first results from the dampe mission · • many new spectral features observed with high precision...

74
First Results from the DAMPE Mission Xin Wu Department of Nuclear and Particle Physics University of Geneva, Switzerland Seminar at Laboratoire de l’Accélérateur Linéaire (LAL) Univ. Paris-Sud, CNRS/IN2P3 June 1, 2018

Upload: others

Post on 29-Dec-2019

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

FirstResultsfromtheDAMPEMission

XinWu

DepartmentofNuclearandParticlePhysicsUniversityofGeneva,Switzerland

SeminaratLaboratoire del’Accélérateur Linéaire (LAL)Univ.Paris-Sud, CNRS/IN2P3

June1,2018

Page 2: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

2LAL,1/06/2018XinWu

Launched >2yearsago,17/12/2015

Highenergyparticlephysicsexperimentinspace

DAMPE

Page 3: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

NeutronDetector(NUD)

PlasticScintillatorDetector (PSD)

Silicon-TungstenTracker(STK)

BGOCalorimeter(BGO)

TheDetector

3XinWu

highenergyγ-ray,electronandcosmicray

nucleitelescope

LAL,1/06/2018

ü Chargemeasurements(PSDandSTK)ü PrecisetrackingwithSistripdetectors(STK)ü Tungstenphotonconvertersintracker(STK)ü Thickimagingcalorimeter(BGOof32X0 )ü Extrahadronrejection(NUD)

Page 4: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

4XinWu

• OurGalaxyisimmergedinahaloofhighenergychargedparticles(CosmicRays)

– Mainlynucleiconsistentwithstellarmaterial:p(90%),He,C,O,… Fe,…

• Butalsosecondaryions:Li,Be,B,sub-Fe,pbar,…

Whystudyparticlesinspace?

LAL,1/06/2018

• Gamma-rays,neutrinos(notcoveredhere)

– Sourcepointingcapability→gamma-ray/neutrinoastronomy

http://www.srl.caltech.edu/ACE/ACENews/ACENews83.html,2004

Cosmicparticlesaremessengersofhighenergyprocesses(“cosmicparticleaccelerators”)� fundamental

implicationsonastronomy,cosmologyandparticlephysics

NormalizedtoSi=103

• andelectrons,positrons(� 1%)

• Observedparticleswithenergyupto~1020 eV(=100MillionTeV =100EeV)

– UptoPeV,bestmeasuredinspace,abovetheatmosphere,forprecisionandcomposition

EssentialingredientoftheMulti-messengerhighenergyastrophysics

Page 5: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

XinWu 5

• In1785Charles-AugustinCoulombobserved isolatedchargeleakingoutinair…

Allstartedwiththeleakingcharge…

… sothere is“radioactivity”intheair,butwheredoesthisradiationcomefrom?

LAL,1/06/2018

• In1896Becquereldiscoveredradioactivity,also…

Electroscopecanbedischargedbyradioactivity!

Page 6: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

XinWu 6

• Manysearches ...Elster &Geitel (1899),metalbox;C.T.R.Wilson(1901),railwaytunnel;Wulf (1909),Eiffel tower;Gockel (1910),balloon;Pacini (1911),lake …ledtothediscoverybyV.Hess(1912) inaballoonupto5000m– Conclusiveevidenceofincreasingpenetratingradiationwithrisingaltitude

→extraterrestrialorigin!

TheDiscoveryof“CosmicRadiation”

Spaceparticlephysicswasborn!

Hess,1912

KolhörsterDetector!

Wulf Electroscope

NobelPrize1936forV.HessLAL,1/06/2018

Page 7: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

7XinWu

• Auguste Piccarddevelopedapressuredaluminumcabin

– Measuredcosmicraysuptothestratosphere(~16km)in1931

GoingtotheStratosphere

Piccard 1931

Regener,1932

Kolhörster, 1913/14

• ErichRegener extended themeasurement toanaltitudeof28km in1932withsmallunmannedrubber-balloons

LAL,1/06/2018

First“astronauts”!

First“space-lab”!

Studiesofcosmicraysongroundledtothediscoveriesof:positron(1932),muon(1936),chargedpion(1947),K,Λ, Σ, Ξ, … (1950’s)

Page 8: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

• Alongseriesofballoonsandsatellites experimentsbasedoncalorimeters,leadingtothehighprecisionDAMPEmission, launchedinDec. 2015

Fromballoonstosatellites andspacestations• Manydiscoverieswithballoonsin1930-40’s

– Geomagneticeffects(1927),CRmainlychargedparticles (1929)�mainlypositivelycharged(1933)�mainlyprotons(1940),heavynucleiobserved(1948)

8LAL,1/06/2018XinWu

• Spaceage:particledetectorswerekeyelementsonfirstsatellites– Sputnik-2:launchedNov.3,1957carried2Geigercounters

• IndicationoftheVanAllenradiationbelt

– Explorer-1(FirstUSsatellite): launchedinJan.1,1958

• DiscoveryoftheVanAllenbeltwithaGeigercounter

• 1960:Fristevidencesofcosmicrayelectrons(~0.5GeV)in2balloonexperiments,withmulti-platecloudchamberandNaI/scintillatorcounters– 1963:Friste+/e− ratio(0.1– 1GeV)withmagnetinballoonexperiments

• Magneticspectrometerscontinueswithballoonsandsatellites, leadingtothehighprecisionAMS-02 experiment, launchedin2011

• Gamma-ray detectiontechnologies successfullydeployedinspace,leadingtothehighprecisionandlargeacceptanceFERMI observatorylaunchedin2008

Particlephysicsinspacehasenteredaprecisionmeasurementera!

Page 9: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Manysurprises!• Spectradonotfollowthesimplepowerlaw,asobservedwithlowerprecisiondata

9LAL,1/06/2018XinWu

• Manynewspectralfeaturesobservedwithhighprecisiondata,reflectingthecomplexnatureofcosmicrays– Particlescanbeproducedfromdifferentsourcesatdifferenttimesatdifferent

distances,withdifferentaccelerationmechanisms,thentravelthroughdifferentpathstotheEarth

• Astrophysicalsources(eg.SNR,Pulsar,AGN)orexoticsources(eg.DM)

• Propagation/secondaryproductioneffects

• Non-exhaustivelistofnewand“unexpected”observations– Cosmicraypositronfraction“anomaly”

– Cosmicrayelectron+positronspectralbreaks

– Protonandlightnucleispectralbreaks

– Flatteningantiprotonfraction

– GeVgamma-rayexcessattheGalacticCenter

– …

Stillalongwayfroma“StandardModelofCosmicRayPhysics”!

Page 10: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

10XinWu

• Positronswerethoughttobemainlysecondary� singlepowerlaw

– Secondary:fromcosmicraysinteractingwithInterstellarmedium

Positronfraction“anomaly”

Butelectronandpositionmayhavedifferentcontributingsources�directlylookattheindividual fluxes

LAL,1/06/2018

• Positronsmayhaveaprimarycontribution

– Primary:EMcascadeinpulsarmagneticfieldorthroughpionproductioninshockacceleration(pulsar,SNR),orDM

S.Ting,CERNcolloquium,May24,2018

Page 11: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

11XinWu

• AMSdatabothelectronandpositrondonotfollowsimplepowerlaw– Source(s)contribution,ornewpropagationeffect?

Positronandelectronindividualfluxes

Needmoredatatomeasurethecut-offofthepositronsourcecontribution� understand thenatureofthesource(DM?pulsar?Propagation?)

LAL,1/06/2018

S.Ting,CERNcolloquium,May24,2018

Geomagneticeffect

Page 12: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

12XinWu

• AMS-02publishedCREspectrumupto1TeV,Fermiupto2TeV

• CREfluxcanalsobemeasuredbythickcalorimetricdetectors(DAMPE,CALET)

– Betterenergyresolutionathighenergy

Electron+positron(CRE)flux

LAL,1/06/2018

Fermi,PRD95,082007(2017)

AMS,PRL113,221102,(2014)

Hardening~30GeVseenbyAMSandFermi

But:Fermilargesystematicerrorduetothincalorimeter,HESSlargesystematicerrorduetoshowermodeling inatmosphereandenergyscale(15%,notshowninfigureabove)

DAMPEwillproducehighstatisticsandprecisemeasurementatmulti-TeV region

Intriguing“features”around1TeV

Page 13: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Protonandlightnucleirigidityspectra,upto~TV

13LAL,1/06/2018XinWu

Thereisageneralsinglepowerlawbreakdownaround200GV!

Acceleration?Propagation?Mixed?

S.Ting,CERNcolloquium,May24,2018

Proton

Page 14: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

ProtonandHeliumhighenergyspectra,1- 100TeV

14LAL,1/06/2018XinWu

• 1– 100TeV range:exploredbyCREAM,ATIC,NUCLEON

• Nearfuture:uptoPeV toconnecttoground-basedEASmeasurements

– HERD:onboardChina’sSpaceStation(CSS),~2025

NewmeasurementstocomefromDAMPE,CALETandISS-CREAM

Anotherspectralhardening>1TeV?andasoftening>10TeV?

Cream-III,ApJ 893,5(2017),NUCLEON,JCAP07,020(2017)

Page 15: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

15XinWu

• Apowerlawcanresultfromaprocesswithenergyindependentaccelerationrateand energyindependentescapeprobability– Energygainedaftereachacceleration: !" "⁄ = %

– Escapeprobabilitybetweeneachacceleration:&'()• Accelerationprobability:1 − &'()

Whypowerlaw?

• Thedifferential spectrumisthen,-

,.= /0123.×"

6768

• Insteadystate,thenumberofparticleswithenergyabove"9 = ": 1 + % 9:

– <(" > "9) = < 1accelerations + < 1+ 1accelerations + ⋯

= <0 ∑ 1 − &'()NO

NP9 =-Q

RSTU1 − &'()

9

– Thoseescaped(observed):<V2/(" > "9) = &V2/<(" > "9) =N0 1 − &'()9

• Replacenwith1 =XYZ .[ .Q⁄

XYZ 8\]

– <V2/(" > "9) = /0123.×"967, _ = −

XYZ 86RSTU

XYZ 8\]

LAL,1/06/2018Butistheresuchacceleration process intheGalaxy?

Page 16: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

16XinWu

• Fermi(1949):CosmicraysareoriginatedandacceleratedprimarilyintheinterstellarspaceoftheGalaxybycollisionsagainstmovingmagneticfields

– Fermimechanism(of2nd order):head-on(gain)morelikelythantail-end(loss)⟹ onaverage<ΔE/E>�β2

cloud

FermiAccelerationandSNR

– SupernovaRemnants(SNRs):plausiblesourceforcosmicraysupto~1015 eV

• CanexplainthebulkofCRenergydensity(~1eV/cm3)iffew%ofthekineticenergyreleasedgoesintotheaccelerationofprotonsandnuclei

ud uu

shock

• (1977-78)Similarmechanism,butmoreefficient,withshocksinspaceplasmas

– Fermimechanismof1st order:particlecrossingbackandforthoftheshockfrontalwaysgainenergy⟹ <ΔE/E>�Δβshock

• Efficient:~1000yearstoreach1014 eV(0.1PeV)

• Universalpowerlaw,independentofparticleenergy!

• Notefficientenough:Takestoolongtoaccelerate

• Needsufficientinjection(initial)energy

• Predictspowerlaw,butnotuniversal

a fewpercentury

βcloud~10−4

βshock~10−2

Page 17: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

17XinWu

• Pulsars(fastspinning,highlymagnetizedneutronstarsresultingfromSNexplosions)

– Strongelectricfieldsgeneratedbyrotatingstrongmagneticfields

– Capableofconvertingrotationalkineticenergyintoradioemission(observed), γ-rays(observed), cosmicraysincludinge+e− pairs• Possibleoriginofcosmicraysinthegalactictoextragalactictransitionregion(1015 – 1019 eV)

Pulsars,BinariesandAGNs

• Binarieswithneutronstarorpulsar

– Accretionprocessgenerateshighspeedparticlesfallingintotheaccretiondisk,thenacceleratedinrotatingmagneticfields

• Accelerationto1019 eV possible

• Accretiondisksofcompactobjectsarecommonlyassociatedwithhighlycollimatedrelativisticjets

– Fermiaccelerationinjets(turbulences) associatedwithActiveGalacticNuclei(AGN)couldbetheoriginofextragalacticcosmicrays

`×" =ab

a3

Page 18: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

18XinWu

• Cosmicraysdiffuse throughtheinterstellarmedium (ISM)

– Randomscatteringwithdiscontinuitiesoftheinterstellarmagneticfields

• Directionbecomesisotropic;Spectrumismodified:E−γ� E−γ−δ

CosmicRayPropagationinISM

Secondary-to-primaryratiose.g.B/C,areusefultodeterminepropagationparameters!

– InteractionwithambientmaterialinISM(~90%H,10%He)

• Productionofsecondarycosmicrayparticles

• Somearemainlysecondary:Li,Be,B,sub-Fegroup,…

• ChemicalcompositiongiveuniqueinformationonsourcesandpropagationInterestregionofDAMPE

andfuturemissions

LAL,1/06/2018

Page 19: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

TheDAMPESatellite

19XinWu

Weight:1450/1850kg(payload/satellite)Power:300/500W(payload/satellite)Readoutchannels:75,916(STK73,728)

Size:1.2mx1.2mx1.0m

LAL,1/06/2018

�EQM,Oct.2014,CERN Integratedsatellite,Sept.2015,Shanghai

Page 20: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

20XinWu

TheOrbit

LAL,1/06/2018

• Altitude:500km• Inclination: 97.4065�• Period:95minutes• Orbit:sun-synchronous

• Dec.20:alldetectorspoweredon,excepttheHVforPMTs

• Dec.24:HVon!• Dec.30:stabletriggercondition• Verysmoothoperation since!

LaunchedDec.172015

Page 21: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

TheCollaboration• China

– PurpleMountainObservatory,CAS,Nanjing

– UniversityofScienceandTechnologyofChina,Hefei

– InstituteofHighEnergyPhysics,CAS,Beijing

– InstituteofModernPhysics,CAS,Lanzhou

– NationalSpaceScienceCenter,CAS,Beijing

• Switzerland

– UniversityofGeneva,Switzerland

• Italy

– INFNPerugiaandUniversityofPerugia

– INFNBariandUniversityofBari

– INFNLecceandUniversityofSalento

21LAL,1/06/2018XinWu

Page 22: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

ScientificobjectivesofDAMPE• PrecisionTeV measurementsinspace

– Measurethehighenergycosmicelectronandgammaspectra– Studyofcosmicrayspectrumandcomposition

– Highenergygammarayastronomy

22

Detectionof1GeV- 10TeVe/γ,100GeV- 100TeV cosmicrayswithexcellentenergyresolution,directionreconstruction (γ)andchargemeasurement

LAL,1/06/2018XinWu

Page 23: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

PlasticScintillatorDetector(PSD)

23XinWu LAL,1/06/2018

2 layers(x,y)ofstrips1cmthick,2.8cmwideand88.4cmlongSensitivearea82.5cmx82.5cm,nodeadzone• Stripstaggeredby0.8cm

Readout both ends with PMT, each uses twodynode signals (factor ~40) to extend thedynamic range to cover Z = 1, 26

Page 24: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Silicon-TungstenTracker(STK)

• Outerenvelop1.12mx1.12mx25.2cm

• Detectionarea76x76cm2

• Totalweight:154.8Kg

• Totalpowerconsumption:~85W

24XinWu LAL,1/06/2018

Page 25: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

• 12layers(6x,6y)ofsingle-sidedSi stripdetectormountedon7supporttrays

• Tungstenplates(1mmthick)integratedintrays2,3,4(fromthetop)

– Total 0.85X0 forphotonconversion

TheSTKstructure

25XinWu LAL,1/06/2018

73,728channels

768siliconsensors95x95x0.32mm3

1,152ASICs

192ladders

Page 26: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

X Layer (22 BGO bars)

Y Layer

14 Layers

BGOCalorimeter(BGO)• 14-layerBGOhodoscope,7x-layers+7y-layers

– BGObar2.5cm�2.5cmx60cm,readoutbothendswithPMT

• Use3dynode(2,5,8)signalstoextendthedynamicrange

– Chargereadout/Trigger:VATA160withdynamicrangeupto12pC

26Totalthickness32X0/1.6λILAL,1/06/2018XinWu

Detectionarea60cm�60cm

Page 27: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

BGOreadoutandtrigger

• TA(fastshaping,22channelOR)signalsofVATA160usedfortrigger

– Onlythedynodes5and8ofthetop4andbottom4layers used– Triggermenu:HE(notprescaled), LE,MIP-1,MIP-2,Unbiased

27LAL,1/06/2018XinWu

5x

Page 28: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

NeutronDetector(NUD)• 4largeareaboron-dopedplasticscintillators(30cm�30cm�1cm)

– Detectthedelayedthermalneutroncapturesignaltohelpe/hseparation

– Gatingcircuittodetectdelayedsignalwithasettabledelay(0-20µs)afterthetriggerfromtheBGO

28LAL,1/06/2018XinWu

γ + Li+ α → B+ n 710

Page 29: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

DAQsystem

29LAL,1/06/2018XinWu

Triggerlatency1µs

3ms fixedDAQdeadtime

• 2crates• Allmoduleswithdouble

redundancy• 16GBmemory

Page 30: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

On-groundcalibration

30XinWu

• SeveralweeksatCERNPSandSPSbeamsfromOct.2012– Nov.2015(EQM)– Plusmanycosmicmuondata(FM)

LAL,1/06/2018

Oct.2012Nov.2014

March2015Nov.2015

Page 31: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

31XinWu

Electronenergylinearityandresolution

LAL,1/06/2018Goodlinearityandresolution

Goodagreementbetweentestbeamandsimulation

1-20GeV 50-243GeV

ΔE/E<1.2%for>100GeV

NIMA856(2017)11Energycorrection:~6-7%for100GeV – 1TeV

Page 32: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

32XinWu

Protonenergyresolution

LAL,1/06/2018

Protonenergycannotbeeasilycorrected.Needunfolding!

Goodagreementbetweentestbeamandsimulation

Page 33: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Noise [ADC counts]0 2 4 6 8 10 12 14 16 18 20

Entri

es

1

10

210

310

410After production

After payload integration

After satellite integration

STKon-groundcalibration• ExtensivelytestedandcalibratedwithparticlebeamsatCERNandwith

cosmicraymuons

• STKremainedinexcellentqualitythrough~6monthsoftransportation,integration,spaceenvironmentaltests,…

– Numberofnoisychannels<0.4%beforelaunch• LargeamountofcosmicdatacollectedtoaligntheSTK

– Excellentpositionresolutionachievedbeforelaunch

• 40– 50µmforverticalentryparticles (requirement75µm)

33XinWu

Numbe

rofchann

els

Noise(ADC) Trackincidenceangle

Positionresolutio

n

LAL,1/06/2018

Page 34: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Chargemeasurementswithbeams• TestwithionfragmentbeamsatCERN

34XinWu LAL,1/06/2018

ChargemeasuredbyPSDChargemeasuredbySTKladders

STKhasbetterresolution atlowZ,butsaturateatZ~ 8

Ar primarybeam Pb primarybeam

STKASICgain

Page 35: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

35XinWu

• 15 orbits/day

• ~50Hzaveragetriggerrate

– Mainhighenergytriggerandprescaled lowenergyandMIPtriggers

Particlehitcountsvsorbit

LAL,1/06/2018

Page 36: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

36XinWu

• HETtriggerrate20– 60Hz– EventsinSouthAtlanticAnomaly(SAA)

regionsnotused

Triggerrateinorbit

LAL,1/06/2018

3 ObitsthroughSAA

Proc.Sci.(ICRC2017)232(2017)

• Smalltriggerthresholdvariationwithtemperature– ~13ACD(0.04MIP)infull

temperaturerange

Temperature

Triggerthreshold

Page 37: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

PSDin-flightcalibration

37XinWu

Pedestalcomparison

LAL,1/06/2018 Proc.Sci.(ICRC2017)168(2017)

Dy5andDy8signalcorrelation

Lightattenuationcalibration,usingSTKtrackforextrapolation

Dy8

Dy5 Singlelayerefficiency

Average~99.5%

PSDbarnumber

Page 38: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

38XinWu LAL,1/06/2018

Charge resolution: 1�0.12 for H, 2�0.28 for He

Ni

Fe

SiNe

C OHe

Ca

H

PSDchargemeasurement

Goodstartingpointforprotonandnucleimeasurements

Page 39: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Noise Runs0 100 200 300 400 500 600 700

Num

ber o

f Cha

nnel

s

0

50

100

150

200

250

300

350

400

450

Frac

tion

of T

otal

[%]

0

0.1

0.2

0.3

0.4

0.5

0.6noise>5 ADC10>noise>5 ADCnoise>10 ADC (1 PED run per day)

Dec. 30, 2015 - Feb. 28, 2018

39XinWu

• Detectorstartedingoodshape,Steadilyimprovedinthefirst2yearduetostabilizationeffect

LAL,1/06/2018

• Bulkofnoisecorrelatedwithtemperature

– Verysmalltemperaturecoefficient

• ~0.01ADCper2�,stability�1.4%

• Simplificationforoperation

– datacompressionthresholdsupdatedonlyonceonFeb.22,2016usingaveragenoiseofFeb.13-17,2017

STKNoiseverystablesincelaunch

Rangeofvariation (0.3ADC)moreprecisethan theon-boardpedestalcalculation(2ADC)!

26monthssincelaunch

Numberofnoisychannels<0.28%

Averagenoise2.84-2.87ADC

C

Page 40: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

10 20 30 40 50

30

40

50

60

708090

100

200

300x2 x1x3 x6x4 y1x5 y6y2 alignedy3 non-alignedy4y5

) (deg)yθ(xθ

m)

µEf

fect

ive

reso

lutio

n (

• Goodthermal stabilityguaranteedagoodshorttermmechanicalstability

LAL,1/06/2018 40XinWu

STKin-flightalignment

Re-alignevery2weekstocorrectforlongtermshift

Outsidelayerswithlargerextrapolationerrors

Intrinsicpositionresolution40-50µm

Unbiasedhitresidualof12layersbefore/after(re)alignment,asfunctionofincidenceangle

dataof2months

Page 41: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Dec-312015

Jul-012016

Dec-312016

Jul-012017

Dec-312017

Jul-022018

11.11.21.31.41.5

Dec-312015

Jul-012016

Dec-312016

Jul-012017

Dec-312017

Jul-022018

11.11.21.31.41.5

Dec-312015

Jul-012016

Dec-312016

Jul-012017

Dec-312017

Jul-022018

11.11.21.31.41.5

Dec-312015

Jul-012016

Dec-312016

Jul-012017

Dec-312017

Jul-022018

11.11.21.31.41.5

Dec-312015

Jul-012016

Dec-312016

Jul-012017

Dec-312017

Jul-022018

11.11.21.31.41.5

Dec-312015

Jul-012016

Dec-312016

Jul-012017

Dec-312017

Jul-022018

11.11.21.31.41.5

° < 10x

Θ < °0 ° < 20x

Θ < °10

° < 30x

Θ < °20 ° < 40x

Θ < °30

° < 50x

Θ < °40 ° > 50xΘ

(Jan

uary

,1st

) 1σ

/ 1σ x1 x2x3 x4x5 x6

LAL,1/06/2018 41XinWu

Residualratioevolution:initialalignment

UsealignmentofJan.2016:traymovementinZdirectionaffectsresolutionoflargeangletracks

<10� 10-20�

>50�

20-30� 30-40�

40-50�

LaunchtoMay2018

Page 42: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Dec-312015

Jul-012016

Dec-312016

Jul-012017

Dec-312017

Jul-022018

11.11.21.31.41.5

Dec-312015

Jul-012016

Dec-312016

Jul-012017

Dec-312017

Jul-022018

11.11.21.31.41.5

Dec-312015

Jul-012016

Dec-312016

Jul-012017

Dec-312017

Jul-022018

11.11.21.31.41.5

Dec-312015

Jul-012016

Dec-312016

Jul-012017

Dec-312017

Jul-022018

11.11.21.31.41.5

Dec-312015

Jul-012016

Dec-312016

Jul-012017

Dec-312017

Jul-022018

11.11.21.31.41.5

Dec-312015

Jul-012016

Dec-312016

Jul-012017

Dec-312017

Jul-022018

11.11.21.31.41.5

° < 10x

Θ < °0 ° < 20x

Θ < °10

° < 30x

Θ < °20 ° < 40x

Θ < °30

° < 50x

Θ < °40 ° > 50xΘ

(Jan

uary

,1st

) 1σ

/ 1σ x1 x2x3 x4x5 x6

LAL,1/06/2018 42XinWu

Residualwithalignment:launchtoMay2018

Bi-weeklyupdateofalignmentissufficient,stability~2%

<10� 10-20�

>50�

20-30� 30-40�

40-50�

LaunchtoMay2018

Page 43: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

BgoMIPsADC8960_L4_B12_S2Entries 7955Mean 314.9RMS 136.1

/ ndf 2χ 118.8 / 65p0 0.07± 15.84 p1 1.5± 258.8 p2 9.582e+02± 8.061e+04 p3 1.60± 89.62

ADC0 200 400 600 800 1000 1200

Cou

nt

0

50

100

150

200

250

300

BGOin-flightMIPcalibration

43XinWu LAL,1/06/2018

time0 10 20 30 40 50 60 70

Mea

n(M

eV)

1220

1240

1260

1280

1300

1320

01/16 03/16 05/16 07/16 08/16 10/16 12/16 03/17

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

Stability of Helium MIPs

31/12/1501/04/1601/07/1630/09/1631/12/1601/04/1701/07/17

MIPs M

PV(AD

C)

520

540

560

580

600

620

Time(Day/Month/Year)31/12/15 01/04/16 01/07/16 30/09/16 31/12/16 01/04/17 01/07/17

C )°Tem

peratu

re(

0

5

10

• “MIP”calibration:ADC→MeVandequalization,useeventsneartheequator,�20�

After“temperaturecorrection”(MIPcalibrationonceperorbit)

Proton“MIP”MPVvstemperature (time)

MPVofaBGObar

Geomagneticcut-offeffectM

IPM

PVsh

ift%

MIPspectrumofaBGObar

ADC

MeV

TotalenergymeanofHeliumMIP

Helium“MIP”meanvstime,stable<1%

Page 44: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

MIPenergycalibrationstability

44XinWu LAL,1/06/2018

BGObarCarbonMIPpeak BGObarIronMIPpeak

MIPenergycalibrationstabilityisbetterthan1%

BGOchargeidentificationofMIPevents

Page 45: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Absoluteenergyscalevalidation

45XinWu LAL,1/06/2018

• UseLin1– 1.14,cut-off~13GeV• Measuredcut-offcomparedtoMCsimulation

withIGRF-12modelandback-tracingcode(InternationalGeomagneticReferenceField)

Proc.Sci.(ICRC2017)197(2017)

• Overallenergyscalecanbecheckedwithgeomagneticcut-offeffects– Chargeparticlesdetectedinageomagneticzonehavespecificcut-offintheflux

(deflectionbythemagneticshield)

McIlwain Lshells

Cut-off:13.20GeV(data)vs.13.04GeV(IGRF)

Cdata/Cpred=1.0125�0.0174(stat.)�0.0134(sys.)

Absoluteenergyscale• ~1.25%aboveexpectation• ~2%at1σ level

Notcorrectionapplied,useassystematics

Page 46: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

1. Reconstructedenergyspectrum

46XinWu

– Ni:numberofeventsobservedafterfiducial andselection cuts– Bi:numberofestimatedbackground– ei:efficiency ofallselectioncutsappliedafterthefiducialcut– Wi:binwidthinGeV(correctedreconstructedenergy)

Theelectron(e++e−)fluxmeasurement

– StatisticalerrorofNi andsystematic(+statistical)errorsofBi,Ai,εi,T

– Ai:acceptanceofthe“fiducial”cutincm2sr– T:livetimecorrespondingtothedataset(30.12.15-08.06.17,2.8billionsevents)

2. Unfoldingtotrueenergyspectrum– Detailedstudiesshowedsmearingeffectisnegligiblewithcorrectedenergy

(ΔE/E<1.5%above20GeV):

3. Acceptance andlivetimecorrection

4. Errorevaluation

Fouringredients:

LAL,1/06/2018

Page 47: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

LAL,1/06/2018XinWu 47

Crosscheckswithindependentanalyses• 3independentanalyseshavebeenperformed,usingdifferent PID(e-p

separation)methods

– Showershape(ζ method):combinelateralandlongitudinalshowershapevariablestooneparameterζ

– Principalcomponentanalysis

– boosteddecisiontree

• Threemethodsgaveveryconsistent(withinthestatisticaluncertainties)resultsofthefinalelectronflux

Theanalysisoftheζ method is presented here

Page 48: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

LAL,1/06/2018XinWu 48

Theglobalshowershapevariableζ• Electronshavenarrowerandshortshowers

– Lateralshowershape• sumRms =sumoftheshowerwidthofall14BGOlayers

– Longitudinalshowershape

• F last =ratiooflayerenergytototalBGOenergyofthelastlayerthathasenergy

5.6 TeV electron candidate

Page 49: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

LAL,1/06/2018XinWu 49

Theglobalshowershapevariableζ• Electronshavenarrowerandshortshowers

– Lateralshowershape• sumRms =sumoftheshowerwidthofall14BGOlayers

– Longitudinalshowershape

• F last =ratiooflayerenergytototalBGOenergyofthelastlayerthathasenergy

sumRms [mm]

F last

• sumRms andF last arecombinedtoaglobal showervariable

ζ = F last� (sumRms)4 /(8� 106)

0.5– 1TeV0.5– 1TeV

goode/pseparation!

Page 50: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

50XinWu

• Fiducialcuts– Defineacceptance

• Trigger:passedtheHighEnergyTrigger(HET)• Selection

– Pre-selection(cleanup)• Removelateralentry,largeshowerandsomeheavynucleiMIPstofacilitatebackgroundextrapolationlater

– Heavynucleiremoval:separatecutsfor2mutuallyexclusivesamples:track-matchedandBGOonly

• Track-matched:removingheavynucleiwithPSDandSTKcharge

• BGO-only:removingheavynucleiwithtop2BGOlayers

– Signalextractionusing theζ variable

Thecutflow

LAL,1/06/2018

Page 51: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

51XinWu

• 3cutstoensure:– TheparticleenergyiswellcontainedintheBGO– Theparticleisenteringfromthetopofthedetector

• Fiducialcut1– BGOfull-span:showerdirectionextrapolatestowithin28cmfromthe

centeratthetopandthebottomsurfacesoftheBGOinbothXandY

• BGObarlengthis60cm

• Fiducialcut2– Removeevents inwhichtheBGObarwithmaximumenergyinsecond,

thirdandforthlayerisontheoutside(bar0or21)

• Fiducialcut3– Removeeventswithmax.layerenergy/totalenergydeposited>35%

Fiducialcuts

LAL,1/06/2018

Page 52: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Particle energy [GeV]210 310 410

sr]

2Ac

cept

ance

[m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Electron MC, fiducial

52XinWu

• Systematicsareevaluatedbycheckingthedata-MCconsistencyincutvariables– Residualdifferencesusedtoestimatesystematicuncertainties

• Totalerror2.2%,flatinenergy.MaincontributionfromtheBGOfull-spancut(2%)– BGOfull-spancutsystematics:thepreciselyreconstructedelectrontrackcan

beusedtoevaluatedtheextrapolationresolutionoftheshowerdirection– Data-MCdifferenceinextrapolationresolution~2mm→2% acceptancechange

Acceptance

~0.31m2sr, relativelyflatvs.energy

AcceptanceisevaluatedwithMC

LAL,1/06/2018

Page 53: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

BGO corrected total energy [GeV]210 310

High

Ene

rgy

Trig

ger E

fficie

ncy

0

0.2

0.4

0.6

0.8

1

Data

Electron MC

53XinWu

• Triggerefficiencyisevaluatedfromthepre-scaledLowEnergytrigger

– UnbiasedfortheHighEnergyTrigger,validatedwithMC

– Crosscheckedwiththe(heavily)pre-scaledUnbiasedTrigger

• Theoverallagreement isexcellent.Differenceatlowenergycomesmainlyfromprotoncontaminationwhichhaslowertriggerefficiency

• MCefficiencyusedforfluxcalculation,halfofthedifferenceassystematics → 1.5%at25GeVand1%at2TeV

TriggerEfficiency

Veryhighefficiency,gooddata–MCagreement

LAL,1/06/2018

Page 54: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

54XinWu

• Verylooseclean-upcuts– 2cutstoreduce largehadronshowerandlateralentryevents+1cut

toremoveheavynucleiMIPs

• maxRms <100mm– maxRms:themaximumwidthofalllayerswithenergy>1%ofthe

totalenergy

• Numberofhitsinthelastlayer(nBarLayer13)– nBarLayer13<8log(totalE)– 5

• nBarLayer13=numberofbarswithenergy>10MeVinthelastBGOlayer

• Lowenergycleaning cut (foreventswithrawenergy<250GeVonly)– AngulardependentlowercutonsumRms

Preselection

Preselectioncuts are highly efficient for signal (>99.9%), and have negligible (<0.03%) systematics uncertainties

LAL,1/06/2018

Page 55: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

55XinWu

• Heavynucleicontaminationisnegligibleinthesignalregionindatabecauseoftheirlargeshowershape

• Butheavynucleishouldberemovedinthebackgroundregionofdata

– Bkg regionisusedtonormalize theζ templatefromprotonMC• Differentcutsareusedforeventswithandwithoutatrackmatch

– Track-matched:removingheavynucleiwithPSDandSTKcharge

• PSDbarisidentifiedbyextrapolatingtheSTKtracktothePSD

– BGO-only:removingheavynucleiwithtop2BGOlayers

Heavynucleiremoval

Cutsaredefinedtobe highly efficient for signal (>99%), and have negligible (<0.3%) systematics uncertainties

• Systematicsareevaluatedbydata-MCcomparisonofcutvariables

– Trackingefficiencyhasgooddata-MCagreement(seenextpage)

• Nosystematicassignedsinceevents failedtrackselectiongotothe"BGOonly"category

LAL,1/06/2018

Page 56: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

XinWu 56

Signalextractionusingtheζ variable• Strategy

– Extractsmoothζ templatesofeachenergybinfromprotonMC,usinginterpolationacrossenergybinstoreducefluctuation,andthenfit

– Ineachenergybinofdata• Fittheprotonζ templatetodatainthebackgroundregion(20<ζ <100)• Subtractthenumberofbkg.inthesignalregion(ζ <8.5)predictedbythefittedtemplatetoobtainthesignal:Si=Ni–Bi

110– 126GeV 1– 1.11TeV 2.29– 2.63TeV

SignificantsignaluptoafewTeV

3examples.Total38binsfrom24GeVto4.57TeV

LAL,1/06/2018

Page 57: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Energy [GeV]210 310

Back

grou

nd fr

actio

n [%

]

5

10

15

20

25

30

35

40

45

50

DAMPE CRE selection

XinWu 57

Systematicsofbackgroundestimate• Sourcesofsystematicsconsidered

– Choiceofinterpolationfittingfunction– MCStatisticaluncertaintyininterpolationfit– Choiceofbinningofζ forinterpolationacrossenergybins– Choiceofcontrolregion

– Datastatisticaluncertaintyinthecontrolregionfit• CrosscheckedwiththemethodusingasimpleMCtransferfactor(TF)toscale

eventsfrombackgroundregiontosignalregion

Lowbackgroundfraction(2%- 18%)uptoafewTeV

InterpolationTFmethod

Energy

Numbe

rofbkg

even

tsex

pected

LAL,1/06/2018

Page 58: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

XinWu 58

Validationoftheprotonζ distribution• Validationwith400GeVprotonsdatatakenattheCERNSPS

– TwoMChadronicmodelsarecompared:QGSPandFTFP

– Data-MChavegoodagreement(withinstatistics)

– Twohadronicmodelshavesimilardistributions

400GeVproton

LAL,1/06/2018

Page 59: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

XinWu 59

Efficiencyandsystematicsoftheζ cut• Comparetheζ distributionofelectronMCtodataaftersubtractingthe

protonbackground

– Verygoodagreement ingeneral

– Smallenergy-dependent difference :-1.9%at25GeVto8.4%at2TeV

• Confirmedwith250GeVelectronCERNtestbeamdata

– MCefficiencyiscorrectedforthisdifference• Halfofthedifference istakenassystematics

Electron,flightdata144- 251GeV

Electron,testbeam250GeV

ζ distribution

LAL,1/06/2018

Page 60: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Energy [GeV]210 310

sr]

2Ef

fect

ive

Acce

ptan

ce [m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

DAMPE CRE selection

XinWu 60

Effectiveacceptanceandsystematics• Sincenounfoldingisneeded, theacceptanceandefficiencycanbe

multipliedtobecomethe“effective acceptance”

– Efficiencyissmoothvs.energy,dropofefficiencyduetotightcut

– Simpletightcut(ζ>8.5)toselectacleansampleforfirstpublication• Validatedwithloose(energydependent) cut→compatibleresults

– Future:multivariateanalysis(ML),Neutrondetector

NUDAD

Energy

NUDADCLAL,1/06/2018

Page 61: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

61XinWu

Summaryofalluncertainties• Acceptance:2.2%

– maincontributorBGOgeometricalacceptance

• Efficiency:1.8%(25GeV)- 9.4%(4.5TeV)– maincontributors:triggerandζ cut

• (Ni–Bi)”statisticalerror”:ΔNi isstat.,ΔBi issyst.andstat.(frombgk norm.)

– 25GeV:δ(Ni– Bi)=0.32%,negligible

– 2TeV:δ(Ni– Bi)=25.6%,dominatedbyδNi =24.2%(N=17)• T=34913811.6sec,estimatedfilebyfile,removeDAQd.t. (3.0725ms)and

operationaldowntime

– Twoindependentcalculationsagreewithin0.08%

• Totalsystematicsonflux:<10%– 2.8%(25GeV)to9.6%(4.5TeV)

Mostprecise~TeV measurement!

Plus�2%ofabsoluteenergyscaleuncertainty(→~5%shiftinflux)

LAL,1/06/2018

Page 62: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

62XinWu

Systematicandstatisticaluncertainties

LAL,1/06/2018Statisticalerrordominating at~TeV,canbeimprovedwithmoredata

Page 63: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

63XinWu

Nosaturationeffect

LAL,1/06/2018

NosaturationeffectinBGObarsuptomorethan300GeVperbar

Electroncandidates

Page 64: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Energy (GeV)10 210 310 410

)-1G

eV-1

sr-1 s-2

Flux

(m

10−10

9−10

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1

10DAMPE (2017)

LAL,1/06/2018XinWu 64

DAMPEelectron+positron(CRE)flux

~8 ordersofmagnitude!

Page 65: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Energy (GeV)10 210 310 410

)-1G

eV-1

sr-1 s-2

Flux

(m

10−10

9−10

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1

10DAMPE (2017)

H.E.S.S. (2008)

H.E.S.S. (2009)

AMS-02 (2014)

Fermi-LAT (2017)

CALET (2017)

LAL,1/06/2018XinWu 65

CREfluxcomparison

~8 ordersofmagnitude!

hardtoseethefeatures!

5-20% whereotherexperimentshave

comparableprecisions(<1TeV)

hardtotelldifferences!

Page 66: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Energy (GeV)310

)-1G

eV-1

sr-1 s-2

Flux

(m

10−10

9−10

8−10

7−10

6−10

5−10

4−10

3−10DAMPE (2017)broken power law

single power law

LAL,1/06/2018XinWu 66

Zoominto>100GeV

Abreakaround1TeV isclearlyobserved!

FitwithSmoothlyBrokenPower-Law

Breakatthisordercannotbecausedbytheenergyscaleuncertainty

Page 67: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Energy (GeV)310

)-1G

eV-1

sr-1 s-2

Flux

(m

10−10

9−10

8−10

7−10

6−10

5−10

4−10

3−10DAMPE (2017)

H.E.S.S. (2008)

H.E.S.S. (2009)

AMS-02 (2014)

Fermi-LAT (2017)

CALET (2017)

broken power lawsingle power law

LAL,1/06/2018XinWu 67

Zoominto>100GeV

Afacturearound1TeVisclearlyobserved!

FitwithSmoothlyBrokenPower-Law

AlsoindicatedbyH.E.S.SandCALET

Breakatthisordercannotbecausedbytheenergyscaleuncertainty

Page 68: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Energy (GeV)10 210 310 410

)2G

eV-1

sr-1 s-2

Flu

x (m

× 3 E

50

100

150

200

250

DAMPE (2017)H.E.S.S. (2008)H.E.S.S. (2009)AMS-02 (2014)Fermi-LAT (2017)CALET (2017)

LAL,1/06/2018XinWu 68

ScalingupthefluxbyE3

Easiertoseespectralchanges

Butalsodistortthespectrumandexaggeratefluctuations!

Twofeatureshaveemerged:• ahardeningat~30-50GeV• Abreakat~1TeV

Manyhypotheses→needmoredatafromDAMPE/AMS/CALET,

andHERD!

H.E.S.S:15%energyscaleerrornotincluded

Fermi:extraEdependenterrornotincluded

Page 69: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Energy (GeV)10 210 310 410

)2G

eV-1

sr-1 s-2

Flu

x (m

× 3 E

50

100

150

200

250

H.E.S.S. (2008)

H.E.S.S. (2009)

AMS-02 (2014)

Fermi-LAT (2017)

CALET (2017)

LAL,1/06/2018XinWu 69

ScalingupthefluxbyE3,beforeDAMPE

Easiertoseespectralchanges

Twofeatureshaveemerged:• ahardeningat~30-50GeV• Abreakat~1TeV

Manyhypotheses→needmoredatafromDAMPE/AMS/CALET,

andHERD!

H.E.S.S:15%energyscaleerrornotincluded

Butalsodistortthespectrumandexaggeratefluctuations!

Page 70: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

LAL,1/06/2018XinWu 70

LatestAMSresultcompatiblewiththeTeV break

S.Ting,CERNcolloquium,May24,2018

Page 71: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Protonspectrumbeyond10TeV/nucleon

71LAL,1/06/2018XinWu

Anotherspectralhardening>1TeV?andasoftening>20TeV?

DAMPEprotonfluxupto100TeV inprogress

Page 72: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

LAL,1/06/2018XinWu 72

PhotondetectionwithDAMPE• Whatarethosetungstenplatesfor? 2-yearskymap

(1– 100GeV)

Page 73: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Next:HERD(HighEnergyRadiationDetectionfacility)

73XinWu

– 5-sidesensitive� ~3 m2sr– Payload~4T(~0.5AMS)

• NextgenerationhighenergyparticledetectoronboardtheChineseSpaceStation– Cosmic-rayphysicsatTeV - PeV,DMsearch,highenergyγ-rayastronomy

– CRsourceidentification, anisotropy,compositon

– SimilartoDAMPE,butwithlargeracceptance

• LYSOcube3Dimagingcalorimeter

• Si/Fibertracker,withconverters

• Anti-coincidencedetector

• Chargemeasurements

~7500LYSOcrystals� 55X0 and3λ !LAL,1/06/2018mainparticipants:CN,IT,CH,launch~2025

Page 74: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

LAL,1/06/2018XinWu 74

Conclusions• DAMPEisworkingextremelywellsince launchedmorethan2yearsago

– Apreciseelectron+positronfluxintheTeV regionhasbeenmeasured

• Aclearspectralbreakhasbeenobservedat~1TeV →anewpieceofpuzzletounderstandmanymysteriesincosmicrayphysics!

– Resultsonnucleimeasurements (protonfluxto100TeV!)comingsoon

– Photondetection capabilityisdemonstrated.Needmorestatistics toprofittheexcellentenergyresolutionathighenergy

• Spaceisthenewfrontierofparticlephysics

– Stillanexploratoryscience� groundbreakingmeasurements areexpected

• Experimentallychallengingbutmanyopportunities

– Opportunitiestoapplylatestparticledetection technologiestospace

– Opportunitiestodevelopspecializedandmulti-purposespacedetectorconcepts

– Close interplaybetweenparticlephysics,nuclearphysics,astrophysics,cosmology,solarphysics,spaceweather,spaceradiationdosimetry,planetaryexplorati…

ThankYou!Particlesinspace:excitingsciences,broad interests,advancedtechnologies!