final thesis draft - open...

47
Optimizing Anticoagulation Therapy in ECMO Patients using Antithrombin III Item Type text; Electronic Thesis Authors Oldeen, Molly Elisabeth Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 22/07/2018 23:30:30 Link to Item http://hdl.handle.net/10150/228500

Upload: hoanghanh

Post on 23-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Optimizing Anticoagulation Therapy inECMO Patients using Antithrombin III

Item Type text; Electronic Thesis

Authors Oldeen, Molly Elisabeth

Publisher The University of Arizona.

Rights Copyright © is held by the author. Digital access to this materialis made possible by the University Libraries, University of Arizona.Further transmission, reproduction or presentation (such aspublic display or performance) of protected items is prohibitedexcept with permission of the author.

Download date 22/07/2018 23:30:30

Link to Item http://hdl.handle.net/10150/228500

OPTIMIZING  ANTICOAGULATION  THERAPY  FOR  ECMO  PATIENTS  USING  

ANTITHROMBIN  III  

 By  

Molly  Elisabeth  Oldeen      

_______________________________________________                                            

Thesis  Submitted  to  the  Faculty  of  the      

MEDICAL  PHARMACOLOGY  DEPARTMENT    

In  Partial  Fulfillment  of  the  Requirements    

For  the  Degree  of    

MASTER  OF  SCIENCE    

In  the  Graduate  College    

THE  UNIVERSITY  OF  ARIZONA  2012  

STATEMENT  BY  AUTHOR      

This  thesis  has  been  submitted  in  partial  fulfillment  of  requirements  for  an  advanced  degree  at  The  University  of  Arizona  and  is  deposited  in  the  University  Library  to  be  made  available  to  borrowers  under  rules  of  the  Library.  Brief  quotations  from  this  thesis  are  allowable  without  special  permission,  provided  that  accurate  acknowledgment  of  source  is  made.  Requests  for  permission  for  extended  quotation  from  or  reproduction  of  this  manuscript  in  whole  or  in  part  may  be  granted  by  the  head  of  the  major  department  or  the  Dean  of  the  Graduate  College  when  in  his  or  her  judgment  the  proposed  use  of  the  material  is  in  the  interests  of  scholarship.  In  all  other  instances,  however,  permission  must  be  obtained  from  the  author.    

   

SIGNED:  _________________________________________  Molly  Elisabeth  Oldeen  

       

APPROVAL  BY  THESIS  DIRECTOR  This  thesis  has  been  approved  on  the  date  shown  below:  

           

                                                                                                                                                                                                                           05/07/12                                                                                                      Douglas  F.  Larson                                                                                                                                  Date                                            Professor  of  Pharmacology  

       

           

  3  

TABLE  OF  CONTENTS  

LIST  OF  TABLES ........................................................................................................................5  

LIST  OF  FIGURES.......................................................................................................................6  

ABSTRACT ..................................................................................................................................7  

BACKGROUND ...........................................................................................................................9  

ECMO ...............................................................................................................................................................9  

Anticoagulation ........................................................................................................................................................11  

Complications  Related  to  ECMO........................................................................................................................14  

Coagulation  Management....................................................................................................................................17  

Previous  Research ...............................................................................................................................................19  

OBJECTIVES............................................................................................................................. 21  

PATIENTS  AND  METHODS.................................................................................................. 22  

Indications  for  ECMO............................................................................................................................. 22  

Anticoagulation  and  Transfusion  Protocols................................................................................ 23  

Data  Collection  and  Analysis.............................................................................................................. 23  

RESULTS ................................................................................................................................... 25  

DISCUSSION............................................................................................................................. 29  

CONCLUSIONS......................................................................................................................... 34  

Summary..................................................................................................................................................... 34  

  4  

TABLE  OF  CONTENTS  -­  CONTINUED  

Future  Directions .................................................................................................................................... 35  

APPENDIX ................................................................................................................................ 36  

REFERENCES ........................................................................................................................... 44  

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  5  

LIST  OF  FIGURES  

 Figure  1........................................................................................................................................................ 36  

Figure  2 ........................................................................................................................................................................37  

Figure  3 ........................................................................................................................................................................38  

Figure  4 ........................................................................................................................................................................39  

Figure  5 ........................................................................................................................................................................40  

Figure  6 ........................................................................................................................................................................41  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  6  

LIST  OF  TABLES  

 Table  1 ......................................................................................................................................................... 42  

Table  2 ..........................................................................................................................................................................43  

   

                                                         

  7  

ABSTRACT  

 One  of  the  most  fundamental  aspects  of  extracorporeal  membrane  oxygenation  

(ECMO)  is  maintaining  proper  anticoagulation  management  in  order  to  prevent  

hemorrhagic  or  thrombotic  events.    Anticoagulation  on  ECMO  is  most  commonly  

achieved  with  the  use  of  unfractionated  heparin  to  maintain  a  minimum  

anticoagulation  level  as  monitored  by  activated  clotting  time  (ACT).    Heparin’s  main  

effect  is  exerted  by  binding  to  and  potentiating  antithrombin  III.    Many  factors  may  

contribute  to  a  sub-­‐therapeutic  ATIII  level  that  may  decrease  the  effectiveness  of  

heparin.    A  retrospective  record  review  was  performed  on  all  adult  ECMO  patients  

at  the  University  of  Arizona  Medical  Center  between  2008  and  2011,  in  order  to  

determine  optimal  ATIII  levels  for  maintaining  proper  anticoagulation.    In  addition,  

we  investigated  correlations  between  ATIII  levels  and  hemorrhagic  and/or  

thrombotic  events.    Variables  measured  include,  ACTs,  heparin  dose,  ATIII  dose,  

ATIII  levels,  blood  product  use,  and  adverse  events.    Thirty-­‐five  patients  received  

ATIII  over  the  course  of  the  ECMO  run.    Six  patients  did  not  receive  ATIII  and  they  

were  found  to  have  used  significantly  more  blood  products  than  those  who  did  

receive  ATIII.    Also,  heparin  dose  dropped  significantly  24h  after  the  first  dose  of  

ATIII.    There  is  a  significant  positive  correlation  between  the  amount  of  ATIII  given  

per  day  and  the  amount  of  packed  red  blood  cells  transfused  per  day.    The  results  

  8  

suggest  an  ideal  therapeutic  range  of  ATIII  dosing,  where  lack  of  or  too  much  ATIII  

administration  can  lead  to  excessive  bleeding.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  9  

BACKGROUND  

ECMO    

Extracorporeal  membrane  oxygenation  (ECMO)  is  a  form  of  mechanical  

circulatory  support  that  is  used  in  the  management  of  life  threatening  pulmonary  or  

cardiac  failure.    It  is  often  utilized  in  emergent  situations  and  only  for  temporary  

support.    A  requirement  for  extracorporeal  membrane  oxygenation  is  systemic  

anticoagulation.    This  happens  to  be  a  limitation  as  well  due  to  bleeding  

complications.    ECMO  controls  the  gas  exchange  and  perfusion,  while  stabilizing  the  

patient  physiologically  and  reducing  the  risk  of  iatrogenic  injury.    Gas  exchange  can  

be  dependent  on  the  thickness  of  the  blood  film,  membrane  material,  fraction  of  

inspired  oxygen  (FIO2),  and  hemoglobin  concentration1.    Simultaneously,  it  allows  

time  for  diagnosis,  treatment,  and  most  importantly,  recovery  from  injury  or  

disease2.    Circulation  through  the  device  occurs  by  draining  right  atrial  blood  from  

the  venous  circulation  through  a  cannula  to  an  artificial  lung  device  and  returning  it  

to  the  patient  through  another  cannula  to  the  aorta  (veno-­‐arterial)  or  the  right  

atrium  (veno-­‐venous).    Veno-­‐arterial  cannulation  may  provide  support  for  both  the  

heart  and  lungs.    Veno-­‐venous  oxygenation  is  used  in  series  to  the  native  lungs  to  

assist  in  oxygenation  for  those  in  isolated  respiratory  failure.    

The  specific  vessel  cannulation  for  both  modes  of  ECMO  can  vary  depending  

on  the  needs  of  the  patient.    Veno-­‐venous  cannulation  can  be  achieved  multiple  

  10  

ways  through  cannulation  of  the  femoral  vein  and/or  internal  jugular  vein.    Veno-­‐

arterial  cannulation  is  most  commonly  through  cannulation  of  the  femoral  vein  and  

femoral  artery.    For  infants,  with  femoral  vessels  that  are  too  small  or  difficult  to  

reach,  cannulation  is  most  often  via  the  internal  jugular  and  carotid.      

The  overall  purpose  of  veno-­‐venous  cannulation  is  to  return  oxygenated  

blood  to  the  venous  circulation,  thereby  increasing  oxygen  content  and  lowering  

CO2  content  in  the  right  atrial  blood.    This  blood  is  pumped  through  the  functionally  

preserved  cardiac  system  where  the  heart  is  solely  responsible  for  systemic  

perfusion  and  blood  flow.    Patients  remain  both  sedated  and  immobile  while  on  this  

device.    In  addition,  the  lungs  are  still  being  ventilated  on  minimal  settings  despite  

their  inability  to  oxygenate  adequately  in  order  to  prevent  additional  damage.  

Veno-­‐arterial  cannulation  may  provide  full  or  partial  cardiac  support  

depending  on  the  needs  of  the  patient  and  the  underlying  function  of  the  heart.    

Oxygen  and  carbon  dioxide  levels  in  the  blood  are  a  reflection  of  blood  flow  that  is  a  

combination  of  pumping  from  the  heart  as  well  as  flow  from  the  circuit.    If  the  lungs  

are  functioning  poorly,  then  blood  leaving  the  heart  from  the  left  ventricle  will  be  

similar  to  that  entering  the  right  atrium.    The  best  location  to  determine  optimal  

ECMO  flow  and  measure  cerebral  perfusion  is  to  take  a  blood  gas  from  the  right  

upper  extremity.    This  is  because  the  innominate  is  the  last  aortic  arch  vessel  to  

  11  

receive  flow  from  the  ECMO  circuit  when  returned  retrograde  through  the  femoral  

artery.      

Clinical  syndromes  indicated  for  ECMO  include  both  cardiac  and  respiratory.    

ECMO  is  reserved  for  the  most  medically  compromised  patients  that  have  exhausted  

all  optimal  care  resources  and  present  as  a  high  mortality  risk.    Acute  cardiac  failure  

occurs  when  the  heart  cannot  produce  adequate  cardiac  output  to  supply  the  body  

with  oxygenated  blood.    Acute  respiratory  failure  occurs  when  the  lungs  can  no  

longer  efficiently  oxygenate  the  blood  and  remove  carbon  dioxide.    

 

Anticoagulation       A  primary  requirement  for  ECMO  is  systemic  anticoagulation.    The  most  

common  drug  used  to  achieve  this  effect  is  unfractionated  heparin.    Heparin  is  one  

of  the  oldest  anticoagulation  drugs  that  is  still  in  clinical  use.    It  did  not  enter  clinical  

trials,  however,  until  1935,  for  its  use  as  a  blood  anticoagulant3.      Today,  it  is  

commonly  used  for  conditions  such  as  acute  coronary  syndrome,  atrial  fibrillation,  

deep  vein  thrombosis,  pulmonary  embolism,  cardiopulmonary  bypass  for  heart  

surgery,  as  well  as  ECMO4.    It  continues  to  dominate  anticoagulation  therapy  for  

ECMO  because  it  is  rapid  acting,  easily  controllable,  inexpensive  and  widely  

available.    In  addition,  it  is  well  tolerated  by  both  adult  and  pediatric  patients5.  

  12  

  Heparin  is  naturally  produced  by  basophils  and  mast  cells.    Commercially,  it  

is  most  often  derived  from  porcine  or  bovine  sources.    Commercial  preparations  

typically  include  a  wide  range  of  molecular  weights  from  3,000  to  40,000  Daltons,  

with  a  mean  molecular  weight  of  15,000  Daltons6.    The  structure  of  heparin  is  a  

heavily  sulfated  glycoaminoglycan  polymer,  making  it  strongly  acidic  and  negatively  

charged.    Heparin  dosing  is  primarily  dependent  on  its  indication  for  use.    

Cardiopulmonary  bypass  requires  a  dose  of  300-­‐400  U/kg.    ECMO  requires  between  

20  and  70  u/kg/h.    A  unit  of  heparin  is  measured  as  a  unit  of  activity.    More  

specifically,  activity  is  defined  as  the  “amount  of  heparin  that  maintains  the  fluidity  

of  1mL  of  citrated  sheep  plasma  for  1  hour  after  recalcification”6.    This  measurement  

technique  is  used  to  maintain  consistency  in  dosing  as  different  manufacturers  vary  

the  number  of  USP  units  per  milligram  of  drug.    Heparin  exerts  its  main  effect  on  the  

coagulation  cascade.    The  plasma  coagulation  cascade  is  the  process  of  fibrin  clot  

formation  in  response  to  both  intrinsic  and  extrinsic  activation.    Intrinsic  activation  

results  from  contact  of  blood  with  foreign  surfaces,  whereas  extrinsic  activation  

results  from  injury  of  the  vasculature.    Both  pathways  converge  to  form  the  common  

pathway,  beginning  with  the  activated  factor  X,  which  converts  prothrombin  to  

thrombin.    Thrombin  converts  fibrinogen  into  fibrin,  resulting  in  the  formation  of  a  

strong  clot  after  fibrin  cross-­‐linking.    In  addition  to  activating  fibrinogen,  thrombin  

  13  

also  stimulates  platelet  activation,  which  results  in  further  platelet  aggregation  and  

adherence  to  endogenous  surfaces  forming  a  strong  platelet  plug.      

Alternatively,  in  order  to  prevent  excessive  clot  formation  and  dissolve  clots,  

the  body  has  various  negative  feedback  systems.    Factors  involved  include,  proteins  

C  and  S,  antithrombin  III,  tissue  factor  inhibitor  and  tissue  plasminogen  activator.    It  

is  here  that  heparin  exerts  its  main  effects.      

Heparin  specifically  provides  its  pharmacological  effects  by  binding  to  and  

amplifying  the  enzymatic  fuction  of  antithrombin  III  (ATIII)  by  more  than  1,000  

fold6.    Antithrombin  III  primarily  inhibits  thrombin,  as  well  activated  factor  X.    It  

also  inhibits  factors  IX,  XII,  and  XI,  to  a  lesser  extent.    The  site  on  heparin  that  binds  

to  ATIII  is  found  on  about  30%  of  heparin  molecules.    In  the  common  pathway,  

factor  Xa  activated  the  conversion  of  prothrombin  to  thrombin  which  heparin  

blocks  by  binding  to  antithrombin  III.    Heparin  does  have  minimal  non-­‐ATIII  

dependent  anticoagulation  effects.    It  can  bind  to  and  activate  cofactor  II,  a  natural  

thrombin  inhibitor.    Biologic  activity  varies  between  30  minutes  and  6  hours  

depending  on  systemic  heparin  concentrations5.    Heparin  is  metabolized  by  the  

reticuloendothelial  system  in  addition  to  the  liver.    Up  to  50%  can  be  excreted  

unchanged  by  the  kidneys.  Due  to  heparin’s  half-­‐life,  patients  must  be  kept  on  a  

constant  heparin  infusion  to  maintain  anticoagulation,  with  bolus  infusions  given  as  

needed.      

  14  

  Some  patients  may  exhibit  heparin  resistance,  which  tends  to  be  those  who  

have  had  prior  heparin  therapy  or  an  ATIII  deficiency.    Small  amounts  of  heparin  

may  bind  to  plasma  proteins  such  as  vitronectin  and  fibronectin  thereby  decreasing  

its  effectiveness  and  availability  for  ATIII7.    ATIII  levels  may  also  be  decreased  in  

those  that  have  been  pretreated  with  heparin6.    If  this  is  the  case,  it  has  been  shown  

that  “purified  ATIII  even  in  small  doses,  significantly  prolongs  the  ACT  response  to  

heparin”8.    Heparin  resistance  is  also  often  related  to  certain  clinical  conditions  such  

as  sepsis,  liver  disease,  or  any  condition  that  exerts  stress  on  the  body  that  may  

deplete  ATIII  levels.    Given  that  many  of  the  critically  compromised  patients  on  

ECMO  are  subject  to  prior  or  chronic  heparin  therapy  and  have  conditions  that  

induce  stress  on  the  body,  this  is  clinically  significant.    If  levels  are  low  to  begin  with,  

prophylactic  treatment  may  be  indicated.        

There  is  universal  acceptance  that  ATIII  levels  fall  upon  initiation  of  ECMO,  

up  to  50%  9,  and  also,  that  anticoagulation  should  be  monitored  using  a  combination  

of  measurement  techniques  in  order  to  understand  the  complete  coagulation  profile  

for  each  individual  patient.  

 

Complications  Related  to  ECMO       Unfortunately,  there  are  various  complications  related  to  ECMO.    Most  

complications  are  due  to  the  need  for  systemic  anticoagulation.    There  is  a  fine  

  15  

balance  to  be  maintained  between  excessive  anticoagulation  resulting  in  bleeding,  

and  under  dosing  resulting  in  excessive  clot  formation  seen  in  the  circuit  tubing  or  

oxygenator.      

  Bleeding  or  hemolysis  can  occur  resulting  in  the  need  for  replacement  and  

transfusion  of  red  blood  cells.    Bleeding  can  occur  at  the  surgical  sites  from  recent  

surgery  or  at  the  cannula  insertion  sites.    Unfortunately,  this  is  exacerbated  by  the  

use  of  heparin  as  a  systemic  anticoagulant.    For  that  reason,  if  a  patient  is  put  on  

ECMO  post-­‐operatively,  heparin  is  often  withheld  until  bleeding  is  controlled.    

Hemolysis  is  another  negative  side  effect  of  ECMO  blood  replacement  that  

may  require  red  blood  cell  replacement.    Fortunately,  with  further  advances  in  

technology  such  as  low  resistance  gas  exchange  devices  and  second  generation  

centrifugal  pumps,  hemolysis  is  not  as  common.    Hemolysis  occurs  mainly  from  

anything  resulting  in  excessive  negative  pressures  and  turbulance10.    Cavitation  can  

occur  when  a  fluid  such  as  blood  is  exposed  to  an  extreme  negative  pressure  in  

excess  of  650  mmHg.    Centrifugal  pumps  operate  at  high  rpms  can  cause  in  excess  of  

700mmHg  negative  pressure.    This  can  occur  when  blood  in  the  pump  head  is  

ejected,  but  nothing  fills  the  void,  therefore  a  vacuum  is  created  resulting  in  

cavitation  and  further  hemolysis.    Causes  of  this  volume  issue  can  be  due  to  low  

blood  volume,  patient  position,  cannula  size,  cannula  position,  coughing  and  

others10.    This  can  be  a  common  problem,  especially  in  those  post-­‐operative  patients  

  16  

with  excessive  bleeding  as  measured  in  chest  tube  output.    Volume  replacement  and  

maintaining  safe  flow  parameters  are  the  easiest  solutions  to  avoiding  hemolysis.  

Other  causes  of  hemolysis  are  related  to  shear  stress,  physical  properties  of  

the  ECMO  circuit,  as  well  as  sub-­‐lethal  damage  to  erythrocytes11.    As  proof  of  this  

hemolysis,  the  level  of  plasma  free  hemoglobin  can  increase  by  as  much  as  10  to  25  

fold  after  just  24  hours  of  ECMO.    Continuous  renal  replacement  therapy,  a  common  

addition  to  the  circuit  for  those  patients  in  renal  failure,  is  also  known  to  cause  

hemolysis,  therefore  RBC  transfusion  due  to  excessive  blood  loss  has  a  direct  

relationship  with  RBC  hemolysis.  

Various  coagulopathy  problems  can  occur  with  the  use  of  ECMO  as  well.    Due  

to  the  continuous  contact  of  the  patient’s  blood  volume  with  the  non-­‐biologic  

surface  of  the  circuit,  there  is  activation  of  both  contact  and  fibrinolytic  systems.    

Also,  within  minutes  of  initiation  of  ECMO,  there  is  consumption  and  dilution  of  all  

factors.    Consumption  of  factors  can  result  in  with  fewer  factors  available  for  

coagulation  resulting  in  bleeding.    In  a  study  by  Arnold  et  al.,  it  was  found  that  there  

was  both  evidence  of  reduction  in  coagulation  factors  and  activation  of  the  

coagulation  cascade12.    For  this  reason,  factor  replacement  is  a  necessity.  

  Another  complication  related  to  ECMO  is  clot  formation  within  the  circuit.    

Clot  formation  is  the  most  common  mechanical  complication  resulting  in  potential  

thrombus1.    This  frequently  at  locations  where  there  is  high  turbulence  such  as  at  

  17  

tubing  connection  points  as  well  as  in  the  membrane  oxygenator.    Severe  

consequences  to  clot  formation  include  passing  of  clots  into  to  systemic  circulation  

or  oxygenator  failure.    

 

Coagulation  Management       The  key  to  effective  anticoagulation  in  these  patients  is  the  utilization  of  a  

variety  of  monitoring  techniques.    It  is  important  to  create  a  coagulation  profile  for  

each  patient  on  a  daily  basis.    This  includes  a  combination  of  laboratory  tests  such  as  

measurement  of  platelet  count,  antithrombin,  aPTT,  TEG,  as  well  as  hemoglobin  

requirements.      

The  easiest  and  most  popular  technique  to  use  is  the  bedside  measurement,  

termed  activated  clotting  time  (ACT).    This  measures  the  integrity  of  the  intrinsic  

coagulation  and  common  pathways  using  a  whole  blood  sample.    The  acceptable  

range  for  ACT  values  is  between  180-­‐220  seconds  for  patients  supported  on  ECMO.    

Despite  its  continued  widespread  use  due  to  ease  and  instant  results,  ACT  has  a  

limited  range  of  accuracy.    Results  may  be  affected  by  many  factors  related  to  

patient  characteristics,  such  as  coagulopathy,  immature  coagulation  system  (such  as  

in  infants),  platelet  dysfunction,  hypothermia,  ATIII  levels,  age,  and  hemodilution  

from  the  circuit  prime  volume5.    For  this  reason,  it  is  important  to  consult  other  

monitoring  techniques  as  well.      

  18  

  Another  common  test  for  anticoagulation  management  is  the  

thromboelastogram  (TEG).    The  TEG  is  useful  in  that  it  accurately  measures  the  

viscoelastic  properties  of  a  blood  sample  in  order  to  better  understand  a  patient’s  

whole  clotting  system  as  opposed  to  individual  components.    It  describes  clot  

formation  and  clot  dissolution  as  part  of  fibrin  breakdown,  which  is  equally  

important.    The  ability  to  also  characterize  hypercoagulability  is  necessary  in  order  

to  know  if  patients  have  the  sufficient  clotting  factors  available  or  if  they  need  factor  

replacement.      

  Specifically  related  to  the  clotting  cascade,  we  are  also  interested  in  

measuring  activated  partial  thromboplastin  times  (aPTT).    This  is  the  universal  

standard  for  monitoring  heparin  therapy,  in  addition  to  congenital  and  acquired  

factor  deficiencies13.    Measuring  aPTT  alone,  however,  is  not  the  best  indicator  of  

heparin  therapy,  as  aPTT  can  be  prolonged  for  many  reasons  such  as  factor  

deficiencies,  vitamin  K  deficiencies,  as  well  as  disseminated  intravascular  

coagulation.    It  should  be  used  in  combination  with  the  other  techniques  mentioned  

previously.      

  Despite  improvements  in  the  management  of  ECMO  patients,  complications  

remain  high  related  to  bleeding  and  thrombosis.    These  patients  present  a  unique  

challenge  with  complicated  disease  states  often  involving  pre-­‐existing  clotting  

disorders,  that  are  exacerbated  by  heparin.    Therefore,  the  best  approach  to  reduce  

  19  

incidence  of  adverse  events  is  multidisciplinary  among  surgeons,  physicians,  

perfusionists,  nurses  and  ECMO  specialists.    To  benefit  the  advancement  of  patient  

care,  we  present  a  unique  study  assessing  anticoagulation  parameters  and  outcomes  

related  to  the  use  of  antithrombin  III.  

 

Previous  Research       Currently,  there  is  very  little  research  supporting  the  topic  of  anticoagulation  

on  ECMO  specially  related  to  ATIII.    Previous  studies  have  explored  multiple  

coagulation  parameters  while  patients  are  on  ECMO.    One  particular  study  

specifically  looked  at  ATIII  levels  and  tested  two  dosing  mechanisms,  comparing  

bolus  versus  continuous  infusion.    They  found  continuous  infusion  to  show  better  

overall  outcomes  by  reducing  activation  of  heparin  more  than  bolus  infusion14.    

They  maintained  ATIII  levels  at  >100%  and  showed  reduced  surgical  revision  for  

bleeding  within  the  first  48  hours.    Other  studies  test  for  all  coagulation  factors  at  

set  time  points  and  compare  how  they  relate  to  patient  outcomes14,15.    The  choice  of  

using  multiple  coagulation  tests  in  order  to  obtain  a  more  accurate  picture  is  that  at  

times  the  ACT  level  alone  can  be  limited  due  to  issues  such  as  consumptive  

coagulopathies,  clotting  factor  deficiencies,  platelet  dysfunction,  as  well  as  

fibrinolysis15.    Another  study  measured  antithrombin  replacement  during  ECMO  

  20  

and  only  hemorrhagic  complications16,  finding  that  upon  administration,  there  were  

no  significant  differences  in  bleeding  and  ATIII  levels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  21  

OBJECTIVES  

 This  study  will  be  the  first  to  provide  a  detailed  analysis  of  ATIII  and  how  it  

relates  to  patient  outcomes.    It  will  enable  us  to  more  effectively  manage  ECMO  

patients  and  aid  in  the  prevention  of  adverse  events.    Hemorrhage  will  be  measured  

as  packed  red  blood  cell  administration  and  thrombosis  will  be  measured  by  circuit  

change  outs  or  any  other  evidence  of  major  clotting.    At  this  time,  it  is  uncertain  at  

what  minimum  level  patients  should  receive  replacement  prior  to  ECMO  initiation.    

Secondarily,  in  the  long  term  this  project  has  the  possibiility  of  helping  reduce  the  

costs  of  ECMO  for  these  patients  by  preventing  circuit  change  outs  caused  by  

clotting,  educing  the  length  of  time  spent  on  the  assist  device,  as  well  as  reduce  

expensive  blood  product  transfusions.      

  It  is  important  to  monitor  ATIII  due  to  the  hemodilution  and  activation  of  

other  factors  upon  initiation  of  ECMO.    Currently,  we  measure  ATIII  levels  

throughout  the  ECMO  run.    The  subsequent  drop  following  initiation  can  be  a  

potential  hazard  towards  maintaining  optimal  anticoagulation.    Low  levels  of  ATIII  

may  produce  ACT  levels  below  standard  and  the  administration  of  more  heparin  

without  sufficient  ATIII  levels  can  lead  to  increased  bleeding17.    It  is  also  important  

to  take  into  consideration  preexisting  conditions  that  many  patients  recommended  

for  ECMO  have  that  may  cause  them  to  have  reduced  levels  of  ATIII  initially.  

 

  22  

PATIENTS  AND  METHODS  

    An  institutional  review  board-­‐approved  retrospective  chart  review  was  

performed  on  all  adult  ECMO  patients  supported  at  the  University  of  Arizona  

Medical  Center  between  the  years  of  2008  and  2011.      

 

Indications  for  ECMO       ECMO  is  indicated  for  patients  that  suffer  from  severe  acute  cardiac  and  

respiratory  failure.    Indications  for  those  that  suffer  from  respiratory  failure  in  this  

specific  population  of  patients  include  syndromes  that  result  in  the  inability  of  the  

lungs  to  provide  sufficient  oxygenation,  such  as  Acute  Respiratory  Distress  

Syndrome  (ARDS),  H1N1,  sepsis,  post  lung  transplantation,  and  others.    Indications  

for  cardiac  failure  include  syndromes  that  result  in  the  heart  being  unable  to  

provide  enough  cardiac  output  or  blood  supply  to  the  rest  of  the  body,  such  as,  

failure  to  wean  from  cardiopulmonary  bypass,  post  myocardial  infarction,  and  

cardiogenic  shock.    ECMO  is  used  for  those  patients  that  have  exhausted  all  other  

options  for  treatment  and  have  an  80%  mortality  risk2.      

  The  ECMO  circuit  used  at  the  University  of  Arizona  Medical  Center  for  all  

patients  includes  a  Maquet  Rotaflow  centrifugal  pump  with  the  Quadrox  heparin  

coated  hollow  fiber  membrane  oxygenator.    Cannulation  varied  among  patients  and  

  23  

included  (i)  intrathoracic,  (ii)  right  internal  jugular  vein  and  common  carotid  artery,  

or  (iii)  femoral  vein  and  artery.  

 

Anticoagulation  and  Transfusion  Protocols       Unfractionated  heparin  was  used  for  anticoagulation  purposes  for  all  

patients.    Dosing  was  titrated  at  drip  rates  sufficient  to  maintain  an  activated  

clotting  time  between  160-­‐200  seconds  depending  on  bleeding  issues.    Packed  red  

blood  cells  (pRBCs)  were  transfused  to  maintain  a  hematocrit  of  greater  than  30%.    

Platelets  and  fresh  frozen  plasma  were  transfused  as  needed  as  well  to  maintain  

normal  clotting  factor  levels.      

  ATIII  levels  were  measured  on  all  patients  to  maintain  percentage  activity  

between  80  and  120%.    ATIII  dosing  to  maintain  normal  levels  was  determined  at  

the  discretion  of  the  physician  in  combination  with  manufacturer  recommendations.  

 

Data  Collection  and  Analysis       Various  demographics  were  collected  from  patient  charts,  such  as  age,  

gender,  height,  weight,  and  BSA.    Indication  for  ECMO,  length  of  time  on  ECMO,  

survival,  and  cannulation  technique  were  also  collected.    Laboratory  values  included  

ACTs,  heparin  drip  rates,  ATIII  levels,  ATIII  dosing,  as  well  as  blood  product  use.    

  24  

Adverse  events  were  recorded  as  bleeding,  evidence  of  clots  in  the  circuit,  and  

cerebral  vascular  accidents  (CVAs).      

In  order  to  determine  the  effect  of  ATIII  on  product  use,  packed  red  blood  

cells  (pRBC),  platelets,  and  fresh  frozen  plasma  transfusions  were  measured.    The  

amount  of  pRBCs  transfused  was  used  as  a  measure  of  bleeding  requiring  red  blood  

cell  replacement.      

In  order  to  determine  the  effect  that  ATIII  had  on  heparin  drip  rates  we  

measured  heparin  infusion  at  the  time  of  the  first  dose  of  ATIII  and  subsequently  24  

hours  later.    The  first  dose  was  used  as  to  avoid  potential  confounding  effects  of  

multiple  doses  of  ATIII.  

 

 

 

 

 

 

 

 

 

  25  

RESULTS  

 Throughout  the  study  period,  41  patients  were  supported  on  ECMO.    One  patient  

was  excluded  due  to  an  ECMO  duration  of  only  three  hours.    The  patients  were  

divided  into  cardiac  and  respiratory  due  to  the  extreme  differences  in  underlying  

pathology.    The  cardiac  group  (n=21)  and  respiratory  group  (n=20),  had  a  

significant  difference  in  ages  with  a  mean  age  of  57.7  ±  2.7  (mean  ±  SD)  years,  and  a  

mean  age  of  39.4  ±  3.3  (Table  1)  respectively.    The  cardiac  group  had  a  mean  weight  

of  92  ±  4  kg,  and  the  respiratory  group  had  a  mean  weight  of  84  ±  6  kg.    The  cardiac  

group  had  a  statistically  significant  shorter  length  of  stay  at  a  mean  of  7.4  days,  

while  the  respiratory  group  had  a  mean  of  14.1  days.    Survival  differences  were  also  

statistically  significant  in  that  the  cardiac  group  had  a  mean  survival  rate  of  58%,  

and  the  respiratory  group  had  a  rate  of  35%.  

Indications  for  ECMO  in  these  patients  include  both  cardiac  and  respiratory  

failure  disorders.    Of  the  cardiac  failure  patients  (n=21),  indications  include  failure  

to  wean,  idiopathic  cardiomyopathy,  cardiogenic  shock,  post  cardiac  surgery  (valve  

replacements,  root  replacements,  CABG),  post  MI,  post  partum,  etc.    Of  the  

respiratory  failure  patients,  a  majority  of  indications  for  ECMO  include  ARDS,  

respiratory  failure,  drug  overdose,  H1N1,  sickle  cell,  pulmonary  edema,  pulmonary  

fibrosis,  post  lung  transplant,  etc.      

  26  

  When  comparing  the  effect  of  ATIII  on  heparin  drip  rate  at  first  dose  and  24h  

later,  the  results  show  that  there  is  a  statistically  significant  (p<  .05)  decrease  in  the  

heparin  drip  rate  24  hours  after  ATIII  was  administered  (Figure  1).      The  mean  dose  

at  heparin  at  ATIII  administration  was  803  units  per  hour,  which  decreased  to  an  

average  of  594  units  per  hour  after  24  hours.    Six  patients  were  not  on  heparin  

infusions  at  the  time  of  the  first  dose  of  ATIII  possibly  due  to  uncontrolled  bleeding  

post-­‐operatively.    One  of  the  patients  not  on  heparin  infusion  had  a  heparin  allergy,  

so  that  patient  was  excluded  as  well.      For  those  reasons,  analysis  was  limited  to  35  

cases.      

  In  comparing  those  patients  who  did  receive  ATIII  replacement  (n=35)  to  

those  that  did  not  receive  ATIII  replacement  (n=6),  there  was  a  significant  

difference  for  all  blood  products  used  between  those  that  did  not  receive  any  ATIII  

and  those  that  did  receive  ATIII  (Figure  2-­‐4).    Those  that  did  not  receive  ATIII  were  

given  a  mean  of  7.02  ±  1.25  units  of  pRBCs  per  day,  2.93  ±  0.37  units  of  platelets  per  

day,  and  4.61  ±1.36  units  of  FFP  per  day.    This  is  compared  with  those  who  were  not  

dosed  with  ATIII  that  were  given  2.81  ±  0.30  units  of  pRBC  per  day,  0.77  ±  0.17  units  

of  platelets  per  day,  and  1.11  ±  0.21  units  of  FFP  per  day.    The  non-­‐ATIII  group  used  

significantly  more  blood  products  on  average  per  day  compared  with  those  who  did  

receive  ATIII.      

  27  

  Given  that  the  results  suggest  ATIII  is  important,  we  wanted  to  determine  

how  well  our  institution  replacing  it,  in  order  to  sustain  therapeutic  levels  by  

comparing  and  measuring  each  group’s  ATIII  levels  post  cannulation  and  the  

average  ATIII  level  per  day  (Table  2).    Post  cannulation,  the  cardiac  group  had  an  

average  ATIII  level  of  47.7  ±  5.8%,  whereas  the  respiratory  group  had  an  average  

ATIII  level  of  67.3  ±  8.2%.    The  average  ATIII  level  per  day  was  86.5  ±1.4%  for  the  

cardiac  group  and  78.1  ±3.1%  for  the  respiratory  group.    Subsequently,  on  average,  

the  patients  are  being  treated  to  the  lower  threshold  of  therapeutic  level  once  

replacement  begins.    The  low  levels  post-­‐cannulation  are  in  support  of  the  findings  

that  factors  are  both  consumed  immediately  and  slightly  hemodiluted.  

  The  cardiac  failure  group  had  a  significant  correlation  between  the  number  

of  pRBCs  transfused  per  day  and  the  dose  of  ATIII  given  per  day  (p<.05)  (Figure  5).    

There  seemed  to  be  a  cluster  of  patients  with  less  ATIII  and  less  pRBCs  possibly  

suggesting  that  there  is  an  ideal  amount  of  ATIII  that  should  be  given  to  avoid  blood  

product  use.    On  the  same  graph,  there  were  a  few  patients  with  significantly  more  

ATIII  used  which  correlated  with  more  pRBCs,  possibly  suggesting  that  too  much  

ATIII,  an  anticoagulant,  may  result  in  more  bleeding  necessitating  increased  blood  

product  use.    The  respiratory  group,  on  the  other  hand,  did  not  show  any  significant  

correlation  (Figure  6)  between  the  amount  of  blood  products  used  per  day  and  ATIII  

units  given  per  day.  

  28  

  Adverse  events  were  measured  on  a  nominal  scale  as  yes  or  no,  indicating  

whether  they  were  observed  throughout  the  entire  ECMO  run.    There  was  

suggestive  evidence  of  clotting  in  33  (80%)  patients.    Clotting  was  visualized  on  the  

circuit  itself  as  dark  or  white  areas  most  often  at  the  oxygenator  or  tubing  

connection  sites.    Despite  the  presence  of  clotting  in  many  of  the  circuits,  only  13  

patients  required  one  or  more  circuit  changeouts  throughout  the  ECMO  run.  

 

 

 

 

 

 

 

 

 

 

 

 

  29  

DISCUSSION  

    The  results  suggest  that  antithrombin  is,  in  fact,  an  important  component  in  

the  treatment  of  ECMO  patients.    Both  high  doses  and  lack  of  antithrombin  III  

replacement  are  correlated  with  excessive  blood  product  use.      There  appears  to  be  

a  therapeutic  range  to  dose  ATIII  to  prevent  bleeding.    With  this  insightful  

information,  we  can  continue  advance  and  improve  anticoagulation  therapy  in  

ECMO  patients.      

    Other  studies  have  measured  the  effect  of  preoperatively  treating  patients  

with  ATIII  for  cardiopulmonary  bypass  during  cardiac  surgery.    One  study  by  

Avidan,  et  al.,  found  that  treatment  with  antithrombin  III  was  effective  in  restoring  

heparin  effectiveness,  in  addition  to  promoting  anticoagulation  at  therapeutic  levels  

for  cardiopulmonary  bypass18.    Few  studies,  however,  have  specifically  looked  at  

ATIII  replacement  in  adult  ECMO  patients  as  it  correlates  with  outcomes  and  blood  

product  usage.    It  is  recognized  that  ATIII  will  continue  to  be  consumed  in  the  

presence  of  heparin,  and  there  is  both  hemodilution  and  activation  of  clotting  

factors  from  the  ECMO  circuit.    Based  on  these  reasons  and  the  evidence  from  

previous  studies,  patients  may  truly  benefit  from  the  maintenance  of  normal  ATIII  

activity  levels.      

  As  antithrombin  is  an  anticoagulant,  it  is  possible  that  it  can  contribute  to  

increased  bleeding  in  these  patients.    Our  correlation  results  in  the  cardiac  group  (r2  

  30  

=  .49)  suggested  the  possibility  that  too  much  ATIII  may  lead  to  increased  RBC  

replacement.    Other  studies  have  not  found  that  bleeding  or  the  need  for  pRBC  

transfusion  increases  significantly  with  ATIII  administration16.    Further  research  

with  more  patients  must  be  conducted  to  increase  the  significance  of  this  data.      

Our  data  shows  that  patients  receiving  no  supplemental  ATIII  necessitated  

significantly  more  blood  products.    When  trying  to  understand  why  this  might  be  

true,  we  looked  at  the  individual  patients.    One  possible  explanation  could  be  that  

patient’s  heparin  dose  continued  to  increase  to  maintain  anticoagulation  standards  

based  on  ACTs  and  the  non-­‐ATIII  dependent  anticoagulant  effects  of  heparin  

resulted  in  bleeding.    ECMO  runs  ranged  between  2  and  9  days,  therefore  it  was  not  

a  short  length  of  stay  that  resulted  in  not  receiving  ATIII.    One  patient  had  a  heparin  

allergy,  which  would  explain  why  ATIII  was  not  given  to  him.    That  patient  was  

given  argatroban,  which  is  a  direct  thrombin  inhibitor,  therefore  its  use  is  not  

dependent  on  the  presence  of  ATIII  .    Almost  all  patients  were  placed  on  ECMO  after  

extensive  heart  or  lung  surgery,  such  as  post  lung  transplant  (two  patients),  mitral  

valve  replacement,  aortic  arch  and  root  replacement  (two  patients).    One  patient  

was  seen  post  trauma  with  pulmonary  edema.      

Further  analysis  collecting  d-­‐dimer  levels  did  show  elevated  levels  above  the  

threshold  criteria  of  <0.5  μg/ml  in  5  out  of  the  6  patients  throughout  the  run.    D-­‐

dimers  are  fibrin  degradation  products  that  arise  from  the  breakdown  of  clots  

  31  

degraded  by  fibrinolysis.    Positive  d-­‐dimer  results  maybe  be  suggestive  that  the  

coagulation  system  has  been  activated,  and  a  patient  is  in  disseminated  

intravascular  coagulation  (DIC).    This  is  also  known  as  consumptive  coagulopathy.    

It  occurs  when  the  body  is  rapidly  and  pathologically  activating  the  coagulation  

mechanisms  that  result  in  small  blood  clots  in  the  vessels  of  the  body.    The  clots  

consume  all  of  the  clotting  factors,  which  can  lead  to  abnormal  bleeding  from  

locations  such  as  surgical  wounds,  cannulation  sites,  etc.    Excessive  bleeding  may  

explain  why  the  patients  did  not  receive  antithrombin,  a  natural  anticoagulant.    It  

could  be  suggested  that  the  traumatic  surgery  resulted  in  activation  and  further  

consumption  of  the  clotting  factors,  leading  to  increased  d-­‐dimers  as  well.    When  

comparing  d-­‐dimer  levels  of  patients  that  did  receive  ATIII,  they  had  positive  levels  

as  well.    This  is  not  surprising  as  other  studies  have  found  elevated  d-­‐dimer  levels  at  

all  times  during  ECMO  despite  adequate  anticoagulation19.      

     We  also  investigated  fibrinogen  levels.    Low  levels  of  fibrinogen  can  

indicate  DIC  when  fibrinogen  is  consumed  faster  than  synthesized.    It  was  found  that  

only  3  of  the  6  patients  had  below  threshold  fibrinogen  levels.    Despite  the  fact  that  

the  presence  of  d-­‐dimers  and  low  fibrinogen  levels  suggest  DIC,  more  research  

would  have  to  be  completed  to  correctly  identify  these  patients  as  having  this  

diagnosis  that  is  difficult  to  identify  in  general.      

  32  

As  expected,  we  found  a  significant  decrease  in  heparin  drip  rates.    The  

reasoning  behind  this  is  that  adding  ATIII  is  known  to  restore  heparin’s  

effectiveness  and  to  promote  therapeutic  anticoagulation20.    This  contrasts  with  a  

similar  study  that  did  not  find  any  significant  drop  in  heparin  dose  or  measured  ACT  

following  ATIII  administration16.    Using  less  heparin  to  achieve  the  adequate  

anticoagulation  level  is  beneficial  in  preventing  the  potential  adverse  effects  of  using  

too  much  heparin.    One  of  the  most  dangerous  complications  with  the  use  of  heparin  

is  intracranial  brain  hemorrhage13.      

When  looking  at  the  summary  statistics  between  the  cardiac  and  respiratory  

group,  we  noted  several  significant  differences  to  be  interpreted.    To  begin,  the  

differences  in  age  were  statistically  different.    One  explanation  could  be  that  the  

older  patients  are  more  likely  to  suffer  from  the  acute  heart  failure  issues  that  

require  them  to  be  placed  on  ECMO.    Also  significant  were  differences  between  the  

lengths  of  ECMO  runs  for  both  groups.    Respiratory  patients  were  placed  on  ECMO  

for  almost  twice  as  long  and  survival  was  significantly  lower.    Both  length  of  run  and  

survival  may  be  related  to  the  underlying  pathology  of  these  patients.    Perhaps  

respiratory  patients  have  more  irreversible  diseases  involving  their  lungs  and  other  

organ  systems.    It  is  also  possible  that  the  severity  of  their  condition  is  discovered  

too  late  for  ECMO  to  be  of  considerable  benefit.    The  cardiac  patients  possibly  suffer  

from  issues  that  are  more  temporary  and  reversible.      

  33  

The  other  variables  measured  did  not  show  statistically  significant  

differences.    There  was  no  significance  measured  between  antithrombin  

replacement  and  ACTs,  length  of  stay,  circuit  change  outs,  or  the  presence  of  clots  in  

the  circuit.    ACTs  can  be  affected  by  a  number  of  variables  which  might  explain  the  

wide  variability  and  lack  of  correlation.    More  patients  would  need  to  be  studied  in  

order  to  determine  any  significant  results.        

  This  study  has  various  limitations.    Being  retrospective,  it  is  not  possible  to  

control  factors  such  as  whether  or  not  patients  receive  ATIII,  timing  and  quantity  of  

dose,  and  timing  of  ATIII  activity  level  measurements.    ATIII  dose  was  subject  to  the  

attending  physician,  therefore  timing  and  dose  were  not  necessarily  standardized  or  

consistent.    Due  to  the  fact  that  not  all  patients  were  given  ATIII  on  a  daily  basis,  we  

had  to  standardize  dosing  by  dividing  the  total  amount  of  ATIII  given  by  how  many  

days  the  patients  were  on  ECMO.    Also,  at  times  the  physician  recommended  dose  

would  be  rounded  up  to  a  full  vial  to  reduce  waste  of  an  expensive  product.    In  

future  use  of  antithrombin  III,  it  would  be  beneficial  to  standardize  dosing  based  on  

weight  of  the  patient  (kg).    Given  these  patients  are  very  sick,  other  comorbidities  

may  be  confounding  to  the  results.    Obviously,  we  cannot  control  the  unlimited  

number  of  potential  differences  between  the  patient’s  etiologies.      

   

 

  34  

CONCLUSION  

Summary    

The  management  of  anticoagulation  and  bleeding  together  is  a  complex  issue.    

Without  sufficient  anticoagulation,  there  can  be  consumption  of  coagulation  factors  

and  platelets  that  can  eventually  lead  to  worsening  of  bleeding16.    The  present  study  

suggests  that  ATIII  replacement  is  necessary  while  patients  are  placed  on  an  extra-­‐

corporeal  membrane  oxygenation  device.    We  know  that  ATIII  will  consistently  be  

utilized  in  the  presence  of  heparin  and  also  that  there  will  be  a  drop  in  ATIII  due  to  

hemodilution  and  factor  activation  from  the  circuit.    In  addition,  as  the  results  

suggest,  blood  product  use  increases  significantly  without  ATIII  administration.    

Also,  the  cardiac  group  data  show  that  it  is  possible  that  excessive  ATIII  is  

associated  with  blood  loss  as  well  as  measured  by  pRBC  replacement.    For  this  

reason,  we  can  conclude  that  there  is  an  ideal  therapeutic  range  for  ATIII  

administration.      

  The  benefits  of  this  study  are  widespread.    Most  importantly,  the  ability  to  

reduce  bleeding  would  be  beneficial.    Reduction  in  the  use  of  blood  products  via  

reduction  in  the  amount  of  bleeding  is  advantageous  to  the  patient  by  preventing  

the  potential  for  transfusion  reactions.    Finally,  reducing  blood  product  use  may  be  a  

financial  incentive,  despite  the  relatively  high  cost  of  antithrombin  III.      

 

  35  

Future  Directions    

There  is  great  potential  for  future  research  to  be  performed  in  support  of  this  

data.    It  would  be  beneficial  to  require  measurement  of  ATIII  levels  pre-­‐cannulation  

to  know  what  level  patients  have  initially,  in  order  to  prevent  excessive  drops  for  

reasons  discussed  previously,  in  patients  that  are  dependent  on  heparin.    This  will  

benefit  patients  that  have  heparin  resistance  due  to  prior  heparin  therapy,  and  most  

importantly,  those  with  decreased  ATIII  availability  due  to  liver  dysfunction  as  a  

result  of  sepsis  or  other  disorders.    In  this  way,  we  can  also  understand  the  average  

percentage  drop  in  ATIII  levels  that  can  be  expected  from  the  initiation  of  ECMO.    

Also,  establishing  a  protocol  to  standardize  dosing  would  be  beneficial  to  evaluate  

the  effect  of  ATIII  in  a  prospective  manner.    To  date,  no  study  has  been  performed  to  

measure  ATIII  in  ECMO  patients,  as  it  has  been  done  successful  in  cardiopulmonary  

bypass  patients.    Eventually,  we  can  extrapolate  our  findings  to  other  patients  such  

as  those  that  are  on  total  artificial  heart  and  ventricular  assist  devices.  

 

 

 

 

 

  36  

APPENDIX  

Figure  1.  Comparing  heparin  drip  rate  at  first  dose  of  ATIII  and  24  hrs  later.    

 

 

 

 

Heparin at Dose

Heparin 24hr After

Mean 803 594.0703704 SE 138.203544 137.3237277

T-test 0.032828587  

 

 

 

  37  

Figure  2.  RBC  Infusions  measured  at  the  units  of  RBCs  given  per  day  compared  with  ATII  Replacement  

 

 

RBC

NO ATIII ATIII MEAN 7.02 2.81 SEM 1.25 0.30 T-Test 2.20617E-05

 

 

 

 

 

 

 

  38  

Figure  3.    Platelet  Infusions  measured  at  the  units  of  Platelets  given  per  day  compared  with  ATII  Replacement    

 

 

Platelets

NO ATIII ATIII MEAN 2.93 0.77 SEM 0.37 0.17 T-Test 3.18491E-05

 

 

 

 

 

 

 

  39  

Figure  4.  FFP  Infusions  measured  at  the  units  of  FFP  given  per  day  compared  with  ATII  Replacement    

 

 

FFP

NO ATIII ATIII MEAN 4.61 1.11 SEM 1.26 0.21 T-Test 1.11657E-05

 

 

 

 

 

  40  

 

Figure  5.      

 

 

 

 

 

 

 

 

 

 

  41  

 

Figure  6.  

 

 

 

 

 

 

 

 

 

  42  

 

Table  1.  Summary  statistics  for  cardiac  and  respiratory  

Parameter   Units   Respiratory   Cardiac   P  value  n       20   21   ns  

Age   years   39.4    ±  3.3   57.7    ±  2.7   0.04  Weight   Kg   84  ±  6   92  ±  4   ns  

BSA   M2   1.9  ±  2.0   2.0  ±  0.1   ns  Gender   %  males   50   68   ns  Length   days   14.1   7.4   0.0383  

Survival     %   35     58     0.0002    

 

 

 

 

 

 

 

 

 

 

 

 

 

  43  

 

Table  2.    

ATIII  Levels  

Average  ATIII  Post  Initiation  (%)  

Average  ATIII  Level/day  (%)  

Cardiac   47.7  ±  5.8   86.5  ±  1.4  

Respiratory   67.3  ±  8.2   88.2  ±  5.5  

                                             

 

  44  

REFERENCES  

 1.  Allen,  S.,  Holena,  D.,  McCunn,  M.,  et  al.  (2009).  A  review  of  the  fundamental  

principles  and  evidence  base  in  the  use  of  extracorporeal  membrane  oxygenation  (ECMO)  in  critically  ill  adult  patients.  Journal  of  Intensive  Care  Medicine,  (26)1,  13-­‐26.  

 2.  Bartlett,  R.H.  &  Gattinoni,  L.  (2010).  Current  status  of  extracorporeal  life  support  

(ECMO)  for  cardiopulmonary  failure.  Minerva  Anesthesiologica,  (76),  534-­‐540.  

 3.  Linhardt,  R.J.  Heparin:  An  important  drug  enters  its  seventh  decade.  Chemistry  &  

Industry,  (2),  45-­‐50.    4.  Chesterman,  C.N.,  Chong,  B.H.  (1993).Uses  of  heparin.  British  Medical  Journal,  

306:871.    5.  Oliver,  W.C.  (2009).  Anticoagulation  and  Coagulation  Management  for  ECMO.  

Semin  Cardiothoracic  Vasc  Anesth,  13,  154-­‐174.    6.  Hensley,  F.A.,  Martin,  D.E.,  &  Gravlee,  G.P.  (2008).    Coagulation  management  

during  and  after  bypass.  A  Practical  Approach  to  Cardiac  Anesthesia  (Fourth  Ed.,  pp.  494).  Philadelphia,  PA:  Lippincott  Williams  &  Wilkins,  a  Wolters  Kluwer  Business.  

 7.  Lefkovitz,  J  &  Topol,  EJ.  (1994).  Direct  thrombin  inhbitors  in  cardiovascular  

medicine.  Circulation,  90,  1522-­‐1536.    8.  Levy,  J.H.,  Montes,  F.,  Szlam,  F.  &  Hillyer,  C.D.  (2000).  The  In  Vitro  effects  of  

antithrombin  III  on  the  activated  coagulation  time  in  patients  on  heparin  therapy.  Anesthesia  &  Analgesia,  90  (5),  1076-­‐1079.  

 

  45  

9.  Hustead,  V.  &  Kurth,  M.H.  (2006).  Clinical  Guideline:  Antithrombin  III.  ECMO  Neonatal  Clinical  Management.  Minnesota  Neonatal  Physicians  PA.  

 10.  Toomasian,  JM.  &  Bartlett,  RH.  (2011).    Hemolysis  and  ECMO  pumps  in  the  21st  

century.  Perfusion,  26(1),  5-­‐6.    11.  Betrus,  C.,  Remenapp,  R.,  Charpie,  J.,  et  al.  (2007).    Extracorporeal  Membrane  

Oxygenation  and  Continuous  Renal  Replacement  Therapy.  Ann  Thorac  Cardiovasc  Surg,  13(6),  378-­‐383.  

 12.  Arnold  PA,  Jackson,  S.,  Wallis,  J.,  et  al.  (2001).  Coagulation  factor  activity  during  

neonatal  extra-­‐corporeal  membrane  oxygenation.  Intensive  Care  Med,  (27),  1395-­‐1400.  

   13.  Khaja,  W.A.,  Bilen,  O.,  Lukner,  R.B.,  et  al.  (2010).  Evaluation  of  Heparin  Assay  for  

Anticoagulation  Management  in  Newborns  undergoing  ECMO.  American  Journal  of  Clinical  Pathology,  134,  950-­‐954.    

 14.  Agati,  S.,  Ciccarello,  G.,  Salvo,  D,  et  al.  (2006).  Use  of  a  Novel  Anticoagulation  

Strategy  During  ECMO  in  a  Pediatric  Population:  Single  Center  Experience.  ASAIO  Journal,  (52),  513-­‐516.  

 15.  Sievert,  Alicia.  Improvement  in  long-­‐term  ECMO  by  detailed  monitoring  of  

anticoagulation:  a  case  report.    

16.  Neibler,  R.A.,  Christenson,  M.,  Berens,  R.,  et  al.  (2011).  Antithrombin  Replacement  During  Extracorporeal  Membrane  Oxygenation.  Artificial  Organs,  (35)11,  1024-­‐1028.  

 17.  Nankervis,  C.A.,  Preston,  T.J.,  Dysart,  K.C.,  et  al.  (2007).  Assessing  Heparin  Dosing  

in  Neonates  on  Venoarterial  Extracorporeal  Membrane  Oxygenation.  ASAIO  Journal,  (53),  111-­‐114.  

 

  46  

18.  Avidan,  M.S.,  Levy,  J.H.  (2005).  Recombinant  human  antithrombin  III  restores  heparin  responsiveness  and  decreses  activation  of  coagulation  in  heparin-­‐resistant  patients  during  cardiopulmonary  bypass.  The  Journal  of  Thoracic  and  Cardiovascular  Surgery,  (130),  107-­‐113.  

19.  A.H.,  Willett,  L.W.,  Fristoe,  L.,  et  al.  (1995).  Coagulation  Monitoring  during  Extracorporeal  Membrane  Oxygenation:  The  Role  of  Thromboelastography.  The  Journal  of  Extra-­Corporeal  Technology,  27,  137-­‐145.  

 19.  Avidan,  M.S.,  Levy,  J.H.,  Scholz,  J.,  et  al.  (2005).  A  Phase  III,  Double-­‐blind,  Placebo-­‐

controlled,  Multicenter  Study  on  the  Efficacy  of  Recombinany  Human  Antithrombin  in  Heparin-­‐resistant  Patients  Scheduled  to  Undergo  Cardiac  Surgery  Neccesitating  Cardiopulmonary  Bypass.  Anesthesiology,  102,  276-­‐284.  

 20.  Koster,  A.,  Chew,  D.,  Kuebler,  W.,  et  al.  (2003).  High  antithrombin  III  levels  

attenuate  hemostatis  activation  and  leukocyte  activation  during  cardiopulmonary  bypass.  The  Journal  of  Thoracic  and  Cardiovascular  SurgeryI,  (126),  906-­‐7.