fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". jurgen saal...

32
Fluid flow and rotation: a fascinating interplay urgen Saal Mathematics for Nonlinear Phenomena: Analysis and Computation International Conference in honor of Professor Yoshikazu Giga on his 60th birthday urgen Saal (HHU D¨ usseldorf) Fluid flow and rotation Darmstadt 19.6.2015 1 / 21

Upload: others

Post on 03-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

Fluid flow and rotation: a fascinating interplay

Jurgen Saal

Mathematics for Nonlinear Phenomena: Analysis and Computation

International Conference in honor of

Professor Yoshikazu Giga

on his 60th birthday

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 1 / 21

Page 2: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

About 12 years ago in Sapporo there was ...

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 2 / 21

Page 3: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

... some years later ...

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 3 / 21

Page 4: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

Contents

1 Rotating fluids

2 The Taylor-Proudman theorem

3 The Ekman boundary layer problem

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 4 / 21

Page 5: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

Contents

1 Rotating fluids

2 The Taylor-Proudman theorem

3 The Ekman boundary layer problem

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 5 / 21

Page 6: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

The Ekman boundary layer problem (EBLP)

Important for: daily weather forecast, tornado and hurricane evolution, aviation,pollen distribution, dew, fog, frost forecasts, air pollution, ....

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 6 / 21

Page 7: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

Modeling of the problem

Navier-Stokes equations with Coriolis term

(EBLP)

∂tv − ν∆v + (v ,∇)v + Ωe3 × v = −∇p

div v = 0

v |∂G = UE |∂Gv |t=0 = v0

considered in G = (R2 × (0, d))× (0,T ) for d ∈ [δ,∞].

The Ekman spiral solution

UE (x3) = U∞(

1− e−x3/δ cos(x3/δ), e−x3/δ sin(x3/δ), 0)

is an exact solution of (EBLP) with pressure pE (x2) = −ΩU∞x2.

Here δ =

√2ν

|Ω|“ layer thickness ”.

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 7 / 21

Page 8: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

LiteratureGeophysical:

V.W. Ekman, On the influence of the earth’s rotation on ocean currents,Arkiv Matem. Astr. Fysik, 1905.

J. Pedlosky, Geophysical Fluid Dynamics, Springer Verlag, 1987.

H.P. Greenspan, The Theory of Rotating Fluids, Cambridge Univ. Pr., 1968.

Mathematical:

D. Lilly ’66, J. Atmospheric Sci.

E. Grenier and N. Masmoudi ’97, Commun. Partial. Differ. Equations.

B. Desjardins, E. Dormy, and E. Grenier ’99, Nonlinearity.

J.-Y. Chemin, B. Desjardin, I. Gallagher, and Grenier E., Ekman boundarylayers in rotating fluids ’02, ESAIM Control Optim. Calc. Var.

and Rousset, Greenberg, Marletta, Tretter, Giga, Mahalov, Hess, Hieber,Koba, S., ...

In infinite energy space B0∞,1(R2, Lp((0, d))):

Giga, Inui, Mahalov, Matsui, S. ’07, ARMA.

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 8 / 21

Page 9: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

Fluid flow about a rotating obstacle

Mathematical model:

∂tu + (u · ∇)u −∆u + Ωe3 × u − Ω(e3 × ξ)∇u = ∇p

div u = 0

u|t=0 = u0

ξ = (x1, x2, x3).

Literature:

T. Hishida ’99, ARMA (iniciated by P.G. Galdi).

and Galdi , Farwig, Muller, Shibata, Neustupa, Necasova, Hieber, Geißert,Heck, Dintelmann, Penel, Disser, Maekawa, ...

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 9 / 21

Page 10: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

Rotating obstacle vs Ekman

’Rotating obstacle’ situation (e.g. propeller)

additional forces:

Ωe3 × u︸ ︷︷ ︸Corolis

+Ω2

2e3 × (e3 × ξ)︸ ︷︷ ︸centrifugal

− Ω(e3 × ξ)∇u︸ ︷︷ ︸drift

Ω: twice angular velocity of rotation.

’Ekman’ situation

(e.g. Ekman, tornado-hurricane, spin-coating)

additional forces:

Ωe3 × u︸ ︷︷ ︸Corolis

+Ω2

2e3 × (e3 × ξ)︸ ︷︷ ︸centrifugal

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 10 / 21

Page 11: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

Linearized spectrum

without rotation: Au = P∆u

rotating obstacle: AOu = P(∆u − Ωe3 × u − Ω(e3 × ξ)∇u)

Ekman: AEu = P(∆u − Ωe3 × u − (UE · ∇)u − u3∂3UE )

Spectra:

=⇒

A generates bounded analytic C0-semigroup

AO generates bounded C0-semigroup, which is not analytic

AE generates analytic C0-semigroup, which is not bounded

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 11 / 21

Page 12: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

Linearized spectrum

without rotation: Au = P∆u

rotating obstacle: AOu = P(∆u − Ωe3 × u − Ω(e3 × ξ)∇u)

Ekman: AEu = P(∆u − Ωe3 × u − (UE · ∇)u − u3∂3UE )

Spectra:

=⇒

A generates bounded analytic C0-semigroup

AO generates bounded C0-semigroup, which is not analytic

AE generates analytic C0-semigroup, which is not bounded

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 11 / 21

Page 13: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

Linearized spectrum

without rotation: Au = P∆u

rotating obstacle: AOu = P(∆u − Ωe3 × u − Ω(e3 × ξ)∇u)

Ekman: AEu = P(∆u − Ωe3 × u − (UE · ∇)u − u3∂3UE )

Spectra:

=⇒

A generates bounded analytic C0-semigroup

AO generates bounded C0-semigroup, which is not analytic

AE generates analytic C0-semigroup, which is not bounded

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 11 / 21

Page 14: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

Contents

1 Rotating fluids

2 The Taylor-Proudman theorem

3 The Ekman boundary layer problem

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 12 / 21

Page 15: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

The Taylor-Proudman theorem

Theorem (after Taylor ’16 and Proudman ’17)

Within a fluid that is steadily rotated at high angular velocity Ω, there is novariation of the velocity field in the direction parallel to the axis of rotation.

(NSC )

∂tu + (u · ∇)u −∆u + Ωe3 × u +∇p = 0

div u = 0

Heuristically:

Ω >> 1 ⇒ Ωe3 × u ≈ −∇p

⇒ ∇× (e3 × u) ≈ 0

⇒ d

dzu = e3 · ∇u ≈ 0

⇒ u(x , y , z) ≈ u(x , y)

⇒ flow is two-dimensional ⇒ global well-posedness !

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 13 / 21

Page 16: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

The Taylor-Proudman theorem

Theorem (after Taylor ’16 and Proudman ’17)

Within a fluid that is steadily rotated at high angular velocity Ω, there is novariation of the velocity field in the direction parallel to the axis of rotation.

(NSC )

∂tu + (u · ∇)u −∆u + Ωe3 × u +∇p = 0

div u = 0

Heuristically:

Ω >> 1 ⇒ Ωe3 × u ≈ −∇p

⇒ ∇× (e3 × u) ≈ 0

⇒ d

dzu = e3 · ∇u ≈ 0

⇒ u(x , y , z) ≈ u(x , y)

⇒ flow is two-dimensional ⇒ global well-posedness !

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 13 / 21

Page 17: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

The Taylor-Proudman theorem

Theorem (after Taylor ’16 and Proudman ’17)

Within a fluid that is steadily rotated at high angular velocity Ω, there is novariation of the velocity field in the direction parallel to the axis of rotation.

(NSC )

∂tu + (u · ∇)u −∆u + Ωe3 × u +∇p = 0

div u = 0

Heuristically:

Ω >> 1 ⇒ Ωe3 × u ≈ −∇p

⇒ ∇× (e3 × u) ≈ 0

⇒ d

dzu = e3 · ∇u ≈ 0

⇒ u(x , y , z) ≈ u(x , y)

⇒ flow is two-dimensional ⇒ global well-posedness !

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 13 / 21

Page 18: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

Literature

After more than 80 years first analytical verification:

Periodic domains (e.g. torus):I Babin, Mahalov, Nicolaenko ’97, Asymptotic Anal., ’99 + ’01, Indiana Univ.

Math. J., ’03 Russian Math. Surveys

Crucial pre-condition: uniformness in Ω of local results!

Whole space Rn:I J.-Y. Chemin, B. Desjardins, I. Gallagher, and E. Grenier ’02, Stud. Math.

Appl.I and Koba, Mahalov, Yoneda, Konieczny, Koh, Lee, Takada, ...

Crucial ingredients:I exp(−t(∆ + PΩe3×)) = exp(−t∆) exp(tPΩe3×),

I dispersive estimates:

∣∣∣∣∫R3

exp(ix · ξ + iΩξ3/|ξ|)ψ(ξ) dξ

∣∣∣∣ ≤ C/|Ω|.

(⇒ Strichartz estimates by Keel-Tao)

Domains with boundary (e.g. Rn+): ... ???

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 14 / 21

Page 19: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

Literature

After more than 80 years first analytical verification:

Periodic domains (e.g. torus):I Babin, Mahalov, Nicolaenko ’97, Asymptotic Anal., ’99 + ’01, Indiana Univ.

Math. J., ’03 Russian Math. Surveys

Crucial pre-condition: uniformness in Ω of local results!

Whole space Rn:I J.-Y. Chemin, B. Desjardins, I. Gallagher, and E. Grenier ’02, Stud. Math.

Appl.I and Koba, Mahalov, Yoneda, Konieczny, Koh, Lee, Takada, ...

Crucial ingredients:I exp(−t(∆ + PΩe3×)) = exp(−t∆) exp(tPΩe3×),

I dispersive estimates:

∣∣∣∣∫R3

exp(ix · ξ + iΩξ3/|ξ|)ψ(ξ) dξ

∣∣∣∣ ≤ C/|Ω|.

(⇒ Strichartz estimates by Keel-Tao)

Domains with boundary (e.g. Rn+): ... ???

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 14 / 21

Page 20: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

Literature

After more than 80 years first analytical verification:

Periodic domains (e.g. torus):I Babin, Mahalov, Nicolaenko ’97, Asymptotic Anal., ’99 + ’01, Indiana Univ.

Math. J., ’03 Russian Math. Surveys

Crucial pre-condition: uniformness in Ω of local results!

Whole space Rn:I J.-Y. Chemin, B. Desjardins, I. Gallagher, and E. Grenier ’02, Stud. Math.

Appl.I and Koba, Mahalov, Yoneda, Konieczny, Koh, Lee, Takada, ...

Crucial ingredients:I exp(−t(∆ + PΩe3×)) = exp(−t∆) exp(tPΩe3×),

I dispersive estimates:

∣∣∣∣∫R3

exp(ix · ξ + iΩξ3/|ξ|)ψ(ξ) dξ

∣∣∣∣ ≤ C/|Ω|.

(⇒ Strichartz estimates by Keel-Tao)

Domains with boundary (e.g. Rn+): ... ???

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 14 / 21

Page 21: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

Contents

1 Rotating fluids

2 The Taylor-Proudman theorem

3 The Ekman boundary layer problem

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 15 / 21

Page 22: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

Transformed equations and aims

The problem:

(EBLP)

∂tv − ν∆v + (v ,∇)v + Ωe3 × v + (UE · ∇)v + v 3∂3UE = −∇p

div v = 0v |∂G = 0v |t=0 = v0

considered in G = (R2 × (0, d))× (0,T ) for d ∈ [δ,∞].

Main requirements:

Prove results on well-posedness and stability in a functional setting such that

(1) nondecaying, like almost periodic, perturbations of UE are included;

(2) results are uniform in Ω.

Note: This rules out an approach in all standard function spaces such as:

Lp, B0∞,1(Lp), L∞, BUC , Cα, ...

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 16 / 21

Page 23: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

Functional analytic setting

Idea for ground space

FM0(R2, L2(R+)3) =

v : v L2(R+)3-valued Radon measure, v(0) = 0

(Diestel, Uhl ’77: Vector Measures; important: Radon-Nikodym property)

Motivation 1: FM0(L2) 3 v0(x) :=∑∞

j=1 ajeiλj ·x , x ∈ R3, λj 6= 0

Motivation 2: - Giga, Inui, Mahalov, Matsui, local ex. in FM0(R3),Hokkaido Math. J. ’06, uniform in Ω ,

- Giga, Inui, Mahalov, S., global ex. in FM`(R3) Adv. Differ. Equ ’07;in FM−1

0 (R3) Indiana Univ. Math. J. ’08, uniform in Ω .

Motivation 3:

Lemma (operator-valued multiplier result)

‖F−1σF‖L (FM(L2)) = ‖σ‖L∞(R2\0,L (L2(R+)3)) = ‖F−1σF‖L (L2(R3+)3)).

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 17 / 21

Page 24: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

Functional analytic setting

Idea for ground space

FM0(R2, L2(R+)3) =

v : v L2(R+)3-valued Radon measure, v(0) = 0

(Diestel, Uhl ’77: Vector Measures; important: Radon-Nikodym property)

Motivation 1: FM0(L2) 3 v0(x) :=∑∞

j=1 ajeiλj ·x , x ∈ R3, λj 6= 0

Motivation 2: - Giga, Inui, Mahalov, Matsui, local ex. in FM0(R3),Hokkaido Math. J. ’06, uniform in Ω ,

- Giga, Inui, Mahalov, S., global ex. in FM`(R3) Adv. Differ. Equ ’07;in FM−1

0 (R3) Indiana Univ. Math. J. ’08, uniform in Ω .

Motivation 3:

Lemma (operator-valued multiplier result)

‖F−1σF‖L (FM(L2)) = ‖σ‖L∞(R2\0,L (L2(R+)3)) = ‖F−1σF‖L (L2(R3+)3)).

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 17 / 21

Page 25: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

Functional analytic setting

Idea for ground space

FM0(R2, L2(R+)3) =

v : v L2(R+)3-valued Radon measure, v(0) = 0

(Diestel, Uhl ’77: Vector Measures; important: Radon-Nikodym property)

Motivation 1: FM0(L2) 3 v0(x) :=∑∞

j=1 ajeiλj ·x , x ∈ R3, λj 6= 0

Motivation 2: - Giga, Inui, Mahalov, Matsui, local ex. in FM0(R3),Hokkaido Math. J. ’06, uniform in Ω ,

- Giga, Inui, Mahalov, S., global ex. in FM`(R3) Adv. Differ. Equ ’07;in FM−1

0 (R3) Indiana Univ. Math. J. ’08, uniform in Ω .

Motivation 3:

Lemma (operator-valued multiplier result)

‖F−1σF‖L (FM(L2)) = ‖σ‖L∞(R2\0,L (L2(R+)3)) = ‖F−1σF‖L (L2(R3+)3)).

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 17 / 21

Page 26: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

Functional analytic setting

Idea for ground space

FM0(R2, L2(R+)3) =

v : v L2(R+)3-valued Radon measure, v(0) = 0

(Diestel, Uhl ’77: Vector Measures; important: Radon-Nikodym property)

Motivation 1: FM0(L2) 3 v0(x) :=∑∞

j=1 ajeiλj ·x , x ∈ R3, λj 6= 0

Motivation 2: - Giga, Inui, Mahalov, Matsui, local ex. in FM0(R3),Hokkaido Math. J. ’06, uniform in Ω ,

- Giga, Inui, Mahalov, S., global ex. in FM`(R3) Adv. Differ. Equ ’07;in FM−1

0 (R3) Indiana Univ. Math. J. ’08, uniform in Ω .

Motivation 3:

Lemma (operator-valued multiplier result)

‖F−1σF‖L (FM(L2)) = ‖σ‖L∞(R2\0,L (L2(R+)3)) = ‖F−1σF‖L (L2(R3+)3)).

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 17 / 21

Page 27: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

Well-posedness and (in-) stability

Theorem (Giga, S. ’13, J. Math. Fluid Mech., ’15 Ark. Mat.)

Let d ∈ (δ,∞), U∞δ/µ < 1/√

2 and set κ = 2(µ−√

2U∞δ).

Linear:

‖ exp(−tASCE )‖L (FM(L2)) ≤ exp(−2κ/d2) (t ≥ 0)

‖∇ exp(−tASCE )v0‖L2((0,d),FM(L2)) ≤ ‖v0‖FM(L2)/√

2κ.

Nonlinear: If ‖u0 −UE‖FM(L2) < πκ/3 · 21/4√

d we have

‖u(t)−UE‖FM(L2) ≤ 2 exp(−2κt)‖u0 −UE‖FM(L2) (t ≥ 0).

Note: Estimates are uniform in Ω.

Theorem (Fischer, S. ’13, Discr. Cont. Dyn. Sys.)

If U∞δ/µ > 55, then the Ekman spiral UE is unstable in FM0(R2, L2(0, d)) and inL2(R2 × (0, d)).

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 18 / 21

Page 28: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

Well-posedness and (in-) stability

Theorem (Giga, S. ’13, J. Math. Fluid Mech., ’15 Ark. Mat.)

Let d ∈ (δ,∞), U∞δ/µ < 1/√

2 and set κ = 2(µ−√

2U∞δ).

Linear:

‖ exp(−tASCE )‖L (FM(L2)) ≤ exp(−2κ/d2) (t ≥ 0)

‖∇ exp(−tASCE )v0‖L2((0,d),FM(L2)) ≤ ‖v0‖FM(L2)/√

2κ.

Nonlinear: If ‖u0 −UE‖FM(L2) < πκ/3 · 21/4√

d we have

‖u(t)−UE‖FM(L2) ≤ 2 exp(−2κt)‖u0 −UE‖FM(L2) (t ≥ 0).

Note: Estimates are uniform in Ω.

Theorem (Fischer, S. ’13, Discr. Cont. Dyn. Sys.)

If U∞δ/µ > 55, then the Ekman spiral UE is unstable in FM0(R2, L2(0, d)) and inL2(R2 × (0, d)).

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 18 / 21

Page 29: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

Operator-valued dispersive estimates

Wanted:

∫Rn

e iλϕ(ξ)ψ(ξ) dξ ∼ 1/λ

for ϕ ∈ C∞(suppψ,L (H)), ϕ = ϕsym + ϕas/Ω, ϕ(ξ)ϕ(η) = ϕ(η)ϕ(ξ) (A)(For Ekman: H = L2(0, d)3, λ = Ωt, ϕ(ξ) =

(x · ξ/t − iFASCEF−1

)/Ω

)

Lemma

supξ‖(∇ϕ(ξ)T∇ϕ(ξ))−1‖L (H) ≤ C ⇒ ‖

∫Rn

e iλϕ(ξ)ψ(ξ) dξ‖L (H) ≤ C/λ (λ > 0).

Pf: ∇e iλϕ(ξ) = iλe iλϕ(ξ)∇ϕ(ξ) .... .

Cor: holds for Ekman in case that |x | > κΩt.

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 19 / 21

Page 30: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

Operator-valued dispersive estimates

Wanted:

∫Rn

e iλϕ(ξ)ψ(ξ) dξ ∼ 1/λ

for ϕ ∈ C∞(suppψ,L (H)), ϕ = ϕsym + ϕas/Ω, ϕ(ξ)ϕ(η) = ϕ(η)ϕ(ξ) (A)(For Ekman: H = L2(0, d)3, λ = Ωt, ϕ(ξ) =

(x · ξ/t − iFASCEF−1

)/Ω

)Lemma

supξ‖(∇ϕ(ξ)T∇ϕ(ξ))−1‖L (H) ≤ C ⇒ ‖

∫Rn

e iλϕ(ξ)ψ(ξ) dξ‖L (H) ≤ C/λ (λ > 0).

Pf: ∇e iλϕ(ξ) = iλe iλϕ(ξ)∇ϕ(ξ) .... .

Cor: holds for Ekman in case that |x | > κΩt.

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 19 / 21

Page 31: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

Operator-valued dispersive estimates

Case |x | ≤ κΩt:

Lemma

Let ϕ ∈ C∞(suppψ,L (H)), ϕ = ϕsym + ϕas/Ω, ϕ(ξ)ϕ(η) = ϕ(η)ϕ(ξ). Then

supξ,η‖[ξT∇2ϕsym(η)ξ

]−1 ‖L (H) ≤ C ⇒ ‖∫Rn

e iλϕ(ξ)ψ(ξ) dξ‖L (H) ≤ C/λ (λ > 0).

Pf:

‖∫Rn

e iλϕ(ξ)ψ(ξ) dξv‖2H =

⟨∫Rn

∫Rn

e iλ[ϕ(ξ+η)−ϕ(η)∗

]ψ(ξ + η)ψ(η) dξ dη v , v

∇[ϕ(ξ + η)− ϕ(η)∗

]= ∇ϕsym(ξ + η)−∇ϕsym(η) +

1

Ω

[∇ϕas(ξ + η) +∇ϕas(η)

]∼ ∇2ϕsym(hξ + η)ξ +

1

Ω

[∇ϕas(ξ + η) +∇ϕas(η)

].

For Ekman: generalize (A) suitably .... work in progress ....

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 20 / 21

Page 32: Fluid flow and rotation: a fascinating interplay [-3mm]j j \ layer thickness ". Jurgen Saal (HHU Dusseldo rf) Fluid ow and rotation Darmstadt 19.6.2015 7 / 21 Literature Geophysical:

Happy Birthday Yoshi !!!

... and thank you for 12 years ofmentor-, colleage-, and friendship!

Jurgen Saal (HHU Dusseldorf) Fluid flow and rotation Darmstadt 19.6.2015 21 / 21