feb 3, 2009thermal aspects of advanced virgo cryostat design, eric hennes, uva1 advanced virgo :...

12
Feb 3, 2 009 Thermal aspects of Advanced Virgo cryostat design, Eric H ennes, UvA 1 Advanced Virgo : cryostat designs Some thermal aspects Eric Hennes, University of Amsterdam Gravitational Waves group Amsterdam Nikhef-VU-UvA Cascina, Februari 3, 2009 Contents geometrical overview questions to be answered thermal properties modeling method results for several design parameters conclusion

Upload: tyrone-booker

Post on 05-Jan-2016

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Feb 3, 2009Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA1 Advanced Virgo : cryostat designs Some thermal aspects Eric Hennes, University

Feb 3, 2009

Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA 1

Advanced Virgo : cryostat designsSome thermal aspects

Eric Hennes, University of Amsterdam

Gravitational Waves group Amsterdam

Nikhef-VU-UvA

Cascina, Februari 3, 2009

Contents

geometrical overview

questions to be answered

thermal properties

modeling method

results for several design parameters

conclusion

Page 2: Feb 3, 2009Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA1 Advanced Virgo : cryostat designs Some thermal aspects Eric Hennes, University

Feb 3, 2009

Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA 2

cylinder Tc=80 K fixed

Lc

Dc

Dm

mirror

Simplified geometry

Ambient temperature Ta=300K

Lcm

tm

Mirror:

Dm = 0.4 m

tm = 0.1 m

Am = (Dmtm+Dm2/2)

Rm = Dm/2

Cylinder:

Dc = 0.65 or 1.0 m

Lvc = 2.5 m

Ac = DcLc

Exterior: isolated

cold area viewed by mirrorBaffle ring at Ta

transparant area viewed by mirror

Distance:

Lcm = 2.5 m

`

Page 3: Feb 3, 2009Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA1 Advanced Virgo : cryostat designs Some thermal aspects Eric Hennes, University

Feb 3, 2009

Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA 3

To be estimated

PamPmc

Pac

•Cryostat power consumption Pac due to radiation

•Radiative heat flow Pmc =Pam from and to mirror (in equilibrium)

•Mirror temperature distribution, without or with baffle(s)•Effect T-distribution on mirror optics (optical path)•(Design of baffle heating)

`

`

Page 4: Feb 3, 2009Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA1 Advanced Virgo : cryostat designs Some thermal aspects Eric Hennes, University

Feb 3, 2009

Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA 4

Thermal material properties involved

Mirror: Thermal conductivity : k = 1.36 W/Km

Thermo-optic coefficient :dn/dT= 0.98 10-5 K-1

Thermal Expansivity : = 0.54 m//Km

Emissivity: : m = 0.89

Cryostate Emissivity: : c = 0.1 (initial)

= 0.2 (nominal, t< 2 years)

= 0.9 (worst “icing” case)

Baffle “ : b = 0.12

Ambiance “ : amb = 1.0 (“black”)

Reflection of radiation : diffuse, i.e. non-specular

Page 5: Feb 3, 2009Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA1 Advanced Virgo : cryostat designs Some thermal aspects Eric Hennes, University

Feb 3, 2009

Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA 5

Mirror temperature distribution : FEM (COMSOL)

Domain : T=0

Boundary : .n=J (outward conducted power flux)

Radiation heat exchange

general : FEM

Isothermal mirror equilibrium : analytical approximation

cooling power:

ambiance to mirror:

mirror to cryostat:

solving Tm (equilibrium): Pmc= Pam

Modeling method / tools 1

44, caacacccacca TTEEAFP

ammmamma EAFP

)1()1)(1(1 ccccmmcmc

mcmmcmcmc FFF

EAFP

Page 6: Feb 3, 2009Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA1 Advanced Virgo : cryostat designs Some thermal aspects Eric Hennes, University

Feb 3, 2009

Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA 6

View factor calculation

general : FEM (COMSOL)

2 simple bodies (Am<<Ac) : analytical approximation:

general: A1F12=A2F21

with Fcc: view factor between two circular faces 1 and 2 at distance d:

Modeling method / tools 2

2

1

2

2

1

2

1

2221

21,4

21

),,(

DD

Dd

XDD

XXdDDF cc

),,(),,(4/

14

ccmcmcc

cmcmcc

m

mmcma LLDDFLDDF

AD

FF

2

2

111c

c

c

cccca D

LDL

FF

Page 7: Feb 3, 2009Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA1 Advanced Virgo : cryostat designs Some thermal aspects Eric Hennes, University

Feb 3, 2009

Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA 7

Mirror geometrical properties change (mirror initially flat)

mirror thickness change

due to thermal expansion:

mirror surface radii of curvature: FEM mechanical analysis

Modeling method / tools 3

mt

m dzrzTrt0

),()(

Thermal lensing

change in optical path:

radius of curvature of equivalent

isothermal lens (one side flat):

mt

m dzrzTdTdn

rtnrs0

),()()1()(

)0()(2)1( 2

sRsRn

Rm

mopticthermo

),0(),( rTrtTtdTdn

mm

Page 8: Feb 3, 2009Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA1 Advanced Virgo : cryostat designs Some thermal aspects Eric Hennes, University

Feb 3, 2009

Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA 8

FEM models (thermal & thermo-mechanical)

Dc=1m, 3 baffles, quadratic hex elements

Dc=0.65m, no baffles, linear prism elements

Page 9: Feb 3, 2009Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA1 Advanced Virgo : cryostat designs Some thermal aspects Eric Hennes, University

Feb 3, 2009

Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA 9

Results small cryostate (c=0.2), no baffles

Cryostatpower Pac 180 W

Self-irradiance Fcc 0.87

Mirror

view factor Fmc 0.0123

power Pmc 0.22 W

Av. cooling Tm 0.23

Kfront-back Tfb 0.10

mid-edge Tme 0.06

thickness tm(Rm) tm(0) 4

nmdisplacement differences

front zf(Rm) zf(0) 13

back zb(Rm) zb(0) 9

Radius of curvature

front surface Rfront 1500

kmback surface Rback 2200

refractive Rthermo-optic 120

Temperature profile (299.70 – 299.86 K)

9 nm

Front Back

dz=13 nm

Enlargement factor : 2E6

Page 10: Feb 3, 2009Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA1 Advanced Virgo : cryostat designs Some thermal aspects Eric Hennes, University

Feb 3, 2009

Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA 10

Summary results for c=0.2

Dc(m) baffles Pc(W) Pm(W) Tm(K) Rthermo-optic(km)

0.65 no 180 0.42 0.21 120

1.0

no 370 0.8 0.43 60

b1 320 0.24 0.12 220

b1+b2 340 0.23 0.11 250

b1…..b3 350 0.31 0.16 170

b1…..b4 305 0.40 0.19 100

b1+b4 260 0.44 0.21 120

b4 b3 b2 b1

mirrorDc

Page 11: Feb 3, 2009Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA1 Advanced Virgo : cryostat designs Some thermal aspects Eric Hennes, University

Feb 3, 2009

Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA 11

Cryostat power for several emissivities c

Ec: 0.1 0.2 0.9

Dc(m) baffles Pc(W)

1.0

no 245 370 675

b1 221 320 530

b1+b4 190 260 370

0.65 no 130 180 295

Page 12: Feb 3, 2009Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA1 Advanced Virgo : cryostat designs Some thermal aspects Eric Hennes, University

Feb 3, 2009

Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA 12

Final remarks & conclusion

• All radii of curvature are larger than 100 km and exceed by far those predicted for beam power absorption (see van Putten et al.) Conclusion: no mirror optics problems expected for any proposed design

• Lowest cryostat power is obtained using (only) 2 baffles on either side

• Including the recoil mass into the models will result into a smaller radial temperature gradient, and consequently, into even larger radii of curvature