fixed wing design tool

73
Mission Profile Profile Notes/Sources: 0 Warm-up Taxi Source: "2006-2007 1 Max Perforamnce Take-Off @ SL 2 Max Power Climb to Opt. Alt. 3 Cruise out 800 nm @ Optimum Speed/Al 4 Loiter for 20 min. @ 5,000ft 5 20 min. Combat @ Corner Speed/SL 6 Max Power Climb to Opt. Alt. 7 Cruise Back 800 nm @ Optimum Speed/A 8 Descend to SL @ Idle Thrust Setting 9 20 min Loiter @ Endurance Speel/SL 10 Landing with 30 min Reserve Fuel @ S

Upload: moorthysri

Post on 04-Nov-2014

96 views

Category:

Documents


2 download

DESCRIPTION

Fixed Wing Design Tool

TRANSCRIPT

Mission Profile

Profile Notes/Sources:0 Warm-up Taxi Source: "2006-2007 AIAA Graduate Team Aircraft Design Competition - Modifiied RFP"1 Max Perforamnce Take-Off @ SL2 Max Power Climb to Opt. Alt.3 Cruise out 800 nm @ Optimum Speed/Alt4 Loiter for 20 min. @ 5,000ft5 20 min. Combat @ Corner Speed/SL6 Max Power Climb to Opt. Alt.7 Cruise Back 800 nm @ Optimum Speed/Alt8 Descend to SL @ Idle Thrust Setting9 20 min Loiter @ Endurance Speel/SL

10 Landing with 30 min Reserve Fuel @ SL

Source: "2006-2007 AIAA Graduate Team Aircraft Design Competition - Modifiied RFP"

Mission Analysis

Step 1 Notes/Sources:Ammunition Weight (1.62 lbs x 2000 rounds) 3,240 lbs Source: "2006-2007 AIAA Graduate Team Aircraft Design Competition - Modifiied RFP"Internal Stores Max 5,000 lbs GD GAU-8 30-mm Cannon is part of weight emptyExternal Stores Max 12,000 lbs External Stores is deemed the limiting case

Total 12,000 lbs Enter Payload based on above values, and Desired Mission (for baseline misson, assume worst case external stores)

Crew WeightCrew (1x250lbs) 250 lbs Source: "2006-2007 AIAA Graduate Team Aircraft Design Competition - Modifiied RFP"

Total 250 lbs

Step 2Aircraft Type W_PL W_TO V_MAX Range Source: Taylor, J.W.R, Jane's All The World Aircraft Published Annually by: Jane's Publishing Company, (Issues used: 1945/45, 1968/84)

(lbs) (lbs) (kts) (nm) Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 60F.R. A10A 15,000 50,000 450 540

Grumman A6 17,000 60,400 689 1,700 Tornado F.Mk2 16,000 58,400 600 750

Average: 16,000 56,267 580 997 Some initial guess for TOGW, will only be used for reference, program automatically calculates TOGW based on historical data

59,488 lbs Later this will be iterated to find weight empty

Step 3 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 12

Climb 1Range Credit 24.5000001 nm Assume 10,000 ft/min climb (from RFP) and 350 knot ground speed during climb (from Roskam page 62); therefore, Rclimb = Alt./(10K/min)*350knotsCruise 1

775.5 nm 800 nm specified in RFP - climb 1 rangeAltitude 42,000 ft

Temperature @ Alt, T -90.6Delta 0.1668Theta 0.7116

Payload Calculations, W PL

WPL

WCREW

Weight Take Off Guess Based on Historical Data, W TO_GUESS

WTO_GUESS

Mission Fuel Weight Fractions, W F

Rcr, Cruise Range

o F

Mission Summary (Baseline Mission)

Seg. Description Altitude Temp. Density Velocity Range(ft) (°F) slug/ft^3 knots nm

0 0 59.0 ### 0.0 - 1 Warm-up Taxi 0 59.0 ### 0.0 - 2 Max Perforamnce Take-Off @ SL 0 59.0 ### TBD - 3 Max Power Climb to Opt. Alt. 42,000 -90.6 ### 350.0 25 4 Cruise out 800 nm @ Optimum Speed/Alt 42,000 -90.6 ### 459.0 800 5 Loiter for 20 min. @ 5,000ft 5,000 41.2 ### 226.6 800 6 20 min. Combat @ Corner Speed/SL 0 59.0 ### 275.0 800 7 Max Power Climb to Opt. Alt. 42,000 -90.6 ### 350.0 825 8 Cruise Back 800 nm @ Optimum Speed/Alt 42,000 -90.6 ### 459.0 1,600 9 Descend to SL @ Idle Thrust Setting 0 0.0 ### 459.0 1,600

10 20 min Loiter @ Endurance Speel/SL 0 0.0 ### 187.5 1,600 11 Landing with 30 min Reserve Fuel @ SL 0 0.0 ### 0.0 1,600

q L/D Fuel Burn Fuel Weight Betapsf (lbs) (lbs) (lbs)0 0.0000 0.0172 0.00 1.000 - - 59,488 1.0000 0.0000 0.0172 0.00 0.990 595 595 58,894 0.9900 TBD TBD 0.990 1,184 589 58,305 0.980- - - - 0.960 3,516 2,332 55,972 0.941

167 0.3940 0.0282 13.97 0.930 7,434 3,918 52,054 0.875150 0.4088 0.0291 14.07 0.986 8,161 727 51,327 0.863256 1.1794 0.1160 10.17 0.974 9,477 1,315 50,012 0.841

- - - - 0.960 11,477 2,000 48,011 0.807167 0.3379 0.0253 13.36 0.927 14,985 3,508 44,504 0.748167 0.3379 0.0253 13.36 1.000 14,985 - 44,504 0.748119 0.4400 0.0309 14.23 0.986 15,600 615 43,889 0.738

0 0.0000 0.0172 0.00 0.979 16,516 916 42,973 0.722

CL CD Wn-1/Wn

Constraint Analysis as a Function of T/W and T/S

Constant Altitude/Speed Cruise (Ps=0)Input Source: This section describes where the initial input values are referenced from

Lapse Rate α 0.243478 αFuel/Payload β 0.9801 β At Cruising AltitudeLoad Factor n 1 n Level Flight n=1Gravity g 32.2 ft/s2 g EarthExcrescence Drag R 0 slug/ft3 R Gear retracted for level flightFreesteam Velocity Velocity 774.7048 ft/s VelocityDynamic Pressure q 167.18 psf q Calculated from Velocity and Ambient Conditions

Min Drag 0.017179

Drag Polar Coefficient 0.07 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Drag Polar Coefficient 0Vertical Velocity dh/dt 0 ft/s dh/dt zero, no change in altitudeVertical Acceleration dV/dt 0 ft/s2 dV/dt zero, no change in vertical accelerationAdditional InputsAltitude 42,000 ft Altitude Cruising Alt.

Temperature @ Alt, T -90.6 TemperaturBased on Standard Day AtmosphereDelta 0.1668 DeltaTheta 0.7116 ThetaSigma 0.2344 Sigma

Density ### DensityWeight 58,305 lbs Weight

459.00 ktsM 0.823 M Wings are swept to reduce compressibility in transonic regime

Max Cruise Speed, 550 kts (Ps=0)Input Source: This section describes where the initial input values are referenced from

Lapse Rate α 0.23888 αFuel/Payload β 0.9801 β At Cruising AltitudeLoad Factor n 1 n Level Flight n=1Gravity g 32.2 ft/s2 g EarthExcrescence Drag R 0 slug/ft3 R Gear retracted for level flightFreesteam Velocity Velocity 928.2955 ft/s VelocityDynamic Pressure q 240.04 psf q Calculated from Velocity and Ambient Conditions

Min Drag 0.019679

Drag Polar Coefficient 0.07 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Drag Polar Coefficient 0Vertical Velocity dh/dt 0 ft/s dh/dt zero, no change in altitudeVertical Acceleration dV/dt 0 ft/s2 dV/dt zero, no change in vertical accelerationAdditional InputsAltitude 42,000 ft Altitude Cruising Alt.

Temperature @ Alt, T -90.6 TemperaturBased on Standard Day AtmosphereDelta 0.1668 DeltaTheta 0.7116 ThetaSigma 0.2344 Sigma

Lapse Rate Based on High Bypass Ratio Turbofan Engine,

Optimum Cruise first guess assumed to be 459 knots, Fighter Example Problem,

CD0 CD0 Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

K1 K1

K2 K2 Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

o F

slugs/ft3

VCRUISE VCRUISE Optimum Cruise first guess assumed to be 459 knots, Fighter Example Problem, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 62

Lapse Rate Based on High Bypass Ratio Turbofan Engine,

Specified in RFP -

CD0 CD0 Drag Include Compressibility for High Mach Number, and External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

K1 K1

K2 K2 Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

o F

Density ### DensityWeight 58,305 lbs Weight

550.00 kts Velocity in knots for my ReferenceM 0.986 M Due to the High Mach number there will be additional drag due to Compressibility

Level Combat Corner Speed 275kts (Ps=0)Input Source: This section describes where the initial input values are referenced from

Lapse Rate α 0.688611 αFuel/Payload β 1 β Specified by RFP to be Max TOGWLoad Factor n 3.180281 n Sustained Turn will require a certain g value based on the turn rate, this can be calculated from source: Raymer, "Aircraft Design, A Conceptual Approach, 3rd Edition", 1999, pg 106Gravity g 32.2 ft/s2 g EarthExcrescence Drag R 0 slug/ft3 R Gear retractedFreesteam Velocity Velocity 464.1478 ft/s Velocity 275 knots min, provided by RFPDynamic Pressure q 256.04 psf q Calculated from Velocity and Ambient Conditions

Min Drag 0.017179

Drag Polar Coefficient 0.07 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Drag Polar Coefficient 0Vertical Velocity dh/dt 0 ft/s dh/dt zero, no change in altitudeVertical Acceleration dV/dt 0 ft/s2 dV/dt zero, no change in vertical accelerationAdditional InputsAltitude 0 ft Altitude

Temperature @ Alt, T 59.0 TemperaturBased on Standard Day AtmosphereDelta 1.0000 DeltaTheta 1.0000 ThetaSigma 1.0000 Sigma

Density ### DensityWeight 59,488 lbs Weight

275.00 kts 275 knots min, provided by RFPM 0.416 M

Service Ceiling, 45,000 ft. (100 ft/min)Input Source: This section describes where the initial input values are referenced from

Lapse Rate α 0.225354 αFuel/Payload β 1 β Specified by RFP to be Max TOGWLoad Factor n 1 n Level Flight n=1Gravity g 32.2 ft/s2 g EarthExcrescence Drag R 0 slug/ft3 R Gear retractedFreesteam Velocity Velocity 774.7048 ft/s Velocity Cruise VelocityDynamic Pressure q 147.49 psf q Calculated from Velocity and Ambient Conditions

Min Drag 0.017179

Drag Polar Coefficient 0.07 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Drag Polar Coefficient 0Vertical Velocity dh/dt 1.667 ft/s dh/dt Specified 100 ft/min capability at 45,000 ft (Service Ceiling) to allow for maneuver margin. Requirement from RFPVertical Acceleration dV/dt 0 ft/s2 dV/dt zero, no change in vertical accelerationAdditional InputsAltitude 45,000 ft Altitude Max Altitude

slugs/ft3

VCRUISE_MAX VCRUISE_MAX

Lapse Rate Based on High Bypass Ratio Turbofan Engine,

CD0 CD0 Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

K1 K1

K2 K2 Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

o F

slugs/ft3

VCRUISE VCRUISE

Lapse Rate Based on High Bypass Ratio Turbofan Engine,

CD0 CD0 Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

K1 K1

K2 K2 Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Temperature @ Alt, T -101.2 TemperaturBased on Standard Day AtmosphereDelta 0.1429 DeltaTheta 0.6910 ThetaSigma 0.2068 Sigma

Density ### DensityWeight 59,488 lbs Weight

459.00 ktsM 0.835 M

Stall Speed, 100 knotsInput Source: This section describes where the initial input values are referenced from

Lapse Rate α 0.856454 αFuel/Payload β 1 β Specified by RFP to be Max TOGWLoad Factor n 1 n Level Flight n=1Gravity g 32.2 ft/s2 g EarthExcrescence Drag R 0 slug/ft3 R Gear retractedFreesteam Velocity Velocity 168.781 ft/s Velocity Stall Speed must be no greater then 100 knots @ SL Max TOGW, from RFPDynamic Pressure q 33.86 psf q Calculated from Velocity and Ambient Conditions

Min Drag 0.037179

Drag Polar Coefficient 0.07 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Drag Polar Coefficient 0Vertical Velocity dh/dt 0 ft/s dh/dt zero, no change in altitudeVertical Acceleration dV/dt 0 ft/s2 dV/dt zero, no change in vertical accelerationAdditional InputsAltitude 0 ft Altitude

Temperature @ Alt, T 59.0 TemperaturBased on Standard Day AtmosphereDelta 1.0000 DeltaTheta 1.0000 ThetaSigma 1.0000 Sigma

Density ### DensityWeight 59,488 lbs Weight

VSTALL 100.00 kts Stall Speed must be no greater then 100 knots @ SL Max TOGW, from RFPM 0.151 M

Rate of Climb,10,000 ft/minInput Source: This section describes where the initial input values are referenced from

Lapse Rate α 0.643503 αFuel/Payload β 1 β Specified by RFP to be Max TOGWLoad Factor n 1 n Level Flight n=1Gravity g 32.2 ft/s2 g EarthExcrescence Drag R 0 slug/ft3 R Gear retractedFreesteam Velocity Velocity 590.7335 ft/s VelocityDynamic Pressure q 414.74 psf q Calculated from Velocity and Ambient Conditions

Min Drag 0.017179

Drag Polar Coefficient 0.07 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Drag Polar Coefficient 0Vertical Velocity dh/dt 166.67 ft/s dh/dt Specified 10,000 ft/min capability at SL/Max TOGW, Requirement from RFP

o F

slugs/ft3

VCRUISE VCRUISE

Lapse Rate Based on High Bypass Ratio Turbofan Engine,

CD0 CD0 Includes Flaps Down, External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

K1 K1

K2 K2 Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

o F

slugs/ft3

VSTALL

Lapse Rate Based on High Bypass Ratio Turbofan Engine,

Assume 10,000 ft/min climb (from RFP) and 350 knot ground speed during climb (from

CD0 CD0 Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

K1 K1

K2 K2 Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Vertical Acceleration dV/dt 0 ft/s2 dV/dt zero, no change in vertical accelerationAdditional InputsAltitude 0 ft Altitude Max Altitude

Temperature @ Alt, T 59.0 TemperaturBased on Standard Day AtmosphereDelta 1.0000 DeltaTheta 1.0000 ThetaSigma 1.0000 Sigma

Density ### DensityWeight 59,488 lbs Weight

350.00 ktsM 0.529 M

Sustained Turn Rate 12deg./sInput Source: This section describes where the initial input values are referenced from

Lapse Rate α 0.449458 αFuel/Payload β 0.75 β Specified by RFP to be 75% of Max TOGWLoad Factor n 5.137207 n Sustained Turn will require a certain g value based on the turn rate, this can be calculated from source: Raymer, "Aircraft Design, A Conceptual Approach, 3rd Edition", 1999, pg 106Gravity g 32.2 ft/s2 g EarthExcrescence Drag R 0 slug/ft3 R Gear retractedFreesteam Velocity Velocity 774.7048 ft/s Velocity 459 cruise speed, but max speed is 550Dynamic Pressure q 448.76 psf q Calculated from Velocity and Ambient Conditions

Min Drag 0.017179

Drag Polar Coefficient 0.07 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Drag Polar Coefficient 0Vertical Velocity dh/dt 0 ft/s dh/dt zero, no change in altitudeVertical Acceleration dV/dt 0 ft/s2 dV/dt zero, no change in vertical accelerationAdditional InputsAltitude 15,000 ft Altitude Specified by RFT

Temperature @ Alt, T 5.6 TemperaturBased on Standard Day AtmosphereDelta 0.5643 DeltaTheta 0.8970 ThetaSigma 0.6292 Sigma

Density ### DensityWeight 44,616 lbs Weight

459.00 kts 459 cruise speed, but max speed is 550M 0.733 M

Takeoff Ground RollInput Source: This section describes where the initial input values are referenced from

Lapse Rate α 0.852729 αFuel/Payload β 1 β Take off is max Take off wieght Beta = 1Load Factor n 1 nGravity g 32.2 ft/s2 g EarthExcrescence Drag R 0.01 slug/ft3 R Gear Down, 10 sq.ft for landing gearFreesteam Velocity Velocity 173.8444 ft/s Velocity Speed for Take offDynamic Pressure q 35.92 psf q Calculated from Velocity and Ambient Conditions

Min Drag 0.037179

Drag Polar Coefficient 0.07 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

o F

slugs/ft3

VCLIMB VCLIMB Assume 10,000 ft/min climb (from RFP) and 350 knot ground speed during climb (from Roskam page 62); therefore, Rclimb = Alt./(10K/min)*350knots

Lapse Rate Based on High Bypass Ratio Turbofan Engine,

CD0 CD0 Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

K1 K1

K2 K2 Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

o F

slugs/ft3

VCRUISE VCRUISE

Lapse Rate Based on High Bypass Ratio Turbofan Engine,

CD0 CD0 Must have Flaps, Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

K1 K1

Drag Polar Coefficient 0Vertical Velocity dh/dt 0 ft/s dh/dt zero, no change in altitudeVertical Acceleration dV/dt 0 ft/s2 dV/dt zero, no change in vertical accelerationAdditional InputsAltitude 0 ft Altitude Specified by RFT

Temperature @ Alt, T 59.0 TemperaturBased on Standard Day AtmosphereDelta 1.0000 DeltaTheta 1.0000 ThetaSigma 1.0000 Sigma

Density ### DensityWeight 59,488 lbs WeightCLMAX 1.900 CLMAX Weight and Speed at Take off to make CLMAX=1.9, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

103.00 kts VTO Speed for Take offM 0.156 M

0.025Distance 2000 ft s_takeoff Required in RFPkto 1.2tr 3 s

Landing DistanceInput Source: This section describes where the initial input values are referenced from

Lapse Rate α 0.852729 αFuel/Payload β 0.737769 β Landing distance is based on the weight at the end of the mission, therefore, the beta chosen reflects the end of the mission before the reserve loiterLoad Factor n 1 n Sustained Turn will require a certain g value based on the turn rate, this can be calculated from source: Raymer, "Aircraft Design, A Conceptual Approach, 3rd Edition", 1999, pg 106Gravity g 32.2 ft/s2 g EarthExcrescence Drag R 0.01 slug/ft3 R Gear Down, 10 sq.ft for landing gearFreesteam Velocity Velocity 173.8444 ft/s Velocity Speed for Take offDynamic Pressure q 35.92 psf q Calculated from Velocity and Ambient Conditions

Min Drag 0.037179

Drag Polar Coefficient 0.07 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Drag Polar Coefficient 0Vertical Velocity dh/dt 0 ft/s dh/dt zero, no change in altitudeVertical Acceleration dV/dt 0 ft/s2 dV/dt zero, no change in vertical accelerationAdditional InputsAltitude 0 ft Altitude Specified by RFT

Temperature @ Alt, T 59.0 TemperaturBased on Standard Day AtmosphereDelta 1.0000 DeltaTheta 1.0000 ThetaSigma 1.0000 Sigma

Density ### DensityWeight 43,889 lbs WeightCLMAX 1.900 CLMAX Weight and Speed at Take off to make CLMAX=1.9, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185VL 103.00 kts VTO Speed for Take offM 0.156 M

0.025SFL 2000 ft s_landing Required in RFPkto 1.2tr 3 s

K2 K2 Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

o F

slugs/ft3

VTO

μg μg Hot Runway Coefficient of Friction Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

K for take off, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 20063 seconds for rotation, typical for most fighters,

Lapse Rate Based on High Bypass Ratio Turbofan Engine,

CD0 CD0 Must have Flaps, Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

K1 K1

K2 K2 Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

o F

slugs/ft3

μg μg Hot Runway Coefficient of Friction Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

K for take off, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 20063 seconds for rotation, typical for most fighters,

SL 3800 ft Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 187SFL 6333.333VA 158 kts^2VSL 131.4464 ktsVSL 221.8566 ft/s

Takeoff Ground Roll HOT DAYInput Source: This section describes where the initial input values are referenced from

Lapse Rate α 0.811621 αFuel/Payload β 1 β Take off is max Take off wieght Beta = 1Load Factor n 1 nGravity g 32.2 ft/s2 g EarthExcrescence Drag R 0.01 slug/ft3 R Gear Down, 10 sq.ft for landing gearFreesteam Velocity Velocity 173.8444 ft/s Velocity Speed for Take offDynamic Pressure q 32.70 psf q Calculated from Velocity and Ambient Conditions

Min Drag 0.037179

Drag Polar Coefficient 0.07 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Drag Polar Coefficient 0Vertical Velocity dh/dt 0 ft/s dh/dt zero, no change in altitudeVertical Acceleration dV/dt 0 ft/s2 dV/dt zero, no change in vertical accelerationAdditional InputsAltitude 0 ft Altitude Specified by RFT

Temperature @ Alt, T 110.0 TemperaturAfghanistan at sea level can reach tempratures of 110 °FDelta 1.0000 DeltaTheta 1.0983 ThetaSigma 0.9105 Sigma

Density ### DensityWeight 59,488 lbs WeightCLMAX 1.900 CLMAX Weight and Speed at Take off to make CLMAX=1.9, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

103.00 kts VTO Speed for Take offM 0.149 M

0.025Distance 2000 ft s_takeoff Required in RFPkto 1.2tr 3 s

Lapse Rate Based on High Bypass Ratio Turbofan Engine,

CD0 CD0 Must have Flaps, Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

K1 K1

K2 K2 Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

o F

slugs/ft3

VTO

μg μg Hot Runway Coefficient of Friction Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

K for take off, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 20063 seconds for rotation, typical for most fighters,

Source: This section describes where the initial input values are referenced from

At Cruising AltitudeLevel Flight n=1

Gear retracted for level flight

Calculated from Velocity and Ambient Conditions

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

zero, no change in altitudezero, no change in vertical acceleration

Cruising Alt.

Based on Standard Day Atmosphere

Wings are swept to reduce compressibility in transonic regime

Source: This section describes where the initial input values are referenced from

At Cruising AltitudeLevel Flight n=1

Gear retracted for level flight

Calculated from Velocity and Ambient Conditions

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

zero, no change in altitudezero, no change in vertical acceleration

Cruising Alt.

Based on Standard Day Atmosphere

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Optimum Cruise first guess assumed to be 459 knots, Fighter Example Problem, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 62

Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Optimum Cruise first guess assumed to be 459 knots, Fighter Example Problem, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 62

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Specified in RFP - "2006-2007 AIAA Graduate Team Aircraft Design Competition - Modified", AE 6343, Project 1, Fall 2007

Drag Include Compressibility for High Mach Number, and External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Velocity in knots for my ReferenceDue to the High Mach number there will be additional drag due to Compressibility

Source: This section describes where the initial input values are referenced from

Specified by RFP to be Max TOGWSustained Turn will require a certain g value based on the turn rate, this can be calculated from source: Raymer, "Aircraft Design, A Conceptual Approach, 3rd Edition", 1999, pg 106

Gear retracted275 knots min, provided by RFPCalculated from Velocity and Ambient Conditions

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

zero, no change in altitudezero, no change in vertical acceleration

Based on Standard Day Atmosphere

275 knots min, provided by RFP

Source: This section describes where the initial input values are referenced from

Specified by RFP to be Max TOGWLevel Flight n=1

Gear retractedCruise VelocityCalculated from Velocity and Ambient Conditions

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Specified 100 ft/min capability at 45,000 ft (Service Ceiling) to allow for maneuver margin. Requirement from RFPzero, no change in vertical acceleration

Max Altitude

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Based on Standard Day Atmosphere

Source: This section describes where the initial input values are referenced from

Specified by RFP to be Max TOGWLevel Flight n=1

Gear retractedStall Speed must be no greater then 100 knots @ SL Max TOGW, from RFPCalculated from Velocity and Ambient Conditions

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

zero, no change in altitudezero, no change in vertical acceleration

Based on Standard Day Atmosphere

Stall Speed must be no greater then 100 knots @ SL Max TOGW, from RFP

Source: This section describes where the initial input values are referenced from

Specified by RFP to be Max TOGWLevel Flight n=1

Gear retracted

Calculated from Velocity and Ambient Conditions

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Specified 10,000 ft/min capability at SL/Max TOGW, Requirement from RFP

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Includes Flaps Down, External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Assume 10,000 ft/min climb (from RFP) and 350 knot ground speed during climb (from Roskam page 62

Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

zero, no change in vertical acceleration

Max Altitude

Based on Standard Day Atmosphere

Source: This section describes where the initial input values are referenced from

Specified by RFP to be 75% of Max TOGWSustained Turn will require a certain g value based on the turn rate, this can be calculated from source: Raymer, "Aircraft Design, A Conceptual Approach, 3rd Edition", 1999, pg 106

Gear retracted459 cruise speed, but max speed is 550Calculated from Velocity and Ambient Conditions

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

zero, no change in altitudezero, no change in vertical acceleration

Specified by RFT

Based on Standard Day Atmosphere

459 cruise speed, but max speed is 550

Source: This section describes where the initial input values are referenced from

Take off is max Take off wieght Beta = 1

Gear Down, 10 sq.ft for landing gearSpeed for Take offCalculated from Velocity and Ambient Conditions

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Assume 10,000 ft/min climb (from RFP) and 350 knot ground speed during climb (from Roskam page 62); therefore, Rclimb = Alt./(10K/min)*350knots

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Must have Flaps, Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

zero, no change in altitudezero, no change in vertical acceleration

Specified by RFT

Based on Standard Day Atmosphere

Weight and Speed at Take off to make CLMAX=1.9, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

Speed for Take off

Required in RFP

Source: This section describes where the initial input values are referenced from

Landing distance is based on the weight at the end of the mission, therefore, the beta chosen reflects the end of the mission before the reserve loiterSustained Turn will require a certain g value based on the turn rate, this can be calculated from source: Raymer, "Aircraft Design, A Conceptual Approach, 3rd Edition", 1999, pg 106

Gear Down, 10 sq.ft for landing gearSpeed for Take offCalculated from Velocity and Ambient Conditions

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

zero, no change in altitudezero, no change in vertical acceleration

Specified by RFT

Based on Standard Day Atmosphere

Weight and Speed at Take off to make CLMAX=1.9, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185Speed for Take off

Required in RFP

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Hot Runway Coefficient of Friction Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

K for take off, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 20063 seconds for rotation, typical for most fighters, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Must have Flaps, Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Hot Runway Coefficient of Friction Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

K for take off, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 20063 seconds for rotation, typical for most fighters, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 187

Source: This section describes where the initial input values are referenced from

Take off is max Take off wieght Beta = 1

Gear Down, 10 sq.ft for landing gearSpeed for Take offCalculated from Velocity and Ambient Conditions

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

zero, no change in altitudezero, no change in vertical acceleration

Specified by RFT

Afghanistan at sea level can reach tempratures of 110 °F

Weight and Speed at Take off to make CLMAX=1.9, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

Speed for Take off

Required in RFP

Lapse Rate Based on High Bypass Ratio Turbofan Engine, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Must have Flaps, Includes External Stores Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Typically Zero, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Hot Runway Coefficient of Friction Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

K for take off, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 20063 seconds for rotation, typical for most fighters, Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Optimum Cruise first guess assumed to be 459 knots, Fighter Example Problem, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 62

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Optimum Cruise first guess assumed to be 459 knots, Fighter Example Problem, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 62

Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

"2006-2007 AIAA Graduate Team Aircraft Design Competition - Modified", AE 6343, Project 1, Fall 2007

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Sustained Turn will require a certain g value based on the turn rate, this can be calculated from source: Raymer, "Aircraft Design, A Conceptual Approach, 3rd Edition", 1999, pg 106

Specified 100 ft/min capability at 45,000 ft (Service Ceiling) to allow for maneuver margin. Requirement from RFP

Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Assume 10,000 ft/min climb (from RFP) and 350 knot ground speed during climb (from Roskam page 62); therefore, Rclimb = Alt./(10K/min)*350knots

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Sustained Turn will require a certain g value based on the turn rate, this can be calculated from source: Raymer, "Aircraft Design, A Conceptual Approach, 3rd Edition", 1999, pg 106

Assume 10,000 ft/min climb (from RFP) and 350 knot ground speed during climb (from Roskam page 62); therefore, Rclimb = Alt./(10K/min)*350knots

Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Weight and Speed at Take off to make CLMAX=1.9, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

Landing distance is based on the weight at the end of the mission, therefore, the beta chosen reflects the end of the mission before the reserve loiterSustained Turn will require a certain g value based on the turn rate, this can be calculated from source: Raymer, "Aircraft Design, A Conceptual Approach, 3rd Edition", 1999, pg 106

Weight and Speed at Take off to make CLMAX=1.9, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Weight and Speed at Take off to make CLMAX=1.9, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118-122, 156, 166 for Fighters

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 185

Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006Source: Hernando Jimenez - "An Energy Based Approach to Aircraft Constraint Analysis - Part 2), ASDL GA Tech, AE6343, Fall 2006

Output

W/S T/W (Lift T/W (Line T/W (Profi dh/dt dV/dt T/W Total10 0.01676 0.00000 1.17956 0.00000 0.00000 1.196320 0.03352 0.00000 0.58978 0.00000 0.00000 0.623330 0.05028 0.00000 0.39319 0.00000 0.00000 0.443540 0.06704 0.00000 0.29489 0.00000 0.00000 0.361950 0.08381 0.00000 0.23591 0.00000 0.00000 0.319760 0.10057 0.00000 0.19659 0.00000 0.00000 0.2972

70 0.11733 0.00000 0.16851 0.00000 0.00000 0.2858

80 0.13409 0.00000 0.14745 0.00000 0.00000 0.2815

90 0.15085 0.00000 0.13106 0.00000 0.00000 0.2819100 0.16761 0.00000 0.11796 0.00000 0.00000 0.2856110 0.18437 0.00000 0.10723 0.00000 0.00000 0.2916120 0.20113 0.00000 0.09830 0.00000 0.00000 0.2994130 0.21789 0.00000 0.09074 0.00000 0.00000 0.3086

140 0.23466 0.00000 0.08425 0.00000 0.00000 0.3189150 0.25142 0.00000 0.07864 0.00000 0.00000 0.3301160 0.26818 0.00000 0.07372 0.00000 0.00000 0.3419170 0.28494 0.00000 0.06939 0.00000 0.00000 0.3543

180 0.30170 0.00000 0.06553 0.00000 0.00000 0.3672190 0.31846 0.00000 0.06208 0.00000 0.00000 0.3805

200 0.33522 0.00000 0.05898 0.00000 0.00000 0.3942

Output

W/S T/W (Lift T/W (Line T/W (Profi dh/dt dV/dt T/W Total10 0.01190 0.00000 1.97745 0.00000 0.00000 1.989320 0.02380 0.00000 0.98872 0.00000 0.00000 1.012530 0.03569 0.00000 0.65915 0.00000 0.00000 0.694840 0.04759 0.00000 0.49436 0.00000 0.00000 0.542050 0.05949 0.00000 0.39549 0.00000 0.00000 0.455060 0.07139 0.00000 0.32957 0.00000 0.00000 0.4010

70 0.08329 0.00000 0.28249 0.00000 0.00000 0.3658

80 0.09519 0.00000 0.24718 0.00000 0.00000 0.3424

90 0.10708 0.00000 0.21972 0.00000 0.00000 0.3268100 0.11898 0.00000 0.19774 0.00000 0.00000 0.3167110 0.13088 0.00000 0.17977 0.00000 0.00000 0.3106120 0.14278 0.00000 0.16479 0.00000 0.00000 0.3076130 0.15468 0.00000 0.15211 0.00000 0.00000 0.3068

140 0.16658 0.00000 0.14125 0.00000 0.00000 0.3078150 0.17847 0.00000 0.13183 0.00000 0.00000 0.3103160 0.19037 0.00000 0.12359 0.00000 0.00000 0.3140170 0.20227 0.00000 0.11632 0.00000 0.00000 0.3186

180 0.21417 0.00000 0.10986 0.00000 0.00000 0.3240190 0.22607 0.00000 0.10408 0.00000 0.00000 0.3301

200 0.23796 0.00000 0.09887 0.00000 0.00000 0.3368

Output

W/S T/W (Lift T/W (Line T/W (Profi dh/dt dV/dt T/W Total10 0.04074 0.00000 0.63877 0.00000 0.00000 0.679520 0.08148 0.00000 0.31938 0.00000 0.00000 0.400930 0.12223 0.00000 0.21292 0.00000 0.00000 0.335140 0.16297 0.00000 0.15969 0.00000 0.00000 0.322750 0.20371 0.00000 0.12775 0.00000 0.00000 0.331560 0.24445 0.00000 0.10646 0.00000 0.00000 0.3509

70 0.28519 0.00000 0.09125 0.00000 0.00000 0.3764

80 0.32594 0.00000 0.07985 0.00000 0.00000 0.4058

90 0.36668 0.00000 0.07097 0.00000 0.00000 0.4377100 0.40742 0.00000 0.06388 0.00000 0.00000 0.4713110 0.44816 0.00000 0.05807 0.00000 0.00000 0.5062120 0.48891 0.00000 0.05323 0.00000 0.00000 0.5421130 0.52965 0.00000 0.04914 0.00000 0.00000 0.5788

140 0.57039 0.00000 0.04563 0.00000 0.00000 0.6160150 0.61113 0.00000 0.04258 0.00000 0.00000 0.6537160 0.65187 0.00000 0.03992 0.00000 0.00000 0.6918170 0.69262 0.00000 0.03757 0.00000 0.00000 0.7302

180 0.73336 0.00000 0.03549 0.00000 0.00000 0.7688190 0.77410 0.00000 0.03362 0.00000 0.00000 0.8077

200 0.81484 0.00000 0.03194 0.00000 0.00000 0.8468

Output

W/S T/W (Lift T/W (Line T/W (Profi dh/dt dV/dt T/W Total10 0.02137 0.00000 1.12433 0.00955 0.00000 1.155220 0.04274 0.00000 0.56216 0.00955 0.00000 0.614430 0.06411 0.00000 0.37478 0.00955 0.00000 0.448440 0.08547 0.00000 0.28108 0.00955 0.00000 0.376150 0.10684 0.00000 0.22487 0.00955 0.00000 0.341360 0.12821 0.00000 0.18739 0.00955 0.00000 0.3251

70 0.14958 0.00000 0.16062 0.00955 0.00000 0.3197

80 0.17095 0.00000 0.14054 0.00955 0.00000 0.3210

90 0.19232 0.00000 0.12493 0.00955 0.00000 0.3268100 0.21369 0.00000 0.11243 0.00955 0.00000 0.3357110 0.23506 0.00000 0.10221 0.00955 0.00000 0.3468120 0.25642 0.00000 0.09369 0.00955 0.00000 0.3597130 0.27779 0.00000 0.08649 0.00955 0.00000 0.3738

140 0.29916 0.00000 0.08031 0.00955 0.00000 0.3890150 0.32053 0.00000 0.07496 0.00955 0.00000 0.4050160 0.34190 0.00000 0.07027 0.00955 0.00000 0.4217170 0.36327 0.00000 0.06614 0.00955 0.00000 0.4390

180 0.38464 0.00000 0.06246 0.00955 0.00000 0.4566190 0.40601 0.00000 0.05918 0.00955 0.00000 0.4747

200 0.42737 0.00000 0.05622 0.00955 0.00000 0.4931

Output

W/S T/W (Lift T/W (Line T/W (Profi dh/dt dV/dt T/W Total10 0.02449 0.00000 0.14697 0.00000 0.00000 0.171520 0.04899 0.00000 0.07349 0.00000 0.00000 0.122530 0.07348 0.00000 0.04899 0.00000 0.00000 0.122540 0.09797 0.00000 0.03674 0.00000 0.00000 0.134750 0.12247 0.00000 0.02939 0.00000 0.00000 0.151960 0.14696 0.00000 0.02450 0.00000 0.00000 0.1715

70 0.17145 0.00000 0.02100 0.00000 0.00000 0.1924

80 0.19595 0.00000 0.01837 0.00000 0.00000 0.2143

90 0.22044 0.00000 0.01633 0.00000 0.00000 0.2368100 0.24493 0.00000 0.01470 0.00000 0.00000 0.2596110 0.26943 0.00000 0.01336 0.00000 0.00000 0.2828120 0.29392 0.00000 0.01225 0.00000 0.00000 0.3062130 0.31841 0.00000 0.01131 0.00000 0.00000 0.3297

140 0.34291 0.00000 0.01050 0.00000 0.00000 0.3534150 0.36740 0.00000 0.00980 0.00000 0.00000 0.3772160 0.39189 0.00000 0.00919 0.00000 0.00000 0.4011170 0.41639 0.00000 0.00865 0.00000 0.00000 0.4250

180 0.44088 0.00000 0.00817 0.00000 0.00000 0.4490190 0.46537 0.00000 0.00774 0.00000 0.00000 0.4731

200 0.48987 0.00000 0.00735 0.00000 0.00000 0.4972

Output

W/S T/W (Lift T/W (Line T/W (Profi dh/dt dV/dt T/W Total10 0.00266 0.00000 1.10723 0.43844 0.00000 1.548320 0.00532 0.00000 0.55361 0.43844 0.00000 0.997430 0.00798 0.00000 0.36908 0.43844 0.00000 0.815540 0.01064 0.00000 0.27681 0.43844 0.00000 0.725950 0.01331 0.00000 0.22145 0.43844 0.00000 0.673260 0.01597 0.00000 0.18454 0.43844 0.00000 0.6389

70 0.01863 0.00000 0.15818 0.43844 0.00000 0.6152

80 0.02129 0.00000 0.13840 0.43844 0.00000 0.5981

90 0.02395 0.00000 0.12303 0.43844 0.00000 0.5854100 0.02661 0.00000 0.11072 0.43844 0.00000 0.5758

110 0.02927 0.00000 0.10066 0.43844 0.00000 0.5684120 0.03193 0.00000 0.09227 0.43844 0.00000 0.5626130 0.03459 0.00000 0.08517 0.43844 0.00000 0.5582

140 0.03726 0.00000 0.07909 0.43844 0.00000 0.5548150 0.03992 0.00000 0.07382 0.43844 0.00000 0.5522160 0.04258 0.00000 0.06920 0.43844 0.00000 0.5502170 0.04524 0.00000 0.06513 0.43844 0.00000 0.5488

180 0.04790 0.00000 0.06151 0.43844 0.00000 0.5478190 0.05056 0.00000 0.05828 0.43844 0.00000 0.5473

200 0.05322 0.00000 0.05536 0.43844 0.00000 0.5470

Output

W/S T/W (Lift T/W (Line T/W (Profi dh/dt dV/dt T/W Total10 0.05227 0.00000 1.71525 0.00000 0.00000 1.767520 0.10454 0.00000 0.85763 0.00000 0.00000 0.962230 0.15682 0.00000 0.57175 0.00000 0.00000 0.728640 0.20909 0.00000 0.42881 0.00000 0.00000 0.637950 0.26136 0.00000 0.34305 0.00000 0.00000 0.604460 0.31363 0.00000 0.28588 0.00000 0.00000 0.5995

70 0.36591 0.00000 0.24504 0.00000 0.00000 0.6109

80 0.41818 0.00000 0.21441 0.00000 0.00000 0.6326

90 0.47045 0.00000 0.19058 0.00000 0.00000 0.6610100 0.52272 0.00000 0.17153 0.00000 0.00000 0.6942110 0.57500 0.00000 0.15593 0.00000 0.00000 0.7309120 0.62727 0.00000 0.14294 0.00000 0.00000 0.7702130 0.67954 0.00000 0.13194 0.00000 0.00000 0.8115

140 0.73181 0.00000 0.12252 0.00000 0.00000 0.8543150 0.78409 0.00000 0.11435 0.00000 0.00000 0.8984160 0.83636 0.00000 0.10720 0.00000 0.00000 0.9436170 0.88863 0.00000 0.10090 0.00000 0.00000 0.9895

180 0.94090 0.00000 0.09529 0.00000 0.00000 1.0362190 0.99318 0.00000 0.09028 0.00000 0.00000 1.0835

200 1.04545 0.00000 0.08576 0.00000 0.00000 1.1312

Output

W/S s (ft) T/W Total10 2,000 0.066030 2,000 0.219850 2,000 0.396570 2,000 0.595090 2,000 0.8157

110 2,000 1.0596

130 2,000 1.3286

150 2,000 1.6246

170 2,000 1.9502190 2,000 2.3085

Output

W/S s (ft) T/W Total76 2,000 0.000076 2,000 0.500076 2,000 1.000076 2,000 1.500076 2,000 2.0000

Find T/W to Equal Takeoff Length

Output

W/S s (ft) T/W Total10 2,000 0.076630 2,000 0.256850 2,000 0.465770 2,000 0.702290 2,000 0.9673

110 2,000 1.2627

130 2,000 1.5912

150 2,000 1.9560

170 2,000 2.3611190 2,000 2.8113

Find T/W to Equal Takeoff Length

n=5

T/W Total0.9622210.6160860.5606970.5779940.6243660.685275

0.754492

0.8289

0.9067690.9870611.0691161.1524921.236884

1.3220751.4079051.4942551.581032

1.6681651.755599

1.843287

0 25 50 75 100 125 150 175 2000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

W/S

T/W

Drag Polar

Ambient ConditonsUSER INPUTS CALCULATIONS

Flight Conditions Flight Conditions

486 ktas Temperature @ -90.562

Pressure Altit 42000 ft Delta 0.1668

Type of Day std std/trop/hot Theta 0.7116

Temperature, -90.562 Sigma 0.2344

Gravity, g 32.2 Density 5.571E-04

m 2.836E-07

n 5.090E-04

M 0.871

a, Speed of S 941.83 ft/sec

Airspeed, V 235.29 kcas

Airspeed, V 820.28 ft/sec

Aerodynamics Notes/SourSource: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118 - 122W/S 70 psf Found using Constraint Analyisis

59,488 lbs Iteratively found using Mission AnalysisS 849.83 sq.ft. Wing Areab 69 ft SpanA 5.60 Aspect Ratioe_clean 0.8 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156e_flaps 0.7 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156q 187.42 psf Calculated from Ambient Flight ConditionK1 0.07 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118

0.37 Based on Speed and Alt. from above

0.0038

0.0200

0.0025

0.01341 Min Drag with No External Stores

0.027 Includes Stores

0.05 Includes Stores and Flaps Down, Oswald Eff = 0.7

0.02 No StoresL/D 13.79 Check against Table 2.2 from Roskamf 11.4 sq.ft. Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118

2,850 sq.ft.cf 0.004 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 120, figure 3.21b, fighters, cfa -2.3979 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 122, table 3.4, fighters, cfb 1 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 122, table 3.4, fightersc -0.1289 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 122, table 3.5, fightersd 0.7506 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 122, table 3.5, fightersn 1 g factor

Drag Polar

Airspeed, V o F

o F

ft2/sec slugs/ft3

ft2/sec

WTO

CL

CD_Stores 3.2 sq.ft. for Stores, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

CD_FLAPS Flaps Down Zero Lift, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

CD_Compressablity Compressablity, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 166

CD0

CD

CD Takeoff

CD_Clean

SWET Wetted Area as a function of TO weight for fighters, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118

V V q M L/DKnots ft/s psf59.24838 100 3 0.1061768 25.1302 44.8698 0.56006974.06048 125 4 0.132721 16.0833 18.3888 0.87462588.87257 150 6 0.1592652 11.1690 8.8770 1.258199103.6847 175 9 0.1858094 8.2058 4.7995 1.709727118.4968 200 11 0.2123535 6.2825 2.8205 2.227484133.3089 225 14 0.2388977 4.9640 1.7673 2.808864

148.121 250 17 0.2654419 4.0208 1.1654 3.450153162.933 275 21 0.2919861 3.3230 0.8014 4.146319

177.7451 300 25 0.3185303 2.7922 0.5709 4.890819192.5572 325 29 0.3450745 2.3792 0.4192 5.675473207.3693 350 34 0.3716187 2.0514 0.3161 6.490428222.1814 375 39 0.3981629 1.7870 0.2440 7.324229236.9935 400 45 0.4247071 1.5706 0.1924 8.164036251.8056 425 50 0.4512513 1.3913 0.1547 8.995979266.6177 450 56 0.4777955 1.2410 0.1266 9.805658281.4298 475 63 0.5043397 1.1138 0.1053 10.57874296.2419 500 70 0.5308839 1.0052 0.0889 11.30164

311.054 525 77 0.5574281 0.9118 0.0762 11.96214325.8661 550 84 0.5839723 0.8307 0.0662 12.55340.6782 575 92 0.6105164 0.7601 0.0582 13.05741355.4903 600 100 0.6370606 0.6981 0.0518 13.47924370.3024 625 109 0.6636048 0.6433 0.0466 13.81315385.1145 650 118 0.690149 0.5948 0.0423 14.05942399.9266 675 127 0.7166932 0.5516 0.0388 14.22072414.7387 700 136 0.7432374 0.5129 0.0359 14.3017429.5508 725 146 0.7697816 0.4781 0.0334 14.30853444.3629 750 157 0.7963258 0.4468 0.0314 14.24842459.1749 775 167 0.82287 0.4184 0.0296 14.1292

473.987 800 178 0.8494142 0.3927 0.0281 13.9589488.7991 825 190 0.8759584 0.3692 0.0269 13.74542503.6112 850 201 0.9025026 0.3478 0.0258 13.49631518.4233 875 213 0.9290468 0.3282 0.0248 13.21861533.2354 900 226 0.955591 0.3102 0.0240 12.91867548.0475 925 238 0.9821351 0.2937 0.0233 12.60218562.8596 950 251 1.0086793 0.2785 0.0227 12.2741577.6717 975 265 1.0352235 0.2644 0.0221 11.93872592.4838 1000 279 1.0617677 0.2513 0.0217 11.59966607.2959 1025 293 1.0883119 0.2392 0.0212 11.25997

Max 14.308530.866xMax 12.39119

CL CD

- 0.03 0.05 0.08 0.10 0.13 0.15 0.18 0.20 -

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Max L/D

CL

CD

- 0.03 0.05 0.08 0.10 0.13 0.15 0.18 0.20 -

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Max L/D

CL

CD

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118 - 122

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118

Includes Stores and Flaps Down, Oswald Eff = 0.7

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 120, figure 3.21b, fighters, cfSource: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 122, table 3.4, fighters, cfSource: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 122, table 3.4, fightersSource: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 122, table 3.5, fightersSource: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 122, table 3.5, fighters

Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 156

, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 166

Wetted Area as a function of TO weight for fighters, Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 118

Compressibility Drag Rise

Red Box Indicates Choosen Aircraft

Red Box Indicates Choosen Aircraft

Red Box Indicates Choosen Aircraft

Red Box Indicates Choosen Aircraft

Fuel Fraction EstimatesSource: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 12

Cruise and Loiter Inputs for Bregeut Range EquationSource: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 14

Red Box Indicates Choosen Aircraft

Red Box Indicates Choosen Aircraft

Empty Weight Data for FightersSource: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", pg 27, 42, 43, 1985

Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", pg 27, 42, 43, 1985

Red Box Indicates Choosen Aircraft

Red Box Indicates Choosen Aircraft

Red Box Indicates Choosen Aircraft

Red Box Indicates Choosen Aircraft

Code ValidationSource: Georgia Tech, AE 6343 Fixed Wing Design Course, Fall 2007 Calculated using this Spreadsheet Tool

Validation Point 1Input

α 0.33 W/S T/W Lapse Rateβ 0.57 10 2.791 Fuel/Payloadn 2.6 20 1.5549 Load Factorg 32.2 ft/s2 30 1.168 GravityR 0.001832 slug/ft3 40 0.9933 Excrecence DragVelocity 695 ft/s 50 0.9035 Freesteam Velocityq 442.4509 psf 60 0.8562 Dynamic PressureCD0 0.019 70 0.8332 Min DragK1 0.25 80 0.8253 Drag Polar CoeffecientK2 0.005 90 0.8275 Drag Polar Coeffecientdh/dt 35 ft/s 100 0.8368 Vertical VelocitydV/dt 1.8 ft/s2 110 0.851247 Vertical Acceleration

120 0.869554130 0.890831140 0.91444150 0.939915160 0.966907170 0.995147180 1.024428190 1.054586200 1.085488

Validation Point 2Input

α 0.69 W/S T/W Lapse Rateβ 0.72 10 0.8555 Fuel/Payloadn 1 20 0.521 Load Factorg 32.2 ft/s2 30 0.4174 GravityR 0.001832 slug/ft3 40 0.3714 Excrecence DragVelocity 417 ft/s 50 0.3486 Freesteam Velocityq 159.2823 psf 60 0.3373 Dynamic PressureCD0 0.03 70 0.3326 Min DragK1 0.25 80 0.332 Drag Polar CoeffecientK2 0.005 90 0.3342 Drag Polar Coeffecientdh/dt 35 ft/s 100 0.3383 Vertical VelocitydV/dt 1.8 ft/s2 110 0.3438 Vertical Acceleration

120 0.350346130 0.357699140 0.365686150 0.37418160 0.383086

170 0.392332180 0.401861190 0.411628200 0.421598

Validation Point 3Input

α 0.69 W/S T/W Lapse Rateβ 0.72 10 1.2769 Fuel/Payloadn 1 20 0.6837 Load Factorg 32.2 ft/s2 30 0.4866 GravityR 0.001832 slug/ft3 40 0.3885 Excrecence DragVelocity 1338 ft/s 50 0.33 Freesteam Velocityq 1639.864 psf 60 0.2913 Dynamic PressureCD0 0.005 70 0.2639 Min DragK1 0.2 80 0.2436 Drag Polar CoeffecientK2 0.002 90 0.228 Drag Polar Coeffecientdh/dt 35 ft/s 100 0.2157 Vertical VelocitydV/dt 1.8 ft/s2 110 0.205821 Vertical Acceleration

120 0.197735130 0.191034140 0.185421150 0.180679160 0.176644170 0.173191180 0.170224190 0.167666200 0.165455

Validation Point 4Input

α 0.82 W/S T/W Lapse Rateβ 0.87 10 2.794 Fuel/Payloadn 1 20 1.413 Load Factorg 32.2 ft/s2 30 0.9586 GravityR 0.002315 slug/ft3 40 0.7359 Excrecence DragVelocity 1338 ft/s 50 0.6058 Freesteam Velocityq 2072.207 psf 60 0.5221 Dynamic PressureCD0 0.011 70 0.4648 Min DragK1 2 80 0.424 Drag Polar CoeffecientK2 0.005 90 0.3944 Drag Polar Coeffecientdh/dt 0 ft/s 100 0.3724 Vertical VelocitydV/dt 0 ft/s2 110 0.35601 Vertical Acceleration

120 0.34386130 0.33495140 0.328585150 0.324257160 0.321583

170 0.320272180 0.320097190 0.320878200 0.322471

Validation Point 5Input

α 0.91 W/S T/W Lapse Rateβ 0.34 10 2.5215 Fuel/Payloadn 3 20 1.2801 Load Factorg 32.2 ft/s2 30 0.8737 GravityR 0.002315 slug/ft3 40 0.676 Excrecence DragVelocity 1338 ft/s 50 0.5618 Freesteam Velocityq 2072.207 psf 60 0.4893 Dynamic PressureCD0 0.011 70 0.4407 Min DragK1 2 80 0.407 Drag Polar CoeffecientK2 0.005 90 0.3832 Drag Polar Coeffecientdh/dt 0 ft/s 100 0.3664 Vertical VelocitydV/dt 0 ft/s2 110 0.3547 Vertical Acceleration

120 0.346758130 0.341736140 0.339008150 0.338114160 0.338712170 0.340537180 0.343386190 0.347096200 0.351539

Calculated using this Spreadsheet Tool

Output

α 0.33 W/S T/W (Lift T/W (Line T/W (Profi dh/dt dV/dtβ 0.57 10 0.037606 0.022455 2.548 0.086985 0.096556n 2.6 20 0.075212 0.022455 1.274 0.086985 0.096556g 32.2 ft/s2 30 0.112818 0.022455 0.849333 0.086985 0.096556R 0.001832 slug/ft3 40 0.150424 0.022455 0.637 0.086985 0.096556

Velocity 695 ft/s 50 0.18803 0.022455 0.5096 0.086985 0.096556q 442.4509 psf 60 0.225636 0.022455 0.424667 0.086985 0.096556

CD0 0.019 70 0.263242 0.022455 0.364 0.086985 0.096556K1 0.25 80 0.300848 0.022455 0.3185 0.086985 0.096556K2 0.005 90 0.338454 0.022455 0.283111 0.086985 0.096556

dh/dt 35 ft/s 100 0.37606 0.022455 0.2548 0.086985 0.096556dV/dt 1.8 ft/s2 110 0.413666 0.022455 0.231636 0.086985 0.096556

120 0.451272 0.022455 0.212333 0.086985 0.096556130 0.488878 0.022455 0.196 0.086985 0.096556140 0.526484 0.022455 0.182 0.086985 0.096556150 0.56409 0.022455 0.169867 0.086985 0.096556160 0.601696 0.022455 0.15925 0.086985 0.096556170 0.639302 0.022455 0.149882 0.086985 0.096556180 0.676908 0.022455 0.141556 0.086985 0.096556190 0.714514 0.022455 0.134105 0.086985 0.096556200 0.75212 0.022455 0.1274 0.086985 0.096556

Output

α 0.69 W/S T/W (Lift T/W (Line T/W (Profi dh/dt dV/dtβ 0.72 10 0.011792 0.005217 0.692797 0.087582 0.058331n 1 20 0.023584 0.005217 0.346399 0.087582 0.058331g 32.2 ft/s2 30 0.035376 0.005217 0.230932 0.087582 0.058331R 0.001832 slug/ft3 40 0.047168 0.005217 0.173199 0.087582 0.058331

Velocity 417 ft/s 50 0.05896 0.005217 0.138559 0.087582 0.058331q 159.2823 psf 60 0.070752 0.005217 0.115466 0.087582 0.058331

CD0 0.03 70 0.082544 0.005217 0.098971 0.087582 0.058331K1 0.25 80 0.094336 0.005217 0.0866 0.087582 0.058331K2 0.005 90 0.106128 0.005217 0.076977 0.087582 0.058331

dh/dt 35 ft/s 100 0.11792 0.005217 0.06928 0.087582 0.058331dV/dt 1.8 ft/s2 110 0.129712 0.005217 0.062982 0.087582 0.058331

120 0.141504 0.005217 0.057733 0.087582 0.058331130 0.153296 0.005217 0.053292 0.087582 0.058331140 0.165088 0.005217 0.049486 0.087582 0.058331150 0.17688 0.005217 0.046186 0.087582 0.058331160 0.188672 0.005217 0.0433 0.087582 0.058331

170 0.200464 0.005217 0.040753 0.087582 0.058331180 0.212256 0.005217 0.038489 0.087582 0.058331190 0.224048 0.005217 0.036463 0.087582 0.058331200 0.235841 0.005217 0.03464 0.087582 0.058331

Output

α 0.69 W/S T/W (Lift T/W (Line T/W (Profi dh/dt dV/dtβ 0.72 10 0.000916 0.002087 1.188573 0.027296 0.058331n 1 20 0.001833 0.002087 0.594286 0.027296 0.058331g 32.2 ft/s2 30 0.002749 0.002087 0.396191 0.027296 0.058331R 0.001832 slug/ft3 40 0.003665 0.002087 0.297143 0.027296 0.058331

Velocity 1338 ft/s 50 0.004582 0.002087 0.237715 0.027296 0.058331q 1639.864 psf 60 0.005498 0.002087 0.198095 0.027296 0.058331

CD0 0.005 70 0.006414 0.002087 0.169796 0.027296 0.058331K1 0.2 80 0.00733 0.002087 0.148572 0.027296 0.058331K2 0.002 90 0.008247 0.002087 0.132064 0.027296 0.058331

dh/dt 35 ft/s 100 0.009163 0.002087 0.118857 0.027296 0.058331dV/dt 1.8 ft/s2 110 0.010079 0.002087 0.108052 0.027296 0.058331

120 0.010996 0.002087 0.099048 0.027296 0.058331130 0.011912 0.002087 0.091429 0.027296 0.058331140 0.012828 0.002087 0.084898 0.027296 0.058331150 0.013745 0.002087 0.079238 0.027296 0.058331160 0.014661 0.002087 0.074286 0.027296 0.058331170 0.015577 0.002087 0.069916 0.027296 0.058331180 0.016493 0.002087 0.066032 0.027296 0.058331190 0.01741 0.002087 0.062556 0.027296 0.058331200 0.018326 0.002087 0.059429 0.027296 0.058331

Output

α 0.82 W/S T/W (Lift T/W (Line T/W (Profi dh/dt dV/dtβ 0.87 10 0.008909 0.005305 2.780072 0 0n 1 20 0.017818 0.005305 1.390036 0 0g 32.2 ft/s2 30 0.026727 0.005305 0.926691 0 0R 0.002315 slug/ft3 40 0.035635 0.005305 0.695018 0 0

Velocity 1338 ft/s 50 0.044544 0.005305 0.556014 0 0q 2072.207 psf 60 0.053453 0.005305 0.463345 0 0

CD0 0.011 70 0.062362 0.005305 0.397153 0 0K1 2 80 0.071271 0.005305 0.347509 0 0K2 0.005 90 0.08018 0.005305 0.308897 0 0

dh/dt 0 ft/s 100 0.089088 0.005305 0.278007 0 0dV/dt 0 ft/s2 110 0.097997 0.005305 0.252734 0 0

120 0.106906 0.005305 0.231673 0 0130 0.115815 0.005305 0.213852 0 0140 0.124724 0.005305 0.198577 0 0150 0.133633 0.005305 0.185338 0 0160 0.142542 0.005305 0.173755 0 0

170 0.15145 0.005305 0.163534 0 0180 0.160359 0.005305 0.154448 0 0190 0.169268 0.005305 0.14632 0 0200 0.178177 0.005305 0.139004 0 0

Output

α 0.91 W/S T/W (Lift T/W (Line T/W (Profi dh/dt dV/dtβ 0.34 10 0.011035 0.005604 2.50512 0 0n 3 20 0.022069 0.005604 1.25256 0 0g 32.2 ft/s2 30 0.033104 0.005604 0.83504 0 0R 0.002315 slug/ft3 40 0.044138 0.005604 0.62628 0 0

Velocity 1338 ft/s 50 0.055173 0.005604 0.501024 0 0q 2072.207 psf 60 0.066207 0.005604 0.41752 0 0

CD0 0.011 70 0.077242 0.005604 0.357874 0 0K1 2 80 0.088277 0.005604 0.31314 0 0K2 0.005 90 0.099311 0.005604 0.278347 0 0

dh/dt 0 ft/s 100 0.110346 0.005604 0.250512 0 0dV/dt 0 ft/s2 110 0.12138 0.005604 0.227738 0 0

120 0.132415 0.005604 0.20876 0 0130 0.14345 0.005604 0.192702 0 0140 0.154484 0.005604 0.178937 0 0150 0.165519 0.005604 0.167008 0 0160 0.176553 0.005604 0.15657 0 0170 0.187588 0.005604 0.14736 0 0180 0.198622 0.005604 0.139173 0 0190 0.209657 0.005604 0.131848 0 0200 0.220692 0.005604 0.125256 0 0

T/W Total2.79161.55521.16810.99340.90360.85630.83320.82530.82760.83690.85130.86960.89090.91450.94000.96690.99521.02451.05461.0855

T/W Total0.85570.52110.41740.37150.34870.33730.33260.33210.33420.33830.34380.35040.35770.36570.37420.3831

0 20 40 60 80 100 120 140 160 180 2000.0

0.5

1.0

1.5

2.0

2.5

3.0

Validation Case 1: W/S and T/W

Calculated Using Mattingly - Master Equation

Provided Validation Points from GA TECH

W/S

T/W

0 20 40 60 80 100 120 140 160 180 2000.0

0.5

1.0

1.5

2.0

2.5

3.0

Validation Case 2: W/S and T/W

Calculated Using Mattingly - Master Equation

Provided Validation Points from GA TECH

W/S

T/W

0.39230.40190.41160.4216

T/W Total1.27720.68380.48670.38850.33000.29130.26390.24360.22800.21570.20580.19780.19110.18540.18070.17670.17320.17020.16770.1655

T/W Total2.79431.41320.95870.73600.60590.52210.46480.42410.39440.37240.35600.34390.33500.32860.32430.3216

0 20 40 60 80 100 120 140 160 180 2000.0

0.5

1.0

1.5

2.0

2.5

3.0

Validation Case 2: W/S and T/W

Calculated Using Mattingly - Master Equation

Provided Validation Points from GA TECH

W/S

T/W

0 20 40 60 80 100 120 140 160 180 2000.0

0.5

1.0

1.5

2.0

2.5

3.0

Validation Case 3: W/S and T/W

Calculated Using Mattingly - Master Equation

Provided Validation Points from GA TECH

W/S

T/W

0 20 40 60 80 100 120 140 160 180 2000.0

0.5

1.0

1.5

2.0

2.5

3.0

Validation Case 4: W/S and T/W

Calculated Using Mattingly - Master Equation

Provided Validation Points from GA TECH

W/S

T/W

0.32030.32010.32090.3225

T/W Total2.52181.28020.87370.67600.56180.48930.44070.40700.38330.36650.35470.34680.34180.33900.33810.33870.34060.34340.34710.3516

0 20 40 60 80 100 120 140 160 180 2000.0

0.5

1.0

1.5

2.0

2.5

3.0

Validation Case 4: W/S and T/W

Calculated Using Mattingly - Master Equation

Provided Validation Points from GA TECH

W/S

T/W

0 20 40 60 80 100 120 140 160 180 2000.0

0.5

1.0

1.5

2.0

2.5

3.0

Validation Case 5: W/S and T/W

Calculated Using Mattingly - Master Equation

Provided Validation Points from GA TECH

W/S

T/W

0 20 40 60 80 100 120 140 160 180 2000.0

0.5

1.0

1.5

2.0

2.5

3.0

Validation Case 1: W/S and T/W

Calculated Using Mattingly - Master Equation

Provided Validation Points from GA TECH

W/S

T/W

0 20 40 60 80 100 120 140 160 180 2000.0

0.5

1.0

1.5

2.0

2.5

3.0

Validation Case 2: W/S and T/W

Calculated Using Mattingly - Master Equation

Provided Validation Points from GA TECH

W/S

T/W

0 20 40 60 80 100 120 140 160 180 2000.0

0.5

1.0

1.5

2.0

2.5

3.0

Validation Case 2: W/S and T/W

Calculated Using Mattingly - Master Equation

Provided Validation Points from GA TECH

W/S

T/W

0 20 40 60 80 100 120 140 160 180 2000.0

0.5

1.0

1.5

2.0

2.5

3.0

Validation Case 3: W/S and T/W

Calculated Using Mattingly - Master Equation

Provided Validation Points from GA TECH

W/S

T/W

0 20 40 60 80 100 120 140 160 180 2000.0

0.5

1.0

1.5

2.0

2.5

3.0

Validation Case 4: W/S and T/W

Calculated Using Mattingly - Master Equation

Provided Validation Points from GA TECH

W/S

T/W

0 20 40 60 80 100 120 140 160 180 2000.0

0.5

1.0

1.5

2.0

2.5

3.0

Validation Case 4: W/S and T/W

Calculated Using Mattingly - Master Equation

Provided Validation Points from GA TECH

W/S

T/W

0 20 40 60 80 100 120 140 160 180 2000.0

0.5

1.0

1.5

2.0

2.5

3.0

Validation Case 5: W/S and T/W

Calculated Using Mattingly - Master Equation

Provided Validation Points from GA TECH

W/S

T/W

Mission Analysis

Step 1 Notes/Sources:Ammunition Weight (1.62 lbs x 2000 rounds) 3,240 lbs Source: "2006-2007 AIAA Graduate Team Aircraft Design Competition - Modifiied RFP"Internal Stores Max 5,000 lbs GD GAU-8 30-mm Cannon is part of weight emptyExternal Stores Max 12,000 lbs External Stores is deemed the limiting case

Total 12,000 lbs Enter Payload based on above values, and Desired Mission (for baseline misson, assume worst case external stores)

Crew WeightCrew (1x250lbs) 250 lbs Source: "2006-2007 AIAA Graduate Team Aircraft Design Competition - Modifiied RFP"

Total 250 lbs

Step 2Aircraft Type W_PL W_TO V_MAX Range Source: Taylor, J.W.R, Jane's All The World Aircraft Published Annually by: Jane's Publishing Company, (Issues used: 1945/45, 1968/84)

(lbs) (lbs) (kts) (nm) Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 60F.R. A10A 15,000 50,000 450 540

Grumman A6 17,000 60,400 689 1,700 Tornado F.Mk2 16,000 58,400 600 750

Average: 16,000 56,267 580 997 Some initial guess for TOGW, will only be used for reference, program automatically calculates TOGW based on historical data

59,488 lbs Later this will be iterated to find weight empty

Step 3 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 12

Climb 1Range Credit 24.5000001 nm Assume 10,000 ft/min climb (from RFP) and 350 knot ground speed during climb (from Roskam page 62); therefore, Rclimb = Alt./(10K/min)*350knotsCruise 1

775.5 nm 800 nm specified in RFP - climb 1 rangeAltitude 42,000 ft

Temperature @ Alt, T -90.6Delta 0.1668Theta 0.7116

Payload Calculations, W PL

WPL

WCREW

Weight Take Off Guess Based on Historical Data, W TO_GUESS

WTO_GUESS

Mission Fuel Weight Fractions, W F

Rcr, Cruise Range

o F

Mission Analysis

Step 1 Notes/Sources:Ammunition Weight (1.62 lbs x 2000 rounds) 3,240 lbs Source: "2006-2007 AIAA Graduate Team Aircraft Design Competition - Modifiied RFP"Internal Stores Max 5,000 lbs GD GAU-8 30-mm Cannon is part of weight emptyExternal Stores Max 12,000 lbs External Stores is deemed the limiting case

Total 12,000 lbs Enter Payload based on above values, and Desired Mission (for baseline misson, assume worst case external stores)

Crew WeightCrew (1x250lbs) 250 lbs Source: "2006-2007 AIAA Graduate Team Aircraft Design Competition - Modifiied RFP"

Total 250 lbs

Step 2Aircraft Type W_PL W_TO V_MAX Range Source: Taylor, J.W.R, Jane's All The World Aircraft Published Annually by: Jane's Publishing Company, (Issues used: 1945/45, 1968/84)

(lbs) (lbs) (kts) (nm) Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 60F.R. A10A 15,000 50,000 450 540

Grumman A6 17,000 60,400 689 1,700 Tornado F.Mk2 16,000 58,400 600 750

Average: 16,000 56,267 580 997 Some initial guess for TOGW, will only be used for reference, program automatically calculates TOGW based on historical data

62,414 lbs Later this will be iterated to find weight empty

Step 3 Source: Roskam, "Airplane Design, Part I: Preliminary Sizing of Airplanes", 1985, pg 12

Climb 1Range Credit 24.5000001 nm Assume 10,000 ft/min climb (from RFP) and 350 knot ground speed during climb (from Roskam page 62); therefore, Rclimb = Alt./(10K/min)*350knotsCruise 1

775.5 nm 800 nm specified in RFP - climb 1 rangeAltitude 42,000 ft

Temperature @ Alt, T -90.6Delta 0.1668Theta 0.7116

Payload Calculations, W PL

WPL

WCREW

Weight Take Off Guess Based on Historical Data, W TO_GUESS

WTO_GUESS

Mission Fuel Weight Fractions, W F

Rcr, Cruise Range

o F

0 25 50 75 100 125 150 175 2000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 25 50 75 100 125 150 175 2000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4