first-quantized n=4 yang-millsmoriyama/slides/slide_hatsuda.pdf · 2010. 4. 1. · 1...

24
1 First-quantized N=4 Yang-Mills arXiv:0812.4569[hep-th] Machiko Hatsuda(KEK&Urawa), Yu-tin Huang &Warren Siegel (YITP@Stony Brook) I. Introduction II. 1 st -quantized “projective” superparticle III. Projective superspace IV. N=4 YM V. Summary 2009.2.10 @ Nagoya Univ.

Upload: others

Post on 20-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    First-quantized N=4 Yang-Mills

    arXiv:0812.4569[hep-th]

    Machiko Hatsuda(KEK&Urawa),

    Yu-tin Huang &Warren Siegel (YITP@Stony Brook)

    I. Introduction

    II. 1st-quantized “projective” superparticle

    III. Projective superspace

    IV. N=4 YM

    V. Summary2009.2.10 @ Nagoya Univ.

  • 2

    I. Introduction

  • 3

    Motivation

    Toward field theory with manifest symmetries

    – by BRST:

    – in superspace:

    • AdS/CFT

    Projective lightcone limit“A new AdS/CFT correspondence”

    Nastase & Siegel, hep-th/0010106

    “A new holographic limit of AdS5xS5”

    Siegel & M.H., hep-th/0211184

    “Superconformal spaces and implications for superstrings”

    Siegel & M.H., arXiv:0709.4605

  • 4

    translation Lorentz conformalboost

    Conformal symmetry

    by projective coordinate

    • Conformal group SO(4,2)=SU(2,2)

    • fractional linear transf.

    • projective coordinate

    ex. Infinitesimal tranf.

    ★Projective coordinates realize conformal sym. by fractional linear transf.

  • 5

    [1] Supersymmetrization: SU(2,2) ⇒ SU(N|2,2)

    [2] Minimization: SU(N|2,2)⇒OSp(N|4)

    SU(N) Fermi

    SU(2,2)Fermi

    O(N) FermiT

    Sp(4)Fermi

    4N

    4NN2-1

    15

    N(N-1)/2

    4N 10

    OSp(n|2) metric Sp(2) metricOSp(N|4) metric

    auxiliary coordinates

    projective coordinates

  • 6

    Superconformal symmetry

    • Superconformal generators

    • Super-twister on-shell generators

    ・・・fermi

    ・・・bose

    SU(N|2,2) can be

    made by only!

  • 7

    II. 1st quantized “projective” superparticle

  • 8

    BRST field theory

    • Free scalar field action:

    – BRST charge:

    – Field:

    – BRST gauge symmetry:

    – Feynmann-Siegel gauge:

    ★How extend to super?

    ghost for τ-diffeo

  • 9

    BRST for super

    • Spinning particle (NSR) :GSO & picture

    • Brink-Schwarz superparticle (GS):• κsymmetry 1st class constrains ・・・1/4

    • κgauge fixing ・・・・・・・・・・・・・・・・・・1/4

    • 2nd class constraints・・・・・・・・・・・・・・1/4

    ⇒physical degrees of freedom・・・・・1/4

    ⇒ No need 2nd class constraints!

    Can ¼ be obtained by cov. 1st class constraints only?

    • Pure spinor: pure spinor condition on ghost

    • Ghost pyramid: 1st class constraints only (∞reducible)

    complicated

    complicated

    ‟00 Berkovits

    ‟89 Siegel, ‟90 Mikovic, Rocek, Siegel, van Nieuwenhuizen, Yamron & van de Ven, ‟05 Lee & Siegel

    ‟81 Brink & Schwarz

  • 10

    Regularize infinite number

    of ghosts as

    Then physical d.o.f.

    becomes

    ⇒1/4

    Spinor

    ghost

    ghost for ghost

    ghost for ghost for ghost

    Ghost pyramid Reducible constraints leads to ghost for ghost

    ★ Complicated YM coupling・・・

  • 11

    Regularize infinite

    number of ghosts as

    Then physical d.o.f.

    becomes

    Separate projective

    coordinate spinor

    “Projective” superparticle

    ⇒1/2

    ⇒1/2

    ⇒ 1/2x1/2 = 1/4 !

    “Projective” spinor

    ghost

    ghost for ghost

    ghost for ghost for ghost

    Auxiliary spinor

    Ghost tower‟08 Huang, Siegel &M.H.

  • 12

    • Supersymmetry generators:

    • Action:

    • Constraints:

    – 2nd class:

    – 1st class “κsymmetry”:

    Brink-Schwarz superparticle

    must be solved

    can be gauged away

    Covariant treatment is

    difficult!

  • 13

    “Projective” superparticle

    • Covariant derivatives for projective coordinates

    • 1st class constraint set

    • Lightcone gauge

    osp(N|4)

    osp(N/2|2)2

    ¼ of 4N spinors !

    ( ref) PSU(4|2,2) case

    ‟01 Kamimura & M.H.

  • 14

    : Fermi・・・internal space ghost

    : Bose・・・κghost

    : Fermi・・・τ-diffeo. ghost

    BRST for “projective” superparticle

    • BRST charge

    – ghosts

    ★ Very simple expression

    unifying κ-sym. & τ-diffeo. !

  • 15

    III. Projective superspace

  • 16

    Simple (N=1) superspace

    • Scalar multiplet action

    – Superfield

    – Susy transf.

    ★Susy transf. of fields is the one for coordinate.

  • 17

    CP1

    Extended(N>1) superspace

    • Hyper(N=2) superspace

    – Automatically on-shell →no interaction

    SU(N) internal symmetry requires coordinates !

    • Harmonic(N=2,3,4) superspace

    – 2-d. Sphere for SU(2)

    • Projective(N=2) superspace

    – CP1 for SU(2)

    y plane

    ‟84 Galperin, Ivanov, Kalitzin, Ogievsky & Sokatchev

    ‟84 Karlhede, Lindstrom & Rocek‟88 Lindstrom & Rocek‟98 Gonzalez-Rey, Rocek, Wiles, Lindstrom & von Unge (Ref) N≧0 case ‟95 Hartwell & Howe, „00Heslop & Howe

  • 18

    Projective(N=2) superspace

    • Hypermultiplet action

    – Real O(2) superfield

    – Contour integral

    Reduced to N=1 action

    ‟84 Karlhede, Lindstrom & Rocek

  • 19

    Projective(N≧0) superspace

    • Charge conjugation

    – Inversion for N=2 case (CP1)

    – Inversion for N case coordinates

    – Superfield

    • Real superconformal inv. action

    0

    Conjugate

    is antipodal

    map of

    Riemann

    sphere

  • 20

    IV. N=4 YM

  • 21

    YM-covariantized osp(N|4)

    • YM-covariantization:

    • Field strength:

  • 22

    Field eq. for backgrond SYM

    • Field strength relation from Bianchi

    • Field eq. for N=4 (self-dual )

    can be given by

  • 23

    N=4 projective scalar field strength

    • Projective gauge

    • 4-point amplitude

    is function only of projective coordinates

    osp(2|2) osp(2|2)

    (ref ‟07 Kallosh)

  • 24

    V. Summary

    • 1st quantized superparticle, described by

    projective coordinates, is proposed.– 1st class constraints are bilinears of projective

    coordinate derivatives with matrix indices.

    – BRST has a simple form unifying κ-sym. &τ-diffeo.

    • Projective superspace (N≧0) is proposed.– YM field strengths are introduced in it.

    – A scalar superfield strength (N=4) is projective by whom 4-point amplitude is given.