ned layout for a flexible manufacturing system, Neurocomputing, Vol. 73, No. 4-6, 639-647, doi: 10.1016/ j.neucom.2009.06.019.

[11] Montreuil, B., 1991. A modelling framework for integrating layout design and flow network design, Progress in Materials Handling Research, Vol. 2, 95-115, doi: 10.1007/978-3-642-84356-3_8.

[12] Meller, R.D., Narayanan, V., Vance, P.H. (1998). Optimal facility layout design, Operations Research Letters, Vol. 23, No. 3-5, 117-127, doi: 10.1016/S0167-6377(98)00024-8.

[13] Sherail, H.D., Fraticelli, B.M.P., Meller, R.D. (2003). Enhanced model formulations for optimal facility layout, Op-erations Research, Vol. 51, No. 4, 629-644, doi: 10.1287/opre.51.4.629.16096.

[14] Meller, R.D., Chen, W., Sherali, H.D. (2007). Applying the sequence-pair representation to optimal facility layout design, Operations Research Letters, Vol. 35, No. 5, 651-659, doi: 10.1016/j.orl.2006.10.007.

[15] Kim, J.G., Kim, Y.D. (2000). Layout planning for facilities with fixed shapes and input and output points, Interna-tional Journal of Production Research, Vol. 38, No. 18, 4635-4653, doi: 10.1080/00207540050205550.

[16] Das, S.K. (1993). A facility layout method for flexible manufacturing systems, International Journal of Production Research, Vol. 31, No. 2, 279-297, doi: 10.1080/00207549308956725.

[17] Rajasekharan, M., Peters, B.A., Yang, T. (1998). A genetic algorithm for facility layout design in flexible manufac-turing systems, International Journal of Production Research, Vol. 36, No. 1, 95-110, doi: 10.1080/00207549 8193958.

[18] Scholz, D., Petrick, A., Domschke, W. (2009). STaTS: A Slicing Tree and Tabu Search based heuristic for unequal area faciltiy layout problem, European Journal of Operational Research, Vol. 197, No. 1, 166-178, doi: 10.1016/ j.ejor.2008.06.028.

[19] Komarudin, Wong, K.Y. (2010). Applying ant system for solving unequal area facility layout problems, European Journal of Operational Research, Vol. 202, No. 3, 730-746, doi: 10.1016/j.ejor.2009.06.016.

[20] Liu, Q., Meller, R.D. (2007). A sequence-pair representation and MIP model based heuristic for the facility layout problem with rectangular departments, IIE Transactions, Vol. 39, No. 4, 337-394, doi: 10.1080/07408170600 844108.

[21] Bozer, Y.A., Wang, C.T. (2012). A graph-pair representation and MIP-model-based heuristic for the unequal-area facility layout problem, European Journal of Operational Research, Vol. 218, No. 2, 382-391, doi: 10.1016/ j.ejor.2011.10.052.

[22] Xiao, Y., Seo, Y., Seo, M. (2013). A two-step heuristic algorithm for layout design of unequal-sized facilities with input/output points, International Journal of Production Research, Vol. 51, No. 14, 4200-4222, doi: 10.1080/ 00207543.2012.752589.

Advances in Production Engineering & Management 11(4) 2016 269

Page 12: A LP and simulated annealing algorithm for layout problemapem-journal.org/Archives/2016/APEM11-4_259-270.pdf · In UA‐FLP, the areas of the departments are given and their dimensions

Xiao, Zheng, Zhang, Kuo

Appendix 1 The best layouts obtained by our proposed algorithm for the experimental instances from Meller et al. [10] and Liu and Meller [19].

Layout with seven departments Layout with eight departments Layout with nine departments

Layout with 30 departments Layout with 35 departments

270 Advances in Production Engineering & Management 11(4) 2016