finite element models of the fsdt shear and membrane...

21
JN Reddy CONTENTS FINITE ELEMENT MODELS OF NONLINEAR PLATE BENDING Finite element models of the FSDT Shear and Membrane Locking Numerical Examples Nonlinear Plate Bending: 1

Upload: others

Post on 26-Jan-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • JN Reddy

    CONTENTS

    FINITE ELEMENT MODELS OF NONLINEAR PLATE BENDING

    • Finite element models of the FSDT• Shear and Membrane Locking• Numerical Examples

    Nonlinear Plate Bending: 1

  • JN Reddy

    Kinematics of the Classical and Shear Deformation Plate Theories

    x

    Undeformed Edge

    First-Order (Mindlin)

    Plate Theory (FST)

    xz

    z

    u

    Nonlinear Plate Bending: 2

  • JN Reddy

    GOVERNING EQUATIONS OF THE FSDT with the von Karman Nonlinearity

    2 231 1 1

    2 2

    2 232 1 1

    2 2

    3 31 2

    ,

    ,

    xxx xz x

    yyy yz y

    yxxy

    uu u w wzx x x x x x

    uu v w wzy y y y y y

    u uu u u v w w zy x x y y x x y y

    x

    Nonlinear strains

    12

    ji m mij

    j i i j

    uu u ux x x x

    2 2 231 1 1 2

    1 1 1 1 1 1 1

    1 1 1 12 2 2 2

    m mxx

    u u uu u u ux x x x x x x

    Von Karman Nonlinear strains

    Nonlinear Plate Bending: 3

  • JN Reddy

    EQUATIONS OF MOTION OF FSDT

    22

    0 12 2

    22

    0 12 2

    xyxx xx

    xy yy yy

    NN uf I I

    x y t t

    N N vf I I

    x y t t

    yxxx xy

    xy yy

    QQ w wN N

    x y x x y

    w w wN N q I

    y x y t

    2

    0 2

    2 22 12 2

    xyxx xx

    MM uQ I I

    x y t t

    2 22 12 2

    xy yy yy

    M M vQ I I

    x y t t

    Nonlinear Plate Bending: 4

  • JN Reddy

    FINITE ELEMENT MODELS OF (FSDT)

    Weak Forms (from the principle of virtual displacements)

    2

    0 2

    2

    0 2

    0

    0

    e e

    e e

    xx xy x n nn

    xy yy y s ns

    u u uN N u f I u dxdy u N ds

    x y t

    v v vN N v f I v dxdy u N ds

    x y t

    Nonlinear Plate Bending: 5

    2

    0 2

    2

    2 2

    2

    2 2

    0

    0

    0

    e e

    e e

    e

    x y n

    x x xxx xy x x x n nn

    y y yxy yy y y y s

    w w wQ Q w N I w dxdy wQ ds

    x y t

    M M Q I dxdy M dsx y t

    M M Q I dxdyx y t

    e

    nsM ds

    Qn = Qxnx+Qyny; Mnn = Mxxnx+Mxyny; Mns = Mxynx+Myyny

  • JN Reddy

    THE FIRST-ORDER SHEAR DEFORMATION THEORYStress Resultants (Nonlinear)

    22

    11 12 16

    11 12 16

    2

    12

    1 12 2

    12

    xx

    y y Tx xxx

    yy

    u w v w u v w wN A A Ax x y y y x x y

    B B B Nx y y x

    u wN Ax x

    2

    22 26

    12 22 26

    22

    16 26

    12

    1 12 2

    y y Tx xyy

    xy

    v w u v w wA Ay y y x x y

    B B B Nx y y x

    u w v wN A Ax x y y

    66

    16 26 66y y Tx x

    xy

    u v w wAy x x y

    B B B Nx y y x

  • JN Reddy

    THE FIRST-ORDER SHEAR DEFORMATION THEORYStress Resultants (Nonlinear)

    22

    11 12 16

    2 2 2

    11 12 162 2

    2

    12 22

    1 12 2

    2

    1 12 2

    xx

    Txx

    yy

    u w v w u vM B B Bx x y y y x

    w w wD D D Mx yx y

    u w v wM B Bx x y y

    2

    26

    2 2 2

    12 22 262 2

    22

    16 26 66

    2 2

    16 262 2

    2

    1 12 2

    2

    Tyy

    xy

    u vBy x

    w w wD D D Mx yx y

    u w v w u vM B B Bx x y y y x

    w wD D Dx y

    2

    66

    55 45 45 44

    Txy

    x s x s y y s x s y

    w Mx y

    w w w wQ K A K A Q K A K Ax y x y

    ;

  • JN Reddy

    FINITE ELEMENT MODELS OF (FSDT) (continued)

    w(x; y; t) =mX

    j=1

    wj(t)Ã(1)j (x; y)

    Áx(x; y; t) =nX

    j=1

    Sxj(t)Ã(2)j (x; y); Áy(x; y; t) =

    nX

    j=1

    Syj(t)Ã(2)j (x; y)

    Finite element approximation

    Nonlinear Plate Bending: 8

    (0) (0)1 1

    ( ) ( , ), ( ) ( , )m m

    j j j jj j

    u u t x y v v t x y

    Although, in general, different degree of interpolation can be used for various field variables, the same degree of interpolation is used for all variables:

    (0) (1) (2)j j j

  • JN Reddy

    FINITE ELEMENT MODELS OF FSDT (continued)

    M11ij = I0Mij ; M22ij = M

    33ij = I2Mij; Mij =

    Z

    eÃiÃj dx dy

    K11ij =

    Z

    e

    µA55

    @Ãi@x

    @Ãj@x

    + A44@Ãi@y

    @Ãj@y

    ¶dx dy

    K12ij =

    Z

    eA55

    @Ãi@x

    Ãj dx dy

    K13ij =

    Z

    eA44

    @Ãi@y

    Ãj dx dy

    Semidiscrete finite element model

    Use reduced integration

    to avoid shear locking

    Nonlinear Plate Bending: 9

    M 0 0 M 0 K K K K Kuv0 M 0 0 M K K K K Kw0 0 M 0 0 K K K K KSM 0 0 M 0 K K K K KS0 M 0 0 M K K K K K

    11 14 11 12 13 14 15

    22 25 21 22 23 24 25

    33 31 32 33 34 35

    14 44 41 42 43 44 45

    25 55 51 52 53 54 55

    x

    y

    FuFv

    w FS FS F

    1

    2

    3

    4

    5

    x

    y

  • JN Reddy

    FINITE ELEMENT MODELS OF FSDT (continued)

    K22ij =

    Z

    e

    µD11

    @Ãi@x

    @Ãj@x

    + D66@Ãi@y

    @Ãj@y

    + A55ÃiÃj

    ¶dxdy

    K23ij =

    Z

    e

    µD12

    @Ãi@x

    @Ãj@y

    + D66@Ãi@y

    @Ãj@x

    ¶dx dy

    K33ij =

    Z

    e

    µD66

    @Ãi@x

    @Ãj@x

    + D22@Ãi@y

    @Ãj@y

    + A44ÃiÃj

    ¶dx dy

    F 1i =

    Z

    eqÃi dxdy +

    I

    ¡eQnÃi ds

    F 2i =

    I

    ¡eM̂nnÃi ds; F

    3i =

    I

    ¡eM̂nsÃi ds

    Finite Elements

    a

    b

    z

    x

    y4

    32

    1

    a

    b

    z

    x

    y4

    32

    1

    5

    6

    7

    8

    9

    ( , , , , )x y

    u v w ( , , , , )x y

    u v w

  • JN Reddy

    Shear and Membrane Locking (Revisit)

    Nonlinear Plate Bending: 11

    Shear Locking

    Membrane Locking

    Use reduced integration to evaluate all shear stiffnesses(i.e., all Kij that contain transverse shear terms)

    Use reduced integration to evaluate all membrane stiffnesses(i.e., all Kij that contain von Kármán nonlinear terms)

  • JN Reddy

    Simply Supported Plate (SS2)

    NUMERICAL EXAMPLES

    x

    y

    b2

    a 2

    = w= u φx= 0 = w= v φy= 0

    φx = 0= u φy= 0= v

    ¹w = w0(0; 0)E2h

    3

    a4q0; ¹¾xx = ¾xx(0; 0;

    h

    2)

    h2

    b2q0

    ¹¾yy = ¾yy(0; 0;h

    4)

    h2

    b2q0; ¹¾xy = ¾xy(

    a

    2;b

    2;¡h

    2)

    h2

    b2q0

    ¹¾xz = ¾xz(a

    2; 0;¡h

    2)

    h

    bq0; ¹¾yz = ¾yz(0;

    b

    2;h

    2)

    h

    bq0

    ¾xx(A;A;h

    2); ¾xy(B;B;¡

    h

    2); ¾xz(B;A;¡

    h

    2)

    Table: The Gauss point locations at which the stresses are computedin the ¯nite element analysis of simply supported plates.

    Point 2L 4L 8L 1Q9 2Q9 4Q9

    A 0:125a 0:0625a 0:0312a 0:1056a 0:0528a 0:0264aB 0:375a 0:4375a 0:4687a 0:3943a 0:4472a 0:4736a

    Plate bending: 12

    xy z

    xy

  • JN Reddy

    Effect of Quadrature Rules and Shear Deformation on Deflection and Stresses

    a=h Mesh ¹w £ 102 ¹¾xx ¹¾xy ¹¾xz

    Finite Element Solutionsy10 2L{F 2.4742 0.1185 0.0727 0.2627

    2L{S 4.7120 0.2350 0.1446 0.27502L{R 4.8887 0.2441 0.1504 0.27501Q{F 4.5304 0.2294 0.1610 0.28131Q{S 4.9426 0.2630 0.1639 0.28471Q{R 4.9711 0.2645 0.1652 0.28864L{F 3.8835 0.2160 0.1483 0.33664L{S 4.7728 0.2661 0.1850 0.33564L{R 4.8137 0.2684 0.1869 0.33562Q{F 4.7707 0.2699 0.1930 0.34372Q{S 4.7989 0.2715 0.1939 0.34242Q{R 4.8005 0.2716 0.1943 0.34258L{F 4.5268 0.2590 0.1891 0.37008L{S 4.7966 0.2743 0.2743 0.20148L{R 4.7866 0.2737 0.2737 0.20084Q{F 4.7897 0.2749 0.2044 0.37374Q{S 4.7916 0.2750 0.2043 0.37354Q{R 4.7917 0.2750 0.2044 0.3735

    Analytical Solutions

    [15] 4.7914 0.2762 0.2085 0.3927

    Square plate under UDLF – full integration

    S – Selective integrationR- Reduced integration

    L – Linear elementQ- Qudratic element

    Plate bending: 13

  • JN Reddy

    a=h Mesh ¹w £ 102 ¹¾xx ¹¾xy ¹¾xz

    Finite Element Solutions

    100 2L{F 0.0469 0.0024 0.0014 0.26352L{S 4.4645 0.2350 0.1446 0.27502L{R 4.6412 0.2441 0.1504 0.27501Q{F 4.0028 0.2040 0.1591 0.27331Q{S 4.7196 0.2629 0.1643 0.28371Q{R 4.7483 0.2645 0.1652 0.28864L{F 0.1819 0.0108 0.0071 0.34624L{S 4.5481 0.2661 0.1850 0.33564L{R 4.5890 0.2684 0.1869 0.3356

    2Q{F 4.4822 0.2644 0.1893 0.34852Q{S 4.5799 0.2715 0.1941 0.34142Q{R 4.5815 0.2716 0.1943 0.34258L{F 0.6497 0.0401 0.0275 0.38478L{S 4.5664 0.2737 0.2008 0.36918L{R 4.5764 0.2743 0.2014 0.36914Q{F 4.5530 0.2741 0.2020 0.37494Q{S 4.5728 0.2750 0.2044 0.37344Q{R 4.5729 0.2750 0.2044 0.3735

    Analytical Solutions

    [15] 4.5698 0.2762 0.2085 0.3927

    Effect of Quadrature Rules and Shear Deformation on Deflection and Stresses

    Plate bending: 14

  • JN Reddy

    Bending of Simply Supported Plates

    Nonlinear Plate Bending: 15

    x

    y

    a 2

    b2

    b2

    a 2

    0xu w = = =0yv w = = =

    0yv w = = = 0xu w = = =

    SS-1

    x

    y

    a 2

    b2

    b2

    a 2

    0u v w= = =

    0u v w= = =

    SS-3

    0u v w= = =

    0u v w= = =

    0 50 100 150 200 250Load parameter,

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    Defle

    ction

    , SS-3 (CPT)SS-1 (CPT)

    SS-1 (FSDT)

    SS-3 (FSDT)

    0

    4

    4,q aww P

    h Eh

    wwh

    0

    4

    4

    q aPEh

    Isotropic plate under uniformly distributed transverse load

    610 1 7 8 10 0 3in, in, . psi, .a b h E

    Displacements

  • JN Reddy

    Bending of Simply Supported Plates

    Nonlinear Plate Bending: 16

    Isotropic plate under uniformly distributed transverse load

    P0 50 100 150 200 250

    Load parameter,

    0

    4

    8

    12

    16

    20

    24

    Stre

    sses

    ,SS-3 (CPT)

    SS-1 (CPT)

    SS-1 (FSDT)

    SS-3 (FSDT)

    Membrane stresses

    xx610 1

    7 8 10 0 3in, in,

    . psi, .a b hE

    2

    2,xx xx

    aEh

    0

    4

    4

    q aPEh

    Stresses

  • JN Reddy

    0 20 40 60 80 100 120Load parameter,

    0.0

    1.0

    2.0

    3.0

    4.0

    Defle

    ctio

    n,

    Mesh of 5-Q9 elements

    w0/h

    (q0a4/Eh4)

    E = 106 psi, ν = 0.3a = 100 in., h = 10 in.

    ••

    • •

    ••

    • •

    ••

    •••

    • •

    ••

    ••

    x

    y

    a = 100 in.

    E = 106 psi, ν = 0.3

    h = 10 in.

    0at0,0

    ===

    yyv φ

    0at0,0

    ===

    xxu φ

    =====

    edge clamped on the00

    yxwuv

    φφ

    1 234

    5 10 201525

    26

    272829

    9

    241914

    Clamped Circular Plate under UDL

    Nonlinear Plate Bending: 17

  • JN Reddy

    0.0 0.4 0.8 1.2 1.6 2.0Pressure, q0 (psi)

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    ,

    0 (

    )

    Linear

    Nonlinear

    Experimental [8]CLPTFSDT

    Simply Supported (SS2) Orthotropic* Plate

    Geometry and Material Propertiesa = b = 12 in, h = 0.138 inE1 = 3×10

    6 psi, E2 = 1.28×106 psi

    G12 = G23 = G13 = 0.37×106 psi

    ν12 = ν23 = ν13 = 0.32

    [8] Zaghloul, S. A. and Kennedy, J. B., ``Nonlinear Behavior of Symmetrically Laminated Plates,” Journal of Applied Mechanics, 42, 234-236, 1975.

    Nonlinear Plate Bending: 18

  • JN Reddy

    DEFLECTION VS. LOAD PARAMETER FOR (0/90/90/0) LAMINATE UDL

    Nonlinear Plate Bending: 19

    0.0 0.4 0.8 1.2 1.6 2.0 2.4Intensity of the distributed load,

    0.00

    0.05

    0.10

    0.15

    0.20

    Defle

    ction

    ,

    Linear (FSDT; CC)

    Nonlinear (FSDT; CC)

    Square laminate (0/90/90/0) under UDL h = 0.096 in, a = b = 12 in.

    Linear (FSDT; SS3)

    Nonlinear (FSDT; SS3)

    E1 = 1.8282 × 106 psi, E2 = 1.8315 × 106 psi,

    G12 = G13 = G23 = 0.3125 × 106 psi,

    ν12 = 0.2395

    w

    q0

  • JN Reddy

    DEFLECTION VS. LOAD PARAMETER FOR TWO-AND SIX-LAYER CROSS-PLY LAMINATES UDL

    Nonlinear Plate Bending: 20

    E1/E2 = 40, G12 = G13 = 0.6E2 , G23 = 0.5E2

    0 400 800 1200 1600Intensity of the distributed load, q0

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0.60

    Defle

    ction

    , w0

    Linear (2 layers)

    Nonlinear, CC[FSDT, (0/90)]

    Clamped square laminates under UDL h = 0.3 in, a = b = 12 in (a/h = 40)

    Nonlinear, CC [FSDT, (0/90/0/90/0/90)]

    Linear (6 layers)

  • JN Reddy

    SUMMARY

    In this lecture we have covered the following topics:

    • Governing equations of FSDT• Finite element models of FSDT• Shear and membrane locking• Numerical examples

    Nonlinear Plate Bending: 21

    Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21